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a b s t r a c t

The global stability of an autonomous differential equation system is an important issue for
ecological, epidemiological and virus dynamical models. By means of the direct Lyapunov
method and the LaSalle’s Invariance Principle, an algebraic approach to proving the global
stability is presented in this paper. This approach gives a logic and possibly programming
method on how to choose coefficients ai based on the classic Lyapunov function of the formn

i=1 ai(xi − x∗

i − x∗

i ln xi/x∗

i ) such that the derivative of the Lyapunov function is negative
definite or semidefinite. As an application, the global stability of an SVS-SEIR epidemic
model with vaccination and the latent stage is examined. The generality of the approach is
also shown by discussing certain cases.

© 2012 Published by Elsevier Ltd

1. Introduction

For a multidimensional autonomous differential equation system, it is an important issue to investigate the global
behaviors of the ecological, epidemiological, and virus dynamicmodels. So far themost successfulmethod to such a problem
is the direct Lyapunov method and the LaSalle’s Invariance Principle. These two methods need to construct a suitable
Lyapunov function so that its derivative along solutions of the system is negative definite or semidefinite.

For ecological, epidemiological, and virus dynamical models, the set

Rn
+

= {x = (x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n}

is often feasible and positively invariant. The remarkable Lyapunov function of the form

L =

n
i=1

ai


xi − x∗

i − x∗

i ln
xi
x∗

i


, (1)

where ai > 0 (i = 1, 2, . . . , n), is positive definite in int Rn
+
andgreatly used in ecologicalmodels [1–3]. Thereafter, Lyapunov

functions of this type were also applied with a great success to a variety of models in mathematical epidemiology [4–15]
and virus dynamics [16–19]. And the extended form of function (1) were recently used to epidemic and virus dynamical
models with nonlinear incidence [20–23].

Although the Lyapunov function of form (1) provides us with an effective method to investigate the global stability of
many differential systems, there are some difficulties to apply the stability theorem or principle to some epidemic models
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with higher dimensions. The first thing is how to choose a set of suitable coefficients ai in (1) and how to rearrange or analyze
the derivative dL/dt such that the derivative dL/dt is negative definite or semidefinite. Second, when dL/dt is negative
semidefinite, finding the set in which the derivative equals zero is also a mathematical technique for applying the LaSalle’s
Invariance Principle.

For some simple epidemic models, it is relatively easy to get the reasonable constants ai (i = 1, 2, . . . , n) in L such that
the derivative dL/dt along solutions of the system is negative definite or semidefinite via observation and experience [8,9,
11,14,15]. For multi-group models Guo et al. [12,13] presented a graph-theoretic approach to choosing ai and determining
the negative definiteness or semidefiniteness of the derivative. In references mentioned above, the available Lyapunov
functions are unique, so are the associated forms of the derivative. However, for some epidemic models, our recent
investigations [24–26] have shown that the suitable Lyapunov functions of form (1) are not unique in terms of different
choice of parameters ai (i = 1, 2, . . . , n) and consequently the different derivatives. Therefore, how to choose a set of
suitable numbers ai (i = 1, 2, . . . , n) and hence determinewhether or not the derivative is negative definite or semidefinite
is a key issue for proving the global stability.

For high dimensional differential systems, little is known about the general roles of choice of the parameters ai ormethod
of proving that the derivative is negative definite or semidefinite given the Lyapunov function of form (1), and fallswithin the
scope of this study. Our purpose is to develop and generalize an algebraic approach to initially rearranging the derivation and
then choosing a suitable set of parameters such that the derivative is negative definite or semidefinite by using the relation
between the arithmetic and the associated geometric means. The method is illustrated by proving the global stability of an
epidemic model with vaccination and the latent stage.

This paper is organized as follows. In the next section, we begin with an example to show our ideas. The example comes
from the model formulated by Guo and Li in [5]. In Section 3, we introduce an algebraic approach to proving the global
stability by applying the Lyapunov function of form (1), and the detailed steps are presented. An example of applying the
approach is given in Section 4,where the example considers an epidemicmodelwith vaccination and the latent stage. Finally,
the application of the approach is discussed, and the generality of the approach is shown by considering certain cases.

2. The global stability of a staged-progression model

In [5], Guo and Li considered a 6-stage SP epidemic model with arbitrary amelioration. The global stability of the
endemic equilibrium was investigated by utilizing a Lyapunov function. However, their method was quite complicated
on determining the coefficients of the Lyapunov function and its negative semidefiniteness, which may not be easily
generalized. Here our purpose is to take a simple 3-stage SP model as an example to illustrate our ideas, which is different
from Guo and Li’s in choosing coefficients of the Lyapunov function.

