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In the past, avian influenza viruses have crossed species’ barriers to trigger human
pandemics by reassorting with mammal-infective viruses in intermediate livestock
hosts. H5N1 viruses are able to infect pigs and some of them have affinity for the
mammalian type a-2,6-linked sialic acid airway receptor. By using reverse genetics,
we systemically created 127 reassortant viruses between a duck isolate of H5N1,
specifically retaining its hemagglutinin (HA) gene throughout, and a highly
transmissible, human-infective H1N1 virus. We tested the virulence of the
reassortants in mice as a correlate for virulence in humans, and tested
transmissibility in guinea pigs, which have both avian and mammalian types of
airway receptor. Transmission study showed that both polymerase PA gene and
non-structural protein NS gene of HI1N1 virus made the H5N1 virus transmissible by
respiratory droplet between guinea pigs, without death. Further experiments
implicated other H1IN1 genes in the enhancement of mammal-to-mammal
transmission, including nucleoprotein (NP), neuraminidase (NA) and matrix (M), as
well as mutations in H5 HA that improve affinity for human-like airway receptors.
Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian
transmissibility by reassortment in current agricultural scenarios.

Reports

transmissible among mammals and
potentially cause a human pandemic?
H5NI1 influenza viruses were han-
dled in the enhanced animal biosafety
laboratory level 3 (ABSL3+) facility at
the Harbin Veterinary Research Insti-
tute, China (/5). All experimental
studies with live H5N1 viruses were
performed before the moratorium on
such studies was in place (16, /7). De-
tails of the biosafety and biosecurity
measures taken and the dates on which
the experiments were performed are
provided in the supplementary materi-
als.
We used two influenza viruses iso-
lated in China: the HSNI1 virus
A/duck/Guangxi/35/2001
[DK/35(H5N1)] and the HINI1 virus
A/Sichuan/1/2009 [SC/09(HINT)].
DK/35(H5NT1) is highly pathogenic for
both chickens and mice (/8). It trans-
mits by direct contact among guinea
pigs when they are housed together (/9),
but does not transmit between guinea
pigs by respiratory droplet (see Fig.
1A). We previously identified two mo-
lecular changes that are critical for the
contact transmission of DK/35(H5NT1)
among guinea pigs: the asparagine
residue at 701 (701N) in PB2 and the
alanine residue at 160 (160A) in HA
(19). The mutation of 160A, resulting in
the absence of glycosylation at 158160
in HA, permits virus binding to
a-2,6-linked SAs (19, 20). Receptor

Avian influenza viruses continue to evolve and spread, perpetuating
the fear of an influenza pandemic if they acquire the ability to transmit
efficiently among humans. The influenza virus genome comprises eight
genes, basic polymerase 2 (PB2), basic polymerase 1 (PBI1), acidic
polymerase (PA), hemagglutinin (HA), nucleoprotein (NP), neuramini-
dase (NA), matrix (M), and non-structural protein (NS). The HA gene and
the NA gene encode hemagglutinin and neuraminidase, respectively,
which are integral membrane proteins. The HA of human-infective in-
fluenza subtypes preferentially recognizes a-2,6-linked sialic acids (SAs)
(human-like receptor), whereas the HA of avian-infective influenza sub-
types preferentially recognizes a-2,3-linked SAs (avian-like receptor) (7).
Combinations of amino acid changes, 158D/224K/226L,
196R/226L/228S, or 110Y/160A/226L/228S (H3 numbering used
throughout; see fig. S6), in HA protein can allow H5N1 viruses to rec-
ognize a-2,6-linked SAs, thereby conferring viral transmission between
ferrets (2—4).

