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Abstract
Mood disorders collectively account for a substantial proportion of dis-
ease burden across the globe and have a devastating impact on quality of
life and occupational function. Here we evaluate recent progress in un-
derstanding the neurocognitive mechanisms involved in the manifesta-
tion of mood disorders. We focus on four domains of cognitive function
that are altered in patients with depression: executive control, memory,
affective processing, and feedback sensitivity. These alterations impli-
cate a distributed neural circuit composed of multiple sectors of the
prefrontal cortex in interaction with subcortical regions (striatum, tha-
lamus) and temporal lobe structures (amygdala, hippocampus). Affective
processing and feedback sensitivity are highly sensitive to serotonergic
manipulation and are targeted by antidepressant treatments. By draw-
ing together cognitive, neuroanatomical, and pharmacological tiers of
research, we identify treatment targets and directions for future in-
vestigation to identify people at risk, minimize relapse, and maximize
long-term beneficial outcomes for those suffering from depression.
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PET: positron
emission tomography
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INTRODUCTION

Mood disorders, including major depressive
disorder (MDD) and bipolar disorder (BD),
are prevalent neuropsychiatric conditions that
represent a leading cause of disability across
the globe. Patients with MDD experience
depressive episodes of at least two weeks
duration that are accompanied by a number
of characteristic subjective, behavioral, and
physiological symptoms (Am. Psychiatr. Assoc.
2000). Patients with BD experience episodes
of depression as well as manic episodes during
which they are typically elated, agitated, and
socially inappropriate. Lifetime prevalence of
these two conditions has been estimated at up
to 19% and 1.5%, respectively, depending on
the country (Weissman et al. 1996). Approx-
imately 60% of completed suicides occur in
patients with a mood disorder (Shaffer et al.
1996). Depressive and manic symptoms func-
tionally impact sufferers and their families, and
mood disorders are costly to the economy. For
example, the economic cost of depression was
estimated at $44 billion in the United States in
2000 (Greenberg et al. 2003) and 7.5 billion
in England in 2007 (McCrone et al. 2008).

Consequently, it is important to understand
the neurobiology of mood disorders and the
brain mechanisms by which treatments for
depression exert their beneficial effects. The
application of neuroscience techniques can
facilitate early detection, optimize treatment,
and reduce the risk of subsequent relapse.

Mood disorders are unlikely to stem from
aberrant function of a specific gene, brain re-
gion, or cognitive process. Rather, the clini-
cal phenotype (the symptoms) should be seen
as the end point of underlying dysregulation
of distributed neural networks and cognitive-
emotional control processes (Mayberg 2007).
This selective review aims to summarize the re-
cent advances in understanding neurocognitive
mechanisms in mood disorders and their un-
derlying neurobiological substrates. We begin
by considering the cognitive symptoms that are
described in the diagnostic criteria for mood
disorders and the key brain systems implicated
in their development. We then review the core
findings in mood disorders across four domains
of psychological function: executive control,
memory, affective processing, and response to
negative feedback. In considering their under-
lying substrates, we focus on functional neu-
roimaging research that has examined the neu-
ral correlates of these processing deficits, as well
as the neurochemical mechanisms identified
by challenge studies and radioligand positron
emission tomography (PET) imaging. We con-
clude by discussing the first-line treatments for
mood disorders, along with recent experimen-
tal approaches to the treatment of depression,
which are derived largely from improved un-
derstanding of its neural substrates.

Cognitive Abnormalities in Mood
Disorders: Diagnostic Criteria
and Psychological Models

Cognitive problems are included in the di-
agnostic criteria for depressive and manic
episodes, according to the Diagnostic and Sta-
tistical Manual (Am. Psychiatr. Assoc. 2000).
The criteria for depression include a reduced
ability to concentrate and indecisiveness.
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Criteria for mania include distractibility and
excessive involvement in pleasurable activities
that are likely to result in damaging outcomes
(i.e., risk-taking). The emotional states of pa-
tients with depression and mania can be consid-
ered to represent two polar extremes on a mood
spectrum (see Figure 1). Although we all expe-
rience mood fluctuations in day-to-day life, the
states manifested in depression and mania are
pathological in that they are extreme, disrupt
quality of life, and are persistent and often re-
current (Chamberlain & Sahakian 2004).

Aberrant cognition is also emphasized in
psychological models of mood disorders. Two
classic formulations that continue to influ-
ence current theory are the learned helpless-
ness model (Seligman 1972) and Beck’s cog-
nitive model of depression (Beck et al. 1979).
According to the learned helplessness model,
patients grow to accept that stressful circum-
stances cannot be altered through their own ac-
tions, which leads to disruption of learning and
stagnant, anhedonic behavior (Seligman 1972).
In Beck’s cognitive model, dysfunctional nega-
tive schemata formed early in life are activated
by stressful life events and lead to a character-
istic triad of negative thoughts directed at the
self, the world, and the future. Systematic er-
rors of logic then perpetuate the low mood;
for example, patients with depression engage
in maximization and minimization, where crit-
icism or minor errors are overemphasized and
major achievements are ignored. Maladaptive
belief systems and negative schemata have been
objectively identified in patients (Hollon et al.
1986, Scott et al. 2000) and are challenged
in psychotherapies such as cognitive behavior
therapy (CBT) (Beck et al. 1979), which aims
to train patients to recognize and modify their
dysfunctional beliefs and negative automatic
thoughts.