In the following, we investigate a 3-stage SP epidemic model

dS
dt

= Λ − d0S − S(β1I1 + β2I2 + β3I3),

dI1
dt

= S(β1I1 + β2I2 + β3I3) − (d1 + δ21)I1 + δ12I2 + δ13I3,

dI2
dt

= δ21I1 − (d2 + δ12 + δ32)I2 + δ23I3,

dI3
dt

= δ32I2 − (d3 + δ13 + δ23 + δ43)I3,

(2)

and dT/dt = δ43I3 − dTT . System (2), including three stages, is simple version of Guo and Li’s model [5] in which the six
stages are considered. Variables S, Ii (i = 1, 2, 3) and all the parameters have the same meanings as those in [5]. It can be
verified easily that the endemic equilibrium of our model is feasible if the basic reproduction number (we omit it here) is
greater than unity, which is similar to that in [5]. In the following we will prove that the endemic equilibrium of system (2)
is globally stable in the feasible region by using our distinct approach.

Assume that system (2) has an endemic equilibrium, P∗(S∗, I∗1 , I
∗

2 , I
∗

3 ) (where S∗ > 0, I∗i > 0, i = 1, 2, 3); we define a
Lyapunov function

L(S, I1, I2, I3) =


S − S∗

− S∗ ln
S
S∗


+

3
i=1

ai


Ii − I∗i − I∗i ln

Ii
I∗i


, (3)

where ai > 0 (i = 1, 2, 3) are left unspecified. For simplicity, denote

y0 =
S
S∗

, y1 =
I1
I∗1

, y2 =
I2
I∗2

, y3 =
I3
I∗3

;

then the derivative of function L(S, I1, I2, I3) along solutions of system (2) is given by

dL
dt


(2)

= C + (a1 − 1)S∗(β1I∗1y1 + β2I∗2y2 + β3I∗3y3)y0
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− (d0S∗
+ a1β1S∗I∗1 )y0 −


a1(d1 + δ21) − β1S∗

− a2δ21

I∗1y1

−

a2(d2 + δ12 + δ32) − β2S∗

− a1δ12 − a3δ32

I∗2y2

−

a3(d3 + δ13 + δ23 + δ43) − β3S∗

− a1δ13 − a2δ23

I∗3y3

− Λ
1
y0

− a1β2I∗2 S
∗
y0y2
y1

− a1β3I∗3 S
∗
y0y3
y1

− a1δ12I∗2
y2
y1

− a1δ13I∗3
y3
y1

− a2δ21I∗1
y1
y2

− a2δ23I∗3
y3
y2

− a3δ32I∗2
y2
y3

△
= G(y0, y1, y2, y3),

where C = Λ + d0S∗
+ a1(d1 + δ21)I∗1 + a2(d2 + δ12 + δ32)I∗2 + a3(d3 + δ13 + δ23 + δ43)I∗3 .

To choose the suitable constants ai > 0 (i = 1, 2, 3) so that function G(y0, y1, y2, y3) is negative definite or semidefinite,
we plan to rewrite function G(y0, y1, y2, y3) with constants ai > 0 (i = 1, 2, 3) as the following form

−

K
k=1

bk

hk,1 + hk,2 + · · · + hk,nk − nk


, (4)

where bk ≥ 0 (k = 1, 2, . . . , K), hk,i is an expression only including multiplication and division of yj (j = 0, 1, 2, 3)
and Π

nk
i=1hk,i = 1. According to the property that the arithmetic mean is not less than the associated geometric mean,

hk,1 + hk,2 + · · · + hk,nk − nk ≥ 0 (the equality holds if and only if hk,1 = hk,2 = · · · = hk,nk = 1), we could easily prove that
function given in (4) is negative semidefinite, and so is function G(y0, y1, y2, y3) or the derivative dL/dt .

Note that, for the nonconstant terms of G(y0, y1, y2, y3), the groups satisfying Π
nk
i=1hk,i = 1 totally have the following six

cases:
y0,

1
y0


,


y2
y1

,
y1
y2


,


y3
y2

,
y2
y3


,

1
y0

,
y0y2
y1

,
y1
y2


,


y3
y1

,
y1
y2

,
y2
y3


,


1
y0

,
y0y3
y1

,
y2
y3

,
y1
y2


,

then, corresponding to expression (4), we define the function

H(y0, y1, y2, y3) = −b1


y0 +

1
y0

− 2


− b2


y2
y1

+
y1
y2

− 2


− b3


y3
y2

+
y2
y3

− 2


− b4


1
y0

+
y0y2
y1

+
y1
y2

− 3


− b5


y3
y1

+
y1
y2

+
y2
y3

− 3


− b6


1
y0

+
y0y3
y1

+
y2
y3

+
y1
y2

− 4


, (5)

where bi ≥ 0 (i = 1, 2, . . . , 6) are left unspecified.
In the following we let G(y0, y1, y2, y3) = H(y0, y1, y2, y3) to determine the coefficients ai (i = 1, 2, 3) and bj (j =