When two different influenza viruses infect the same cell, their genes
can reassort to produce new viral strains. Historically, such reassortment
has led to the emergence and spread of pandemic viruses in immunolog-
ically naive human populations (5—8). A previous study with an H5N1
virus and a human H3N2 virus suggested that reassortments between
these two subtypes to produce a dangerous virus would be rare (9).
However, both avian H5N1 and human 2009/HINI1 viruses have been
found in pigs (10-14), so we asked: could an HSN1 reassortant between
avian H5N1 and the highly transmissible 2009/HIN1 virus become

specificity testing using a solid-phase
binding assay with four different gly-
cans indicated that DK/35(H5N1) binds to both a-2,3-linked SAs and
a-2,6-linked SAs, and its affinity to a-2,3-linked SAs is higher than to
a-2,6-linked SAs (fig. S1A). SC/09(HIN1) was the first virus isolated in
China during the 2009 influenza pandemic and transmits efficiently
among guinea pigs by respiratory droplet (see Fig. 1B) (21).

Using plasmid-based reverse genetics (22—24), we generated all pos-
sible reassortants possessing the H5 HA gene [i.e., 127 hybrid viruses
between DK/35(H5N1) and SC/09(HIN1), 27 minus one parent virus].
We numbered the gene segments derived from SC/09(HIN1) as follows:
1, PB2; 2, PB1; 3, PA; 5, NP; 6, NA; 7, M; and 8, NS. For example,
“r123” denotes the reassortant containing SC/09(HIN1) PB2, PB1, and
PA, with the other five segments from the DK/35(H5N1) virus. In pre-
vious studies (25, 26), certain H5 reassortants with H3N2 were either not
generated or did not grow efficiently because of genomic incompatibility,
for example, virus bearing NP gene of human H3N2 virus and M and NS
gene of H5N1 avian virus cannot replicate efficiently (25). By contrast, in
this study, reassortants with the HSN1 HA were easily generated and all of
them grew efficiently in chicken eggs with viral titers ranging from 10 to
10" 50% egg infectious doses (EIDso) (tables S1 to S3).

HS5NI1 virus virulence in mice correlates with their virulence in hu-
mans (27, 28), but this correlation has not been extended to ferrets (29).
We used BALB/c mice to evaluate the virulence of our HSN1 reassortants
by inoculating groups of eight mice with different doses of DK/35(H5N1)
or SC/09(H1INT). DK/35(H5NT1) had a mouse lethal dose (MLDs) of 2.6
log0EIDs, (fig. S2A), whereas the MLDs, of SC/09(HIN1) was 6.2
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log;oEIDs, (fig. S2B), indicating a milder infection. Virus replication was
detected in the brains of mice that received 10°EIDs, or higher doses of
DK/35(H5N1), but was only detected in the brain of one of three mice that
were inoculated with 10°EIDs, of SC/09(HIN1) (fig. S2C). We did not
measure the MLDs, of all 127 viruses; instead, we infected mice with
10°EIDs, of each reassortant and scored them for replication in the brain
and their effect on mouse mortality. On day 5 post-inoculation (p.i.), three
mice in each group of eight were euthanized and their brain tissues were
collected for virus titration; the other five mice were observed for a total
of 14 days for body weight changes and death.

The 127 viruses were categorized into three groups based on their repli-
cation in the brain and lethality in mice: (i) 54 viruses showed similar
pathogenicity to DK/35(H5N1); some viruses were lethal, but virus was
not detected in the brains of all three mice. Mice infected with these
viruses showed diversity in body weight changes at the end of the ob-
servation period (Fig. 2A, viruses shown in black, and table S1). (ii) 38
viruses were less pathogenic than DK/35(H5NT1), they were not detected
in the brain of any mouse euthanized on day 5 p.i., the mice survived the
infection and gained body weight (except those infected with the 123678
virus) (Fig. 2A, viruses shown in blue, and table S2); and (iii) 35 viruses
were more pathogenic than DK/35(H5N1), they were detected in the
brains of all three mice euthanized on day 5 p.i., all the remaining five
mice died [mean time to death (MDT) = <10 days] and all lost 10%—-30%
of their body weight (Fig. 2A, viruses shown in red, and table S3).

