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ABSTRACT

Alternating two fair coin flipping games can create a winning game. Such a Parrondo game is a discrete
model for a thermal ratchet. Recently we have constructed quantum versions of these coin flipping games
that display the same “paradoxical” behavior. In this paper we add noise to these quantum Parrondo games
in order that they can be compared with continuum models of quantum ratchets. Simulation of these models
reproduces one of the most interesting features of quantum ratchets: current inversion.
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1. INTRODUCTION

Parrondo’s game is a classical coin flipping game constructed by alternating two losing games1,2. For
careful parameter choices the resulting game is a winning game. Motivated by the origin of Parrondo’s
game as a discrete model for thermal ratchets1,2, we have shown that it can be understood as a random
walk on a one dimensional lattice—a one particle probabilistic lattice gas automaton (LGA)—with a space-
and time-dependent bias3. A natural question from each point of view—games4, ratchets5,6, and random
walks/LGA7—is the existence of a quantum version of Parrondo’s game. We have answered this question
positively: A quantum random walk—a one particle quantum lattice gas automaton (QLGA)—with a space-
and time-dependent potential can display essentially the same apparently paradoxical behavior as does
Parrondo’s game3.

This behavior can be seen most clearly in the quantum setting in the case of alternating fair games that
combine to produce a winning game8. In fact, this is the case that is closest to the motivating phenomenon—
ratcheting. Ratcheting, in either the classical or quantum setting, is a nonzero current created by applying
an unbiased evolution rule at some timesteps and a locally biased evolution rule at others, where the locally
biased rule is globally unbiased—if it is applied at every timestep no current is created. As we will review
in §2 and §3, we have also shown that a quantum random walk/QLGA with appropriate potentials models
a quantum ratchet8.

One motivation for studying ratcheting is that it occurs in real systems, both natural and artificial9.
This means, of course, that a discrete model of a perfectly unitary quantum ratchet is less applicable than a
discrete model of a quantum ratchet subject to decoherence, i.e., noise. Our goal in this paper is to construct
such a model—a noisy quantum Parrondo game; we do so in §4.

A priori it is not obvious that this can be done in a way that preserves any remnant of the current created
by quantum correlations; measurement of the quantum system at every timestep (complete decoherence),
for example, would not. Continuous models for quantum ratchets5,6 seem to offer little guidance—the
approximation methods used there do not apply to our discrete model, nor do they fit very well within
the modern point of view of quantum computing10 which partly motivates our interest in these questions.
Nevertheless, as we show in §5, noise can be added to quantum Parrondo games in a way that reproduces
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one of the most interesting phenomena of quantum ratchets: current inversion. We summarize and outline
some future directions in §6.

2. PARRONDO GAMES AS RANDOM WALKS

In Parrondo games a gambler flips one of several coins, depending on his current capital. When he wins,
his capital increases by 1; when he loses, it decreases by 1. The simple case of Parrondo’s “paradox” that
corresponds to thermal ratcheting is exemplified as follows: Let game A be a flip of an unbiased coin, so that
Pr(win) = 1

2 . Let game B consist of two biased coins—a negatively biased one (with Pr(win) = 1
10 ) that is

flipped when the gambler’s capital is a multiple of 3 and a positively biased one (with Pr(win) = 3
4 ) that is

flipped otherwise.
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Figure 1. The expected payoffs for games B, A and
AABB as a function of number of plays t. Although
A and B are fair games, the combination AABB is a
(strongly) winning game.

Repeatedly playing A is clearly a fair game—
the expected change in capital is 0 after any num-
ber of iterations. Repeatedly playing B is also a
fair game2,3, in the sense that the expected win-
nings are asymptotically constant, neither increas-
ing nor decreasing with the number of iterations.
Alternating plays of these games in the sequence
AABB, repeated, or even in random sequence,
however, produce a winning game: the expected
change in capital is positive and approximately
proportional to the number of plays. Figure 1
shows the expected results for an initial capital
of 0 and 100 plays, in each of these cases.