1, 2, . . . , 6). Since the terms y0y1, y0y2, y0y3, y1, y2 and y3, of function G do not appear in function H , their coefficients
should be equal to zero, which gives

a1 − 1 = 0,

a1(d1 + δ21)I∗1 = β1I∗1 S
∗
+ a2δ21I∗1 ,

a2(d2 + δ12 + δ32)I∗2 = β2I∗2 S
∗
+ a1δ12I∗2 + a3δ32I∗2 ,

a3(d3 + δ13 + δ23 + δ43)I∗3 = β3I∗3 S
∗
+ a1δ13I∗3 + a2δ23I∗3 .

(6)

Notice that S∗, I∗1 , I
∗

2 and I∗3 satisfy that the functions at the right hand side of system (2) equal to zero, and it follows from
Eqs. (6) that a1, a2 and a3 can be uniquely determined as

a1 = 1,

a2 =
S∗(β2I∗2 + β3I∗3 ) + δ12I∗2 + δ13I∗3

δ21I∗3
,

a3 =
1

δ32I∗2


δ23I∗3
δ21I∗1


S∗(β2I∗2 + β3I∗3 ) + δ12I∗2 + δ13I∗3


+


β3S∗

+ δ13

I∗3


.

(7)
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Consequently, the Lyapunov function (3) is specified. Function G is in turn given as

G(y0, y1, y2, y3) = C − (d0S∗
+ a1β1S∗I∗1 )y0 − Λ

1
y0

− a1β2I∗2 S
∗
y0y2
y1

− a1β3I∗3 S
∗
y0y3
y1

− a1δ12I∗2
y2
y1

− a1δ13I∗3
y3
y1

− a2δ21I∗1
y1
y2

− a2δ23I∗3
y3
y2

− a3δ32I∗2
y2
y3

△
= Ḡ(y0, y1, y2, y3).

Further, letting Ḡ(y0, y1, y2, y3) = H(y0, y1, y2, y3) and comparing the coefficients of the like terms between them yields

b1 = d0S∗
+ a1β1I∗1 S

∗, b2 = a1δ12I∗2 , b3 = a2δ23I∗3 ,
b4 = a1β2I∗2 S

∗, b5 = a1δ13I∗3 , b6 = a1β3I∗3 S
∗.

(8)

So function H(y0, y1, y2, y3) is also uniquely determined, the derivative of the Lyapunov function is given by

dL
dt


(2)

= −b1


y0 +

1
y0

− 2


− b2


y2
y1

+
y1
y2

− 2


− b3


y3
y2

+
y2
y3

− 2


− b4


1
y0

+
y0y2
y1

+
y1
y2

− 3


− b5


y3
y1

+
y1
y2

+
y2
y3

− 3


− b6


1
y0

+
y0y3
y1

+
y2
y3

+
y1
y2

− 4


,

where bi > 0 (i = 1, 2, . . . , 6) are determined by (8). According to the relation between the arithmetic and the associated
geometric means, we have dL/dt|(2) ≤ 0 and the equality holds if and only if y0 = 1 and y1 = y2 = y3, that is,
S = S∗ and I1/I∗1 = I2/I∗2 = I3/I∗3 . It can be easily verified that the largest invariant set of system (2) on the set
{(S, I1, I2, I3) ∈ R4

+
: S = S∗, I1/I∗1 = I2/I∗2 = I3/I∗3 } is the singleton {P∗}. Therefore, by the LaSalle’s Invariance Principle [27],

it follows that the endemic equilibrium P∗ of (2) is globally stable in the feasible region when it exists.

3. Formulation of the algebraic approach

On the basis of the above process of proving the global stability of the endemic equilibrium of system (2), in this section
we shall generalize it and propose an algebraic approach to proving the global stability of autonomous differential systems.
To this end, consider the autonomous system of ordinary differential equations

dx
dt

= f (x) (9)

where x = (x1, x2, . . . , xn)T , f (x) = (f1(x), f2(x), . . . , fn(x))T , and function fi(x) (i = 1, 2, . . . , n) is continuous in Rn
+

and satisfies the local Lipschitz condition with respect to variable x. Assume that system (9) has a unique equilibrium
P∗(x∗

1, x
∗

2, . . . , x
∗
n), where x∗

i > 0 (i = 1, 2, . . . , n), and that the set Rn
+
is positively invariant to system (9). By the direct

Lyapunov method or the LaSalle’s Invariance Principle, we present an algebraic approach to proving the global stability of
equilibrium P∗ of system (9) in int Rn

+
in the following. The detailed steps are listed as follows.