The activity of the influenza virus ribonucleoprotein (RNP) complex
(i.e., the products of the PB2, PB1, PA and NP genes) is important for
virus replication and virulence (30). The levels of RNP activity at 33°C
and 37°C correlate with viral replication efficiency in the upper and lower
respiratory tracts, respectively (37, 32). One study suggests that replica-
tion efficiency of influenza virus in the upper respiratory tract favors viral
transmission (37). Therefore, we tested virus RNA replication in human
cells at both 33°C and 37°C to determine the activities of the 16 combi-
nations of RNP complex arising from DK/35(HS5N1) and SC/09(HIN1).
In general, these RNP complexes showed less activity at 33°C than at
37°C (Fig. 2B), except for two combinations that showed equivalent
activity at both temperatures: (i) DK/35(HS5N1) PB2 and NP with
SC/09(HINT1) PBI1 and PA, and (ii) DK/35(H5N1) PB2, PB1, NP with
SC/09(HIN1) PA. At 37°C, the RNP complex activity of wild-type
DK/35(H5N1) was about 35% of that of wild-type SC/09(HIN1) (Fig.
2B). All seven hybrid RNP combinations containing the SC/09(HIN1)
PA were more active than the RNP of the parent SC/09(HIN1) at 37°C.
All hybrid RNP combinations containing the SC/09(HIN1) PB1 and the
DK/35(H5N1) PA were less active than the RNP of wild-type
DK/35(H5N1) at 37°C. Other combinations had intermediate activity.

A comparison of tables S1 to S3 with Fig. 2 reveals that 29 of the 32
viruses with an RNP containing the SC/09(HIN1) PB1 and the
DK/35(H5N1) PA were less pathogenic than DK/35(H5N1) (Fig. 2A,
viruses shown in blue). All viruses with greater pathogenicity than
DK/35(H5N1) contained an RNP that included the SC/09(HIN1) PA
(Fig. 2A, viruses shown in red). The components of the RNP complex
therefore contribute to the virulence of the hybrid viruses in mice, and the
PA gene of SC/09(HIN1) and the PB1 gene of DK/35(H5N1) combina-
tion elevates the virulence of the reassortants.

We next determined whether any of these reassortants were trans-
missible in mammals. Guinea pigs and ferrets have been widely used as
animal models for influenza virus transmission studies (2, 3, 19, 21, 33,
34), and human influenza viruses transmit similarly in these two models
(21, 35, 36). Respiratory droplet transmission is restricted in ferrets if the
virus does not exclusively or preferentially bind to a-2,6 linked-SAs (37).
Guinea pigs have both avian and mammalian types of airway receptor, but
they did not support the respiratory droplet transmission of influenza virus
that only binds to a-2,3 linked-SAs (27). We used guinea pigs to test for
respiratory droplet transmission of our H5SN1 reassortants. We compared

SC/09(HINT1) with DK/35(H5NT1) plus reassortants rl, r12, r123, r125,
r13, r135, r15, 12, 123, r235, 125, 13, 135, r5, and r1235 (the viruses listed
in the first row of Fig. 2A). These HSN1 viruses contain different RNPs
but the same HA, NA, M, and NS genes of DK/35(H5N1). Two guinea
pigs were intranasally (i.n.) inoculated with 10°EIDs, of each virus, and
nasal washes and lung tissues from each guinea pig were collected on day
3 p.i. for viral titration. All viruses were detected in the nasal washes and
lungs of these guinea pigs (Table 1).

Three guinea pigs were inoculated i.n. with 10°EIDs, of the test virus
and housed in separate cages within an isolator. Twenty-four hours later,
three naive guinea pigs were placed in adjacent cages. The six animals
were separated by a double-layered net divider (4 cm apart) (fig. S3).
Nasal washes were collected on days 2, 4, and 6 p.i. from the inoculated
animals or on days 1, 3, 5, 7, and 9 post-exposure (p.e.) from the exposed
animals and titrated in eggs to test for respiratory droplet transmission.
Sera were collected from all animals on day 21 p.i. for hemagglutinin
inhibition (HI) antibody detection. Respiratory droplet transmission was
confirmed when virus was detected in the nasal washes and by serocon-
version of the naive exposed animals at the end of the 3-week observation
period.

