A Logic for Auditing Accountability in
Decentralized Systems

R. Corin', S. Etalle’?, J. den Hartog!, G. Lenzini', and I. Staicu!

!Dep. of Computer Science, University of Twente, The Netherlands
2 CWI, Center for Mathematics and Computer Science Amsterdam
{corin, etalle,hartogji,lenzinig, staicui}@cs .utwente.nl

Abstract. We propose a language that allows agents to distribute data
with usage policies in a decentralized architecture. In our framework,
the compliance with usage policies is not enforced. However, agents may
be audited by an authority at an arbitrary moment in time. We design
a logic that allows audited agents to prove their actions, and to prove
their authorization to posses particular data. Accountability is defined in
several flavors, including agent accountability and data accountability.
Finally, we show the soundness of the logic.

1 Introduction

Consider the following scenario: Alice gives marketing company BigBrother
some personal information (e.g., her spending patterns, music preferences,
part of her medical record, ...), in exchange for some bonus miles. In ad-
dition, Alice allows BigBrother to sell to a third party part of this infor-
mation, but only if anonimized and under provision that she will receive
10 percent of the revenues.

The problem here is, how can we make sure that the data is being
used only according to Alice’s wishes. Notice that in the above scenario
BigBrother might sell Alice’s data to BigSister, who in turn might sell
part of it to SmallNephew, and so on.

This problem is not only that of privacy protection in a distributed
setting. In fact, modern scenarios of digital asset delivery (where a digital
asset can be anything ranging from a piece of private information to
a movie or a character in a multiplayer game) are departing from the
usual schemas in which the assets are equipped with an immutable usage
policy that applies to the whole distribution chain. Instead, we are moving
towards a situation in which information brokers collect, combine and
redistribute digital assets.

The question that needs to be answered here is how can we describe
and enforce usage policies in such a decentralized dynamic, evolving con-
text.

In this paper we present a logic data access and agent accountability
in a setting in which data can be created, distributed and re-distributed.
Using this logic, the owner of the data attaches a usage policy to the data,
which contains a logical specification of what actions are allowed with the
data, and under which conditions. This logic allows for different kind of
accoutability and it is shown to be sound.

Part of problem we are tackling is that of enforcing that agents actu-
ally follow the behaviour that policies dictate; in general, this is a difficult
task, typically requiring continuous monitoring of agents, which is usually
infeasible. Therefore, we consider an alternative to policy enforcement,
based on an analogy with the real world, where people are not always
controlled for correct behaviour. Instead, eventually an agent (say Al-
ice) might be suspected of incorrect behaviour; in that case, an authority
would query Alice for a justification of her actions. This justification can
be supported by evidence, that the authority can check and validate.

2 System, Syntax and running example

Our system consists of a group of communicating agents which create and
share data and an authorization authority which may audit agents. The
creation of data, as well as the communcation between agents, is assumed
to leave some evidence and hence is observable (from the perspective of
the authorization authority). As we do not continuously monitor agents,
the internal computations of agents are not considered to be observable.
However, when auditing an agent, the data and policies currently stored
by an agent become visible to the authorization authority. Thus, the
model of an agent consists of storage, (unobservable) internal computa-
tion and (observable) actions such as communication.

Ezxzample 1. As a running example we consider a scenario with three
agents, a content provider Alice (a), a reviewer/distributer Bob (b) and
a user Charlie (c¢). In this setting content provider Alice creates con-
tent d and sends it to Bob for review with permission for Bob to read
the data but not to retransmit it, in effect protecting the data with a
non-disclosure agreement (NDA). After some time Alice lifts the NDA by
giving Bob permission to resend the data to Charlie.

Bob sends the data on to Charlie with permission to read the data.
Charlie does not produce any observable actions but the policy allowing
him to read d is in his storage after Bob sends this policy.

The following subsections introduce the logical language used to ex-
press policies and describe the system in more detail.

2.1 The syntax

For the formal model we will use a set of agents G ranged over by a,b
and ¢ and a set of data objects D ranged over by d. As the order of
actions can be relevant we also introduce a notion of (global discrete)
time described by using a well-founded totally ordered set 7, ranged over
by t. (In examples we will use the natural numbers for 7.)