Step 1. Define a Lyapunov function

L(x1, x2, . . . , xn) =

n
i=1

ai


xi − x∗

i − x∗

i ln
xi
x∗

i


,

where a1 = 1 and ai > 0 (i = 2, 3, . . . , n) are unspecified. Denote the derivative of function L(x1, x2, . . . , xn) along
solutions of (9) by Ḡ(x1, x2, . . . , xn), that is, dL/dt|(9) = Ḡ(x1, x2, . . . , xn). By making the transformation of variables,
yi = xi/x∗

i (i = 1, 2, . . . , n), we have

dL
dt


(9)

= G(y), y = (y1, y2, . . . , yn)T . (10)

Step 2. Define a function of variables y by the following process.
First, construct a function set Γ by letting all the coefficients of functions in a set Γ ′ be one, where the set Γ ′ consists of

all the nonconstant terms of function G(y).
Second, select some functions from the set Γ and make a group such that the product of these functions within a group

is unity. Note that any function in Γ may be chosen to group for multiple times. Without loss of generality, we assume that
there are at most K groups formed from Γ , and that there are nk terms including hk,1, hk,2, . . . , hk,nk in the k-th group with
Π

nk
j=1hk,j = 1 (k = 1, 2, . . . , K).
Finally, define function

H(y) = −

K
k=1

bk

hk,1 + hk,2 + · · · + hk,nk − nk


, (11)
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where bk ≥ 0 (k = 1, 2, . . . , K) are left unspecified. By the relationship between the arithmetic and the associated geometric
means, hk,1 +hk,2 +· · ·+hk,nk −nk ≥ 0, so H(y) ≤ 0. In particular, H(y) = 0 if and only if the arithmetic and the associated
geometric means are equal to each other, that is, hk,1 = hk,2 = · · · = hk,nk for k = 1, 2, . . . , K .

Step 3. Choose suitable parameters ai > 0 (i = 2, . . . , n) and bk ≥ 0 (k = 1, . . . , K) such that G(y) = H(y). By equating
the coefficients of like terms of equation G(y) = H(y) we get a system of algebraic equations from which parameters
ai > 0 (i = 2, . . . , n) and bk ≥ 0 (k = 1, . . . , K) may be solved. Note that, for ai (i = 2, . . . , n) and bk (k = 1, . . . , K)
obtained above, we have dL/dt|(9) = G(y) = H(y) ≤ 0.

Step 4. Find the set

Ω =


(x1, x2, . . . , xn) ∈ int Rn

+
:
dL
dt


(9)

= 0


. (12)

It follows from the transformation yi = xi/x∗

i , (10), (11) and H(y) = G(y) that the set gives

Ω =

(y1, y2, . . . , yn) ∈ int Rn

+
: H(y1, . . . , yn) = 0


=


(y1, y2, . . . , yn) ∈ int Rn

+
: hk,1 = hk,2 = · · · = hk,nk , for any k


. (13)

If Ω is a singleton {P∗}, it follows by the direct Lyapunov method that equilibrium P∗ is globally stable in int Rn
+
. If Ω is not

a singleton, we further need to prove that there is no positive semiorbit of system (9) on the set Ω . If so, it follows by the
LaSalle’s Invariance Principle that equilibrium P∗ is globally stable in int Rn

+
.

In order to make our ideas clearly and apply the above approach conveniently, we make some explanations and give
remark in the following.

Remark. Given the Lyapunov function of the form defined in Step 1, it is important to prove that the derivative is negative
definite or semidefinite, that is G(y) ≤ 0. Step 2 says that we try our best to rearrange function G(y) such that it has
the form of function H(y), that is, G(y) = H(y), which is obviously negative definite or semidefinite with respect to
yi = 1 (i = 1, 2, . . . , n). Furthermore, the realization of Step 3 is a key to applying this approach. If we can find suitable
parameter values ai > 0 (i = 2, 3, 4, . . . , n) and bk ≥ 0 (k = 1, 2, . . . , K) such that G(y) = H(y), then the approach is
usable; otherwise, the approach is unfeasible.

4. Application of the algebraic approach to an SVS-SEIR model

In this section, we apply the approach presented in the previous section to consider an epidemic model with vaccination
and the latent stage

dS
dt

= q1µA − (µ + p)S − βSI + εV ,

dV
dt

= q2µA + pS − (µ + ε)V ,

dE
dt

= βSI − (µ + γ )E,

dI
dt

= γ E − (µ + α + δ)I,

(14)

and dR/dt = δI−µR. Here, the total population is divided into the following epidemiological compartments: S, susceptible;
V , vaccinated; E, latent; I , infectious; R, recovered. S = S(t), V = V (t), E = E(t), I = I(t) and R = R(t) denote the numbers
of individuals in each compartment at time t , respectively. µ is the per capita natural death rate; µA is the birth rate;
q2 (0 < q2 < 1) is the vaccinated fraction of the newborn, q1 = 1 − q2 is the unvaccinated fraction of the newborn; p is
the per capita vaccination rate for the susceptible individuals; β is the transmission coefficient of the infection; ε is the per
capita rate of losing the immunity from the vaccination; γ is the per capita rate of transfer from the latent compartment to
the infectious one; α is the per capita disease-induced death rate; δ is the per capita rate of recovery from the disease.