Implicated Neural Circuitry

The frontal lobes and basal ganglia have been
consistently implicated in the pathophysiol-
ogy of mood disorders since seminal work was
completed in patients with secondary mood

Dysphoria Mania

Depressive episode:

 Low mood

 Helplessness,
 hopelessness, and
 worthlessness

 Loss of interest in
 pleasurable activities

Manic episode:

 Grandiosity

 Over-activity

 Social disinhibition

 Talkativeness

 Lack of insight

Figure 1
Mood states in patients with depression and mania can be considered to occupy
extreme poles on an affective spectrum. Although healthy mood fluctuates in
response to life events, the extreme mood states are pathological in that they
are persistent and impede everyday functioning and quality of life.

CBT: cognitive
behavior therapy

PFC: prefrontal
cortex

disturbance as a result of acquired brain in-
jury. Post-stroke depression was reported to
have higher prevalence following lesions that
involved the prefrontal cortex (PFC) or the
basal ganglia, particularly on the left side of the
brain (Robinson et al. 1983, Starkstein et al.
1987). Although a systematic review has ques-
tioned this association (Carson et al. 2000), a
subsequent study in 275 cases of ischemic stroke
corroborated the link to infarcts affecting the
PFC and subcortical regions in the left hemi-
sphere (Vataja et al. 2001). It is also notable that
rare cases of secondary mania are often associ-
ated with right-lateralized damage to the same
regions (Robinson et al. 1988). Neurological
conditions affecting the basal ganglia (namely,
Parkinson’s disease and Huntington’s disease)
are also associated with elevated levels of de-
pression (McDonald et al. 2003). These clinical
observations have been confirmed subsequently
using MRI in patients with primary (i.e., nonor-
ganic) mood disorders (e.g., Sheline 2003; see
also below).

The frontal lobes and basal ganglia are in
fact richly interconnected via a series of func-
tionally segregated loops or circuits that link
discrete stations in the frontal cortex, striatum,
and thalamus (Alexander et al. 1986). Although
some cross-talk likely occurs between these
circuits (e.g., Haber et al. 2000), this basic
conceptualization has been extremely fruitful
within neuropsychiatry because diagnoses may
be linked to differential degrees of dysfunction

www.annualreviews.org • Neurocognitive Mechanisms in Depression 59

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
09

.3
2:

57
-7

4.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 8

0.
22

9.
14

6.
50

 o
n 

07
/2

0/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV379-NE32-03 ARI 10 May 2009 8:38

across these fronto-striatal loops (Mega &
Cummings 1994). Several tiers of evidence im-
plicate dysregulation of a medial/orbitofrontal
circuit in depression, comprising the or-
bitofrontal cortex and anterior cingulate
cortex, the ventral striatum (including the
nucleus accumbens), the ventral pallidum, and
the medial thalamus (Drevets 2000, Mayberg
2003). Components of this circuit are recip-
rocally connected with the amygdala, another
locus that is widely implicated in emotional
processing in the healthy brain (Phillips et al.
2003) and dysregulated in mood disorders
(Phillips et al. 2008). The neurobiology of ma-
nia has been less well characterized compared
with MDD, but similar regions are implicated
in functional imaging studies (Blumberg et al.
2003), and patients with lesions to the ventro-
medial PFC display risk-seeking and socially
disinhibited behavior that is reminiscent of
mania (Clark & Sahakian 2006).

Modern imaging techniques offer the
precision to localize structural abnormalities
within fronto-striatal circuitry. One pivotal
observation by Drevets and colleagues (1997)
was of volume reduction in a specific sector of
the anterior cingulate cortex, lying ventral to
the genu of the corpus callosum (hence sub-
genual cingulate). This reduction was observed
in patients with BD and MDD diagnoses,
with high familial loading for mood disorder
(Drevets et al. 1997). These volume reductions
have since been replicated in early-onset mood
disorders (Botteron et al. 2002, Hirayasu et al.
1999) with some specificity to mood disorders
(Coryell et al. 2005). Moreover, the subgenual
cingulate region was shown to be functionally
dysregulated in the depressed state. Although
the initial study indicated reduced glucose
metabolism (Drevets et al. 1997), this effect
was partly confounded by the volumetric
differences (Drevets 2000). Later studies iden-
tified functional hyperactivity in the subgenual
cingulate (Mayberg 2003), which predicted a
positive treatment response (Mayberg et al.
1997, Saxena et al. 2003) and normalized upon
recovery from depression (Kennedy et al. 2001;
Mayberg et al. 1999, 2005).