The policy formulae, expressing data usage policies, further require a
set of predicates C, ranged over by p, which express basic operations that
can be performed on data. For example, read(a,d) and print(a, d) respec-
tively indicate that user ¢ may read and print data d. For readability we
will restrict our definitions to binary predicates taking a single agent and
a single data object.

Definition 2. The set of policy formulae @, ranged over by ¢ and v, is
defined by the following grammar:

¢ =pla,d) |aownsd|asaysptob| dNP|dVP|dp— ¢
with a,b€ G, deD, peC.

First, a policy formula can be a simple predicate p(a, d), such as read(a, d)
mentioned above. Second, we have the a owns d formula. This formula
indicates that a is the owner of data object d. As we will see below, an
owner of data can create usage policies for that data. A third construc-
tion is a says ¢ to b which expresses the claim that agent a is allowed
to give policy ¢ to agent b. The ‘says’ contains a target agent to which
the statement is said instead of the broadcast interpretation used for a
similar construct in e.g. [10, 1]. This allows us to provide a precise way of
expressing policies to certain agents. Finally, the logic constructions and,
or and tmplication have their usual meaning.

The base data set of a policy formula ¢, denoted dv(¢), consists of the
data objects the policy refers to. It is defined as one whould expect:

dv(a owns d) = dv(p(a,d)) := {d}
dv(a says ¢ to b) := dv(¢)
dv(¢p AY) = dv(¢ V1) = dv(¢p — ¢) = dv(p) U dv(v)
We denote a formula ¢ whose base data set is D, i.e. dv(¢) = D, as ¢[D].

If D is a singleton set, i.e. D = {d}, we simply write ¢[d]. Note that the
base data set of a formula is always non-empty.

FEzample 3. The policy which allows Bob to read the data d is expressed
as read(b, d). Allowing agent Bob to send to data on to Charlie provided
he already has permission to read it is expressed by read(b,d) — b says
read(c, d) to c.

Observables Beside usage policies we also have the observable actions of
agents. We will use evidence formulae to describe observable actions. As
mentioned above, communication and creation of data are the observable
actions possible in our system. For simplicity we will only consider these
two types of observable actions though extension with other types of
observable actions is possible.

Definition 4. The set of evidence formulae EV, ranged over by ev, is
defined by the grammar:

ev = creates(t,a,d) | comm(t,a = b, ¢)
witht €T a,be G, deD and ¢ € D.

First, we have the creates(t, a,d) evidence formula which states that
an agent a has created a piece of data d at time ¢. As we shall see later,
this will automatically make a the owner of d. Secondly, we have a com-
munication evidence formula comm(t,a = b, ¢), which states that agent b
has received a policy formula ¢ from agent a at time ¢. To refer to the
time of an evidence formula we define the function time : EV — 7 as
time(creates(t, a, d)) = time(comm(t,a = b, ¢)) :=t.

Ezample 5. The formula creates(0, a, d) expresses that Alice created data
d at time 0. The formula comm(1,a = b,read(b,d)) expresses that Alice
sent the permision for Bob to read d to Bob at time 1.

2.2 The model

The observable actions executed by agents (in a run of the system) are
combined in the so called evidence set £. We will simply use evidence
formulae to describe these observable actions, i.e. £ C EV. We make the
natural restriction that only finitely many actions can be executed at any
given moment in time.

As mentioned before, agents may be audited by an authorization au-
thority, say at time T'. At this time each agent a € G has a state S,, which
represents a’s storage, where all her present data policies are stored.

Ezxample 6. We can now complete the formal description of our running
example. The actions of the agents are shown in Figure 1.

& = { create(0,a,d), comm(1,a = b,read(b,d)), comm(2,b = c,read(c,d)),
comm(3,a = b,read(b,d) — b says(read(c,d)) to c), comm(4,b = c,read(c,d))}

Note that Bob actually sends the read permission for the data to Charlie
twice. The second time this is fine but the first time violates the NDA.

create(0, a, d) (0)

=0

comm/(1, a = b, read(b, d);\(l)

comm(3, a = b,read(b, d) — b says(read(c, d)) to c) (3)

>
comm(2,b = c,read(c, d)) (2) ~
cumm\(4, b = c,read(c,d)) (4)

Fig. 1. Solid arrowed lines represent communications, dashed lines represent observable
events.