It is easy to know that the set

D =

(S, V , E, I) ∈ R4

+
: S + V + E + I ≤ A


is positively invariant to system (14). By applying the method of the next generation matrix in [28], we get the basic
reproduction number of system (14), which gives

R0 =
βγ A(ε + q1µ)

(µ + γ )(µ + α + δ)(p + µ + ε)
.
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And direct calculation shows that, when R0 ≤ 1, system (14) only has the disease-free equilibrium P0(S0, V0, 0, 0); when
R0 > 1, in addition to P0, system (14) also has a unique endemic equilibrium P∗(S∗, V ∗, E∗, I∗), where

S0 =
A(ε + q1µ)

p + µ + ε
, V0 =

A(p + q2µ)

p + µ + ε
,

S∗
=

(µ + α + δ)(µ + γ )

βγ
, V ∗

=
q2µA + pS∗

µ + ε
,

E∗
=

µ + γ

γ
I∗, I∗ =

µγ A(ε + q1µ)

(µ + γ )(µ + ε)(µ + α + δ)


1 −

1
R0


.

With respect to the global stability of equilibria of system (14), the following results hold.

Theorem 1. For system (14), the disease-free equilibrium P0 is globally stable on the set D if R0 ≤ 1; the endemic equilibrium
P∗ is globally stable in the set D if R0 > 1.

Proof. First, we investigate the global stability of the disease-free equilibrium P0. For the disease-free equilibrium
P0(S0, V0, 0, 0), S0 and V0 satisfy the following equations

(µ + p)S − εV = q1µA,
(µ + ε)V − pS = q2µA,

then system (14) can be rewritten as the following form

dS
dt

= − [(µ + p) + βI] (S − S0) − βS0I + ε(V − V0),

dV
dt

= p(S − S0) − (µ + ε)(V − V0),

dE
dt

= β(S − S0)I + βS0I − (µ + γ )E,

dI
dt

= γ E − (µ + α + δ)I.

(15)

Define a Lyapunov function

L1(S, V , E, I) =
1
2
(S − S0)2 +

m
2

(V − V0)
2
+ S0


E +

µ + γ

γ
I


,

where m = [2µ(µ + p + ε) + pε] /p2, then the derivative of function L1 with respect to t along solutions of system (15) is
given by

dL1
dt


(15)

= −(µ + p)(S − S0)2 + (mp + ε)(S − S0)(V − V0)

−m(µ + ε)(V − V0)
2
+ S0


βS0 −

(µ + α + δ)(µ + γ )

γ


I − βI(S − S0)2

≤ −(µ + p)(S − S0)2 + (mp + ε)(S − S0)(V − V0)

−m(µ + ε)(V − V0)
2
+

(µ + γ )(µ + α + δ)S0
γ

(R0 − 1) I.

Since

(mp + ε)2 − 4m(µ + p)(µ + ε) = −
4µ(µ + p)(µ + ε)(µ + p + ε)

p2
< 0,

function −(µ + p)(S − S0)2 + (mp + ε)(S − S0)(V − V0) − m(µ + ε)(V − V0)
2 is negative definite with respect to S = S0

and V = V0. So (dL1/dt)|(15) ≤ 0 for R0 ≤ 1.
When R0 < 1, (dL1/dt)|(15) = 0 if and only if S = S0, V = V0 and I = 0; when R0 = 1, (dL1/dt)|(15) = 0 if and

only if S = S0 and V = V0. Whether R0 < 1 or R0 = 1, it is easy to verify that the largest invariant set of system (15) on
the set


(S, V , E, I) ∈ D : (dL1/dt)|(15) = 0


is the singleton {P0}. Therefore, by the LaSalle’s Invariance Principle [27], the

disease-free equilibrium P0 is globally stable on the set D when R0 ≤ 1.
Note that it is relatively easy to determine that dL1/dt|(15) is negative semidefinite for R0 ≤ 1, our proposed method is

then not necessary to apply to prove the global stability of the disease-free equilibrium. But, for the global stability of the
endemic state P∗ in the setDwe shall show in the following how our approach presented in the previous section is effective.
For this purpose we follow steps presented in the previous section.
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Step 1. Define a Lyapunov function

