UNIVERSITY OF VIENNA
INSTITUTE OF STATISTIC AND DECISION SUPPORT SYSTEMS

A TooL FOR MODELING ASSET MANAGEMENT PROBLEM

MARIUSZ SIOMAK

THE WORK DESCRIBED IN THIS REPORT WAS SUPPORTED

BY THE SPECIAL RESEARCH PROGRAM SFB F011 ”AURORA”
OF THE AUSTRIAN SCIENCE FUND.

VIENNA 2000

Contents

Contents 1

1 Introduction 2
2 Asset liability management model 4
2.1 Modeling of the financial instruments. L oL oL 4
2.2 Modeling of risk L. 5
2.3 Modeling of the objective function o o oo 6

3 Model Description File 7
3.1 The Syntax of a Model Description File 7
3.2 Objects used in description file L 8
3.3 Parameter Section e 8
3.4 Tree Section e 10
3.5 Contract List Section L 11
3.6 Contract Section L e e e e 12
3.7 Constraints Section L e e e 14
3.8 Inmitial Values Section 14
3.9 External Flows Section L 15
3.10 Goal Section L e e e e 15
3.11 Example model description file L 16

4 Tree Description File 18
5 Output file 21
5.1 MPS file format description 21
5.1.1 Rowmnames e e e e e e 21

5.1.2 Column names e e e 21

6 Program invocation 22
Bibliography 23

Chapter 1

Introduction

This document presents the issue of asset management modeling and describes a tool designed for generating
such models. Models considered here belong to a very general class of decision models characterized by the

following assumptions:
1. the decision problem is a discrete-time multi-period decision problem over finite horizon

2. the decision problem involves uncertainty that is expressed as multivariate stochastic forecast of some

model parameters (stochastic model)
3. the decision problem is linear with respect to decision variables (linear optimization problem)

The above assumptions imply that the model is a multi-period linear stochastic program. Nonetheless such
a model can be represented in different forms suitable for specific solving methods.

The most general method of representing a linear program is in the standard form (a form in which
constraints are expressed as Az = b; z > 0). Convenient interface for linear program in its standard form
is an MPS file. Dynamic stochastic linear program can be given in the standard form by converting it to
so-called deterministic equivalent (see [KW94]). Such formulation is suitable for any general LP solver. The
drawback is that the matrix A is huge and usually very sparse (which on the other hand may be explored by
some solvers), and the structure of the problem is lost.

The other method of representing a multi-period linear stochastic program is to save its structure and data
together. The example of the interface for such formulation is described in [BDG187]. This form is suitable for
solvers taking into account the structure of the problem, usually for any decomposition methods (e.g., nested
Benders decomposition).

For the model to be generated two kinds of information are necessary: the description of the multi period
decision problem and the description of multivariate stochastic forecast. They are given in a model description
file and a tree file. This structure is shown in the gray box in Fig. 1.1 (as a part of the whole Aurora DSS

system).

1. LIV 1 IVULJULU L IUIN

data model
description description
file file

statistical —_— tree —_ t.ree —_— ole —_
data) | file |
generation | generation |
I |
I |
| |
L | model —_— —~ | solution — = | visudization
file solver file and
interpretation

Figure 1.1: The Aurora decision Support System (part described in this document is in gray box).

Chapter 2

Asset liability management model

2.1 Modeling of the financial instruments

Let us assume that there are J financial instruments (and they are assigned numbers 1,...,J). The control
horizon consists of time instants denoted by numbers 0,1...,7 (so there are I + 1 time stages on the horizon).
At stages 0,1,...,I decisions are made how many instruments of each type buy or sell. At stage I we can

observe the final results of past decisions. With each financial instrument four parameters are associated:

nj; - sell price of j-th instrument at stage i € {0,..., I} (a price for which the contract may be sold)

nfj - buy price of j-th instrument at stage i € {0, ..., I} (a price for which the contract may be bought)

nfj - cash flow of j-th instrument at stage ¢ € {0, ..., I} (resulting cash flow, for example dividends, coupon
payments)
nj; - value of j-th instrument at stage i € {0,...,/} (a value needed to calculate wealth at each node, or at

least at the terminal nodes)
With each contract three non-negative decision variables are connected:

zj; - a number of instruments of the type j to be sold at stage i € {0,...,I}

mf, - a number of instruments of the type j to be bought at stage : € {0,...,1}

z}; - a number of instruments of the type j hold at stage i € {0,...,I} (just after decisions have been made)