This gives the following evidence set:

When charlie is audited at time 5 his storage S. contains (among
others) read(c, d). Note that this is discovered by the authority examining
his storage, it does not follow, e.g. from the communication or other
observable actions. Appearently charlie has done some (unobservable)
internal computation to arrive at the conclusion that he may read d. The
question now is, did Charlie correctly conclude that he was allowed to
read d and has anything unauthorized happened to the data. We will
address this issue in the next section.

3 Using usage policies: The proof system

This section describes the proof system used to derive the actions on data
that are allowed by the policies that a user posseses. We first give the
inference rules followed by the notion provable. Note that each agents lo-
cally reasons about policies therefore the rules include the subject, i.e. the
agent doing the reasoning. Inference rules have the following format:

premises

NAME subject

conclusions

where a premise can be either a policy formula (in @) or an evidence
formula (in EV'), conclusion is a policy formula, and subject is an agent
in G.

The rules of our proof system are presented in two parts. First, we
have the standard rules from the propositional logic

o Y PAYP QNP

AL ¢/\¢ a AEL gb a AER 1[) a (1)
[¢] (']
¢ ¢ oV P) @)
\/Iqu\/wa VIR¢v¢a VE ¢ a
=Y 9 [35}
MP T a —1I m a (3)

We have the standard rules for and introduction and elimination in row

(1), or introduction and elimination in row (2) and implication intro-

[¢]
duction and elimination (modus ponens) in row (3). The notation

represents that the proof of ¢ has ¢ as a temporary assumption.

The second part of proof system consist of the following rules which
deal with creation of policies and with the delegation of responsibility
(COMM). Note that these rules do not take time or existence of evidence
into account. This will be done in our notion of (authorization) proofs
below.

comm(t,a = b, ¢)

b (4)

COMM

a says ¢ to b
creates(t, a, d) (5)
o v
a says ¢ to b
saY ————— b (6)
¢
aownsdy ... aownsdy, 7)
DERPOL ¢[{d1’ o ’dn}] a

Rule (COMM) states that if agent b has recieved message ¢ from an
agent a at some time, then b may conclude the corresponding a says ¢ to b
formula. Rule (CREATES) expresses that by creating a piece of data, the
agent becomes the owner of that data. Rule (SAY) expresses deligation
of responsibility. If agent a says ¢ to b then b can assume ¢ to hold. It
is a’s responsibility to show that it had permission to give ¢ to b. Note
that in our current setup it would also have been possible to omit this
rule and derive ¢ directly in rule (COMM). We expect, however, that

with extension of our logic the seperation of these two steps will become
useful. Rule (DERPOL) allows the creation of policies. An agent a can
create any usage policy for data that she owns.

3.1 Building Proofs

We are ready to introduce proofs built from our logic system. The first
definition states what is in fact a proof for some agent x.

Definition 7. A proof P of ¢ for x is a finite derivation tree such that:

1. each rule of P has x as its subject;
2. each rule of P belongs to one of the above rules (1)-(7);
3. the root of P is ¢;

Given a proof P, we write prem(P) for the set of premises in the
initial rules of P which are not temporary assumptions (like in rules VE
and — I). We also write conc(P) to denote the conclusion of the last rule
of P, and subject(P) to denote the subject.

For auditing purposes, we want to restrict to proofs that only have ev-
idence formulae as premises and whose time of the evidences is bounded.
We call such proofs justification proofs.

Definition 8. A proof P (of ¢ for x) is called a justification proof (of ¢
for x) at time t if every formula in prem(P) is an evidance formula ev
satisfying time(ev) < t.

The set of all justification proofs is denoted by J.

Note that a justification proof at time ¢ is just a proof which is po-
tentially valid at time ¢. Any evidance formula can be used as a premise.
To check whether the proof is indeed valid, a link has to be made with
the actions observed, i.e. those in the the set £. This will be done in the
next section. It is easy to see that justification proofs are monotonic, i.e.
any proof that is a justification at time ¢ is also a justification at time ¢’
for any ¢/ > t.