Brain imaging techniques have also given
insight into the underlying neurochemistry
of mood disorders by using PET imaging
with receptor-selective tracers. The status of
the serotonin system has been probed using
the 5-HT1A antagonist, [11C] WAY100635,
and the serotonin transporter ligand, [11C]
DASB (3-amino-4-(2-dimethylaminomethyl-
phenylsulfanyl)-benzonitrile). A WAY100635
study comparing unmedicated MDD patients
against healthy controls reported a 41%
reduction in 5-HT1A binding potential (BP) in
the raphe nucleus, the source of the ascending
serotonin projection, coupled with a 27%
reduction in BP in the medial temporal lobe
(i.e., hippocampus and amygdala) (Drevets
et al. 1999; see also Sargent et al. 2000). Using
the [11C]DASB ligand, serotonin transporter
BP was increased in several areas receiving
serotonergic innervation (prefrontal cortex,
anterior cingulate, putamen) in a subset of
MDD cases with severe negative beliefs, and
BP in these regions was correlated significantly
with a measure of Beckian dysfunctional atti-
tudes (Meyer et al. 2004). These BP increases
are thought to occur as a reaction to low levels
of extracellular serotonin in these patients. In
considering the changes in affective processing
and feedback sensitivity in patients with de-
pression, it will become clear that serotonin has
a fundamental role in modulating emotional
behavior and that these changes in serotonin
transmission may represent an important cause
of cognitive dysfunction in depression.

COGNITION IN MOOD
DISORDERS

Neuropsychological assessment provides a
framework for objectively investigating cogni-
tive functions in patients with depression and
mania. Investigators have developed comput-
erized tests to measure specific components
of cognitive function. These tests offer many
advantages over conventional pencil-and-paper
testing because they standardize aspects of
administration and automate data collec-
tion and analysis. The neuroanatomical and
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neurochemical substrates of these measures
may be elucidated using a variety of methods:
studies in humans with focal neurosurgical
damage, functional neuroimaging in patients
and controls, and neurochemical probes. The
ecological validity of these tests in mood
disorders is supported by studies using cog-
nitive measures to predict poorer functional
outcomes, for example, in terms of return to
employment or quality of life ( Jaeger et al.
2006, Martinez-Aran et al. 2007). In the
following section, we focus on four domains of
psychological function that have been studied
most extensively in relation to mood disorders.

Executive Control

Executive function is a collective term that
refers to higher-level processes involved in
the flexible organization of behavior, including
working memory, forward planning, and the
inhibition of dominant responses. Functional
imaging and human lesion studies have local-
ized executive processes to the dorsal and lat-
eral aspects of the PFC, albeit in interaction
with subcortical structures and posterior corti-
cal regions (Robbins 1998). Executive function
is significantly compromised across a range of
paradigms in MDD (Elliott et al. 1996, Rogers
et al. 2004). These deficits were present in
unmedicated MDD patients (Taylor Tavares
et al. 2007) and exacerbated in bipolar de-
pression compared with MDD (Borkowska &
Rybakowski 2001). Although executive func-
tion improves substantially as depressive
episodes subside, some impairments persist in
remitted cases (Clark et al. 2005), particularly
in older adults (Beats et al. 1996).

Consistent with these neuropsychological
findings, functional imaging studies have indi-
cated dysregulation of dorsal and lateral PFC in
depressed patients performing executive tasks.
The direction of this effect appears to de-
pend on the level of performance in the clin-
ical group. In studies where MDD cases were
behaviorally impaired relative to controls, for
example on tests of forward planning (Elliott
et al. 1997a) or verbal fluency (Okada et al.

2003), prefrontal activation was attenuated in
the MDD group. However, prefrontal activa-
tion was reported to be greater in MDD during
working memory (Harvey et al. 2005), mental
arithmetic (Hugdahl et al. 2004), and the Stroop
task (Wagner et al. 2006), in studies where there
were no performance differences between pa-
tient and control groups. While these inconsis-
tencies may be related to differences in patient
characteristics or the precise tasks employed,
a parsimonious explanation is that the overac-
tivations reflect diminished cortical efficiency;
in short, depressed patients may need a greater
degree of frontal lobe activation to maintain
the same level of task performance as healthy
individuals.

Memory

Memory impairment is a second domain of im-
pairment in patients with depression and can be
captured with a range of paradigms including
a virtual reality spatial navigation task (Gould
et al. 2007) or paragraph recall (remembering
the details of a complex story after a 10-min
delay) (Gorwood et al. 2008). Mnemonic im-
pairment is highly predictive of functional out-
come (Martinez-Aran et al. 2007) and correlates
with indices of illness chronicity. For example,
a recent study in a primary care cohort (n =
8229) estimated a 2%-3% decline in delayed
paragraph recall with each depressive episode
up to the fourth episode (Gorwood et al. 2008).
Data such as these highlight the importance of
early detection and intervention in the clinical
management of depressed patients to minimize
these cumulative effects.

