
0018-9162/00/$10.00 © 2000 IEEE54 Computer

Dynamic and
Transparent
Binary Translation

H
igh-frequency design and instruction-level
parallelism (ILP) are two keys to high-
performance microprocessor implementa-
tions. The Binary-translation Optimized
Architecture (BOA), an implementation of

the IBM PowerPC family, combines binary transla-
tion with dynamic optimization. We use these tech-
niques to simplify the hardware by bridging a
semantic gap between the PowerPC RISC (reduced
instruction set computer) instruction set and even sim-
pler hardware primitives.

Processors like the Pentium Pro and Power4 have
tried to achieve high frequency and ILP by imple-
menting a cracking scheme in hardware: An instruc-
tion decoder in the pipeline generates multiple
micro-operations that can then be scheduled out of
order. BOA relies on an alternative software approach
to decompose complex operations and to generate
schedules.

Software allows more elaborate scheduling and opti-
mization than hardware. Thus, you can use software
to eliminate complex control hardware so that a
processor implementation based on binary translation
can achieve maximum performance by enabling high-
frequency processors while still exploiting available
parallelism in the code.

Our work on BOA was inspired by earlier binary
translation work such as FX!321—and especially
Daisy,2,3 which uses binary translation for scheduling
PowerPC code to a very long instruction word (VLIW)
processor. However, the machine described in this arti-
cle is narrower, with priority given not to minimizing
cycles per instruction (CPI) but to maximizing proces-
sor frequency. By limiting the size of individual proces-
sor cores, multiples of them can be placed on a single
die for SMP-on-a-chip configurations.

BOA’s dynamic optimization offers significant

advantages over purely static compilation approaches
like those Intel and Hewlett-Packard currently pro-
pose for the IA-64 architecture. Reliance on purely sta-
tic profiling makes it impossible to adapt to changes in
program usage. In addition, static profiling requires
that independent software vendors (ISVs) perform
extensive profiling and generate different executables
optimized for a particular processor generation.

Given the reluctance of ISVs to ship code with tra-
ditional compiler optimizations enabled, it may be dif-
ficult to induce them to take the still more radical step
of profiling. None of these problems arise with BOA’s
dynamic approach, which performs invisibly.

BOA’S TRANSLATION STRATEGY
In BOA, binary translation is transparent: As Figure

1 shows, when BOA boots, control transfers to the vir-
tual machine manager (VMM), which implements the
binary translation system. The VMM is part of BOA
firmware, although invisible to the software running
on it.

After the BOA VMM initialization, the BOA VMM
interpreter initiates the PowerPC boot sequence.
Specifically, a PowerPC system built on top of BOA
executes the same steps as it would on a native
PowerPC implementation. Actual instruction execu-
tion always remains under full control of the BOA
VMM, although the locus of control need not neces-
sarily be within the VMM proper, which includes the
interpreter, translator, exception manager, and mem-
ory manager. If the locus of control is not in the VMM,
it is within VMM-generated traces that have been
translated carefully so as to transfer control only to
each other or back to the VMM.

When the BOA VMM first sees a fragment of
PowerPC code, it interprets it to implement PowerPC
semantics. During this interpretation, BOA collects code

BOA’s dynamic optimization offers significant advantages over purely static
compilation approaches like those Intel and Hewlett-Packard currently
propose for the IA-64 architecture.

Michael
Gschwind
Erik R.
Altman
Sumedh
Sathaye
IBM T.J. Watson
Research Center

Paul Ledak
David
Appenzeller
IBM Burlington

C O V E R F E A T U R E

profile data that will later be used for code generation.
Interpretation also serves as a filter for rarely executed
code, which cannot amortize its translation cost.