As an aside, our policy language is negation free and all proofs have a
‘constructive’ flavoour. For extensions of the logic, it may be neccessary
to go to intuitionistic or linear logic altogether. The constructive nature
of the proofs inherently means that the derivation system is not complete:
For example, read(c,d) — print(c,d) can hold simply because read(c, d)
does not. However, there is no constructive derivation for this (Also, as
soon as read permission is obtained, the predicate may no longer hold.)

Example 9. In our running example agent Charlie can provide an justifi-
cation proof for read(c, d) at time 5 as follows.

comm(4,b = ¢, read(c,d))

2B b says read(c,d) to ¢

read(c, d) ¢

SAY

Note that replacing the first premise by comm(0,b = ¢, read(c, d)) also
gives a justification proof for read(c, d) at time 5. This second proof should
not be accepted by the authorization authority as Bob did not actually
send anything to Charlie at time 0. The next section will treat what
agents should proof and which proofs are accepted by the authority.

4 Accountability

As noticed in the example in the previous section, agents can potentially
provide different justification proofs. We model an agent providing a proof
of ¢ at time t as a function Pr: & x G x 7 — J U{L}. Here the value L
represents that the agent cannot provide a proof.

We present two notions of accountability. The first notion, agent ac-
countability, focuses on whether the actions of a given agent where au-
thorized. The second notion, data accountability, expresses that a given
piece of data was not misused.

Recall that in our system, an agent a can be audited at time T" at which
point S,, the storage of a, becomes visible to the authorization authority.
The observable actions performed in the system are collected in £. For
both notions of accountability, it is important to link proofs to actual
observable actions. To this end we introduce the notion of authorization
proof, which is a justification proof that is backed by actual evidence.

Definition 10. We say that a justification proof P of ¢ for a at time t
is authorized, written Aut(P), when prem(P) C £. In this case we call
P an authorization proof of ¢ for a at time t.

An agent is accountable for the the policies she posseses and for the
usage policies she gives to others. Thus to pass the audit, the agent needs
to authorize her storage and her communication.

Definition 11 (Accountability of a). We say that agent a is autho-
rised to have ¢ at time t, denoted Auty(a,t), if she provides an authoriza-
tion proof, i.e. Pr(¢,a,t) # L and Aut(Pr(¢,a,t)).

We write Aut(a) if a is authorized to have all usage policies in her
storage at the time T' of auditing, i.e. V¢ € S, : Auty(a,T)

We write ComAut(a) if a was authorized to send all the policies that
she did send, i.e. Vcomm(t,a = b,1)) € £ : Auty says ¢ to b(as1).

Finally, we say that agent a passes the accountability test, written
Acc(a), if both Aut(a) and ComAut(a). hold.

FEzample 12. In our running example Charlie can show to be authorized
for having read(c,d) by providing the proof from Example 9. Assuming
he is also authorized for other policies in his storage we have Aut(c) and
also Acc(c) as Charlie did not send any messages (so ComAut(c) is emptily
satisfied).

Bob, on the other hand, cannot pass the accountability test as he
cannot provide an authorization for b says read(c,d) — c at time 2.

Agent accountability is useful to check the behaviour of a single agent.
However, a data owner may be more interested in whether a specific
piece of data (with corresponding usage policy) was obtained correctly.
To describe this we introduce the notion of data accountability.

4.1 Data Accountability

Data accountability describes the authorization requirements for a sin-
gle data usage policy. Unlike agent accountability, this may require au-
thorizations from several different agents. We first introduce weak data
accountability, which describes that a given usage policy may have been
obtained correctly. We will then discuss some potential issues with this
notion and introduce the notion of strong data accountability.

Weak data accountability expresses that an agent must provide a au-
thorization proof and that all delegated responsibilities must also be ac-
counted for, i.e. for any recieved policies used to derive the policy, there
is data accountability for sending of that policy at the sending agent.

Definition 13 (Weak Data Accountability). We say that ¢ at a
passes the weak data accountability test at time t, written Dac(¢,a,t)
if a is authorised to have ¢ at time t (i.e. a provides an authoriza-
tion proof) and for all communications in the premise of the provided
authorization proof, comm(t',b = a,v) € prem(Pr(¢,a,t)), we have
Dac()b says ¢ to a,b,t’.