Hippocampal pathology is thought to un-
derlie this pronounced memory deficit. Hip-
pocampal function is impaired in patients with
MDD and BD during memory encoding tasks
(Bremner et al. 2004, Deckersbach et al. 2006),
and reduced hippocampal volume is arguably
the most robust neuropathological finding re-
ported in MDD, as supported by meta-analyses
of MRI data (Campbell et al. 2004, Videbech
& Ravnkilde 2004) as well as postmortem
evidence (Stockmeier et al. 2004). For example,
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a b

Figure 2
(a) Using voxel-based morphometry of magnetic resonance imaging data, elderly depressed patients showed
reduced gray matter volume in the right hippocampus compared with controls. The yellow region represents
voxels of reduced gray matter volume at the p < 0.001 threshold, after controlling for age. (b) A negative
correlation (also p < 0.001 controlling for age) was found between gray matter volume in the peri-
hippocampal region (comprising the right and left anterior hippocampal gyrus and entorhinal cortex) and
the number of years since the first onset of depression. Reprinted with permission from Bell-McGinty et al.
2002. Reprinted with permission from the American Journal of Psychiatry (copyright 2002).

a structural MRI study in elderly depressed sub-
jects reported hippocampal volume reductions
that were correlated with the duration of ill-
ness (Bell-McGinty et al. 2002) (see Figure 2).
In young adult cases with MDD, hippocam-
pal volume did not differ from controls in un-
treated first-episode cases but was reduced in
patients who had experienced multiple episodes
(MacQueen et al. 2003), and recent work has
shown decreases in hippocampal gray mat-
ter over a three-year period in MDD (Frodl
et al. 2008).

Which mechanisms contribute to this pro-
gressive deterioration in the hippocampus? One
hypothesis proposes that the increased corti-
sol levels that are evident during depressive
episodes (Carroll et al. 1976) have a toxic effect
in the hippocampus (Sapolsky et al. 1985); for
example, the hippocampus is also highly sensi-
tive to hypoxic injury. Certain classes of med-
ication may be capable of stalling these dete-
riorations. For example, hippocampal volume
was inversely correlated with the duration of
untreated depressive illness but was not associ-
ated with the duration of depressed mood under
antidepressant medication (Sheline et al. 2003).

Preclinical research has suggested that the clin-
ical efficacy of antidepressant drugs may de-
pend on their capacity to stimulate hippocam-
pal neurogenesis (Sahay & Hen 2007). When
hippocampal neurogenesis was disrupted in
mice, two antidepressant drugs, the tricyclic
imipramine and the SSRI fluoxetine, were ren-
dered behaviorally ineffective (Santarelli et al.
2003). Similarly, anticonvulsant drugs that are
widely used in treating BD may exert neuropro-
tective effects in the hippocampus (Manji et al.
2000): Lithium treatment in rodents prevented
the effect of chronic stress to reduce dendritic
length in the hippocampus (Wood et al. 2004).
Further clinical studies are now needed to sup-
port these translational approaches because the
relative roles of cell death, cell shrinkage, and
a failure of neurogenesis in causing the evident
hippocampal pathology in depression remains
unclear.

Affective Processing Bias

The symptomatology of depression suggests a
processing bias toward negative aspects of the
environment. Within memory, for example,

62 Clark · Chamberlain · Sahakian

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
09

.3
2:

57
-7

4.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 8

0.
22

9.
14

6.
50

 o
n 

07
/2

0/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV379-NE32-03 ARI 10 May 2009 8:38

patients with depression are more likely to
recall negative autobiographical memories,
and when they do recall positive experiences,
they are overgeneral, that is, lacking in detail
(Brittlebank et al. 1993). By contrast, the mood
typical of mania is grandiose, suggestive of a
positive processing bias. Depressed patients are
impaired at recognizing happy facial expres-
sions, whereas manic patients are impaired at
recognizing negative (including sad) facial ex-
pressions (Lembke & Ketter 2002, Rubinow &
Post 1992). Much of the recent neurocognitive
work on affective processing in mood disorders
has employed tasks of emotional facial recog-
nition, or tasks that present emotional words
or pictures, because these tasks can be easily
adapted for use in functional imaging.

Another procedure used to study these bi-
ases is the affective go/no-go test (http://
www.camcog.com), which requires the pro-
cessing of affect in the context of an inhibitory
control task. Volunteers observe a series of emo-
tional words (e.g., “HAPPY”, “FAILURE”) and
are instructed to make rapid responses to words
of one valence and to ignore words of the
other valence. Target valence changes across
blocks of the task. Affective bias is indicated
by a difference in reaction time to respond

(f )MRI: functional
magnetic resonance
imaging

to happy versus sad targets. Using this test,
Murphy et al. (1999) showed that depressed
patients responded more rapidly to sad ver-
sus happy word targets, whereas manic patients
displayed the opposite bias, responding faster
to happy words (see Figure 3). Manic patients
also made more impulsive commission errors
to nontargets. The effect in MDD was repli-
cated in unmedicated patients who were faster
to respond to sad words and also made more
omission errors to happy targets (Erickson et al.
2005). Healthy controls in that study were sig-
nificantly faster to respond to happy than sad
targets, albeit with a smaller effect size com-
pared with manic patients in the Murphy et al.
(1999) study. The investigators suggested that
this positive bias in healthy subjects may confer
resilience during times of stress (Erickson et al.
2005; see also McCabe & Gotlib 1995).