Trace formation
After interpreting the entry point of a PowerPC

operation sequence, BOA gathers PowerPC opera-
tions from a single path through the PowerPC code
and places them in a group. Translated BOA code for
a trace can be laid out contiguously in memory. In
PowerPC code, code layout is a function of program
structure and compile-time decisions. BOA, in con-
trast, uses dynamic runtime information to generate
traces corresponding to the most likely path of pro-
gram execution. This contiguous layout improves
instruction-cache packing and the ability to fetch
instructions quickly.4

Figure 2 shows the formation of a trace along the
path ABDH. BOA places this path into contiguous
memory locations to improve instruction cache pack-
ing and instruction fetch. While forming traces is
advantageous, it can also result in a degradation of
performance if BOA were to predict the path incor-
rectly. Figure 2 shows how the effective window size
for exploiting parallelism can be reduced by incor-
rectly predicting the most likely path.

PowerPC code can be broken into several traces,
some of which may overlap. Traces have two types of
exits: side exits that represent a mispredicted branch
and end-of-trace exits that represent translation stop-
ping points. Choosing stopping points wisely can limit
the number of translated traces and help improve
cache performance.

Figure 3 shows how BOA operates. Once BOA sees
the trace beyond a threshold number of times, it assem-
bles the code starting at the entry point into a PowerPC
trace and translates it into a BOA instruction trace for
execution on the underlying hardware. At each branch
point, BOA follows the most likely path. As the trace
moves to each conditional branch during the transla-
tion, the probability of reaching each point from the
start of the trace decreases. When the probability drops
below a threshold value, BOA terminates the trace.

Code optimization and scheduling
Optimization, particularly useful for dealing with

legacy code, can also improve the performance of
already-optimized code. Unlike a static compiler, the
dynamic optimizer need not consider the entire con-
trol flow in making optimization decisions. Instead,
short traces can be carved out of the control-flow
graph, eliminating all control-flow joins. Eliminating
control-flow joins opens up numerous optimization
possibilities as shown in Figure 4.

Performing BOA optimizations in a traditional sta-
tic compiler presents a special challenge because of

March 2000 55

BOA
processor

Translations

VMM code

VMM data

PowerPC
memory

RAM

BOA ROM
(boot code,
VMM code)

PowerPC
boot
ROM

Instruction
cache

hierarchy

Data
cache

hierarchy

Figure 1. The components of a BOA system.

A

B

DC

E F G H

Actual most likely
ABCF

Path interpreter says most likely
ABDH

Figure 2. The formation of a trace along the path ABDH. The effective window of opera-
tions can be small if the interpreter does not correctly predict the most likely path
through a group of PowerPC operations. The dotted circle indicates how the effective
window of operations is truncated to path AB by path mispredication, instead of exploit-
ing a long path such as ABDH or ABCF.

Interpret
operation X
(PowerPC)

Go to next
operation X

Update
statistics

At
previously
translated

entry
point?

Has
seen

current
operation
N times?

No
No

Yes Yes

Form trace at Op X
and translate

PowerPC code to
BOA instructions

Execute BOA
translation of trace
beginning at Op X

Figure 3. How BOA operates.

56 Computer

the difficulty in choosing from among the exponen-
tially many paths through the available code. Profiling
an application’s execution and using the results in the
next compilation mitigates this problem to some
degree. In addition to their own benefit, these opti-
mizations reduce dependencies and thereby reduce
schedule height, which allows more operations to be
scheduled in parallel to exploit BOA’s parallel execu-
tion units more effectively.

BOA’s design schedules operations to maximize ILP
opportunities and take advantage of the speculation
capabilities supported by the underlying architecture.
The current scheduling approach is greedy: Each oper-
ation executes at the earliest possible time when

• all input operands are available,
• a function unit on which to execute the opera-

tion is available, and
• there is a free register in which to put the result.

In determining this earliest possible time, BOA makes
use of several optimization techniques.

BOA simultaneously performs scheduling, opti-
mization, and register allocation. The out-of-order
scheduling approach used by the BOA translator
makes it difficult to maintain the precise exceptions
required by the PowerPC architecture. To solve this
problem, BOA uses a hybrid hardware-software
approach based on maintaining precise checkpoints
at trace transition boundaries and the ability to roll
back to an earlier checkpoint.

To initiate a checkpoint procedure, BOA copies all
registers to a set of backup registers. Within a trace,
BOA schedules instructions out of order and renames
the registers to support speculative execution. BOA
executes store operations in original program order
but labels them pending so they can be revoked if an
exception occurs.