Integer-valued capital corresponds to a lat-
tice discretization of the position of a Brownian
particle modelling diffusion in a one-dimensional
potential. Game A models a constant potential—
the random walk is locally unbiased—and game B
models a sawtooth potential—the bias is periodic in space, sharply negative at every third lattice site and
moderately positive at the sites in between, but globally the random walk is unbiased—asymptotically there
is no current. Alternating the games mimics a “flashing ratchet” that drives the particle to the right; now
the global bias is positive—there is a positive current.

A quantum random walk on a one-dimensional lattice involves a “quantum coin”, a qubit—a quantum
system with a two dimensional Hilbert space. Its state is a superposition a|↓〉 + b|↑〉 with |a|2 + |b|2 = 1,
where |↓〉 and |↑〉 are the eigenstates of σz =

(

1
0

0
−1

)

. An unbiased coin flip is represented by the unitary

transition matrix
(

1
i

i
1

)

/
√

2, which means that the amplitude for the coin to remain in the same σz eigenstate

is 1/
√

2, while it has amplitude i/
√

2 to change eigenstates.

Letting |x〉 ∈ C
Z denote capital, and identifying | ↓〉 and | ↑〉 with ‘lose’ and ‘win’, respectively, one

timestep of the unbiased quantum random walk (or, equivalently, one play of the quantum version of game
A) is the unitary transformation defined by linear extension from

|x, ↓〉 7→ 1√
2

(

|x− 1, ↓〉+ i|x+ 1, ↑〉
)

|x, ↑〉 7→ 1√
2

(

i|x− 1, ↓〉 + |x+ 1, ↑〉
)

.

(2.1)

The quantum version of repeated play of game A is to iterate this transformation repeatedly, delaying

measurement until the end of the repetition, from an initial state representing capital 0. In this paper the
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Figure 2. The payoff distribution for game A after
100 plays. Since the distribution vanishes at x ≡ T
mod 2, a weighted average (p(x−1)+2p(x)+p(x+1))/4
is plotted.

Figure 3. The payoff distribution for the classical
game A after 100 plays. This distribution has the
same parity condition as does the quantum one, and
is plotted the same way.

initial state is always
(

|0, ↓〉+ |0, ↑〉
)

/
√

2. The outcome of a “position” measurement on a state |ψ〉 ∈ C
Z⊗C

2

is drawn from a probability distribution with Pr(x) = |〈ψ|x, ↓〉|2 + |〈ψ|x, ↑〉|2. Figure 2 shows the probability
distribution after 100 iterations of game A. Although this distribution looks nothing like the distribution
of a classical randomly walking particle (shown in Figure 3 for a particle also initialized at x = 0), it is
symmetric, so the expected winnings 〈x〉 =

∑

xPr(x) are always 0 for this unbiased quantum game.

Although we introduced it here as a repeated quantum game, the QLGA evolution rule (2.1) is a
discretization of the evolution of a Dirac particle in 1+1 dimensions7, in which context the rule is described
as “scattering” followed by “advection”. This indicates how a bias should be introduced, given the goal
of modelling a ratchet potential: In the QLGA model, potentials are implemented by x-dependent phase
multiplication11. Thus the quantum version of the B game consists of the unbiased transition matrix,
multiplied by a phase e−iV (x), where VB(x) = β

(

1 − 1
2 (x mod 3)

)

is a sawtooth potential, followed by
advection:

|x, ↓〉 7→ 1√
2
e−iVB(x)

(

|x− 1, ↓〉+ i|x+ 1, ↑〉
)

|x, ↑〉 7→ 1√
2
e−iVB(x)

(

i|x− 1, ↓〉 + |x+ 1, ↑〉
)

.

(2.2)
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Figure 4. The expected payoffs for quantum game B,
as a function of number of plays t. Like the results for
classical game B shown in Figure 1, after a (somewhat
longer) initial oscillatory phase the payoffs converge to
a constant (negative) value. Thus the quantum game
B is also fair.

With this kind of modification of the evolution
rule, the expectation value of x is no longer con-
stantly zero. Figure 4 suggests that for β = −π/3,
game B is a fair game, in the same sense that the
classical game B is a fair game: The expected win-
nings are negative, but asymptotically constant—
the gambler’s losses do not increase in proportion
to the number of times he plays game B. Fur-
thermore, the current d〈x〉/dt 6= 0, although it
oscillates around zero.

