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Abstract. A method is described for accurately calibrating cameras including radial lens 
distortion, by using known points such as those measured from a calibration fixture. A way of 
adding decentering distortion also is described. Both the intrinsic and extrinsic parameters are 
calibrated in a single least-squares adjustment, but provision is made for including old values of 
the intrinsic parameters in the adjustment. The distortion terms are relative to the optical axis, 
which is included in the model so that it does not have to be orthogonal to the image sensor 
plane. These distortion terms represent corrections to the basic lens model, which is a 
generalization that includes the perspective projection and the ideal fish-eye lens as special cases. 
The position of the entrance pupil point as a function of off-axis angle also is included in the 
model. A priori standard deviations can be used to apply weight to given initial approximations 
(which can be zero) for the distortion terms, for the difference between the optical axis and the 
perpendicular to the sensor plane, and for the terms representing movement of the entrance pupil, 
so that the solution for these is well determined when there is insufficient information in the 
calibration data. For the other parameters, initial approximations needed for the nonlinear 
least-squares adjustment are obtained in a simple manner from the calibration data and other 
known information. (Weight can be given to these also, if desired.) Wild points among the 
calibration data are removed by means of automatic editing based on analysis of the residuals. 
The use of the camera model also is described, including partial derivatives for propagating both 
from object space to image space and vice versa. 
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1. Introduction 

I .  I .  Background 

Geometric camera calibration is concerned with the problem of determining the accurate 
mapping between the three-dimensional coordinates of viewed points and the two-dimensional 
coordinates of the corresponding points in an image sensor. A camera model consists of 
parameters that define this mapping. They often are divided into extrinsic parameters, which 
depend upon the pose (position and orientation in three dimensions) of the camera as a whole, 
and intrinsic parameters, which depend upon the internal nature of the lens and sensor. (Usually 
in photogrammetry, the former are called “exterior orientation” and the latter are called 
“calibration,” but in computer vision the term “calibration” often includes both, and the term is 
used that way here.) Many camera calibration techniques have been used; some of them are 
described in a recent book (Gruen and Huang, 2001) and in a fairly recent historical survey with 
emphasis on photogrammetry (Clarke and Fryer, 1998). 

The basic camera model that has been used since the 1970s at the Jet Propulsion Laboratory 
(JPL) for robotics work was originally developed at JPL by Yakimovsky and Cunningham 
(1978). It included a perspective (central) projection and an arbitrary affine transformation in the 
image plane, but it did not include lens distortion. In 1986, a better method of calibrating that 
model was developed, using a rigorous least-squares adjustment (Gennery et al., 1987). In 1990, 
that camera model and the method for its calibration were extended to include radial lens 
distortion (Gennery, 1991). Further improvements were made in 1992. That improved version 
has been become fairly widely used at JPL, and it has been described in a recent publication 
(Gennery, 2001). In 1994, the present author devised a way of including old information about 
the intrinsic camera model (with appropriate weight) when a camera model adjustment is done 
with a new camera pose, In 1998, Yalin Xiong devised a variation of the camera model for 
fish-eye lenses. Recently, the present author devised a way of incorporating movement of the 
entrance pupil into the camera model, which necessitated revising the mathematical formulation. 
In the process, the distortion model was generalized to include normal lenses, fish-eye lenses, 
and others as special cases. This paper describes the generalized model, the adjustment 
algorithm, and the mathematics for the use of the camera model. It also shows how it reduces to 
the older version as a special case. A method of measuring the calibration data (finding the dots 
in images of a calibration fixture) was previously described (Gennery et al., 1987). 

The methods described herein will be used to calibrate the cameras to be used on the Mars 
Exploration Rovers planned for launch in 2003. Several cameras will be used on each rover 
(Eisenman et al., 2001; Smith et al., 2001). Some of these cameras adhere closely to the linear 
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perspective model, with very low distortion. However, the hazard avoidance cameras 
(HazCams) adhere fairly closely to the ideal fish-eye model, in which off-axis distance in image 
space is proportional to off-axis angle in object space. These HazCams have a field of view of 
180°, and they use a 1024-by-1024 CCD which covers the full field of view on the diagonal. 
Since they will be used for stereo vision, it is important to calibrate them accurately. 

The camera model used in the main part of this paper should be adequate for producing 
accurate geometric data, unless there is appreciable nonradial distortion, such as might be 
produced by distortion in the image sensor itself or by a lens with badly misaligned elements. 
For example, if there is decentering in the lens (noncollinearity of the separate lens elements) a 
more general type of distortion would be produced (Brown, 1966). However, a small amount of 
decentering mostly causes effects that can be taken up by the other camera model parameters. 
Therefore, at least for well-built narrow-angle lenses, the accuracy needed for computer vision 
can be achieved. However, the angular accuracy needed for photogrammetry typically is around 
10 to 100 times greater, so allowance for decentering there can be important. Also, as CCDs 
increase in size, the time may come when much higher resolutions are routinely used in 
computer vision, so that decentering may become important there too, especially for wide-angle 
lenses. A way of including decentering distortion in the model is described in Section 7.2. 

CCDs (unlike older types of television cameras) are not subject to appreciable general 
geometric distortion. A bias in the timing of the digitization of the image from a CCD merely 
shifts the apparent projection of the optical center in the image sensor plane, and this point is 
adjusted in the model. The model also allows for different scale factors along the different 
image coordinates. In fact, any error that is a linear function of the position in the image is 
subsumed by terms included in the camera model. 

The calibration method presented here applies at only one lens setting. For a zoom lens, a 
separate calibration would have to be done at each zoom setting. Similarly, if focus is changed, a 
separate calibration is needed at each focus setting. (Brown (1971) discusses the effects on 
distortion of changing focus.) These factors are not a concern for the Mars rover cameras, since 
their focus is fixed in the design. If there is appreciable lateral chromatic aberration in the lens 
and it is desired to take images in different colors, separate calibrations might need to be done at 
different wavelengths. However, the Mars rover cameras have fairly low chromatic aberration, 
and all except the panoramic cameras use only one fixed wavelength band. If there is 
appreciable coma and the aperture is changed, the calibration might be affected slightly, but the 
Mars rover cameras have a fixed aperture. (Willson and Shafer (2001) discuss the modeling of 
all of these effects.) 

The lens elements in the Mars rover cameras will be accurately aligned. Therefore, there 
should not be much decentering. (Section 8 shows some ray tracing results including 
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decentering in the HazCam.) 
Other potential concerns for operations on Mars are that the calibration might change at 

widely different temperatures, due to thermal expansion, or at low atmospheric pressure, due to 
the different ambient index of refraction. Simulations using ray tracing for the HazCams have 
shown that the effects in the comers of the image will be about 2/3 of a pixel from temperature 
and about 1/3 of a pixel from pressure. The total effect is one about pixel at -55°C on Mars 
compared to 23°C on Earth. Since these changes are so small, the ray tracing results could be 
used to change the calibration from that obtained in a laboratory on Earth to make it appropriate 
for conditions on Mars at particular temperatures (if it is decided that the effect is large enough 
to bother with at all). That would be much easier than doing separate calibrations on Earth in a 
laboratory that reproduces the extreme conditions on Mars. 

1.2. Notation 

Column matrices (general vectors) are denoted by boldface lower-case letters, and 
rectangular matrices are denoted by boldface capital letters. (Physical vectors in 
three-dimensional space are a special case of column matrices.) The derivative of a column 
matrix with respect to a scalar is a column matrix, the derivative of a scalar with respect to a 
column matrix is considered to be a row matrix, and the derivative of a column matrix with 
respect to a column matrix is a rectangular matrix. Scalar variables are denoted by italics (or 
Greek) letters, either capital or lower-case. Since vectors are represented as column matrices, for 
any two 3-vectors u and v the inner (dot) product u v  is equivalent to uTv, and the outer product 
(which produces a 3-by-3 matrix) is written uvT. The vector cross product is written UXV. For 
any 3-vector v, its length (6) is represented by !VI, and the unit vector in its direction (v/lvl) is 
represented by unit(v). I denotes the identity matrix of appropriate size. 0 denotes a zero 
rectangular matrix of size appropriate to the context, and 0 denotes a zero column matrix of 
appropriate size. 