Using a functional magnetic resonance
imaging (fMRI) variant of the affective go/no-
go task, increased activation was observed in
the subgenual cingulate when healthy con-
trols viewed emotional versus neutral words
(Elliott et al. 2002). Depressed patients showed
abnormally increased neural responses to sad
targets in this region and a distinct response to
sad distractors in the right orbitofrontal cortex

a
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Figure 3
Affective bias in mood disorders. (a) On the affective go/no-go task, patients with depression are faster to
respond to negative words than positive target words, whereas patients with bipolar disorder tested during
mania are faster to respond to positive words than negative words. Data redrawn from Murphy et al. (1999).
(b) This negative bias in depressed patients was later replicated in an unmedicated sample with major
depressive disorder. Healthy controls in that study were significantly faster to positive words than negative
words, which may be associated with resilience against low mood. Data from Erickson et al. 2005.
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SSRI: selective
serotonin reuptake
inhibitor

NRI: noradrenaline
reuptake inhibitor

(Elliott et al. 2002). Dysregulation of the or-
bital and medial PFC has also been revealed by
inducing low mood through autobiographical
scripts in remitted MDD patients (Liotti et al.
2002). Other key nodes for affective processing
are disrupted in depressive states. In particu-
lar, increased amygdala response has been re-
ported in a number of studies of MDD groups;
for example, in response to negative emotional
faces (Fales et al. 2008, Sheline et al. 2001).
This amygdala hyperreactivity is sustained into
affectively neutral blocks that follow the emo-
tional task (Siegle et al. 2002) and is attenuated
through chronic SSRI treatment (Fu et al. 2004,
Sheline et al. 2001).

The amygdala is extensively interconnected
with the multiple regions within the PFC, and
these interactions may allow top-down control
of emotional behavior (e.g., Johnstone et al.
2007). Several recent findings have indicated
that these patterns of connectivity may be com-
promised during depressive states (Chen et al.
2008, Johnstone et al. 2007, Siegle et al. 2007).
For example, Johnstone et al. (2007) scanned
healthy controls and unmedicated MDD cases
on an emotional reappraisal task, where, on
some trials, subjects were asked to enhance or
suppress their emotional responses to affective
pictures. Controls displayed a negative associa-
tion between amygdala and ventrolateral PFC
activity, which was mediated by the ventrome-
dial PFC. These correlations were absent or re-
versed in the MDD cases. The degree of cou-
pling between the amygdala, and the prefrontal
and anterior cingulate cortex also increased
with eight weeks of selective serotonin reuptake
inhibitor (SSRI) treatment (Chen et al. 2008).

Other evidence supports the regulatory role
of serotonin in affective processing. Much
of this work has used the acute tryptophan
depletion (ATD) procedure in healthy subjects,
which entails the ingestion of an amino-acid
mixture that selectively lacks tryptophan, the
precursor of serotonin. ATD robustly depletes
serotonin availability in the brain over a six-
to-eight-hour period (Carpenter et al. 1998,
Williams et al. 1999). The finding that ATD ad-
ministration to remitted MDD cases can cause

a temporary relapse of low mood (Smith et al.
1997) remains one of the few direct pieces of
evidence for a causal (rather than correlative)
relationship between depression and reduced
serotonin function, although it is an endur-
ing puzzle that healthy volunteers rarely show
ATD induction of negative mood (Robinson &
Sahakian 2008). Nonetheless, healthy subjects
do show some of the cognitive sequelae of
depression following ATD: On the affective
go/no-go task, ATD slowed reaction times to
happy stimuli (Murphy et al. 2002) and abol-
ished the normal tendency to improve accuracy
on nonshift trials (Rubinsztein et al. 2001), sug-
gesting a role for serotonin in the ability to
maintain an affective set. Recent studies have
also begun to explore the subchronic effects of
antidepressant administration in healthy volun-
teers. Harmer et al. (2004) investigated the ef-
fects of seven-day treatment with citalopram
(an SSRI) or reboxetine (an NRI) in healthy
volunteers. Both classes of antidepressant sig-
nificantly reduced the recognition of negative
facial expressions (anger and fear) and increased
recall of positive emotional material. Thus, an-
tidepressant treatments may share an early ef-
fect of mediating negative affective biases that
characterize the depressive state.