Other variables in the model are connected with time stages. They are:

z¢ - cash hold at time stage i € {0,...,I} (just after decisions have been made)
z¥ - total wealth of the portfolio at time stage i € {0,...,I} (just after decisions have been made)
T2 - wealth increase at time stage i € {0,...,I} (just after decisions have been made)

Some variables have their initial values. These are:

z"; ; - a number of instruments of the type j hold just before time 0
x¢, - cash hold just before time 0

There are also two parameters describing internal cache flows:

ct - external cache inflow at time stage k € {0,..., I}

L.4a. VMIUUDUDLLIING UL Ivloiv

cy - external cache outflow at time stage k& € {0,...,I}

A multistage asset management model is described by the following bookkeeping equations:

7x21+2(” T;; na; ; iy)+c i 1=0,...,1 (2.1)
m%:m?flyj+m;’jfmfj; 1=0,....,1,5=1,...,J (2.2)
J
g; —|—Z ” ” :0,...,1 (23)
j=1
ghw =g g =1, (2.4)

together with inequalities: zi > 0, z7; > 0 and z;" > 0.

Note 1 The variable m-A“’ can be of any sign, so it is split in the model into a positive and a negative part:
Aw Aw(+) Aw(—) Aw(+) > 0 and mAm() > 0.

PV =z —T; , where z;

Note 2 The variable :1;0 is in fact incorporated into the model and the user has access to it by predefined
variable WEALTH_INCREASE[0], but it must be stressed, that this value is reliable solely when there are no
initial contract quantities or the value of each contract that is given some initial quantity can be calculated

for time index —1 (only in these cases the initial wealth can be properly calculated).

2.2 Modeling of risk

Risk is incorporated into a model by means of stochastic forecast expressed by a tree. This tree shows possible
scenarios. Each node is assigned probability of attaining it p(n). In each node of the tree there could be some
values of model parameters. Nodes are numbered from 1 to N (node 1, that is root, is assigned to time index
0). Leaves of this tree are called terminal nodes. In the example shown in Fig. 2.1 terminal nodes are nodes
with numbers 4,5,6,7,8, and 9.

timet=0 timet=1 timet=2

p(4)

/;(2) : p(5)

p(6)

Jab s

p(1) =1

»(7)

s

»(8)

3
z

J

»(9)

Figure 2.1: Multistage probabilistic tree structured forecast

L.

WU LLINGD UD L

2.3 Modeling of the objective function

110 UDJIU L LV I UINCD L IUILN

There are two criteria for objective function: maximizing expected terminal wealth, and minimizing the risk.

They are incorporated into the model.

Terminal wealth is a random variable since it depends on scenario. At each terminal node n of the scenario

tree, the wealth variable W (n) is known together with the probability p(n) that this node is reached.

Risk is measured by mean absolute deviation (MAD):

E(W - EW)]).

The whole performance function is thus of the form:

max E(W) — pE (| W — E(W) |)

where 0 < p < % measures the degree of risk aversion.

(2.5)

(2.6)

The objective function is incorporated into the linear model in the following manner. The objective of the

linear program becomes:
max 51— p 3 p(n) (52(n) + s3(n))
neT
where:
s1= Y p(n)z}(n)
neT

z7(n) —s1 = sa(n) —ss(n) neT

and T is a set of indices of terminal nodes.

(2.7)

Chapter 3

Model Description File

3.1 The Syntax of a Model Description File

The file describing decision problem consists of sections defining particular aspects of a model, such as scenario
tree, contracts, constraints,initial values as well as goals. It also contains a section for defining some parameters
used in the model. The general structure of this file is shown below.