We write Dac()¢, a for weak data accountability at the time T of the
audit, i.e. for Dac()p,a,T.

Note that this recursive definition is unproblematic, as time must
decrease (t' < t) by definition of authorization proof and time is well
founded. Weak data accountability corresponds to either of the proofs

depicted in solid or dashed lines (but not both) derivations in Figure 2-
(C). Intuitively, after checking authorization of ¢, we ‘recurse’ to the
sending agents where data accountability is checked for the policy which
allowed sending the communication.

If data accountability does not hold, then we can deduce that, at
some point, some agent did not provide an authorization proof. Clearly
this agent does not pass the agent accountability test. The proof of the
following proposition is straightforward.

Proposition 14. If Dac()¢ does not hold, then Ja € G such that Acc(a)
does not hold.

Ezample 15. Weak data accountability of read(c,d) at ¢ implies that
Charlie needs to provide an authorization proof. If Charlie provides the
proof given in example 9 then data accountability of b says read(c, d) to ¢
for Bob at time 4 will be required. Bob can indeed provide an authoriza-
tion proof:

read(b,d) — (b says (read(c,d)) to c).

comm(1,a = b, read(b,d)) comm(3,a = b,v)
Py g O a says read(b, d) to b by o a says 1) to b
SAY read (b, d) b sk b

MP b

(8)

Clearly Alice can provide authorization proofs for the two policies she
sent as she, being the owner of the data, may create any policy. Thus we
have Dac(read(c, d), ¢, 5).

We do not have Dac(read(c,d),c,3). The only authorization proof
Charlie can provide uses the fact that Bob sent read permission at time 2.
As we have seen before, Bob cannot authorize sending this permission at
time 2.

b says read(c, d) to ¢

The example above shows an issue with weak data accountability.
The result of the data accountability check depends on the authorization
proof that Charlie provides. Both the proof using Bobs read permission
at time 2 and at time 4 could be used by Charlie. If Charlie and Bob are
working together to try to hide that Bob did something wrong, the weak
data accountability test of read(c, d) for Charlie at time 5 will not reviel
that Bob violated the NDA.

To capture situations like this we introduce the notion of strong data
accountability. As the internal computations of an agent are not visible,
the authority cannot check if the provided proof is the proof an agent
actually used to arrive at a policy. Or even if the agent created a correct

10

proof at all before using the policy. The fact that there is no way to check
this is an unpreventable limitation due to the unobservability of some of
the agents actions. We can, however, check all correct proofs an agent
could have used to obtain a policy. This will allow us to prevent situation
as in the example above where Charlie behaves correctly but can still hide
Bobs violation of the NDA. With strong data accountability we do not
look at the authorization proof the agent provides but instead look at all
(reasonable) proofs. In this way we force checking of all communication
that may have been used to derive a policy.

A minimal proof P of ¢ is a proof of ¢ for which there are no unnec-
cessary premises, i.e. there is no proof of ¢ using a strict subset of premP
as premises.

Definition 16 (Strong Data Accountability). We say that ¢ at a
passes the strong data accountability test at time t, written SDac(¢, a,t)
if a is authorised to have ¢ at time t and for all minimal authorization
proofs P of ¢ for a at time t and all comm(t',b = a,v) in prem(P), we
have SDac(b says v to a,b,t').

We write SDac(¢p,a) for strong data accountability at the time T of
the audit, i.e. for SDac(¢,a,T).

Strong data accountability corresponds to following both the solid or
dashed lines in Figure 2-(C). If we assume that agents provide minimal
proofs, strong data accountability is a stonger notion that weak data
accountability. Checking strong data accountability, however, requires
a much more capable authorization authority. For weak data account-
ability, the agents are required to provide proofs. In this case, it is in
the agents interest to show that the communications used in the proof
have indeed happened. Thus a setup which uses undeniable communica-
tions, e.g. through use of some non-repudian scheme, will be sufficient.
For strong data accountability, the authority needs to find and check all
relevent communications looking e.g. at communication logs and/or using
key escrow techniques.

Ezample 17. We do not have strong data accountability of read(c,d) for
Charlie at time 5. Altough Charlie can provide authorization, checking
all possible minimal proofs will also lead to checking the communication
from Bob to Charlie at time 2 which Bob cannot authorize.