The subscript i usually will be used on quantities that are associated with individual 
three-dimensional points, in order to distinguish them from quantities that depend only upon the 
camera model. A prime (’) is used to denote a value for an apparent point that is shifted from an 
actual three-dimensional point because of effects such as distortion, and for an entrance-pupil 
that has shifted from its nominal position. (These effects are described in Section 2.) A tilde (-) 
denotes values for the intrinsic camera model from a previous camera model adjustment (as 
explained in Section 4). A circumflex (^) denotes computed values, as opposed to measured 
values, of the image coordinates x and y (as explained in Section 2). Symbols that use the same 
letter but differ in whether they are boldface or whether they are capital do not represent related 
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quantities unless they are so defined explicitly. 
Symbols for individual quantities will be defined as needed. The symbols used here are 

chosen to agree for the most part with those in the previous publication (Gennery, 2001). Some 
of the important ones related to the camera model are shown in Fig. 1. Some of the ones related 
to least-squares adjustments (N for the coefficients in the normal equations, t for the “constants” 
in the normal equations, and M for a matrix involved in the constraints) are the same as in the 
cited least-squares reference (Mikhail, 1976), but the others are not. Especially note the 
following substitutions from Mikhail to here: B + A for the coefficients in the linearized 
condition equations, and C + K for the coefficients in the linearized constraint equations. (The 
A matrix in Mikhail reduces to the identity matrix in the situation here.) 

The weight matrices used here are the inverses of the corresponding covariance matrices, 
instead of having arbitrary scaling. (Such matrices sometimes are called information matrices.) 

2. Definition of Camera Model 

2.1. Overview of Camera Model 

The camera model used here includes three effects that depart from a linear perspective 
projection model and that can become important as the angle between the optical axis and an 
incoming ray increases. These include the basic lens model, radial distortion, and movement of 
the entrance pupil. (The effect of the basic lens model often is included as part of radial 
distortion, but it is convenient to separate them here.) 

Computations that take into account the basic lens model and radial distortion are done to 
convert the actual position pi of a point in three-dimensional space into an apparent point p; that 
would produce the same result with the Yakimovsky and Cunningham (1978) perspective model 
as does the actual point with the full lens model. The steps in this conversion are shown in Fig. 
1, and they will be discussed in further in Sections 2.3 and 2.4. 

One of the important properties of any lens is the position of the entrance pupil point. This 
is the point towards which incoming chief rays (each of which is the center ray of a bundle of 
rays that make it through the lens and aperture stop) are headed (extended as a straight lines). 
Therefore, this is the position from which the camera seems to view the world. This position 
often is referred to as the perspective center. Sometimes, this is assumed to be the first nodal 
point of the lens (the same as the first principal point if the medium is the same on both sides of 
the lens). For many lenses, the pupil points are close to the nodal points, but in general they are 
not. Of course, mathematically the camera model is defined by the equations, so the physical 
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Figure 1. Illustration of the definitions of important quantities. The projected entrance 
pupil point shifts outwards along the optical axis by the amount 5. The apparent 3D 
point shifts outwards by the amount q according to the basic lens model ( . < 0 if L > l), 
and sideways by the amount piAi because of other radial distortion. ( & e diagram is 
scaled for the 3D-to-2D projection or for the camera model adjustment. In the 2D-to-3D 
projection, $' = 1 if a = 0, a unit vector ri is generated along pi - d, and pi is not used.) 
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meaning of the parameters does not matter for calibration purposes, as long as they are able to 
capture the degrees of freedom in the physical situation, and as long as the same equations are 
used in the camera model adjustment and in the use of the camera model. (For more information 
about the above terms, see any optics textbook, for example Jenkins and White (1976)). 

However, the entrance pupil is not necessarily at a constant point. Therefore, we must 
convert the nominal entrance pupil point c into an actual point ci that can be given to the 
Yakimovsky and Cunningham model. This effect is shown in Fig. 1, and it will be discussed 
further in Section 2.2. 

In Fig. 1, the symbol o denotes a unit vector along the optical axis of the lens, c denotes the 
position of the entrance pupil for on-axis rays, pi denotes the three-dimensional position of any 
point being viewed, and Oi denotes the angle between the optical axis and an actual incoming ray 
(approximately a chief ray, but actually whatever ray corresponds to the point within the 
point-spread function that is determined by the detection algorithm that is used). The orthogonal 
displacement of the point pi from the optical axis is denoted by the vector hi. The magnitude of 
this vector is Aj ,  which thus is the component of pi - c orthogonal to 0. The component of pi - c 
parallel to o is called 5;. 

The shifted points pi and ci, in the form of the vector rl= pi - ci, are given to the 
Yakimovsky and Cunningham equations, which use the model vectors a, h, and v to project pi 
into the image. This process will be discussed in Section 2.5. 

The a vector in the Yakimovsky and Cunningham model and the o vector usually are nearly 
equal, since the optical axis usually is nearly perpendicular to the plane of the image sensor. In 
such a case, if the amount of lens distortion is small, so that the lens nearly corresponds to the 
ideal perspective projection, the difference between these two vectors could be ignored, as it 
often is in camera calibration. However, if there is a large amount of distortion, the difference 
between these two vector can become very important in the calibration, even if it is small. 

2.2. Moving Entrance Pupil 

Although for an ideal lens the entrance pupil is fixed, for actual lenses the position of the 
entrance pupil can change as the off-axis angle of an incoming ray increases. For most lenses 
this effect is small, and thus it usually is ignored in camera calibration; but for fish-eye lenses it 
is quite large (on the order of the size of the lens), and this shift can be very important for objects 
that are close to the lens. (For the HazCams on the Mars rover, the forward shift of the entrance 
pupil is about 7 mm, and it is planned to view objects as close as 100 mm. Therefore, the error 
could be around 0.07 radians if not corrected.) Fig. 2 illustrates this effect. The solid lines 
represent incoming rays that pass through the center of the entrance pupil for different incident 
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angles. The caustic formed by these rays (heavy dashed line in the figure) is the locus of the 
actual entrance pupil points. However, all that we care about is the projection of these points 
onto the optical axis, i.e. the intersection of the rays with the optical axis. (This intersection must 
exist, since we assume that the pupil shift is radially symmetrical, even though that assumption is 
not exactly true in the presence of lens decentering.) Therefore, we will model the shift of this 
intersection point (relative to the limiting point for zero angle) as a function of angle, the 
magnitude of this shift will be called si, and the projected shifted entrance pupil point will be 
called c:. Therefore, 

It might be thought that, to represent s as a function of the off-axis angle t9, a simple 
polynomial could be used. However, as the angle becomes greater than 90°, the shift becomes 
very large, and it becomes infinite as approaches 180”. This behavior is difficult to model as a 
polynomial. What is needed is a simple function that approximates the actual behavior fairly 
well, so that a polynomial is needed only to apply a small correction. A few functions were tried 
and are shown in Fig. 3. In the limit for small q., the shift is proportional to q2, and all of the 
functions shown obey this limit. Therefore, to see the effects more clearly, the shifts on the plot 
have been divided by q2. This reduces the dynamic range on the plot by causing the plotted 
values to become constant at small angles. 

Also shown on the plot are some actual published wide-angle lens designs (Laikin, 2001) 
with the stated fields of view, the design for the HazCam for the 2003 Mars rovers, and two 
hypothetical designs. The “spherical mirror” plot represents the effect of viewing the reflection 
in a spherical mirror from an infinite distance (which can produce a 360” field of view), and this 
produces the equal-area projection. The “Snell’s law” plot represents the effect of having a flat 
slab of refracting material (whose index of refraction nre, here is 1.6), with a hemisphere on the 
back surface centered on an aperture, so that the sine of the exit angle is equal to the sine of the 
entrance angle divided by nre, (which produces a 180” field of view). (Lenses approximating 
this effect have actually been built.) 

One of the functions shown in the figure is simply q2, which becomes a constant after the 
division. Therefore, this plot coincides with the horizontal axis. It can be seen how 
inappropriate this is for matching the actual designs, in agreement with the above statement 
about using only a polynomial. The other three functions tried all become infinite at 180°, as 
desired. Of these, the two upper ones (tan2q./2 and 6)sinq - 1) seemed to be the best, especially 
the latter for the spherical mirror and the Laikin lens with the widest field of view. The latter 
function was chosen, for this reason and because all of the actual designs could be matched 
easily with polynomial corrections to this model, as shown in Fig. 4. (Note that the limit of 
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optical 
axis 

Figure 2. Illustration of shift of entrance pupil. The point c is the center of the entrance 
pupil for on-axis rays. The thick dashed line represents the locus of the entrance pupil as 
the angle of the incident chief ray changes. The intersection of the actual ray (shown for 
every 10" up to 100") with the optical axis is used as the shifted point c:. 
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Figure 3. Logarithmic plot of a few functions examined for the basic pupil-shift model. 
The shift of the projection of entrance pupil along the optical axis is shown, divided by 
the square of the angle in radians (normalized to equal unity at small angles). Also 
shown are points for some specific wide-angle designs. 
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Figure 4. Logarithmic plot of a few examples of polynomial corrections to the chosen 
basic pupil-shift model, shown as in Fig. 3, with the same specific wide-angle designs. 
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?./sin?. - 1 as q. approaches zero is q2/6. This is the reason for the factor of 6 shown on the plots. 
In practice, this factor is subsumed by the zero-degree term in the polynomial correction.) 