PROBLEM name

TYPE PORTFOLIO OPTIMIZATION

PARAMETERS
parameter section
END PARAMETERS

TREE
tree section
END TREE

CONTRACTS
contract list
END CONTRACTS

CONTRACT name
contract section
END CONTRACT

CONSTRAINTS
constraints section
END CONTSTRAINTS

INITIAL VALUES
initial values section
END INITIAL VALUES

EXTERNAL FLOWS

external flows section

J.4. UbDJDU LY Ul LIN DJopulvil LIUIN Tl

END EXTERNAL FLOWS

GOAL
goal section
END GOAL

END PROBLEM

3.2 Objects used in description file

Definition of a mathematical programming problem requires us to specify its variables and some relationships
between them. The purpose of description file is to support a user in defining an optimization problem for
optimal asset allocation under stochastic, multivariate forecast.

Two main classes of objects used in description file are: parameters and variables. Parameters reflect
values, that remain constant during the problem solution, are not subject of optimization. Variables, on the
other hand, correspond to values that are subject of optimization. Parameters and variables may be scalars
or arrays (vectors of values).

There are three types of parameters as regards their source: predefined parameters, user defined parameters,
and label parameters.

Now there is only one predefined parameter in an application. It is shown in Table 3.1.

name meaning ‘

N scalar parameter, the time stage considered; to be used only in

contract and constraint sections

Table 3.1: Predefined parameter

User defined parameters are used to substitute constant values by meaningful names. Their use is sometimes
forced by the file syntax, for example past realizations of values defined by a tree, or external flows may be
given only by array parameters.

Label parameters are defined by the application during parsing TREE SECTION. They denote the sequence
of values (realization) of a stochastic variable on the whole horizon.

Except for parameters, some variables are also defined when a model is created. The use of variables is
the same as of parameters, the only difference is that a user cannot define variables themselves. Variables
represent values that are subject of optimization and are not fixed.

There are two types of variables as regard their origin: contract variables, and predefined variables.

Contract variables are defined when parsing CONTRACTS SECTION. They reflect the number of contracts
and their value. Predefined variables are shown in Table 3.2. They help to define and solve the problem.
Variables can be used only in CONSTRAINTS and INITIAL VALUES sections.

3.3 Parameter Section

A parameter section introduces parameters that will be used in subsequent sections to represent constant data.
There are two types of parameters: scalar parameter and array parameter. A scalar parameter defines a single
value whereas an array parameter is used for storing a one-dimensional array of values.

In general, a parameter section has the following structure:
PARAMETERS

scalar parameter definition | array parameter definition

Jd.0. FATvAVILL DIv OO LIUIN

name meaning
CASH array variable, denotes the amount of cash for each time stage
WEALTH array variable, denotes the value of the portfolio for each time
stage
WEALTH_INCREASE array variable, denotes the increase of the portfolio value for each
time stage

Table 3.2: Predefined variables

Section objects

Predefined Predefined parameters and variables: N, CASH, WEALTH, WEALTH_INCREASE
PARAMETERS user defined parameters

TREE label parameters

CONTRACTS contract variables

CONTRACT
CONSTRAINTS
INITTAL VALUES
EXTERNAL FLOWS
GOAL

Table 3.3: Where objects are defined.

scalar parameter definition | array parameter definition
scalar parameter definition | array parameter definition
END PARAMETERS
where each scalar parameter definition is built as follows:
name = erpression
and array parameter definition as follows:

namellower index: higher index] = [expression, expression, ...,exrpression]

Lower indez has to be less then or equal to higher indezx. Each of the expressions used to define scalar or
array parameters has to be constant expression and may use parameters defined so far. For array parameters

the number of expressions in square brackets has to be equal higher index - lower index + 1.

EXAMPLE 1

PARAMETERS
NO_OF _CONTRACTS =5
NO_OF_PERIODS =7
COMMISSION = 0.04
J = 0.01
PAST_VALUES[-5:-1] = [1.1, 2.0, 1.0, 0.9, 0.8]
MIC_PAST[-1:-1] = [45.7]

COEF[1:NO_OF_CONTRACTS] = [J, 5%J, 3*J, 2*J, 3%J-0.015]
END PARAMETERS

There is one mandatory parameter that has to be defined, because it is used internally by the application.
This parameter is shown in Table 3.5.