When a trace is exited during the course of normal
execution, the Power PC registers are committed into
the checkpoint registers, pending stores are marked
definite, and execution continues with the next trace.

When an exception occurs, the system discards work-
ing registers and all pending stores and recovers the
processor state from the checkpoint registers. The
BOA VMM then enters interpretative mode and exe-
cutes in-order instructions until the cause and loca-
tion of the exception are discovered.

System issues
Out-of-order loads must be treated specially dur-

ing scheduling and execution to conform with
PowerPC memory-ordering semantics. BOA assigns
each load and store in a trace a number indicating its
sequence in the trace. If the hardware detects that a
load with a later sequence number has executed ear-
lier than a store with an earlier sequence number, BOA
signals an exception, restores the last checkpoint, and
enters interpretative mode. The result is that BOA re-
executes the problem load to receive the proper values.

Attempts to access noncacheable memory, such as
an I/O location, are also problematic. Such operations
cannot be allowed to complete because they can have
side effects such as changing the hard disk contents. To
avoid this problem, BOA uses hardware to suppress
and detect any noncacheable loads that require spe-
cial handling in software.

When branching between traces of translated
instructions, BOA places load real address (LRA) oper-
ations at the start of each trace that is by the scheduler.
When executed, the LRA operation checks that the
translation lookaside buffer and page tables still map
the virtual address for the start of the trace in the same
way that they did when the trace was originally trans-
lated. If a change in the page tables might affect the
validity of a translation, BOA initiates a trap, destroys
the trace, and begins interpreting at the proper address.

ARCHITECTURE AND IMPLEMENTATION
We created BOA to be an unexposed architecture

with an instruction set specifically designed to support
binary translation. We did not intend the architecture
to be a platform for handwritten user code, but instead
to provide several primitives and resources to make it
a good target for binary translation.

Instruction set architecture
In a sense, BOA instructions are the equivalent of

microcode operations, which represent the real
machine language used to implement the public ISA.
The BOA instruction set is not accessible from
PowerPC user or supervisor mode, and may change
from implementation to implementation.

BOA’s primitives resemble the PowerPC’s in both
semantics and scope. However, not all PowerPC opera-
tions have an equivalent BOA primitive. Many PowerPC
operations are intended to be layered as a sequence of
simpler BOA primitives to enable high-frequency imple-

*x = b x = a

c = *xc = *x

x = a

x = a
c = *a

First
path
seen

Second
path seen

*x = b

c = *x

*x = b
c = b

(a)

(b)

Figure 4. Dynamic
optimization can open
new optimization
opportunities. In (a),
copy propagation
yields two indepen-
dent operations that
can be scheduled in
the same VLIW. In (b),
load-store telescop-
ing eliminates depen-
dencies through
memory. Copy propa-
gation of c = b can
open even more
opportunities.

mentations. BOA instruction semantics and data for-
mats also resemble the PowerPC’s, eliminating the need
for expensive data format conversions. To support code
scheduling and speculation using register renaming, BOA
provides twice as many machine registers for each class
of PowerPC registers.

BOA uses a statically scheduled, compressed in-
struction format similar to the IA-64 architecture. A
parallel instruction can simultaneously issue up to six
operations per cycle, as Figure 5 shows. To ensure effi-
cient memory layout, BOA packs operations into 128-
bit bundles that contain three operations each. Each
operation contains 39 bits and one stop bit. This
brings the total to 120 bits among the three opera-
tions, leaving 8 bits for future system enhancements.

As Figure 5 shows, code generation guarantees that
no dependencies exist between operations in a packet,
so they can safely be issued in parallel. The six issue
slots can contain operations for up to nine different
execution units: two memory, four integer, two float-
ing-point, and one branch unit. Any combination of
operations can be issued in a packet, but to simplify
instruction decoding and dispatch, operations must
be encoded in this order in a packet.

All operations effectively have an additional latency
cycle because BOA provides no bypassing. One cycle
must elapse before a result can be used by a successor
operation. Eliminating result bypass permits reduced
cycle time by allowing a full pipeline stage to broad-
cast results to each execution unit.