Feedback Sensitivity

Depressed patients frequently ruminate over
perceived failures and criticism. Neuropsycho-
logical evidence shows that patients with de-
pression also have an exaggerated response to
negative feedback during laboratory testing. An
early study using two tests of working mem-
ory (delayed matching to sample) and forward
planning (one-touch tower of London) found
that if MDD cases responded incorrectly on a
given trial (trial N), they were disproportion-
ately likely to fail the subsequent trial (N+1)
(Elliott et al. 1997b). This catastrophic response
to perceived failure occurred across both tasks
and could impact upon cognitive ability on
any tasks that deliver performance-contingent
feedback. Moreover, the effect appeared spe-
cific to depression because it was not seen in
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other neuropsychiatric conditions that showed
overall task impairments, such as Parkinson’s
disease.

The deleterious effect of negative feedback
was also identified on a probabilistic reversal
learning task, during which subjects attempted
to learn from feedback which of two stimuli
is correct. The trial-by-trial feedback (“COR-
RECT” or “INCORRECT”) is probabilistic,
such that misleading feedback is provided on
20% of trials; for example, a correct response
may yield incorrect feedback. At some point
during the task, the rule reverses so that the
other stimulus becomes correct. To acquire and
reverse the rule successfully, subjects must be
able to disregard the misleading feedback. De-
pressed patients were more likely to reverse
their responding repeatedly on trials that fol-
lowed misleading false feedback (Murphy et al.
2003) (see Figure 4). This effect was recently
replicated in unmedicated MDD cases, but
Taylor Tavares et al. (2008) showed it to be ab-
sent in similarly depressed BD patients. The
symptom profile of bipolar depression may be
subtly distinct from MDD, with fewer cogni-
tive symptoms (e.g., guilt) and more physio-
logical/behavioral symptoms (e.g., psychomo-
tor slowing) (Mitchell et al. 2001).

Taylor Tavares et al. (2008) also examined
the neural correlates of the abnormal response
to false feedback in MDD using fMRI. The
healthy controls and BD group recruited ven-
trolateral and dorsomedial PFC during re-
versal rule shifts, and these frontal responses
were attenuated in the MDD group, consis-
tent with evidence for the hypofrontality dur-
ing executive control. In addition, the controls
and BD subjects show reduced amygdala ac-
tivity in response to negative feedback, com-
pared with trials given correct feedback. These
signal reductions likely reflect the task re-
quirement to ignore misleading negative feed-
back because the amygdala reduction corre-
lated with the ability to ignore this feedback.
The MDD group failed to show this amyg-
dala decrease. This combination of reversal-
related hypofrontality and failure to regulate
the amygdala is highly consistent with the

aforementioned findings of attenuated fronto-
limbic connectivity leading to reduced top-
down control of the amygdala (Chen et al. 2008,
Johnstone et al. 2007, Siegle et al. 2007).

In addition to abnormal processing of neg-
ative feedback in depression, the anhedonic
symptoms of depression, where patients fail to
derive enjoyment from pleasurable activities,
suggest that there may also be altered process-
ing of positively valenced information in MDD.
Recent fMRI studies have indicated reductions
in ventral striatal activity in MDD in response
to happy facial expressions (Surguladze et al.
2005) and positive words (Epstein et al. 2006),
which correlate inversely with anhedonic symp-
toms (Epstein et al. 2006). An elegant study by
Steele et al. (2007) used a gambling task dur-
ing which correct or incorrect feedback was
provided to card guesses. Reaction times were
used to assess the impact of feedback: Healthy
controls sped up after positive feedback and
slowed down on trials after negative feedback.
In the healthy controls, receipt of correct feed-
back yielded ventral striatal activity, and receipt
of negative feedback yielded anterior cingulate
activity; both effects correlated with the as-
sociated change in reaction time. Both neural
effects were attenuated in the MDD cases, and
the changes in reaction time associated with
both positive and negative feedback were cor-
related with a measure of anhedonia. Similarly,
we have also found that hypersensitivity to loss
on a gambling task was correlated with anhedo-
nia ratings (Taylor Tavares et al. 2007). As such,
anhedonia appears to reflect both a blunting of
positive reinforcement processing, as well as an
inability to use negative feedback to improve
task performance.

As with affective processing, the effects of
negative feedback are also sensitive to sero-
tonin manipulation. A recent study from our
group compared the effects of citalopram, an
SSRI, and atomoxetine, an NRI, in healthy vol-
unteers using a single-dose, placebo-controlled
design (Chamberlain et al. 2006). Citalopram
treatment (but not the NRI) increased the ten-
dency to reverse responding following mislead-
ing negative feedback, mimicking the effect
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Figure 4
Abnormal response to negative feedback on the probabilistic reversal learning task. (a) Subjects with MDD
were more likely to switch responding following misleading negative feedback. Feedback sensitivity score is
the proportion of misleading negative feedback trials during which the subject inappropriately switched on
the next trial. Data from Murphy et al. 2003. (b) The tendency to switch following misleading negative
feedback was induced in healthy volunteers through single-dose administration of the selective serotonin
reuptake inhibitor citalopram, but not by the noradrenaline reuptake inhibitor atomoxetine, compared with
placebo. Data redrawn from Chamberlain et al. 2006.