J.F. L Iviun oo L IUIN

defined CASH, WEALTH, label contract

Section N | parameters | WEALTH_INCREASE | parameters | variables
PARAMETERS X
TREE X
CONTRACTS
CONTRACT X
CONSTRAINTS X X X
INITIAL VALUES X x (%)
EXTERNAL FLOWS || X X
GOAL X

(*) In INITIAL VALUES section contract variables may be used only in left hand side

Table 3.4: Where objects can be used.

‘ name ‘

meaning

‘ NO_OF_PERIODS ‘ the number of time periods considered

3.4 Tree Section

Table 3.5: Mandatory parameter

The purpose of this section is to define a tree used in a model and to change some of its parameters. The

general structure of a tree section is as follows:

TREE
FILE NAME path

LABEL label | LABEL name [tree label]

MEAN = expression
VARIANCE = expression
TREND = expression

PAST VALUES

array pammeter

LABEL label | LABEL name [tree label]

MEAN = expression
VARIANCE = expression
TREND = expression
PAST VALUES =

END TREE

array parameter

The description of fields in a tree section is given in Table 3.6. The only mandatory field is FILE NAME so

the simplest tree section is given by the Example 2.

EXAMPLE 2

TREE
FILE NAME = treefile
END TREE

The field LABEL is used if there is a need to change some properties of values stored in the tree nodes. The

syntax LABEL label [tree label] allows to change the label being an etiquette of a value. The name label in the

model is equivalent to the label tree label in the tree.

J.d. UUINILIvAUL L IO 1 OU LIUIN

44

name meaning

FILE NAME the name of a file containing a tree (mandatory)

LABEL label the label of values given in tree nodes; it has to be defined in the tree file

LABEL label [tree label] the label of values given in tree nodes; used to redefine label, in tree file label
tree label has to be defined and it is known in a model as label

MEAN used to change the mean value of a variable stored under label label

VARIANCE used to change the variance of a variable stored under label [abel

TREND used to change the trend of a variable stored under label label

PAST VALUES used to set past realizations of a value stored under label label

Table 3.6: Fields of tree section

Such properties as mean value, variance and trend can be changed. The new mean value, trend and variance
of a specific variable may be set only if corresponding old values are specified in the tree file. If not, an error
will occur. If only some of the: mean, trend, variance is changed, the other remains unchanged. The values
corresponding to the specified label are changed according to the formula (3.1) (¢ denotes time stage number
starting from 0).

VAR, ew

vne’w(t) = MEANnew + (’Uold(t) — MEANOld —t- TRold) VTRld

+t-TRpew (3.1)

Setting past realizations of a random variable represented by a tree is sometimes necessary because they
may be used for correlated values (see Example 8, page 13). The argument assigned to the field PAST VALUES

has to be an array parameter whose lower index and higher index are negative numbers.
EXAMPLE 3
TREE

FILE NAME = treel
LABEL IBM_LABEL

MEAN = 0.1
VARIANCE = 0.01
TREND = 0.05

LABEL MICROSOFT_LABEL [M1]
MEAN =2
VARIANCE = 0.02
TREND = 0.03
PAST VALUES = MIC_PAST

LABEL NOKIA [N_LABEL]
END TREE

Labels defined in a tree file (or redefined in a tree section) can be used as array parameters in contract and

constraints sections.

3.5 Contract List Section

This section gives the list of contracts involved in a model. The list contains names of contracts separated by

commas or new lines. The order of names is not important. Examples 4 and 5 are equivalent.

EXAMPLE 4

9.U. LUUIN1LIvAUu 1l Olvw LIUIN

CONTRACTS
IBM, MICROSOFT, HITACHI, NOKIA
END CONTRACTS

EXAMPLE 5

CONTRACTS
HITACHI
NOKIA
MICROSOFT
IBM

END CONTRACTS

3.6 Contract Section

Contract section serves to describing properties of each contract. Now only one contract type is considered (a
contract modeling shares on a stock market).
The general construction of contract section is shown below:

CONTRACT name

TYPE SHARE

PRICING NODE DEPENDENT | PRICING TIME DEPENDENT

BUY PRICE = expression | BUY COMMISSION = ezpression

SELL PRICE = expression | SELL COMMISSION = ezpression

CASH FLOW = expression

VALUE = expression
END CONTRACT

The description of fields in a contract section is given in Table 3.7.