In applying a polynomial correction to the chosen function, it was found that multiplying by 
a polynomial in C$ was much better than using a polynomial in the chosen function. (Otherwise, 
the increase at large angles was excessive.) Therefore, the selected model for the pupil shift is as 
follows: 

where only even-order terms are used because of symmetry, and where the epsilons are camera 
calibration parameters to be determined. The number of epsilons that are used is called E, and 
this is a manually set value. The highest-order epsilon is and the polynomial is of degree 
2E-2, which is equivalent to degree 2E when combined with the second-degree nature of the 
basic function. (Currently we use E = 3 for fish-eye lenses, which is more than enough to 
achieve high accuracy with the HazCam. In fact, simulations indicate that E = 1 would produce 
an error of only around a tenth of a pixel at a distance of 100 mm with this camera.) 

Fig. 4 shows some examples of the combined pupil-shift model. It can be seen that E = 2 

can match most of the designs fairly well, but E = 3 is needed for the Snell’s law lens. 
From Fig. 1 it can be seen that 

4 
si = 5;. - - tanq (3) 

This relationship will useful later. 

2.3. Basic Lens Model 

Usually, radial distortion is represented by a polynomial that represents a departure from the 
perspective model (e.g. Shah and Aggarwal, 1996). However, some wide-angle lenses depart 
very far from this model, so that a high-degree polynomial would be needed; and, if the field of 
view reaches 180°, the distortion defined in this way can become infinite. (Fish-eye lenses can 
have a field of view that exceeds 180O.) In such a case, it is better to adopt a simple model that 
more closely approximates the actual lens and to let the polynomial represent a departure from 
this ideal model. For example, for an ideal fish-eye lens, the off-axis image coordinate is 
proportional to the incoming off-axis angle, instead of the tangent of this angle. 

Here, we adopt a generalization of the basic lens model that includes the perspective 
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projection and the ideal fish-eye lens as special cases, as controlled by the parameter L (for 
“linearity”). As above, q. is the angle that the incoming ray makes with the optical axis. Let 4 
be the tangent of the corresponding angle of an apparent ray that would produce the equivalent 
result in a perspective projection. From Fig. 1, it can be seen that the effect of the basic lens 
model is to shift the apparent three-dimensional point outwards parallel to the optical axis by an 
amount q ,  where 

Ai Ai 
zi = --- xi tanq 

Then the basic lens model is defined by the following convenient expression: 
sin LOi 

x, = Lcos(max(o,~e,)> 

(4) 

which was chosen because in practice it reduces to the following three cases: 
sin Lq 

L xi = - i fL<O 

x , = q  i fL=O 

X i = 7  
i fL>O 

tanmi 

where the middle case has been obtained by taking the limit as L approaches zero. 
Several special values of L cause the above to reduce to certain standard projections. L = 1 

produces the usual perspective projection, L = 0.5 produces the stereographic projection, L = 0 
produces the equidistant projection (ideal fish-eye lens), L = - 0.5 produces what can be called 
the equal-area or equi-solid-angle projection (since equal solid angles in three-dimensional space 
project into equal areas in the image plane), and L = - 1 produces what has been called the 
sine-law projection. (For more information about these special projections, see Miyamoto 
(1964) and Stevenson and Fleck (1995).) The case of L > 1 represents pincushion distortion, and 
L < 1 represents barrel distortion. 

Fig. 5 shows plots representing several values of L. Also shown are points from the same 
designs shown in Fig. 3. It can be seen in the plot that, by choosing an appropriate value of L, 
any particular lens design of those shown can be approximated fairly well, except for the Snell’s 
law case. We will see shortly (in Fig. 6 )  that even that case can be handled when the radial 
distortion parameters are included. 

The mathematics to be presented here works for any value of L. A value of L can be chosen 
that is suitable for the lens being used, and then the radial distortion parameters can be adjusted 
automatically to correct for departures from this ideal. (In most cases, just choosing either 0 or 1 
for fish-eye lenses or normal lenses, respectively, should suffice.) Also, the mathematics could 
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Figure 5. Logarithmic plot of basic lens model x = sinLeILcos(max(0, Le)) for various 
values of the parameter L, showing the image coordinate (normalized to equal 0 in 
radians at small angles) as a function of incident off-axis angle, for ideal lenses 
conforming to the model. Some of the values of L are labeled with the names of 
corresponding standard projections. Also shown are points for some specific wide-angle 
designs. 
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include adjusting L automatically to get a better fit with less radial distortion correction (or an 
approximate fit with no additional distortion correction), if that is desired. However, so far there 
does not appear to be much need for this, so it has not been implemented, but the way to do it is 
described in Section 7.1. 

2.4. Radial Lens Distortion 

It is a common practice to model radial lens distortion as a polynomial that gives the 
departure of the off-axis coordinate from its ideal value as a function of the off-axis coordinate 
(e.g. Brown, 1971; Shah and Aggarwal, 1996). Because of symmetry, this polynomial contains 
only odd-order terms (or only even-order terms if it represents a proportionality correction). 
Usually this is a polynomial in image coordinates, but the distortion polynomial must be defined 
relative to the optical axis of the lens, in order for the distortion to be radial. If the image sensor 
plane is perpendicular to the optical axis, this is the a vector in the Yakimovsky and Cunningham 
model. However, to allow for the possibility that they are not exactly perpendicular, a separate 
unit vector o is used here for the optical axis. Note that, if there is no distortion (with L = 1) and 
the pupil points coincide with the nodal points, it is impossible for the calibration to determine 
the optical axis. (A perspective projection is equivalent to using a pinhole camera, and a pinhole 
has no axis.) Therefore, some a priori weight will be applied to tend to make the o vector equal 
to the a vector in the Yakimovsky and Cunningham model (which nominally is the perpendicular 
to the image sensor plane), so that it will be well determined when there is not much distortion, 
However, when there is a large distortion, the data will outweigh this a priori information, and 
the two vectors can differ. 

The effect of radial distortion will be modeled as an apparent shift of a three-dimensional 
point in a direction orthogonal to the optical axis, by an amount piAj, so that the distance from the 
optical axis of the apparent point is 

Ai' = (1 + p i p i  

as shown in Fig. 1. The distortion polynomial is 

pi = p0 + P , ~ ~ + P ~ & ' +  ... 

(7) 

where the rhos are camera calibration parameters to be determined. Also, we can define 4' as 
being xi that has been modified by radial distortion, so that 
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The number of rhos that are used is called R, and this is a manually set value. The highest-order 
rho is pR-l ,  and the polynomial for pi is of degree 2R-2, which is equivalent to degree 2R-1 in 
(9). (Currently, we use R = 3.) 

When L = 1, the type of distortion depends on the sign of pi for most points. The case of 
pi > 1 represents pincushion distortion, and the case of y < 1 represents barrel distortion. (If 
L # 1, L is the main determinant of the type of distortion, and pi usually applies only a small 
correction.) 

Note that po does not actually represent radial distortion in the usual sense, but is merely a 
scale factor in the plane orthogonal to 0, whereas the scale factors included in h and v in the 
Yakimovsky and Cunningham model are in a plane orthogonal to a. The zero-degree term 
represented by po, which represents the first-degree term after multiplying by Ai as in (7) or by x, 
as in (9), is subsumed by the scale factors included in h and v if a is along the optical axis of the 
lens or if the pupil points coincide with the respective nodal points. Therefore, po would not be 
needed in these cases, but it must be included in the general case. 

Some a priori weight (usually a small amount) will be applied to tend to make the p’s  equal 
to zero, so that they will be well determined when there is not enough information in the 
calibration images. (This is especially important for high-order coefficients when there are not 
many calibration points, and for po if o and a are nearly equal or if the pupil points nearly 
coincide with the nodal points.) 

Fig. 6 shows the same actual and hypothetical wide-angle lens designs as Fig. 5. However, 
the curves are drawn only for the case of L = 0 (ideal fish-eye lens), but now various radial 
distortion polynomials are used to produce departures from this basic model. Here the 
independent variable is x,, which results from the basic lens model; but, since L = 0 here, xi = q .  
The dependent variable is shown as q’, which includes the effect of the distortion polynomial 
according to (9). 