observed in depression (Murphy et al. 2003)
(see Figure 4). In single doses, SSRIs may dif-
ferentially affect presynaptic 5-HT autorecep-
tors, acting to temporarily downregulate sero-
tonin transmission. Future work is needed to
explore the subchronic effects of citalopram
on these measures and to examine antidepres-
sant effects in patients with depression. Recent
work has used an adapted reversal learning task
to separate reversal shifts triggered by reward
from reversal shifts triggered by punishment.
Using the ATD procedure, serotonin deple-
tion selectively enhanced reversal learning from
punishment cues (Cools et al. 2008), consistent
with theoretical notions that serotonin may sig-
nal punishment-related prediction errors (Daw
et al. 2002). Collectively, these studies impli-
cate serotonin in the modulation of affective
processing and feedback sensitivity, putatively
associated with the medial and ventral fronto-
striatal circuitry.

TREATMENTS FOR
MOOD DISORDERS

First Line Interventions

Current pharmacological treatment algorithms
for depression are directed at drugs that block
the reuptake of serotonin (the SSRIs) and/or

noradrenaline (the NRIs) from the synapse,
which is thought to enhance transmission
within these systems over time. Although
researchers traditionally thought that the
beneficial effects of these drugs occurred with
prolonged (∼3 weeks) treatment, recent anal-
ysis showed that beneficial effects were evident
in the first week (Taylor et al. 2006), suggesting
that the response is gradual and cumulative.
Antidepressants likely exert early effects on
emotional processing (e.g., Harmer et al. 2004),
but it is likely that further time is required for
patients to relearn patterns of behavior and
implement them (Robinson & Sahakian 2008).
Pharmacotherapy has limitations in terms of
side effects and lack of response in some pa-
tients. For example, in the large STAR∗D trial
(n = 2876), only 33% of depressed patients re-
mitted following 14 weeks of citalopram treat-
ment, and less than half (47%) showed a bene-
ficial response (defined as a reduction of ≥50%
of the baseline depression rating) (Trivedi et al.
2006). Thus, other interventions (stand-alone
or augmentation) need to be considered.

Psychotherapies, especially CBT, show effi-
cacy in the treatment of depression and increas-
ingly represent a first-line option (Butler et al.
2006). A course of CBT would typically entail
10–20 sessions, would aim to identify and chal-
lenge the dysfunctional beliefs that perpetuate
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negative thinking patterns, and would provide
patients with alternative ways of coping with
stressful life events. Functional imaging studies
have recently begun to compare the brain
changes associated with recovery from depres-
sion via CBT or pharmacotherapy (Goldapple
et al. 2004, Kennedy et al. 2007). For example,
Kennedy et al. (2007) demonstrated a common
effect of CBT and venlafaxine treatment to re-
duce metabolism in the orbitofrontal cortex and
medial prefrontal cortex in treatment respon-
ders. In addition to these shared effects, unique
effects of either modality were also apparent
in the subgenual cingulate region (adjacent
decreases following venlafaxine and increases
following CBT) (Kennedy et al. 2007).

SSRIs are used more cautiously in BD be-
cause there is limited evidence for their efficacy
in treating bipolar depression (Ghaemi et al.
2003, Sachs et al. 2007), and they can elicit
manic upswings (Howland 1996). Mood stabi-
lizers (e.g., lithium, valproate) are widely used
in the treatment of BD, and psychotherapy can
also be effective (Miklowitz et al. 2007), help-
ing patients recognize early signs of relapse, im-
proving interpersonal function, and stabilizing
social routines (Frank et al. 2005).

Experimental Approaches

There is an ongoing need to explore and
validate new treatments capable of target-
ing fronto-striatal circuitry, especially for
treatment-resistant cases. Cognitive enhancing
agents could augment the beneficial mood ef-
fects of traditional treatments and may also
ameliorate cognitive deficits, some of which can
persist into remission (e.g., Clark et al. 2002,
2005). Modafinil is one example of a cogni-
tive enhancer that could be useful because it
is already licensed for the treatment of day-
time sleepiness and has a good side-effect pro-
file (Minzenberg & Carter 2008, Sahakian &
Morein-Zamir 2007). The utility of modafinil
as an augmentation strategy in bipolar patients
maintained on mood stabilizers was demon-
strated in a six-week trial and showed signifi-
cant improvements in response and remission

compared with placebo (Frye et al. 2007). Fu-
ture studies will be required to assess the effects
of such agents on the cognitive profile in BD.