5 Semantics

Even though the meaning of our logic operators is intuitive, in this section
we shall make that more precise and define a semantic evaluation function

11

(B)

(©)

Fig. 2. (A) An authorization proof of ¢ for x is a derivation tree whose leaves are evi-
dence formulae e.g., a1 ...an which are supported by (global) evidences; (B) account-
ability requires authorization for every communication for which there is evidence that
x sent it; (C) weak data accountability of ¢ for z, requires a global proof which prove
the authorisation of ¢ back along all the communication events; There can be more
than one path, as illustrated here in solid and dashed arrows. Strong data accountability
requires that all paths are accountable.

= for policy formulae. Recall that the truth value of a policy formula
depends on the time, the agent doing the reasoning and the observable
actions in the system.

Definition 18 (Semantic evaluation of policy ¢ € ®). The semantic
function |=: G x T x T x & — {true, false}, denoted € =% ¢, is defined as
the least function (false < true) satisfying:

E =L ¢ when ever £ =, b says ¢ to a for some b € G 9)
& L ¢|D] when ever £ =L a owns d for all d € D (10)
EEL ¢V exactly when € =L ¢ and I = 4 (11)
EEL ¢ A exactly when E =" ¢ or £ =L 4 (12)
EEL ¢ — Y exactly when £ =4 ¢ implies I |=" 4 (13)
E =l a owns d when ever creates(t',a,d) € £ for some t' <t (14)
E EL b says ¢ to a when ever (comm(t',b = a,v)) € € for some t' €15)

One can construct |= basically by building it starting from what fol-
lows directly from the evidence set (the last 2 rules) and then repeat-
edly adding formulae using the other rules. A complication with implica-
tion requires that this construction is done by induction on the number

12

of implications in a formula. We omit further details of this construc-
tion. Note that agents “do not care” about communications and data of
other agents; For instance, formula b says ¢ to ¢ will not be valid for a
other than b or ¢, unless somebody explictly tells a about this (e.g., by
c says (b says ¢ to ¢) to a. However, even in this case a is not able to use
6.)

We have that our logic is sound for this semantics.

Theorem 19 (Soundness). If P is a authorization proof of a for ¢ at
time t, then £ EL ¢.

A proof is provided in the appendix.

6 Conclusions and Future Work

We have presented a logic for data access and agent accountability in
a distributed, heteroeneous setting in which data can be created, dis-
tributed and re-distributed. This framework can be used for distributing
personal data as well as valuable digital assets. In our system, the owner
of the data attaches a usage policy to the data, which contains a logical
specification of what actions are allowed with the data, and under which
conditions it can be (re-) distributed. This logic allows for different kind
of accoutability. We have also demonstrated the soundness of the logic.

We are working on extensions of our system, which can be explained
as follows. Suppose Alice gives to BigBrother her personal data d together
with a policy ¢; ¢ might allow BigBrother to re-sell d to BigSister with a
policy ¢'. In our setting ¢ must incorporate ¢’ in some way. In other words,
¢’ must be determined by Alice (the owner of the content) in the first
place. In a more realistic scenario, however, BigBrother might legitimately
want to supply a ¢’ devised by himself, and what we should check is
whether ¢’ complies with Alice’s wishes (encoded in ¢). For instance
¢ might say that each time that BigBrother resells d to someone, Alice
should receive a dollar, so everything we should check about ¢’ is whether
¢’ has such a provision. The crucial feature of this extension is that of
allowing non-owners to define policies on a content, provided that these
policies are in accordance to the owner’s wishes. In the current system,
policies can only be created by the owner of the data. For the moment,
the only way to allow another agent to create their own policy is to make
them (co)owner of the data.

To achieve this goal, first we have to extend the logic in two ways:
First, we have to incoporate mor complex conditions (this is rather straight-
forward). Conditions will allow policies to refer to groups of agents (e.g.,

[

every “z” satisfying ...”); for this we basically have to extend our logic

13

with variables and quantifiers. The use of conditions should allow us to
model policies such as the chinese wall security policy. The second exten-
sion will consist in the incorporation obligations (e.g., the the obligation
to pay the creator a dollar for each used/resent/... / or to notify the
creator/owner if the data is resent/ resold/, etc.). This will be done by
extending the notion of observable action. Once conditions and obliga-
tions are in place, we can tackle the problem of allowing non-owners to
define a policy; in the example above, the crucial condition we need to
check is that ¢’ is not more liberal than ¢; e.g., that each time that ¢’
allows for an action under certain conditions and obligations, then (a
derivative of) ¢ allows the same action under the same conditions and
obligations.