L2(S, V , E, I) =


S − S∗

− S∗ ln
S
S∗


+ a2


V − V ∗

− V ∗ ln
V
V ∗


+ a3


E − E∗

− E∗ ln
E
E∗


+ a4


I − I∗ − I∗ ln

I
I∗


, (16)

where ai (i = 2, 3, 4) are positive, and left unspecified, then the derivative of function L2 along solutions of system (14)
reads

dL2
dt


(14)

= C − [(µ + p) − a2p]S − (1 − a3)βSI − [a2(µ + ε) − ε]V − [a4(µ + α + δ) − βS∗
]I

− [a3(µ + γ ) − a4γ ]E − q1µA
S∗

S
− ε

S∗V
S

− a2q2µA
V ∗

V
− a2p

V ∗S
V

− a3β
E∗SI
E

− a4γ
I∗E
I

△
= Ḡ(S, V , E, I),

where C = q1µA + a2q2µA + (µ + p)S∗
+ a2(µ + ε)V ∗

+ a3(µ + γ )E∗
+ a4(µ + α + δ)I∗.

Let

x =
S
S∗

, y =
V
V ∗

, z =
E
E∗

, u =
I
I∗

;

then Ḡ(S, V , E, I) becomes

G(x, y, z, u) = C − [(µ + p) − a2p]S∗x − (1 − a3)βS∗I∗xu − [a2(µ + ε) − ε]V ∗y − [a4(µ + α + δ) − βS∗
]I∗u

− [a3(µ + γ ) − a4γ ]E∗z − q1µA
1
x

− εV ∗
y
x

− a2q2µA
1
y

− a2pS∗
x
y

− a3βS∗I∗
xu
z

− a4γ E∗
z
u
.

Step 2. Construct the function set Γ

Γ =


x, y, z, u, xu,

1
x
,
1
y
,
x
y
,
y
x
,
z
u
,
xu
z


.

There are at most seven groups associated with Γ such that the product of all functions within each group is unity. The
seven groups are, respectively,

x,
1
x


;


y,

1
y


;


y
x
,
x
y


;


x,

1
y
,
y
x


;

1
x
, y,

x
y


;


1
x
,
xu
z

,
z
u


;


1
y
,
y
x
,
xu
z

,
z
u


.

Further, according to the above groups, we define function

H(x, y, z, u) = b1


2 − x −

1
x


+ b2


2 − y −

1
y


+ b3


2 −

y
x

−
x
y


+ b4


3 − x −

1
y

−
y
x


+ b5


3 −

1
x

−
xu
z

−
z
u


+ b6


3 −

1
x

− y −
x
y


+ b7


4 −

1
y

−
y
x

−
xu
z

−
z
u


(17)

with the coefficients bk (k = 1, . . . , 7) left unspecified.
Step 3. We would like to determine suitable parameters ai > 0 (i = 2, 3, 4) and bk ≥ 0 (k = 1, 2, . . . , 7) such that

G(x, y, z, u) = H(x, y, z, u). Equating the coefficients of the like terms at its two sides yields the following equations

1 − a3 = 0,
a4(µ + α + δ) − βS∗

= 0,
a3(µ + γ ) − a4γ = 0,
[(µ + p) − a2p] S∗

= b1 + b4,
[a2(µ + ε) − ε] V ∗

= b2 + b6,
q1µA = b1 + b5 + b6,
εV ∗

= b3 + b4 + b7,
a2q2µA = b2 + b4 + b7,
a2pS∗

= b3 + b6,
a3βS∗I∗ = b5 + b7,
a4γ E∗

= b5 + b7,
C = 2(b1 + b2 + b3) + 3(b4 + b5 + b6) + 4b7.

(18)
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Since S∗
= (µ + α + δ)(µ + γ )/(βγ ), it follows from the first three equations of (18) that

a3 = 1, a4 =
µ + γ

γ
. (19)

Note that, for the endemic equilibrium P∗(S∗, V ∗, E∗, I∗), S∗, V ∗, E∗ and I∗ satisfy the following equations
q1µA − (µ + p)S∗

− βS∗I∗ + εV ∗
= 0,

q2µA + pS∗
− (µ + ε)V ∗

= 0,
βS∗I∗ − (µ + γ )E∗

= 0,
γ E∗

− (µ + α + δ)I∗ = 0,

(20)

then substituting (19) into other equations of (18) yields the following equivalent form of (18)

b1 + b4 = [(µ + p) − a2p] S∗,
b2 + b6 = [a2(µ + ε) − ε] V ∗,
b1 + b5 + b6 = q1µA,
b3 + b4 + b7 = εV ∗,
b2 + b4 + b7 = a2q2µA,
b3 + b6 = a2pS∗,
b5 + b7 = (µ + γ )E∗.