Implementation
Figure 6 shows the contents of the BOA processor

box depicted in Figure 1. For achieving high fre-

quency, the processor assumes a simple hardware
design with a medium-length pipeline. The basic
processor provides stall-on-use capability for loads,
allowing instruction execution to continue in the pres-
ence of cache misses during memory accesses. This
allows memory accesses and independent instructions
to overlap efficiently until a dependent operation
forces a stall or BOA retrieves ROM memory. The
processor also provides dynamic support for out-of-
order loads and stores, decoupled fetch-and-execute
pipelines, and a commit-recirculate scheme for pipe-
line control.

Although dynamic scheduling and branch predic-
tion have proven their value on superscalar processor
implementations, we feel that they can limit frequency
if not used sparingly. We limited BOA hardware to
four dynamic processes:

• register scoreboarding lets in-order instruction
issues continue in the presence of nondependent
memory stalls,

• load and store queues check for address conflicts
between loads and stores reordered during trans-
lation,

• instruction buffers decouple the fetch pipeline
from the execute pipeline to hide some instruc-
tion fetch stalls, and

• a pipeline control method enables the pipeline to
advance on each processor cycle, which simplifies
pipeline control.

Assuming proper code scheduling, only memory
stalls will hold up the execution pipeline. Instead of
checking for the existence of a stall before proceed-

March 2000 57

Memory Memory Float Float BranchInteger Integer Integer Integer

(LSU) (FXU) (FPU) (BRU)

Quasi-crossbar

Packet with six parallel operations

Bundle with three sequential operations/packets

Op Op Op

Op Op Op

Packet Packet Packet

Op Op Op

Bundle Bundle

Stop Stop Stop

Figure 5. BOA instruc-
tion formats.

58 Computer

Dynamic
load-store

support

Data
cache

LSU

FXU

FPU

BRU

Issue,
reg read

Decode
package

Instruction
cache

Fetch
control

Recirculation
buffer

Instruction
buffer

Broadcast
results

Write
reg

results

Fetch Decode Execute Broadcast WritebackIssue
read

Figure 6. The BOA processor executes instructions concurrently in two load-store units (LSUs), four fixed-point units (FXUs), two floating-point units
(FPUs), and a branch resolution unit (BRU).

ing, the pipeline advances every cycle. When a packet
is issued, it is also copied into the recirculation buffer
shown in Figure 6. The recirculation buffer holds a
copy of every packet currently executing.

Stalls need not be noticed until late in the execu-
tion process. For example, if the data cache misses
and does not return a value, the packet with the cor-
responding load operation is marked null, as are any
packets issued after this load packet. The recircula-
tion buffer then reissues the load packet and all sub-
sequent packets. If the reissued packets also incur a
cache miss, the process repeats. These repeats occur
until all stalls have been eliminated.

N ewer technologies show wire delay replacing
logic delays as the limiting factor in clock speed.
For BOA, this means paying special attention to

processor control logic. The BOA microarchitecture
accommodates the expected relative increase in wire
delay of future advanced CMOS processes by allow-
ing a full cycle to transmit data across the CPU core.

Figure 7 shows BOA performance as cycles per
PowerPC instruction on the SPECint95 and TPC-C
system benchmarks, and details the contribution of all
system aspects.

You can find detailed information about different sys-
tem configurations and their performance impact else-
where.5,6 The performance numbers demonstrate that
binary translation is an interesting implementation choice
for future high-performance systems. As described in the
sidebar “High-Frequency Processing,” we expect BOA
soon to achieve a 2-GHz clock frequency. ✸

Acknowledgments
Modern processor design is the work of many indi-

viduals. Albert Chang, Kemal Ebcioǧlu, Martin
Hopkins, Craig Agricola, Patrick Bohrer, Arthur
Bright, Zachary Filan, Jason Fritts, and Jay LeBlanc
have all been instrumental in the BOA project.