6.1 Related Work

The literature on access control is so vast that we can only mention the
works that are most related to our. One of the earliest proposals is the
Access Matrix model (AM), introduced by Lampson [13] and further in-
vestigated by Harrison et al. [11]. To provide more flexibility, AM was
extended by Samarati and De Capitani di Vimercati [16] by allowing
to transfer object privileges but only when the object has an associate
copy flag for that privilege. By contrast, in our approach a subject can
transfer privileges to other subjects, even if it does not have that right,
gaining in flexibility. Abadi presents in [1] a logic based method to rep-
resent the AM model. In that work, the subjects can make statements or
delegate part of their rights to others. This is somewhat similar to our
work, differing in the fact that we introduce a policy formula (a says ¢
to b), whose emphasis is in the ‘target agent’, to whom that statement
is intended. Appel and Felten [2] propose a distributed authentication
framework based on proof-carrying proofs from a higher order logic. The
agents are authenticated and authorized to access other users’ resources,
based on the proofs they construct (similarly to a centralized approach).
On the other hand, our proposal is decentralized, with the data and usage
policies flowing between the agents. Moreover, proofs of accountability are
only required when a specialized authority inquires a proof, and not con-
tinuously. More similar to ours is the work of DeTreville [10], introducing
the logic based language Binder, which is specifically designed to express
statements in a distributed system. In that work, differently from ours,
the statements from any Binder context can be exported and imported
to any other context. This implies a total network connectivity, which we
do not require. Moreover, as we already mentioned, we explicitly specify
the target agent, using the 'to’ keyword in the ’says’ construction. In the
work of Sandhu and Samarati [17], the importance of auditing and the

14

decentralized administration of authorizations is discussed. Indeed, these
issues are also relevant to our approach. In a similar vein, Blaze et al.
[8] study trust-management systems. These systems support, like in our
approach, delegation and policy specifications. The recent work of Chun
and Bavier [9] presents an approach to continuously monitor the trust
relations over time, and the use of accountability to check the behaviour
of users along a chain of trust. However, implementing this approach is
expensive and sometimes infeasible. On the other hand, our lightweight
approach can be easily deployed, thanks to the fact that we avoid the
monitoring of agents.

Related work for pushing the information in a distributed environ-
ment has been proposed by Bertino et al. [7]. In their approach a when a
user/agent receives some information, she might send it further to other
users/agents without any traceable proof. By contrast, in our work, after
an agent receives the data, it might send it to other agents, but along
with a usage policy, supporting therefore accountability. Bertino et al. [6]
have proposed a logical flexible framework for modelling access control
mechanisms. In their work, differently from ours, a logical language is
defined for analyzing access control mechanisms and not for describing a
new one.

An approach similar to that we proposed here is given by the lan-
guages for Digital Right Management. In particular we should mention
the eXtensible rights Markup Language (XrML) (www.xrml.org) and the
Open Digital Rights Language (ODRL) (www.odrl.net). For these lan-
guages, some formal semantics have been devised, in particular for ODRL
by Pucella and Weismann [14, 15]; differently from our framework, these
semantics focus on the functionalities of the right languages, and not on
the re-distribution mechanism.

As mentioned in the introduction, our system can — thanks to its dis-
tributed nature — be used for privacy protection (for protecting private
data). A system for specifying and internally enforcing privacy policies
and authorizations inside an enterprise (E-P3P) has been proposed by
Karjoth et al. [12]. The work was further investigated by Ashley et al. [3],
which have also introduced the Enterprise Privacy Authorization Lan-
guage(EPAL) [4]. Backes et al. [5] continued the research of designing
and managing privacy policies in an enterprise, especially for the EPAL
language. However, differently from our decentralized proposal the E-P3P
and EPAL are more suitable for a centralized approach, in which the users
are forced to accept the policy of the company.