It can be seen that using R = 2 (second-order radial-distortion proportionality correction) 
can produce a fairly good fit to the Laikin lenses and spherical mirror, and R = 3 (fourth-order 
proportionality correction) can produce a good fit to the Snell’s law case. In fact, it appears that 
there is not much point in using values of L < 0 if a radial distortion polynomial is used, since the 
latter can produce practically the same results. However, if L > 0, the image coordinate becomes 
infinite at certain values of the angle that depend on L, as shown in Fig. 5, and this effect would 
be difficult to approximate with a polynomial alone. In most practical cases with reasonable 
fields of view, the value L = 1 should be able to handle these latter cases if a radial distortion 
polynomial is used; but the distinction between normal lenses and fish-eye lenses is large, so at 
least the choice between L = 1 and L = 0 is needed. (It is interesting that simulated results using 
ray-tracing for the HazCam indicate that L = 0.37 with R = 3 produces a better fit than does L = 0 
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Figure 6. Logarithmic plot of a few examples of the distortion model for L = 0 
(representing departures from the basic fish-eye model). Also shown are points for the 
same specific wide-angle designs shown in Fig. 5. 
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with R = 4, even though this camera is fairly close to having an ideal fish-eye lens, as can be 
seen in Fig. 5. Apparently this is because its trend at small angles corresponds closely to 
L = 0.37, but at large angles distortion effects push it towards the line for L = 0.) 

The component of ri parallel to o is called G’, and the orthogonal component is the 
previously mentioned At!. From Fig. 1 it can be seen that 

These relationships will be useful later. 

2.5. Yakimovsky and Cunningham Camera Model 

The Yakimovsky and Cunningham (1978) camera model consists of the four 3-vectors c, a, 
h, and v, expressed in object (world) coordinates. The meaning of each of these now will be 
described for the simple case of a pinhole camera. 

The perspective center (the pinhole) normally is at position c. For a real lens, c normally 
represents the entrance pupil point. However, since here we consider the fact that the entrance 
pupil point is a function of off-axis angle, we replace c with c: for any actual data point. 

Let a perpendicular be dropped from the perspective center (actually the exit pupil point for 
a real lens) to the image sensor plane, and let its point of intersection with this plane be denoted 
by xc and y, in image coordinates. Then a is a unit vector parallel to this perpendicular and 
pointing outwards from the camera to the scene. (If the image sensor is tilted relative to the lens, 
a is not the same as the o vector, which denotes the optical axis of the lens.) 

The h and v vectors contain information about the image coordinate system in a rather 
complicated way. If the image axes are orthogonal and if the image origin is at xc,yc, then h and 
v merely point along the image x (horizontal) and y (vertical) axes, and the magnitude of each 
vector is equal to the distance from the perspective center to the sensor plane expressed in x or y 
image units (usually pixels). Thus they define an image scale often called the “camera constant.” 
However, in general, xca is added to h, yca is added to v, and the fact that the image axes are not 
necessarily orthogonal causes further complications. This formulation was chosen by 
Yakimovsky and Cunningham because convenient expressions result for the projection. This 
projection includes not only the perspective projection itself, but also an arbitrary affine 
transformation in the image plane, caused by the fact the two image axes do not have to be 
orthogonal and the fact that the image scales in the two dimensions do not have to be equal. This 
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affine transformation allows for such things as nonsquare pixels and a CCD synchronization 
error in digitization that is a linear function of the position in the image. 

More complete descriptions of these camera model parameters can be found elsewhere 
(Yakimovsky and Cunningham, 1978; Gennery, 2001). Also, Section 4.3 here describes how to 
extract more intuitively meaningful information from the parameters. 

The resulting equations for the projection, as used here, are as follows: 
d-h 

2 A, = - rl-a 
A ri-v 
y .  = - 

1 rl-a 

since the apparent ray is along the vector r] = pi - ci. The reason for using the circumflex over x 
and y is to represent computed values, to distinguish them from measured values that will be 
used later. 

2.6. Summary of Camera Model 

In addition to the manually set parameter L, the complete camera model consists of the five 
3-vectors c, a, h, v, and 0, where a and o are unit vectors; the distortion coefficients 
p = bo p1 p2 ...IT; and the entrance pupil coefficients E = [ E ~  . . . IT.  This is 15 + R + E 

adjusted parameters in all, of which two are redundant because of the unit vectors. Note that c 
and the epsilons are in terms of the units of distance used in object space, h and v are in terms of 
the units used in image space (usually pixels), and a, 0, and the rhos are dimensionless. The 
exact meanings of these parameters are defined by equations (2), (3, (12), and (13), together 
with the relationships shown in Fig. 1. 

Where convenient, the camera model parameters will be assembled into the column matrix 
(lS+R+E-vector) g, as follows: 

g =  

a 

V 

0 

The 15+R+E by 15+R+E covariance matrix Cgg of the parameters also will be produced. 
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3. Basic Computations 

3.1. General Case 

Several important quantities were defined in Section 2, but we must now see exactly how 
these are used when it is desired to compute the image coordinates of a point from the 
three-dimensional position pi of the point and a set of camera model parameters, either during a 
camera model adjustment or during an actual projection from object space to image space. 

First, the following equations are used, which follow immediately from the definitions of 
the quantities (see Fig. 1): 

$ = (pi-c)-o (15) 

since o is a unit vector. 
The direction of the incoming ray depends upon the position of cs, but ci is shifted by an 

amount that depends on the direction of the incoming ray. However, we have two equations for 
si, (2) and (3). Equating these two expressions for si produces an equation that can be solved for 
q.. By multiplying by sinq and rearranging terms, this equation becomes the following: 

The angle q. is computed as the smallest non-negative real root of (18). Since this is a 
transcendental equation, it must be solved iteratively. A good initial approximation for 6$ is 
arctan@/&), since this is the exact value for a point at an infinite distance. (The 
double-argument arctangent must be used; if < is negative, the angle is greater than go".) Then 
Newton's method can be used to solve the equation, where the needed derivative of the left side 
of (18) with respect to 4 is 

The convergence criterion currently used is lo-*. Because Newton's method produces quadratic 
convergence, the resulting error is about which achieves double-precision accuracy. This 
is important because of the limiting values used at small angles below. 

The value of q. resulting from the above should always be less than z. However, q. should 
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be tested to see that it is less than d(2ILl). If it fails this test, it means that the point is too far off 
axis to be compatible with the value of L that is being used. 

In addition to q ,  the value of vi is needed below. It is recomputed from (19) by using the 
value of q from the last iteration. 

Then 4 is computed by (6). By definition, 
ax, 
a?. vi = - 

which, by (6), produces 

w;: = cosUi i fL<O 

q =  1 i fL=O 
1 

v. = - i fL>O ’ COS2Lei 

The quantity 4’ is computed as follows, from (10): 

4 4’ = - 
4 

andpi is computed by (8). We also need the derivative ofpi, as follows: 
api 

axi y = -  = 244 + 4443 + . . . 

The vector ri = pi - ci from the projected shifted entrance pupil to the apparent object point 
is conveniently computed as follows: 

We also need the partial derivatives of rl with respect to 0, c, and pi. These can be obtained 
from several intermediate partial derivatives. Let u represent either 0, c, or pi. Differentiating 
(1 8) produces 

aq. a< aAi 
I aU aU (25) v. - + - sinq - - aucosq = 0 

since ui is the derivative of the left side of (18) with respect to q.. Solving (25) produces 
aAi 
- cosq - - aq. aU _ -  - 

a U  ‘i 
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Differentiating (22) and using (20) produces 

(27) 

where the second form has (15) produces 

Differentiating (16) produces 

Then, using (30), (31), the identity that 

CU. - -  A, - unit(Xi)T 
I 

and the fact that o and ai are orthogonal, produces the following: 
aa. 
- -  I - unit(QT 
aPj aai - -  - - $unit(hJT a0 

which also can be obtained by inspection of Fig. 1.  Finally, 

aai as;: 
aU -cost$ -- aU sinq 

2): 
= w  

which follows by substitution from (20) and (26). 1 

Differentiating (24) produces 

ar; ,ao as;:' ahi ax, - = c. - + o-- + (1 +p)- + yh.- aU lau aU 1 aU tau 

(33) 

(34) 

(35) 

(36) 
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Now the specific derivatives with respect to o and pi derived above can be substituted for those 
with respect to u in (36). Then, using the facts that ao/ao = I and ao/api = 0 and rearranging 
produces the following: 

= (1 +@I - 
JPj 

(1 +pi) OOT 1 y w, sinq. 
- hiOT 

' i  

y w,cosq 
AiVi 

+ hAT 

Since pi and c always appear in the combination pi - c, the following is true: 
ar; ar; 

(39) - -  - - -  
ac aPi 

Note that the differences between (37) and (38) consist of the different coefficients for I, the 
presence of ( P ~ - C ) ~  instead of oT in the former, and the presence of -6 in the last two terms of 
the former. 