Virus was detected in all directly infected animals (Fig. 1 and fig. S4),
and in all three animals exposed to the guinea pigs that had been inocu-
lated with SC/09(HIN1), 3 [containing the PA of SC/09(HIN1)] and 135
[containing the PA and NP of SC/09(HIN1)] (Fig. 1, B to D). Virus was
detected later in the r3-exposed animals than in the r35-exposed animals,
but no virus was detected in any animal exposed to those inoculated with
DK/35(H5N1) (Fig. 1A) or the 13 hybrid viruses containing SC/09 PB2 or
PB1 in their RNP complex (Table 1 and fig. S4). Six of these reassortants,
including r123, r1235, r13, r135, r23, and r235, had RNP complex activ-
ities comparable to or higher than those of SC/09(HIN1) at 33°C (Fig.
2B). So, we repeated the transmission experiments with these six viruses
and the r3 and r35 reassortants and obtained the same results (the com-
bined data from both experiments are shown in Fig. 1, C and D, and fig.
S4, E to J). Of note, 135 was detected earlier than wild-type SC/09(HINT1)
in the exposed animals (Fig. 1, compare panels B and D). Seroconversion
occurred in the virus-inoculated animals and in all exposed animals that
were virus-positive (Table 1). None of the guinea pigs died. These results
indicate that the PA gene of SC/09(H1IN1) alone can make DK/35(H5NT1)
transmissible by respiratory droplet between guinea pigs. Furthermore,
the addition of the NP of SC/09(H1N1) appears to promote the transmis-
sion of 13 by respiratory droplet, although the NP of SC/09(HIN1) alone
did not support virus transmission. Viruses bearing the PB2 or PB1 of
SC/09(HIN1) in their RNP complexes were not transmissible, even
though some also possessed the PA of SC/09(HINT1).

We also investigated the contributions of the non-polymerase genes
of SC/09(HINT1) to transmission by testing 1678 and r1235678. Both
viruses replicated well in the nasal cavities and lungs of guinea pigs
(Table 1), and r1235678 and 1678 were transmitted by respiratory droplet
to two and three naive animals, respectively (Fig. 3, A and B).

The contributions of the individual NA, M, and NS genes of
SC/09(H1INT1) to transmissibility were tested using r6, r7, and r8. Respir-
atory droplet transmission occurred in one of the three naive animals for
the r6 and r7 groups (Fig. 3, C and D). However, r8 transmitted to all three
naive animals by respiratory droplet. The NA and M genes are important
for the highly transmissible phenotype of the 2009/HIN1 virus (38—40),
but the NS gene was not previously known to function in influenza virus
transmission. We therefore repeated the transmission experiment with r8
and found the results were reproducible (the combined data from both
experiments are shown in Fig. 3E).

Thus, both the PA and NS genes of SC/09(HIN1) can make
DK/35(H5N1) highly transmissible by respiratory droplet between guinea
pigs, and the NA and M of SC/09(HIN1) also promote H5NI1 virus
transmission through respiratory droplet. Moreover, the NP of
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SC/09(HINT) accelerates HSN1 virus transmission when combined with
the PA of SC/09(HIN1). Other reassortants lethal to mice may also be
transmissible by respiratory droplet between guinea pigs, which is sup-
ported by the fact that r3678 transmitted with high efficiency in guinea
pigs (Fig. 3F). Four viruses (135, 1678, r8, and r3678) were detectable in
the naive animals by day 1 p.e, indicating that these viruses transmitted
faster than the parent SC/09(HINT1), which was detected by day 3 p.e.
(Fig. 1B). These transmission studies indicate that many of the H5N1
hybrid viruses bearing one or more of the PA, NA, M, or NS genes of
2009/HIN1 were transmissible in guinea pigs.