15

References

(1]

2]

3]

[4]

[5]

(6]

[7]

8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

A

M. Abadi. Logic in access control. 18th IEEE Symposium on Logic in Computer
Science, June 2003.

A. W. Appel and E. W. Felten. Proof-carrying authentication. Proceedings of the
6th ACM Conference on Computer and Communications Security, pages 52—62,
November 1999.

P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-p3p privacy policies and pri-
vacy authorization. Proceeding of the ACM workshop on Privacy in the Electronic
Society, 2002.

P. Ashley, S. Hada, C. Powers, and M. Schunter. Enterprise privacy authorization
language(epal). Research Report 3485, IBM Research, 2003.

M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing enterprise
privacy policies. Computer Security - ESORICS 2003, 8th European Symposium
on Research in Computer Security, 2003.

E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for
reasoning about access control models. ACM Transactions on Information and
System Security (TISSEC), 2003.

E. Bertino and E. Ferrari. Secure and selective dissemination of xml documents.
ACM Transactions on Information and System Security (TISSEC), 2002.

M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust management in
distributed systems security. Secure Internet Programming, Security Issues for
Mobile and Distributed Objects, pages 185-210, 1999.

B. N. Chun and A. C. Bavier. Decentralized trust management and accountability
in federated systems. 37th Hawaii International Conference on System Sciences,
January 2004.

J. DeTreville. Binder, a logic-based security language. [IFEE Symposium on
Security and Privacy, pages 105-113, May 2002.

M. H. Harrison, W. L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of ACM, 19(8):461-471, August 1976.

G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise privacy prac-
tices: Privacy-enabled management of customer data. Privacy Enhancing Tech-
nologies, 2002.

B. W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Informa-
tion Sciences and Systems, pages 437-443, March 1971. Reprinted in Operating
Systems Review, 8,1, January 1974, pp. 18-24.

R. Pucella and V. Weissman. A logic for reasoning about digital rights. In Proc.
15th IEEE Computer Security Foundations Workshop, pages 282—294, 2002.

R. Pucella and V. Weissman. A formal foundation for odrl. In P. Ryan, editor,
Proc. Workshop on Issues in the Theory of Security (WITS), 2004.

P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. Foundations of Security Analysis and Design(Lecture Notes in
Computer Science), 2171:137-196, 2001.

R. S. Sandhu and P. Samarati. Authentication, access control, and intrusion
detection. The Computer Science and Engineering Handbook, pages 1929-1948,
1997.

Soundness Proof

Before showing our soundness result, we need to introduce the notion of
subproof.

16

Definition 20. Let P be a proof of ¢ for a at time t and let i be one of
the premises of the last rule used in P. The subtree of P with root ¥ is
called a subproof (for 1) of P.

This is illustrated in Figure 3. We obtain the following intuitive result:

Fig. 3. A proof for ¢ and its subproof of .

Lemma 21. If P is an authorization proof for ¢ at time t then any
subproof P’ for 1) is an authorization proof for v at time t.

This lemma follows from Definition 20 and the fact that premises of a
subproof are also premises of the proof. Now we can obtain our soundness
result:

Theorem 22 (Soundness). If P is an authorization proof ¢ for a at
time t, then £ EL ¢.

Proof. We proceed by induction on the depth of P. Consider first the
base case, where the proof consists of only one step. Take cases on ¢.

— Case ¢ = a owns d. Then the rule must be a OWN rule, with premise
creates(t’, x,d), with ' < t. As P is an authorization proof we have
that this premise must be in £. By requirement 14 of Definition 18,
we obtain the claim.

— Case ¢ = a says ¥ to b. Then the rule must be a COMM rule, with
premise comm(t’,a = b,¢[D]), with ¢ < t¢. Similar to the previous
case, we obtain the claim by requirement 15 of Definition 18.

For the inductive case, we take cases on the last step of P. Consider AI:
We have ¢ = (¢1 A1), with premises 1)1 and 2. By Lemma 21, we have
two subproofs P for 1 and Py for ¥ which are authorization proofs. By
induction we have that both £ =% 11 and £ E!, 1, thus by requirement 12
of Definition 18 we obtain the claim.

The other cases are similar.

17