(21)

Further, (21) is equivalent to the following equations
b1 = q1µA − βS∗I∗ − b6 + b7,
b2 = [a2(µ + ε) − ε] V ∗

− b6,
b3 = a2pS∗

− b6,
b4 = εV ∗

− a2pS∗
+ b6 − b7,

b5 = βS∗I∗ − b7.

(22)

Since bi ≥ 0 (i = 1, 2, 4, 6), it follows from the first two equations of (21) that a2 should satisfy the following inequalities

ε

µ + ε
≤ a2 ≤

µ + p
p

. (23)

In order to assure bi ≥ 0 (i = 1, . . . , 5), it follows from (22) that b6 and b7 must satisfy the following inequalities0 ≤ b6 ≤ min

[a2(µ + ε) − ε] V ∗, a2pS∗


,

0 ≤ b7 ≤ (µ + γ )E∗,
a2pS∗

− εV ∗
≤ b6 − b7 ≤ q1µA − βS∗I∗.

(24)

By using (20), we have

(q1µA − βS∗I∗) − (a2pS∗
− εV ∗) = [(µ + p) − a2p] S∗,

then (23) assures

min

[a2(µ + ε) − ε] V ∗, a2pS∗


≥ 0,

and

a2pS∗
− εV ∗

≤ q1µA − βS∗I∗.

So, when a2 satisfies inequalities (23), it is easy to know geometrically that there must be nonnegative constants b6 and
b7 satisfying (24). Especially, for ε/(µ + ε) < a2 < (µ + p)/p, there must be positive numbers b6 and b7 such that
bi > 0 (i = 1, 2, . . . , 5) in (22). This implies that, for ε/(µ + ε) < a2 < (µ + p)/p, positive numbers bi (i = 1, 2, . . . , 7) do
exist such that G(x, y, z, u) = H(x, y, z, u).

Step 4. When bi > 0 (i = 1, 2, . . . , 7), it is easy to see that H(x, y, z, u) = 0 if and only if x = y = 1 and z = u. Thus,
according to the above steps, we have the Lyapunov function for system (14)

L2(S, V , E, I) =


S − S∗

− S∗ ln
S
S∗


+ a2


V − V ∗

− V ∗ ln
V
V ∗


+


E − E∗

− E∗ ln
E
E∗


+

µ + γ

γ


I − I∗ − I∗ ln

I
I∗


,

where ε/(µ + ε) < a2 < (µ + p)/p, and dL2/dt|(14) ≤ 0 and the equality holds true if and only if S = S∗, V = V ∗ and
E/E∗

= I/I∗. It can be verified easily that the largest invariant set of system (14) on the set {(S, V , E, I) ∈ D : S = S∗, V =

V ∗, E/E∗
= I/I∗} is the singleton {P∗}. Therefore, it follows from the LaSalle’s Invariance Principle [27] that the endemic

equilibrium P∗ of (14) is globally stable in the set D when R0 > 1. This completes the proof. �
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Remark. Since the different values of a2 corresponds to the different Lyapunov functions, the investigation here shows
that the suitable Lyapunov function is nonunique for the model in terms of different parameters for the given structure
of Lyapunov function (1). We note that choosing the different values of a2 definitely leads to the different derivatives, and
consequently the procedures of proving that the derivative is negative semidefinite are highly dissimilar. We demonstrate
this by considering the following three choices of a2:

Case 1: a2 =
ε

µ + ε
; Case 2: a2 =

µ + p
p

; Case 3: a2 = 1.

Case 1. Since b2 ≥ 0 and b6 ≥ 0, then, from the second equation of (21) we have b2 = b6 = 0. Further, it follows from
(20) and (21) that

b1 = q1µA − βS∗I∗ + b7,

b3 =
εpS∗

µ + ε
,

b4 =
εq2µA
µ + ε

− b7,

b5 = βS∗I∗ − b7.

(25)

In order to assure bi ≥ 0 (i = 1, 3, 4, 5), from (25) we know that b7 must satisfy the inequalities

max

0, βS∗I∗ − q1µA


≤ b7 ≤ min


εq2µA
µ + ε

, βS∗I∗


. (26)

Using (20) yields
εq2µA
µ + ε

−

βS∗I∗ − q1µA


=

µ(µ + p + ε)

µ + ε
S∗ > 0;

then inequalities (26) must have nonnegative solution, and so is (25). That is, when a2 = ε/(µ + ε), (21) must have
nonnegative solution.

Case 2. Similarly, it follows from (20) and (21) that b1 = b4 = 0 and
b2 =

(µ + p)q2µA
p

− b7,

b3 = εV ∗
− b7,

b5 = βS∗I∗ − b7,
b6 = (µ + p)S∗

− εV ∗
+ b7.