We also need the partial derivatives with respect to the distortion parameters and the 
entrance pupil parameters. Differentiating (24) with respect to p produces the following: 

ar; 
- = A,[l 4 2  4 4  
aP (40) ...I 

Differentiating (18), (22), and (24) with respect to E and combining the results produces the 
following: 

ar; ly;:(q - sinq.) ( 5 ) 
+ - o  [ l  q 2  q 4  ...I} (41) - -  - 

a& 'i 
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The derivatives of r] with respect to pi will be needed for both the camera model 
least-squares adjustment and the 3D-to-2D projection from object space to image space. The 
other derivatives of r] are not needed for the 3D-to-2D projection. 

Since the vector ri obtained above includes the corrections for distortion and entrance pupil 
movement, it can be used in the Yakimovsky and Cunningham equations, as in (12) and (13). 
However, for efficiency these equations are expressed in terms of the intermediate quantities ai, 
pi, and x, which will be needed again later, as follows: 

pi 
ii = - 

ai 
8 yi = - 
ai 

The above equations can be differentiated to produce the following: 
aii hT 4.aT hT - ,$aT - _ -  - - - -  - 
ar; ai ai2 ai 

vT - jy - _ -  - - VT pT a.9i 
ar; ai ai* ai 

- - -  

(45) 

(46) 

3.2. Case of Zero Angle 

It can be seen that some of the above equations become indeterminate when e = 0. 
approaches zero. Appropriate forms to use in this case can be obtained by taking the limit as 

This produces the following: 
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x , = o  (56) 

In the implemented program, (51)-(56) are used instead of the corresponding equations in 
Section 3.1 when Oi < lo-*. (The rest of the equations are unchanged.) Since double precision is 
used in the computations, this insures that at least single-precision accuracy is maintained even if 
Oi is slightly less than or slightly greater than radians, without the necessity of using series 
expansions. (Single-precision accuracy is sufficient for the input and output quantities. Within 
the least-squares adjustment in Section 5,  double precision is used because of the loss of 
precision that can occur in that process.) 

3.3. Case of Perspective Lens Model without Pupil Movement 

If L = 1 and E = 0, the camera model reduces to the case previously reported (Gennery, 
2001). Equations (8), (15), (16), (23), and (40) are unchanged. Equation (6) reduces to 
4 = tanq. The other equations in Sections 3.1 and 3.2 also still work, but it is more efficient to 
use simplified forms for the partial derivatives of rl that result from (37) and (38) by making the 
appropriate substitutions. These are as follows: 

Note that, from (23), y/x, can be computed without any indeterminacy. 
Equations (57) and (58) are mathematically equivalent to the corresponding equations 

previously published (Gennery, 2001), except that pi was used there instead of ri, since there was 
no entrance pupil movement, and z;: there represents 42 here. However, not all of the possible 
algebraic simplification was done there, so that (57) and (58) appear simpler here. 
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4. Intrinsic Camera Model 

4.1. Motivation 

Often it is desired to have explicit values for the intrinsic camera model, which depend only 
upon the internal state of the camera but not its pose (position and orientation) relative to the 
external world. One reason for this desire is so that previous values of the intrinsic model can be 
incorporated easily into a camera model adjustment when the camera is moved. (The new 
adjustment to determine the extrinsic parameters then would need less complete calibration data. 
For example, the calibration points then could all be in one plane.) Another reason is to have 
parameters that have more intuitive meaning than do the Yakimovsky and Cunningham 
parameters, in order to better understand what a camera model adjustment has produced. Two 
approaches are described here, one for each of these two goals. 

In either case, p for distortion and E for entrance pupil movement are invariant with respect 
to pose, and thus are suitable as part of the intrinsic model. On the other hand, c denotes the 
camera position, and thus it obviously is part of the extrinsic model. The question then is how to 
extract the desired information from the a, h, v, and o vectors. 

4.2. Dot-Product Intrinsic Model 

The method used here for incorporating previous intrinsic camera models into new 
adjustments utilizes the fact that dot products among the a, h, v, and o vectors are invariant with 
respect to rotation and translation. The following dot products are used: h-h, v-v, h-v, a-h, a-v, 
o-h, and 0-v. The other possible combinations are not used for the following reasons: a-a and 
0.0 are superfluous because a and o are unit vectors, a-o would be numerically very poor because 
a and o usually are nearly collinear, and the seven dot products chosen above suffice to constrain 
the four vectors into a rigid group. (The four vectors have only ten degrees of freedom, since 
two of them are unit vectors. Three of these degrees of freedom are for orientation of the entire 
camera. This leaves seven degrees of freedom, which are accounted for by the seven dot 
products used here.) 

Therefore, this form of the intrinsic camera model consists of the following 7+R+E-vector: 
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The 7+R+E by 15+R+E matrix of partial derivatives of the intrinsic camera model with 
respect to the complete camera model is the following: 

OT OT 2hT 

OT OT OT 

OT OT vT 

OT hT aT 

OT vT oT 
OT OT oT 

oT OT OT 

0 0 0  I 0 0 0  

OT OT OT OT- 

2vT OT OT OT 

hT OT OT OT 

oT OT OT OT 

aT OT OT OT 

OT hT OT OT 

oT VT oT oT 
0 0 1 0  

0 0 0 1  - 

where the identity matrices, zero matrices, and zero vectors in the last two rows and last two 
columns are there because p and E are present in both the complete model and the intrinsic 
model, and where the zero vectors in the first column are there because the c vector does not 
influence the intrinsic model. (The vectors in J are shown transposed to denote that they are 
used here as rows instead of as columns.) 

We use the notation that a tilde (") over a symbol denotes a value from a previous 
calibration whose results are desired to be included in a new calibration (with different camera 
pose). 

The 7+R+E by 7+R+E weight matrix W of the old intrinsic camera model will be needed. 
If it is desired to constrain the intrinsic camera model to be exactly that from the old calibration, 
W could be set to a diagonal matrix with very large values on the main diagonal. However, it 
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makes more sense to compute W from the covariance matrix of the old calibration, since the 
new information can then combine with the old information optimally and may possibly improve 
the internal camera model. Therefore, 

(Note that the tilde over J means that the camera model parameters from the old calibration are 
used in its computation, as described in above.) 

4.3. Intuitive Intrinsic Model 

As previously reported (Gennery et al., 1987), the scale factors in each image dimension, 
the “center” of the image, and the angle between the image axes can be computed as follows: 

hs = laxhl 

y, = a-v (65) 
vxh-a . . - 

$ = arctan (axv). (axh) 

The scale factors hs and vs denote the ratio of a change in image coordinate to the change in 
off-axis object angle when on axis. They usually are approximately equal to the focal length, 
expressed in image units (usually pixels). The quantities xc and yc are as described in Section 
2.5. Propagation of the covariance matrix from the complete camera model can also be done 
(Gennery et al., 1987). 

To complete this form of the intrinsic model, the direction of the o vector relative to the a 
vector also would be needed, but this has not been implemented. 

5. Adjustment of Camera Model 

5.1. Data for Adjustment 

The calibration data consists of a set of points, with for each point i its three-dimensional 
position pi in object coordinates and its measured two-dimensional position 5 and yi in image 
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coordinates. 
Other given information consists of the following: the parameter L that defines the basic 

type of camera model, the minimum allowed estimate of the standard deviation of measured 
image-coordinate positions o ~ " ,  the nominal focal length of the camera 5 the nominal pixel 
spacings phor and pvea (in the same units as j), the number of columns shor and rows svea of pixels 
in the camera, and the approximate position of the camera co in object coordinates. (The 
quantities5 phor, pvea, shor, svert, and co are used primarily in obtaining an initial approximation for 
iterating, and thus their exact values are not important.) In addition, either a previous intrinsic 
model, represented by 6 from (59) and W from (61), or the following information is given: the a 
priori standard deviation od (in radians) of the difference between the optical axis o and the a 
vector; the a priori standard deviations about zero of the distortion parameters, represented here 
by the covariance matrix Cpp; and the a priori standard deviations about zero of the pupil 
movement parameters, represented here by the covariance matrix CEE. 

The desired result consists of the camera model parameters g and their covariance matrix 
Cgg (which indicates the accuracy of g), as defined in Section 2.6. 

5.2. Initialization 

In order to obtain initial values for iterating, first a point close to the camera axis is found 
by selecting paxis to be the pi for which xi and yi are closest to shOr/2 and svea/2, respectively. 
Then this and the given data are used to compute the initial approximations to the camera model, 
as follows: 

co is given (67) 

a, = unit(paxis - c,) (68) 

f 'her ho = - unit(ao x u) + - a. 
Phor 2 

(70) 
f SVe* 

Pvea 2 vo = - unit(ao x h,) + - a. 