References
1. R. Sites et al., “Binary Translation,” Digital Technical

J., Dec. 1992, pp. 137-152.
2. K. Ebcioǧlu and E. Altman, “DAISY: Dynamic Compi-

lation for 100 Percent Architectural Compatibility,”
Proc. ISCA24, ACM Press, New York, 1997, pp. 26-37.

3. K. Ebcioǧlu et al., “Execution-Based Scheduling for
VLIW Architectures,” Proc. Europar99, Lecture Notes

High-Frequency Processing
Stephen Kosonocky, IBM T.J. Watson Research Center

The 1999 International Technology Roadmap for Semiconductors
(http://notes.sematech.org/ntrs/PublNTRS.nsf) calls for achieving a high-
performance microprocessor with a 2-GHz on-chip clock by the middle
of this decade, while CMOS technology will provide only a 190 percent
increase in Field Effect Transistor performance. The numbers of transis-
tors will increase per chip over typical 1999 0.18-µm CMOS capabili-
ties. To meet and exceed these cycle time goals, the BOA microarchitec-
ture allows a worst-case cycle time of 700 picoseconds in a current
0.18-µm CMOS bulk technology under nominal process and tempera-
ture conditions. This cycle time target represents more than a 50 percent
improvement over reported 0.25-µm designs scaled to 0.18 µm and
should allow operation in excess of 2 GHz in the next few years.

in Computer Science 1685, Springer Verlag, Berlin,
1999, pp. 1269-1280.

4. K. Pettis and R.C. Hanson, “Profile Guided Code Posi-
tioning,” Proc. 1990 SIGPLAN PLDI, ACM Press,
New York, 1990, pp. 16-27.

5. S. Sathaye et al., “BOA: Targeting MultiGigahertz with
Binary Translation,” IEEE TCCA Newsletter, Fall 1999,
pp. 2-11.

6. E. Altman et al., BOA: The Architecture of a Binary
Translation Processor, IBM Research Report RC21665,
IBM, Yorktown Heights, N.Y., 2000.

Michael Gschwind is in the high-performance VLSI
architecture group at IBM T.J. Watson Research Cen-
ter. He received a PhD in computer science from
Technische Universität Wien, Austria. His research
interests include compilers, binary translation, com-
puter architecture, hardware-software codesign, and
application-specific processors. Contact him at
mikeg@watson.ibm.com.

March 2000 59

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Po
w

er
PC

 e
q

u
iv

al
en

t
C

PI

TLB
L2
L1-D
L1-I
Interpretation
Translation
Branch
Exceptions
Base

go Ii perl m88ksim ijpeg vortex tpc-ccompressgcc

Figure 7. This chart shows the number of cycles necessary to execute an average PowerPC instruction for each of the SPECint95 benchmarks and for the
TPC-C database benchmark. The base component represents the cycle time of each PowerPC instruction without any overhead, such as translation cost
or cache misses. The additional stacked bars represent this overhead. In the key, TLB represents the cost of TLB misses. L2, L1-D, and L1-I represent
the cost for cache misses in the L2, L1 data, and L1 instruction caches, respectively. Finally, “Interpretation” reflects the time necessary for initial inter-
pretation and profiling,“Translation” represents the cost of translating from PowerPC to BOA code, “Branch” represents branch penalties, and “Excep-
tions” represents the cost of implementing precise exceptions using a rollback scheme.

Erik R. Altman is in the high-performance VLSI archi-
tecture group at IBM T.J. Watson Research Center and
was one of the originators of the DAISY project. He
received a PhD in computer science from McGill Uni-
versity. Contact him at erik@watson.ibm.com.

Sumedh Sathaye is a research staff member at IBM
T.J. Watson Research Center. His research interests
include computer architecture and microarchitecture,
instruction-level parallelism, and binary translation.
He received a PhD in computer engineering from
North Carolina State University. Contact him at
sathaye@watson.ibm.com.

Paul Ledak is vice president of IBM Server Architecture
Development. He has spent most of his career manag-
ing and contributing to IBM microprocessor develop-
ment for PowerPC and x86 architecture processors.

David Appenzeller is a manager for PowerPC micro-
processor development at IBM Burlington. He received
a BS in electrical engineering from Drexel University.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