(27)

In order to assure bi ≥ 0 (i = 2, 3, 5, 6), b7 must satisfy the inequalities

max

0, εV ∗

− (µ + p)S∗


≤ b7 ≤ max


(µ + p)q2µA
p

, βS∗I∗, εV ∗


. (28)

Using (20) yields

βS∗I∗ −

εV ∗

− (µ + p)S∗


= q1µA > 0

and
(µ + p)q2µA

p
−


εV ∗

− (µ + p)S∗


= µ


q2µA
p

+ S∗
+ I∗


> 0,

then inequalities (28) must have nonnegative solution. It implies that (21) must also have nonnegative solution when
a2 = (µ + p)/p.

Case 3. System (21) becomes
b1 = q1µA − βS∗I∗ − b6 + b7,
b2 = µV ∗

− b6,
b3 = pS∗

− b6,
b4 = εV ∗

− pS∗
+ b6 − b7,

b5 = βS∗I∗ − b7.

(29)

In order to assure bi ≥ 0 (i = 1, 2, . . . , 5), it follows from (29) that b6 and b7 must satisfy the following inequalities0 ≤ b6 ≤ min

µV ∗, pS∗


,

0 ≤ b7 ≤ (µ + γ )E∗,
pS∗

− εV ∗
≤ b6 − b7 ≤ q1µA − βS∗I∗.

(30)

Obviously, the existence of nonnegative solution of (30) is similar to that of (24).
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The above three cases show that choosing the different Lyapunov functionsmay lead to various difficulties in rearranging
the derivative dL/dt|(14) into the form of function H in (11) to prove dL/dt|(14) ≤ 0. For the first two cases, we only need to
determine the value of b7, then the associated values of bi (i = 1, 2, . . . , 6) can be obtained. However, for Case 3, in order
to obtain the suitable values of bi (i = 1, 2, . . . , 5), two other values (i.e., b6 and b7) need to be chosen. Thus, adopting the
last case is relatively complicated to prove dL/dt|(14) = H ≤ 0.

5. Discussion

In this paper, we presented an algebraic approach to choosing suitable parameters ai in the Lyapunov function of form (1)
such that the derivative of the Lyapunov function along the given system is negative definite or semidefinite. In particular,
the proposed approach actually give a logic and possibly programming method on how to choose coefficients ai based on
the classic Lyapunov function of the form

n
i=1 ai(xi − x∗

i − x∗

i ln xi/x∗

i ) such that the negative definite or semidefinite
derivative of the Lyapunov function is derived. The key ideas are to rearrange the derivative dL/dt to be a negative definite
or semidefinite function which involves the arithmetic and the associated geometric means of the variables, as the form
of (11), and then determine the unspecified parameters. Further, the approach provides a relatively easy way to derive the
largest invariant set of the system on the set {x ∈ Rn

+
: dL/dt = 0}, and hence the equilibrium is globally stable based on

the LaSalle’s Invariance Principle.
In Section 4, we proved the global stability of the endemic equilibrium ofmodel (14) by choosing a3 = 1, a4 = (µ+γ )/γ

and a2 satisfying ε/(µ + ε) < a2 < (µ + p)/p for the Lyapunov function (16). Correspondingly, the associated coefficients
bk(k = 1, 2, . . . , 7) of function H appeared in (17) were chosen to be a positive solution of the associated Eqs. (22). This
implies that, for system (14), the suitable Lyapunov function is nonunique, and so is the associated form of function H for
each suitable Lyapunov function. Fortunately, this approach can provide all possibly suitable Lyapunov functions of form (1)
and all the available forms of function H corresponding to each Lyapunov function are given. In particular, it follows from
Remark in Section 4 that the more appropriate Lyapunov function may make proving dL/dt ≤ 0 easier.

We illustrate our approach by proving the global stability of the endemic equilibriumof an SVS-SEIR epidemicmodelwith
vaccination and the latent stage. This approach is also suitable for proving the global stability of the endemic equilibrium
of models in [5–16], as shown in Section 2. Note that when this approach is applied to those models, the solution of the
equations obtained in Step 3 is uniquely solved. In contrast with the method used in the previous literature, our approach
can not only be more generous and more concise, but also find all possible Lyapunov functions of form (1).

The discussion above has theoretically shown the generality of the algebraic approach. In addition, when the derivative
dL/dt is complicated, that is, the function set Γ defined in Step 2 in Section 3 includes more elements, it may not be easy to
select all the groups from the set Γ . In order to avoid losing some groups, a set of Matlab program may be applied. Again,
Matlab code may also be used to determine the existence of required solutions of the equations established in Step 3, since
the coefficients of bi in the equations are 1 or 0. Hence this algebraic approach possibly provides a programming method on
choosing suitable coefficients ai for the classic Lyapunov function of form (1) and improves the efficacy of calculations.
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