Electroconvulsive therapy (ECT) has a con-
tentious history within psychiatry, in part given
its side effects on cognitive function (Sack-
eim et al. 2007). In mood disorders, its effi-
cacy is undisputed, particularly in medication-
resistant cases (Geddes 2003). However, there
remains a search for more targeted stimula-
tion methods to minimize the risk of side ef-
fects such as amnesia. Transcranial magnetic
stimulation (TMS) is a noninvasive interven-
tion that involves the rapid alternation of mag-
netic field pulses over the scalp to trigger elec-
trical changes in the underlying cortex. TMS
to the left PFC shows medium-term antide-
pressant effects compared with sham stimula-
tion (Gershon et al. 2003, Pascual-Leone et al.
1996) and is efficacious in medication-resistant
cases (Avery et al. 2006). However, clinical
benefits have been found at varying stimulation
frequencies that are known to both excite (high-
frequency TMS) and suppress (low-frequency
TMS) cortical excitability. This occurrence
seems paradoxical, although the effectiveness
of different protocols may depend on base-
line activity, such that patients with frontal hy-
pometabolism may respond to a high-frequency
protocol and vice versa (Kimbrell et al. 1999).
Other aspects of the mechanism of action also
remain unclear, such as the optimal location
for stimulation and the dependency on distal
changes elsewhere in the brain (Gershon et al.
2003).

Deep brain stimulation (DBS) is an inva-
sive, neurosurgical alternative to TMS that
also holds promise for treatment-refractory pa-
tients. In the first study of its kind, Mayberg
et al. (2005) implanted DBS electrodes into
the white matter tracts of subgenual cingulate
region (Brodmann Area 25) bilaterally in six
patients with treatment-resistant depression.
Striking mood improvement was observed in
the short term, and sustained remission over
a six-month course of stimulation was seen in
four of the six patients. Subsequent work us-
ing MRI tractography in 9 DBS responders
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suggested that these benefits may be mediated
by the connectivity of the subgenual region
with limbic and visceromotor areas including
the nucleus accumbens, amygdala, hypothala-
mus, and orbitofrontal cortex ( Johansen-Berg
et al. 2008). Clinical benefits were also re-
ported following DBS in the nucleus accum-
bens (Schlaepfer et al. 2008). Although caution
is warranted given the small sample sizes and
lack of placebo or sham controls, DBS may
provide a valuable alternative for patients with
treatment-resistant depression. It is also en-
couraging that the rationale for this treatment
was derived from functional imaging data that
identified these neurobiological markers of the
depressive state.

CONCLUSION

Mood disorders are associated with promi-
nent cognitive symptoms that can be quan-
tified with computerized neuropsychological
testing. We have reviewed the extensive evi-
dence for impairments within four domains:
executive control, memory, affective process-
ing, and feedback sensitivity. These disruptions
implicate pathophysiology across a distributed

neural network that includes multiple sectors
of the PFC and cingulate gyrus, subcortical re-
gions in the striatum and thalamus, and tem-
poral lobe structures including the amygdala
and hippocampus. Functional changes within
this circuitry occur in depressive and manic
states and can persist into periods of remission.
Key components of this circuitry, including the
subgenual cingulate region and hippocampus,
may also display structural alterations. This
circuitry represents the target of established
treatments for depression, including both phar-
macotherapies (e.g., SSRIs) and psychothera-
pies (e.g., CBT). Currently available treatments
are not effective in all cases, and the continuing
search for novel treatments will be aided by fur-
ther understanding of the cognitive deficits and
neural markers that characterize the depressive
state. For severe or treatment-resistant patients,
novel techniques including TMS and DBS have
potential. We hope that the clinical applica-
tion of biological markers rooted in the neu-
rosciences (including genetics and neuropsy-
chological measures) will facilitate improved
disease detection, monitoring of recovery and
relapse, and novel treatment directions for
mood disorders (Beddington et al. 2008).

SUMMARY POINTS

1. Deficits in executive control in depression have been associated with pathophysiology in
lateral aspects of the PFC.

2. Memory impairment is a robust finding that is associated with volumetric reductions in
the hippocampus and may arise as a progressive consequence of depression, putatively
via neurotoxic effects of increased cortisol.

3. Biases are seen in affective processing: Patients with depression show preferential
processing of negative material and impaired processing of positive material.

4. Depressed patients also showed altered responses to task feedback, including an exag-
gerated response to negative feedback.

5. The changes in affective processing and feedback sensitivity are associated with dys-
regulation of limbic brain circuitry comprising the medial and orbital PFC, striatum,
and amygdala. These processes are sensitive to serotonergic manipulations and may be
targeted early in the course of antidepressant treatment.
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FUTURE ISSUES

1. Changes in neural connectivity in depression may be particularly important in emotional
regulation. Investigation of the neurochemical modulation of these interactions will carry
fundamental implications for treatment.

2. Cognitive and neurobiological biomarkers can facilitate early detection and predict treat-
ment response to prevent MDD from having a chronic relapsing course. Ultimately, it
may be possible to predict which variety of treatment (e.g., SSRI versus CBT) will be
most appropriate for a given patient.

3. Understanding the neural basis of resilience should help prevent depression in vulnerable
groups.

4. A more thorough understanding of pharmacogenomics holds promise for the develop-
ment of safe and more effective pharmacological treatments for mood disorders.
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