Mutations in HA that confer exclusive binding to a-2,3-linked SAs
eliminate the respiratory droplet transmission of 1918/HIN1 virus among
ferrets (37) and that of the 2009/HIN1 virus among both guinea pigs and
ferrets (21), even if the other genes of these highly transmissible viruses
are intact. We performed a solid-phase binding assay to investigate the
receptor-binding specificity of the HSN1 viruses by using four different
glycans (fig. S1). DK/35(H5N1), r3, 18, r35, r3678, and two H5N1 viruses
isolated in nature, A/bar-headed goose/Qinghai/3/2005 and
A/duck/Fujian/S4146/2010, bound to both «-2,3-linked SAs and
a-2,6-linked SAs (fig. S1, A to G). A/duck/Anhui/1/2006 bound prefer-
entially to a-2,3-linked SAs (fig. S1H). Although the affinity to
a-2,6-linked SAs was lower than that to a-2,3-linked SAs, this property
has been demonstrated to be required for the transmission of
DK/35(H5N1) among guinea pigs by direct contact (/9). It may, there-
fore, also be necessary for respiratory droplet transmission of H5N1
reassortants among guinea pigs.

We previously reported a DK/35(H5N1) mutant,
DK/35(HA226L+228S), containing two amino acid changes at 226 and
228 in HA bound exclusively to 0-2,6 linked-SAs (19), and this property
was further confirmed by the solid-phase binding assay (fig. S1I).
DK/35(HA226L+228S), containing the combination of amino acids
160T/226L/228S that presented in the transmissible HSN1 virus reported
by Herfst et al. (3), did not transmit between guinea pigs by respiratory
droplet (fig. S4N), although very low virus titer was detected in prelimi-
nary experiments in one of three exposed ferrets (fig. S5F). We were
unable to see if the gene combinations of the highly transmissible virus in
guinea pigs would also make the DK/35(HA226L+228S) mutant trans-
missible in ferrets, because a moratorium on such studies was applied
between 20" January 2012 and 20" January 2013 (16, 17).

Our studies provide evidence that HSN1 viruses that are capable of
respiratory droplet transmission between mammals can be generated by
reassortment between mammalian 2009/HIN1 and avian H5N1 viruses.
Since the internal genes of these reassortants can already replicate effi-
ciently in mammalian hosts, we predict that similar reassortants could
infect humans and subsequently acquire mutations that improve binding
efficacy for 0-2,6-linked SAs. In fact, several combinations of amino acid
changes of 158D, 160A, 224K, 226L, and 228S in HA allow the H5N1
virus to bind to a-2,6-linked SAs (2, 3, 19), and the mutations at 158D,
160A, and 224K have already been detected in HSN1 viruses circulating
in nature (41).
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Table 1. Replication and seroconversion of guinea pigs inoculated with or exposed to the H5N1 virus DK/35 (H5N1) and its reas-
sortants. In the virus name, “r’ denotes “reassortant.” The numbers in the virus name indicate segments derived from the
SC/09(H1N1) virus as follows: 1, PB2; 2, PB1; 3, PA; 5, NP; 6, NA; 7, M; and 8, NS. The virus segments derived from the
DK/35(H5N1) virus were not assigned numbers. Gene segments derived from the DK/35(H5N1) and SC/09(H1N1) are indicated as D
and H, respectively. Viral titers are shown as individual titers for both guinea pigs. Sera were collected from the animals three weeks
after virus inoculation or exposure; these animals were used for the transmission studies shown in Figs. 2 and 3.

. Viral titers Seroconversion (HI titers), posi- Respirato
XalerllZ Genotype (logo EIDs) tive/Eotal »r drF:)pllet.ry

PB2 PBI PA HA NP NA M NS Nasal Lung Inoculated Exposed transmission

DK/35

(H5N1) D D D D D D D 438,3.5 2.8,2.8 3/3 (40-80) 0/3 None

SC/09 . .