3. DISCRETE QUANTUM RATCHETS

As we saw in Figure 1, alternating the classi-
cal games A and B mimics a flashing ratchet and
from two fair games produces a winning game—in
the strong sense that the gambler’s winnings are
proportional to the number of plays.
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Figure 5. The expected payoffs for the repeating se-
quence AAAAB of quantum games. Again, like the
result for the sequence of classical games shown in
Figure 1, this is a winning game. There is a posi-
tive current which can be approximated as the slope
of the linear fit shown.

Figure 6. The expected payoffs for the repeating se-
quence AAABB of quantum games. As is the case
classically, the results depend on the precise sequence.
For this one there is still a positive current, but it is
substantially smaller than for the sequence AAAAB
shown in Figure 5.
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Figure 7. The expected payoffs for the repeating se-
quence BAAAA of quantum games. Despite being the
same sequence as AAAAB, but shifted by 1, the re-
sults are completely different. For this sequence there
is no asymptotic current.

A similar result holds for the fair quantum
games A and B. Figure 5 shows that playing these
games in the sequence AAAAB, repeatedly, pro-
duces a winning game, in the same strong sense.
That is, asymptotically there is a positive current
d〈x〉/dt ≈ 0.0648, where this numerical value is
obtained by a least squares fit of a line to the se-
quence of values 〈x(t)〉.

Just as in the classical case, the amount of
current depends on exactly which repeating se-
quence of games is played. For example, the se-
quence AAABB, repeating, gives only a current of
approximately 0.0357. In fact, it also depends on
the point at which the sequence begins: AAAAB
gives the same bi-infinite sequence as BAAAA,
but the latter gives a completely different result
starting from the initial state localized at 0—no
ratcheting at all.* These results are shown in Fig-
ures 6 and 7. For the rest of this paper we will concentrate on the sequence AAAAB that produces the
relatively strong current shown in Figure 5; this case will demonstrate the most dramatic impact of the
addition of noise to the model.

4. ADDING NOISE

As we noted in §1, experiments on ratcheting behavior in real systems unavoidably involve interaction
with the environment, i.e., noise. We may expect this interaction to be particularly detrimental to quantum
effects as these depend on delicate coherences between quantum amplitudes for different states. At the
extreme where the environment (completely) measures the quantum system, all coherence is destroyed. If

* The results in papers [3] and [8] are for the sequence AAAAB, despite their description in those papers as
coming from the sequence BAAAA. We thank Derek Abbott and Adrian Flitney for pointing out this mistake.



the quantum random walks/QLGA described in §2 and §3 were completely measured at each timestep, the
resulting random process would behave as a classical, unbiased random walk, independently of any potential
imposed via (2.2).

Recent numerical and (approximate) analytical investigations of projective measurement of position12

and arbitrary positive operator valued measurement (POVM) of direction13 in quantum random walks have
shown that any positive probability p of measurement per timestep asymptotically destroys certain quantum
features of the random walk. In particular, the variance of position is no longer proportional to the number
of timesteps T , but rather to

√
T as it is for the classical random walk. The transition occurs at pT = O(1).

There is only a distant relation between these measurement models for the interaction of a quantum
random walk with its environment and the more traditional models for interaction with a heat bath that
have been applied to models for quantum ratchets5,6. The latter are based on the usual model of a heat
bath as an infinite collection of harmonic oscillators coupled bilinearly to the particle position14,15. For this
model the decoherence (or noise) in the system is a function of the temperature of the heat bath and the
strength with which it is coupled to the quantum system. To construct a noisy quantum Parrondo game
that can be compared to existing models for quantum ratchets, we need a discrete space and time model for
interaction with such a bath of oscillators.

Since coherent quantum effects are the basis of successful quantum computations10, over the past several
years there has been extensive investigation into decoherence—the effect of noise—of finite-dimensional
quantum systems evolving discretely in time. The noise models developed for these systems apply directly
to quantum random walks/QLGA and can be interpreted as exactly the sort of model for coupling to a heat
bath that we want. Specifically, we consider the following error model: Impose periodic boundary conditions
on the position variable 0 ≤ x < N . (This has no good interpretation in terms of a gambler’s capital, so
when we apply this model to define noisy quantum Parrondo games, the number of plays T will be small
enough (T < 4N) that the periodicity in x has no effect on the results.) An error basis for the Hilbert space
C