0, = a. (71) 

Po = 0 (72) 

Eo = 0 (73) 

where u is a vector pointing upwards in object space, and where it is assumed that the image x 
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axis points to the right and the image y axis points down (from the upper left comer of the 
image). If the y axis points up in the image, the sign of vo should be reversed. (In the existing 
program, a. can be supplied by the user instead of using (68).) The above vectors are assembled 
into go, analogously to (14). Also, as an initial approximation of measurement standard 
deviation, a, = 1 pixel. 

Alternatively, if e is present (from a previous solution), initial approximations could be 
obtained from it, especially for p and E, and possibly (when the physical orientation is 
approximately known) for a, h, v, and o by rotating 8, h, F, and 6 by premultiplying by the 
approximately known rotation matrix. (At present, this is not done in the existing program.) 
However, the position co must still be supplied. 

The a priori weight matrix can be computed as follows: 

No = 

- 0 0 0 0 0 0  
1 1 

0 0 0 0 0 0  

0 0 0 0 0 0  
1 1 

0 -- I  0 0 -1 0 4 4 
0 0 0 0 o c ; ;  

0 0 0 0 0 0  

0 

0 

0 

0 

0 

0 

C& 

(74) 

where the fact that the off-diagonal terms for a and o are the negative of the main-diagonal terms 
causes the standard deviation ad to apply to the difference of a and 0. Additional weight can be 
applied to any other of the initial approximation values, by adding the reciprocal of the variance 
to the appropriate main diagonal element of No. For example, the position of the camera may be 
known sufficiently well to enter this information into the solution by adding an appropriate 
3-by-3 weight matrix in the upper left comer of No. (If a previous intrinsic model represented by e is used, the rest of No usually would be set to zero.) 

5.3. Iterative Solution 

The method does a rigorous least-squares adjustment in which the camera model parameters 
are adjusted to minimize the sum of the squares of the residuals (differences between measured 
and adjusted positions of points) in the image plane. Since the problem is nonlinear, this requires 
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an iterative solution. The standard Gauss method is used, in which the problem is linearized by 
means of partial derivatives, the linear least-squares problem is solved, and the process repeats 
on each iteration (Bard, 1974; Mikhail, 1976). Constraints (Mikhail, 1976) are included in order 
to force a and o to be unit vectors. For the problem here, the method converges fairly rapidly if 
started close to the correct solution, and a reasonably good approximation to start the iterations 
was obtained in Section 5.2. 

Removing wild points that disagree with the rest of the solution is done by a previously 
developed general method (Gennery, 1980). This editing method is optimum if there is only one 
erroneous point to remove, and it is nearly optimum if there are only a few erroneous points out 
of many. (Since finding dots or comers on a calibration fixture is a reliable process, usually 
there are few, if any, points to remove.) There is an inner loop for iterating the nonlinear 
solution and an outer loop for editing, as shown in Fig. 7. 

The inner loop is initialized using the values in Section 5.2. Then each iteration of the 
nonlinear least-squares adjustment proceeds as follows. The 2-by- 15+R+E matrix of partial 
derivatives of the constraints (unit(a) = 1 and unit(o) = 1) relative to g (the parameters) is 

(75) OT OT OT OT unit(o)T OT OT 

OT unit(a)T OT OT OT 

OT "'1 K = [  

For each point i currently retained, ii, fi, the preliminary quantities, and the partial derivatives of 
r;, ii, and f i  are computed as in Section 3. Then the 2 by 15+R+E matrix of partial derivatives of 
fi and f i  relative to g is 

L 

and the discrepancies between measured and computed data are 

The solution then is obtained as follows: 
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q = xe;e,-dT(2t-Nd) 
1 

(83) 

where the summations are over all points currently retained, n is the total number of these points, 
g represents the current parameter values, and go represents the a priori parameter values (initial 
approximations). These equations represent a standard constrained least-squares adjustment 
(Mikhail, 1976), except for additional terms before the last in (78) and (79). The first term in 
(78) and (79) applies the a priori weight to the initial values. The second term applies the 
information from a previous intrinsic camera model solution, as described in Section 4.2. It 
would not be present (equivalently, W = 0) if there is no such information to be included. (The 
fact that a tilde is not used on J above indicates that it is computed from the camera model 
parameters of the current iteration.) The third term applies some weight to the constraints. 
These constraint terms in (78) and (79) mathematically have no effect on the solution, since the 
exact constraints are applied in (81) and (82). However, they are necessary to prevent the 
solution without the constraints from being singular, and that is computed first (as N-'t in (81)) 
before the constraints are applied. The scale factor chosen for these terms above cause them to 
have about the same magnitude as the result of the main summation for N, so that numerical 
accuracy is preserved. The last term in (78) and (79) is the main contribution from the linearized 
least-squares solution. 

Note that a and o are unit vectors on the first iteration because of the initial approximations, 
and they are unit vectors on the last iteration within the convergence tolerance, but on 
intermediate iterations they in general are not. The comparison of their magnitudes with unity in 
(81) is what causes them to converge to unit vectors. Also note that Cgg is needed only on the 
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last iteration. 
Also computed on each iteration is an improved estimate of measurement variance a2 (for 

use on the next iteration), obtained by dividing q from (83) by the number of degrees of freedom 
in the adjustment (the number of measurements minus the number of unconstrained parameters), 
but limited to be no less than the given minimum variance, as follows: 

where n is the number of points currently retained (not rejected) (that is, the number of points 
actually used to obtain q), and where K is the number of camera model parameters that have been 
effectively constrained by having either large a priori weights or large weights (W) from a 
previous intrinsic model. (13 occurs in (84) instead of 15, because of the two exact constraints 
that force a and o to be unit vectors.) We usually just use K = 3, based on the fact that there 
usually are fairly large a priori weights forcing o to be nearly equal to a and forcing po to be 
nearly zero, but not much a priori weight on the other p and E parameters. The exact value of K 

is not very important, since the number of measurements 2n usually is much larger than 13+R+E, 
and usually not much accuracy is needed or is attainable with variances, anyway, 

The term dT(2t - Nd) in (83) would reduce to dTt if there were no constraints. Subtracting 
this term from the sum of squares of the discrepancies produces the sum of squares of the 
residuals. On the last iteration, there is no difference between the two (d converges to zero), so 
this term could be left out (as it was in previous versions of the program) without affecting the 
final results, but including it can help convergence on early iterations because of keeping the 
correct relative weight between the measurements and the a priori information in (78) and (79). 

The corrections d from (81) are added to the current estimate of the parameters g, to obtain 
g for the next iteration. When each component of d is sufficiently small, convergence is 
declared. 

However, this criterion is multiplied by 
an appropriate value for each portion of d in order to scale it to a meaningful size for that 
parameter. These scale factors are as follows: lpaxis - cot for c, unity for a,f/phOr for h,f/pvert for 
v, unity for 0, unity for each element of p, and a given characteristic lens dimension, such as the 
lens diameter or f, for each element of E. The convergence criterion of guarantees 
single-precision accuracy in the results, even though the solution undergoes only linear 
convergence. The use of double-precision computations assures that this tolerance can be 
achieved, even if the solution is rather ill-conditioned. 

In order to determine whether a point should be rejected in the automatic editing, the two 

The convergence criterion currently used is 
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Figure 7. Flowchart of the principal steps in the camera model adjustment. 
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residuals for a point are compared to their covariance matrix by computing the corresponding 
quadratic form, as follows (using the results from the last iteration above, so that ei has 
converged to the residuals for point i): 

r. = eTC-'.e. 
1 ee,r 1 

(which is a generalization to multiple dimensions of the ratio of the square of a deviation to its 
variance.) The 2-by-2 covariance matrix Cee,i is either 

or 

according to whether or not point i is in the current solution. (If it is not, (87) follows because 
the solution presumably is uncorrelated with this point, so the covariance matrices add. If it is in 
the solution, (86) follows because the covariance matrix of the residuals is the difference 
between the covariance matrices of the observations and of the adjusted observations (Mikhail, 
1976).) 

In order to find the most likely candidate for rejecting of those points currently used, the 
one with the largest value of 5 from (86) and (85) is found (since the large residual compared to 
its variance indicates that this point disagrees the most with the others). But this point is only 
tentatively rejected, since it is influencing the variance estimate. The solution then is 
recomputed without this point, (87) and (85) are used, and, if 5 > 16, the point is rejected. (This 
is equivalent to using a 4-sigma threshold. This is practical because the variance estimate now is 
not corrupted by this point if it is erroneous, and it is reasonable in two-dimensions when not 
many erroneous point are expected.) Fig. 7 illustrates this process. 