(HINI) H H H H H H H H 49,52 33,33 3/3 (320-1280) 3/3 (640) Highly efficient

rl H D D D D D D D 35,33 23,33 3/3 (20-80) 0/3 None

rl2 H H D D D D D D 45,25 1.8,3.8 3/3 (20-40) 0/3 None

r123* H H H D D D D D 48,53 48,35 6/6 (40-80) 0/6 None

r125 H H D D H D D D 45,33 23,33 3/3 (40-80) 0/3 None

rl3* H D H D D D D D 438,55 33,1.8 6/6 (40-80) 0/6 None

r135* H D H D H D D D 43,43 33,23 6/6 (20-80) 0/6 None

rl5 H D D D H D D D 23,35 48,25 3/3 (20-40) 0/3 None

2 D H D D D D D D 48,45 28,25 3/3 (40-80) 0/3 None

123* D H H D D D D D 33,45 1.8,2.8 6/6 (20-80) 0/6 None

r235* D H H D H D D D 43,45 25,28 6/6 (40-80) 0/6 None

25 D H D D H D D D 55,53 43,48 3/3 (20-40) 0/3 None

3% D D H D D D D D 5548 2835 6/6 (80) 6/6 (20-40)  Highly efficient

r35% D D H D H D D D 43,58 28,28 6/6 (40-80) 6/6 (20-40) Highly efficient

r5 D D D D H D D D 55,48 23,13 3/3 (40-80) 0/3 None

r1235* H H H D H D D D 45,43 25,33 6/6 (20-80) 0/6 None

r1235678 H H H D H H H H 48,48 33,28 3/3 (40-80) 2/3 (10-20) Efficient

1678 D D D D D H H H 43,48 48,35 3/3 (40-80) 3/3 (10-80) Highly efficient

6 D D D D D H D D 43,45 23,38 3/3 (80) 1/3 (20) Less efficient

r7 D D D D D D H D 45,53 45,55 3/3 (40-80) 1/3 (40) Less efficient

8% D D D D D D D H 43,48 4523 6/6 (20-160) 6/6 (20-80)  Highly efficient

r3678 D D H D D H H H 55,45 43,38 3/3 (40-80) 3/3 (40-80) Highly efficient

*Each transmission experiment was conducted twice, and the combined data from both experiments are presented in the table.
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Fig. 1. Respiratory droplet transmission in guinea pigs of the DK/35 (H5N1) virus and its reassortants
bearing different RNP complexes. (A) DK/35(H5N1); (B) SC/09 (H1N1); (C) r3; (D) r35. Data for the 13
viruses that did not transmit are presented in fig. S3, A to M. Each color bar represents the virus titer from an
individual animal. The dashed red lines in these panels indicate the lower limit of detection.
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Fig. 2. (A) Pathogenicity of DK/35(H5N1) and SC/09(H1N1) reassortants. The RNP combinations are shown in
the corresponding positions of Fig. 2B. The colors of the viruses reflect their virulence in mice compared with
DK/35(H5N1) as reported in tables S1 to S3. Red: more pathogenic than DK/35(H5N1); Blue: less pathogenic than
DK/35(H5N1); Black: similar to DK/35(H5N1). Viruses highlighted in yellow were tested for RD transmission in guinea
pigs. (B) Polymerase activity of the 16 RNP combinations of DK/35(H5N1) and SC/09(H1N1) viruses. The
assay was performed at 37°C (red bars) or 33°C (blue bars). Values shown are the mean + SD of three independent
experiments and are standardized to those of DK/35(H5N 1) measured at 37°C (100%, indicated by the dashed line).
The chart shows the parent subtype origin of the RNP complex. Segments derived from DK/35(H5N1) are in
Cambridge blue with the letter D, and those derived from SC/09 virus are in purple with the letter H.
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Fig. 3. Contributions of the NA, M, and NS genes of SC/09 (H1N1) to respiratory droplet transmission of H5N1
reassortants in guinea pigs. (A) r1235678; (B) r678; (C) r6; (D) r7; (E) r8 (data from two experiments); (F) r3678. Each
color bar represents the virus titer from an individual animal. The dashed red lines indicate the lower limit of detection.
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