N is given by X iZj , i, j ∈ ZN , where X and Z are generalizations of the Pauli matrices that act on qubits:

X |x〉 = |x+ 1〉
Z|x〉 = ωx|x〉,

where ωN = 1 16. Since the interaction of a heat bath with particle position leads to a Gaussian error distri-
bution with temperature-dependent width, the natural approximation in this discrete setting is a binomial
distribution of the basis errors around X0Z0. That is, the error model for each timestep is

ρ 7→ E(ρ) = (1 − p)ρ+
p

6
(XρX† +X†ρX + ZρZ† + Z†ρZ + Y ρY † + Y †ρY ), (4.1)

where Y = ZX and ρ is the density matrix for the quantum system.* The “probability of an error” 0 ≤ p ≤ 1
combines the effects of the temperature of the heat bath representing the environment and the strength of
the coupling constant to the quantum system.

5. RESULTS

Adding the noise (4.1) to game A, i.e., to an unbiased quantum random walk or a one-particle QLGA
with constant potential, simply leads to a “smoothing” of the position distribution—an interpolation be-
tween the distributions of Figures 2 and 3. Similar results have been found for the measurement models of
decoherence described in §4 that lead to O(

√

(T )) variance in position13,12. In all models, of courses, adding
unbiased noise leaves the random walk unbiased, or the game fair. Our interest is in the effect of the noise
(4.1) on the (strongly) winning game consisting of the sequence of plays AAAAB, repeated.

* We are abusing notation slightly in (4.1): The errors X, etc., only act on C
N , while the Hilbert space here is

C
N ⊗ C

2. Thus we really mean X ⊗ I2, etc.
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Figure 8. The expected payoffs for the repeating se-
quence AAAAB of quantum games, with noise level
p = 1/32. On this timescale this is still a winning
game, as it is for p = 0.

Figure 9. The expected payoffs for the repeating se-
quence AAAAB of quantum games, with noise level
p = 1/2. On this timescale this is a losing game; the
current has reversed.

As indicated by the definition of the error model (4.1) in terms of its effect on the density matrix of the
quantum system, it is no longer sufficient to simply evolve a state vector. Let UA and UB be the unitary
matrices representing the evolution rules (2.1) and (2.2), respectively. Then the evolution rule for our noisy
quantum Parrondo game is

ρ(t+ 1) =

{

E
(

UAρ(t)U
†
A

)

t 6≡ 4 mod 5

E
(

UBρ(t)U
†
B

)

t ≡ 4 mod 5
. (5.1)

Figure 8 shows the expected winnings for 100 iterations of this game when p = 1
32 in (4.1). Although this is

a relatively small error rate, it is larger than 1/T . Nevertheless, the resulting game is still (strongly) winning
on this timescale, with a current of approximately 0.0322, about half of the p = 0 value.

For a sufficiently large error rate, e.g., p = 1
2 , however, the results are dramatically different. Figure 9

shows that in this case the expected winnings over 100 iterations are decreasing ; the current is approximately
−0.0184. That is, with this much noise, the quantum AAAAB game switches from being a winning game to
being a losing game, at least on this timescale. This seems to be exactly the discrete analogue of the current
inversions that occur in continuum quantum ratchets as the temperature of the heat bath changes5,6.

6. CONCLUSIONS

The unbiased quantum Parrondo games detailed in §3 can be interpreted as discrete unitary ratchets8.
As such it is natural to investigate the influence of the environment on the behavior of this quantum system.
In §4 we have presented an error model that is new in the context of quantum random walks13,12, but which
is the discrete space and time version of interaction with a heat bath14,15. Simulations of the resulting noisy
quantum Parrondo games display a phenomenon analogous to the current inversions that occur in continuum
quantum ratchets—winning games are converted to losing ones as the noise level increases.

Since näıve simulations of noisy quantum Parrondo games are quadratically slower than simulations of
unitary Parrondo games, the results shown in Figures 8 and 9 are for only 100 timesteps rather than the
500 timesteps shown in Figures 4–7. It would be interesting to analyze longer time behavior, preferably
analytically, or at least with more sophisticated numerical methods. We are also in the process of exploring
other directions in the parameter space of these games. Those results will be reported elsewhere.
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