6. Use of Camera Model 

6.1. Projecting from Object Space to Image Space 

When a point pi in three-dimensional space is available and it is desired to compute its 
projection into an image, pi and the camera model computed in Section 5 are used in the 
equations in Section 3 to compute Ri and fr 

Often the partial derivatives of the above projection are needed (for error propagation or in 
a least-squares adjustment). These are obtained as follows: 
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in terms of the partial derivatives defined in Section 3. 
For most applications not much accuracy is needed in partial derivatives. Therefore, when a 

normal lens is used ( L  = l), the radial distortion is small, and the effect of entrance pupil 
movement is small, sufficient accuracy may be obtained by assuming that ari/ap, is the identity 
matrix, so that the following results: 

aji  a j ,  

Using these approximations where appropriate may result in significant savings in time if many 
points are to be projected, since the computation of ar;/ap, is more involved than is the 
computation of di,/arl and aji/ar;, as can be seen in Section 3. 

6.2. Projecting from Image Space to Object Space 

Sometimes a point in the image (3 and yi) is given and it is desired to project it as a ray in 
space, represented by the unit vector ri emanating from the point c;. This can be done by the 
method in this section. 

First, the ray is projected according to the Yakimovsky and Cunningham model (neglecting 
distortion and the other complications), as follows: 

(v - yia)x(h -?a) 
a-vxh r: = 

This ray is not a unit vector. Instead, the component of r; parallel to a is 1. This temporary 
normalization is caused by the presence of the denominator above, which is included to cause the 
vector to point outwards regardless of whether the camera-model vectors form a left-handed or 
right-handed system. 

Then the distortion, fish-eye effect, and entrance pupil movement all are computed by the 
following method. From Fig. 1 we have 

-36- 



The following equation from (9) is solved for x, by using Newton’s method (with 4’ as the initial 
approximation and as the convergence criterion): 

Then (6)  is solved for ? to produce 
arcsin L4 

L 
i f L C 0  8. = 

q = x  i fL=O 

i fL>O 
arctan Lx, 

L q =  

The ray is considered to be projected from the point ci, obtained according to (2) and (1). The 
desired unit vector along the ray is 

ri = unit(hl) sin? + ocos? (99) 

The partial derivatives of the projection into a ray can be obtained as follows. 
Differentiating (92) produces the following: 

Some intermediate derivatives are computed, including 
and the following (obtained by using (9), (23), and (2)): 

according to (23), w, according to (21), 

ax,’ 
’ 3% 

w. = - 

= 1 +po + 3p1z2+ 5&4+ ... 
x,’ 

= yx+- 
x, 
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= (&-*(&0+&1q2+&2q4+ q. cosq ...) + 
(103) 

Ai ’i - - 
sin2? sinq 

(The last form of (103) shows a relationship to some previously defined quantities for 
informational purposes, but it may not be useful for computation here). The following can be 
derived from (93), (94), and (95) analogously to the way that (30) and (33) were derived from 
(15), (16), and (17): 

a q  
(104) - -  - I-ooT ar; 

by using (93) and (105). The definition of the unit vector produces the following identity: 
dunit(%) 1 

a q  = AI: -(I - unit(X) ( 107) 

Differentiating (1) and (99) produces the following two equations: 

ac; asi aq ax ax,‘ 
ar; aq. ax a&/ ar; 

ari a unit@;) aq ax ax,/ 
ar; ax, ax’ ar; 

- -  - o - - - -  

- -  - sin?. 
ar; + (unit(h;)cosq. - o sinq) - - - 

The needed derivative of unit(X) can be obtained as follows: 
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aunit(A;) a unit@;) ai;  - - an; ar; 
1 

= -(I - unit@:) unit(A,;)T)(I - OOT) 
AI! 

1 
= Ai! -(I - unit@:) - ooT) (1 10) 

by substitution from (107) and (104), and by using the fact that A; and o are orthogonal. Then, 
substituting (106) and (110) into (108) and (109), substituting the symbols for the other 
derivatives from (103), (20), and (102), and using the relationship from (96) and the fact that 
unit(h;) = h]/Az! produces the following desired results: 

(1 12) 

by taking the limit, which As in Section 3.2, 
produces the following to be used instead of the above: 

c; = c 

ac; 
ri = o 

- -  - 0  ar; 

These equations are used when 4’ < lo-*. 
Some computation time can be saved by using the following approximations, which can be 

obtained by setting L = 1, p = 0, and E = 0 above, and which therefore might be suitable if a 
normal lens is used, the radial distortion is small, and the effect of entrance pupil movement is 
small: 

ac; 
(1 17) - I  - 0  ar; 
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(These approximations would not be appropriate for fish-eye lenses.) 
In any case, the partial derivatives are combined as follows: 

ac; ac; dr; 
axi ar[ axi 
ac; ac; ar; 
dyi ar[ ayi 
dri ari aril 
axi ar: axi 
ari arj ar; 
ay, ar; ayj 

- - -- - 

- - -- - 

_ -  -- - 

- -  -- - 

The 6-by-2 matrix of partial derivatives of the projection is then 

The quantities 5;: and ui above correspond to those in Section 3, provided that the 3D point is 
in Section compatible with ri as used above. The value of ri above does not correspond to 

2, since here r, has been normalized to be a unit vector. 

6.3. Propagating Camera Model Uncertainty 

Partial derivatives for the 3D-to-2D projection were presented in Section 6.1, and partial 
derivatives for the 2D-to-3D projection were presented in Section 6.2. Usually, these are what is 
wanted, since the measurement errors of individual points ordinarily predominate. However, 
occasionally it may be desired to know how uncertainty in the camera model parameters affects 
the projection. For this, the partial derivatives of the result of the projection with respect to the 
camera model parameters are needed. These will be described in this section. 

For projecting from object space to image space (3D to 2D), the desired partial derivative 
matrix is the A, matrix from (76) in the camera model adjustment, since it contains the 
derivatives of the image coordinates with respect to the camera model parameters. 

The case of projecting from image space to object space (2D to 3D) is slightly more 
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complicated. It uses the same Ai matrix, but it also uses the Bi matrix computed by (123) for the 
3D to 2D projection. These are multiplied together as follows, since the propagation can be 
considered to be first from the camera model parameters to the 2D image, and then from the 
image to the 3D ray: 

where g denotes the camera model parameters. The minus sign occurs because, in order to keep 
the image coordinates constant, the changes in the parameters and in the ray must have the 
opposite effect in the image. 

7. Possible Future Improvements 

7.1. Adjusting the Basic Lens Model Parameter 

Formally, it would be easy to add the automatic adjustment of the parameter L as part of the 
camera model solution. It would be added as another element in g, and the partial derivatives of 
rl with respect to L would be needed, so that an appropriate column could be added in the Ai 
matrix in (76), as with the other parameters. 

From (24) and (22), 

ar; ag' 
aL - a L o  
- - -  

From (6), 

i fL=O 

mi - sinLOicosmi 
i fL>O - 

3% 
aL L2 cos2 Lq 
- -  

However, the fact that the derivatives with respect to L go to zero when L = 0 would cause 
difficulty when L is close to zero. This problem can be solved by replacing L in g with a new 
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parameter A, such that 

L = - a i f A < O  
L =  0 ifA = O  
L = i f A > O  

The reason for the factor of 2 in the first case is to avoid a discontinuity in the above derivatives 
at L = 0. By using (126) and (127), it can be seen that = q.3/3 if A = 0, regardless of 
whether the limit is taken from the positive direction or the negative direction. 

Combining the above produces the following: 

ar; - -  - o i f A I O  
<.'(mi cos mi - sin mi) 

aA 4 L 3  
ar; &'(mi - sinUicosmi) 
- = -  o i fA2O 
aA 24 L3cos2mi 

Where needed, a value for L is available from (127). 
Manual tests indicate, at least in some cases, that the least-squares minimum with respect to 

L (or A) is fairly local when the distortion parameters p also are being adjusted. Therefore, some 
search may be needed to find a good initial approximation, or p could be held to zero until A has 
initially converged. Perhaps adjusting L is better left as an alternative to using p, when high 
accuracy is not needed. 

7.2. Decentering Distortion 

Decentering distortion is not radially symmetrical. Therefore, if we want to include it in the 
camera model, a direction orthogonal to the optical axis must be adopted that is fixed relative to 
the camera, so that it can serve as a reference direction for parameters that describe the 
decentering distortion. For this purpose, the cross product between o and either h or v might be 
used. However, if the image sensor is grossly tilted relative to the lens, the chosen cross product 
could be zero, depending on the value of xc or y,. In order to avoid this possibility, the 
combination (axh)xo should be used instead. This combination cannot be zero except in the 
unrealistic case where o is parallel to the sensor plane. (By the usual rule for the vector triple 
product, (axh)xo = (a-o)h - (0-h)a.) 

Thus we have the following two unit vectors that are orthogonal to each other and to 0: 

k = unit ((axh)xo) 
1 = oxk 

Then the dot products of these vectors with either pi - c or hi produces the components of 
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distance to point i along each these vectors, and dividing each of these by 5;:’ produces the 
tangent of the angle subtended by each of the components at ci, as follows: 

k-A, 
4 = -  (131) 

1. = - (1 32) 

5;:’ 
l.hi 

G’ 
Note that $. + Zi = q2. (We need both of these components, since decentering distortion has both 
radial and tangential components.) 

For general distortion, all powers and products of $ and Zi up to a desired degree would be 
needed for each of two components. However, Brown (1966) has shown that decentering 
distortion can be well modeled more simply (although he was not concerned with fish-eye 
lenses). Adapting his method from the use there in the image plane to the use here in the plane 
defined by k and 1 produces the following for the decentering correction: 

where the deltas are the decentering parameters, which are assembled into 6 = [So 6, 8, ...IT 
and become part of the camera model. The number of deltas is called D, and we must have 
D # 1,  since both So and 6, must be present if the decentering correction is done. (Note that only 
terms of even degree are used.) 

The vector qi from (133) would be an additional correction included in r[. Therefore, 
instead of (24), the following would be used: 

r; = 5;:’0+(1+y)hj+qi (134) 

Partial derivatives with respect to 6 can be obtained from (133) and (134), to produce the 
following: 

ar; 

as0 
- = $’(3$2+Zi2)(1+4262+44&3+ ...) k + 25;.’$Zi(1+42d2+~463+...)1 (135) 

&; 
381 
&[ 
as2 

&[ 
as, 

- = 2G’kiZj(1 +q2tT2 +xfs3 + ...) k + 5;:’ (k;+ 3Zi. (1 +x;s2 +Ili4s3 + ...) 1 (136) 

- = 5;:’ ((342 + Zi2)S, + 2$Zi4)q2 k + 5;:’ (2$ZiS, + (ki2 + 31,2)4)q2 1 

- = 5;:’ ((342 + Zi2)S, + 24Zi4)q4 k + c’ (2444 + (42 + 3Z;)6,)z4 1 

(137) 

and so forth.’ 
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In the camera model adjustment, zero initial approximations can be used for all of the 
deltas. However, as Brown has pointed out, some a priori weight must be applied to at least Sz 
and those beyond (if they are used), because otherwise they would be indeterminate on the first 
iteration, when Ljo and Ljl are zero. 

Strictly speaking, the partial derivatives with respect to the other camera model parameters 
should be modified to include the effect that they have on ri through (27) and (129-134). 
However, since decentering usually is a small effect, and since high accuracy is not needed in 
partial derivatives, this effect can be ignored for most purposes. 

Decentering also affects the position of the entrance pupil, so that its shift with off-axis 
angle is no longer symmetrical. However, the resulting effect in the image is very small except 
for objects very close to a fish-eye lens. (For the Mars rover HazCam, the effect is roughly 
estimated to have a maximum of about a tenth of a pixel.) Therefore, we ignore it here, but a 
highly accurate calibration might need to include it. 

7.3. Other Possible Improvements 

In addition to the above changes to the camera model itself, some improvements are 
possible in the adjustment of the camera model and in the type of data that it uses. 

One possibility is to improve the initial approximation for the iterative solution. An 
approximate closed-form camera model solution that uses all of the input points and produces 
results that include the camera position could be used to produce an initial approximation (e.g. 
Zhang, 1999). This would eliminate the need for any manual input, and it might produce a better 
approximation that would reduce the number of iterations required in the main solution. 

Another possibility is to use images of a calibration fixture in several unknown locations 
(e.g. Zhang, 1999). In some cases this could simplify the calibration process by eliminating the 
need for measuring the pose of the fixture or using a fixture with multiple planes, although 
probably with reduced accuracy. For each position other than one that serves as a reference, six 
more parameters representing the pose of the fixture would be included in the g vector to be 
solved for. Partial derivatives relative to these can be obtained easily by multiplying the results 
of (88) and (89) by the matrix of partial derivatives of the coordinates of the observed points on 
the fixture relative to the parameters that represent the pose of the fixture. (Alternatively to 
considering one fixture pose to be known, the camera pose could be considered to be known.) 

A more extreme possibility is to use many unknown points that are viewed by the camera in 
several different poses of either the camera or a rigid structure containing the points. This 
technique often is called “self-calibration” or “analytical self-calibration” (Clarke and Fryer, 
1998; Kenefick et al., 1972), although the former term is used by some with a different meaning. 

-44- 



In this case there would be three parameters for each point (for its position relative to a reference 
point) and six parameters for each pose, all to be included in g. In some cases a good solution 
still is possible if a distance is supplied to determine the overall scale. The number of unknowns 
is large, but by suitable partitioning, the sparseness of some of the matrices can be utilized in 
order to reduce the computational burden, as in some similar cases (Gennery, 1986; Mikhail, 
1976); however, this would necessitate reformulating some of the equations in Section 5. 

8. Examples 

Calibration data for the cameras of the 2003 Mars rover will be obtained by using a 
calibration fixture designed by Mark Maimone. (This fixture contains dots on three orthogonal 
planes. One position of it suffices in principle, but for greater accuracy it can be moved to 
several precisely measured positions.) However, in order to evaluate the effect of decentering, 
some ray tracing experiments were done using the design for the HazCam. (Since this camera 
uses a fish-eye lens, the effect of decentering on it is apt to be the most severe among the Mars 
rover cameras.) 

For this purpose, simulated calibration data was produced for the HazCam, of a simpler 
nature than that from the actual fixture, An 1 1-by-1 1 array of points was generated in the image 
plane (approximately, but not exactly, equally spaced). For each point, three-dimensional points 
were generated at five different ranges (approximately 0.1, 0.3 0.5, 0.7, and 0.9 meters), so that 
there were 605 calibration points in all. Several sets of such data were generated, using the 
nominal lens design and using the different lens elements misadjusted. Decentering the third 
element seemed to produce the largest effect. 

When a camera-model adjustment was done using the generated data with no decentering, 
the largest residual was 0.019 pixels. (This value is the result of the higher-order distortion and 
pupil-movement terms not included in the model, which uses R = 3 and E = 3). 

Fig. 8 shows the effect of decentering the third lens element by 0.025 mm, which is the 
design tolerance. The square outline denotes the area of the 1024-by-1024 CCD. In this figure, 
the positions of the images of the calibration points with decentering are compared to the 
position computed by the adjusted camera model without decentering (shown by the small 
circles), and the differences (magnified times 10) are shown as the straight lines emanating from 
the centers of the circles. The largest difference is 5.608 pixels. 

In the same way (but with a magnification of 50), Fig. 9 shows the effect of allowing the 
position of the center pixel to be adjusted in the camera model when using the decentered data, 
but keeping the other camera model parameters fixed to their values from the adjustment to the 

-45- 



Residuals x 10 

(3- 

* 

(3- 

(3- 

(3- 

(3- 

Q-- 

(3- 

(3- 

* 

e 

Figure 8. Magnified residuals when ray-tracing results from decentering the third lens 
element of the HazCam by 0.025 mm are compared to the camera model fit to data 
without decentering. 
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Figure 9. Magnified residuals when ray-tracing results from decentering the third lens 
element of the HazCam by 0.025 mm are compared to the camera model fit to data 
without decentering, with bias (center pixel) adjusted to minimize the sum of square of 
residuals. 
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Residuals x 1000 

Figure 10. Greatly magnified residuals of the camera model fit to ray-tracing results 
from decentering the third lens element of the HazCam by 0.025 mm. 
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data without decentering. In this case the largest difference is 1.226 pixels. 
Fig. 10 shows the effect of allowing a full camera model adjustment (which does not 

include decentering) to the same decentered data. Now the largest residual is only 0.075 pixels. 
(In this figure, the residuals are magnified times 1000, and the different residuals for the points at 
different distances can be distinguished.) In this case the adjustment changed the estimates of 
not only the center pixel but also the orientations of the lens and image sensor plane, in order to 
compensate for the decentering. 

Because of the small residuals in this last case, there are no plans to include decentering 
distortion in the camera models for the 2003 Mars rover. 

9. Summary and Conclusions 

A camera model that includes both fish-eye and normal lenses as special cases, additional 
radial distortion terms, and entrance pupil movement has been described, along with algorithms 
for calibrating and using the model. These will be used for the 2003 Mars Exploration Rovers. 
If the improvements in Section 7 concerning decentering distortion and a more general type of 
calibration data are included, the camera model and methods described in this paper should be 
appropriate for a wide variety of camera calibration tasks for many years to come. 
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