With each contract four values are connected: buy price, sell price, cash flow and its value. They may
depend solely on time (there is no random factor in this case) or they may be driven by the values “living” on
the tree. In the latter case we deal with stochastic uncertainty.

Buy price and sell price may be expressed in two forms: directly by giving proper formula or indirectly by
defining buy or sell commission. The two formulations below are equivalent (for buy price, assuming that the
contract value is given in the parameter C1):

BUY PRICE
BUY COMMISSION

1.01 * C1[N]
0.01

The mandatory fields are TYPE (the only type is now SHARE), and PRICING (where one of NODE DEPENDENT
or TIME DEPENDENT has to be specified). For others, if they are omitted, zero is taken as a default.

Each contract causes defining two new array variables, the first having the same name as a contract name
and denoting the total value of these contracts in the portfolio (for each time stage), and the second having
name NO_OF_contract_-name denoting the number of these contracts in the portfolio (for each time stage).
These variables may be used only in constraints section (see Example 9).

For example, if there are 10 time periods (numbered from 0 to 9), that for contract IBM the following
variables are internally defined: IBM[0:9] and NO_OF_IBM[0:9].

EXAMPLE 6

9.U. LUUIN1LIvAUu 1l Ou LIUIN

name meaning
TYPE SHARE type of a contract; share is the only type allowed so far; (mandatory)
PRICING NODE DEPENDENT a flag denoting that such parameters of a contract as buy price (or buy

commission), sell price (or sell commission), cash flow and value are

functions of stochastic variables defined by the tree

PRICING TIME DEPENDENT a flag denoting that such parameters of a contract as buy price (or buy
commission), sell price (or sell commission), cash flow and value are
deterministically defined for each time stage considered; in this case the

use of labels defined in the tree section is illegal

BUY PRICE defines buy price

BUY COMMISSION defines buy commission

SELL PRICE defines sell price

SELL COMMISSION defines sell commission

CASH FLOW defines cash flow resulting from a contract

VALUE defines a contract value used for calculating a portfolio wealth at any
time stage

Table 3.7: Fields of contract section

CONTRACT IBM

TYPE SHARE

PRICING NODE DEPENDENT

BUY PRICE = IBM_VALUE[N] * (1 + BUY_COMMISSION)
SELL PRICE = IBM_VALUE[N] * (1 - SELL_COMMISSION)
CASH FLOW =0

VALUE = IBM_VALUE[N]

END CONTRACT

EXAMPLE 7

CONTRACT IBM
TYPE SHARE
PRICING NODE DEPENDENT
BUY COMMISSION BUY_COMMISSION
SELL COMMISSION = SELL_COMMISSION
CASH FLOW 0
VALUE IBM_VALUE[N]
END CONTRACT

EXAMPLE 8

CONTRACT COR

TYPE SHARE

PRICING NODE DEPENDENT

BUY COMMISSION = BUY_COMMISSION

SELL COMMISSION = SELL_COMMISSION

CASH FLOW =0

VALUE TREE_LABEL_1[N-1] + 2 * TREE_LABEL_2[N-2]
END CONTRACT

19

Do UUINO LIvALIN L O olu LIUIN

3.7 Constraints Section

This section is meant to express constraints imposed on a decision problem. The syntax of this section is
shown below. Each expression has to be linear with respect to variables. Relation is one of symbols: =, <=, =>.
CONSTRAINTS

FOR N IN { set }: -expression relation expression

FOR ALL N: expression relation expression
END CONSTRAINTS

The example 9 shows how legal constraints can may be written down. Let us assume that the law requires
that the amount of shares of each company in our portfolio cannot exceed 5% of the total number of shares
issued by a company, and moreover, that the total value of computer companies in the portfolio cannot be

greater than 9% of the portfolio value.

EXAMPLE 9

CONSTRAINTS
FOR ALL N: NO_OF_IBM[N] <= 0.05 * TOTAL_IBM_SHARES
FOR ALL N: NO_OF_MICROSOFT[N] <= 0.05 * TOTAL_MICROSOFT_SHARES
FOR ALL N: IBM[N] + MICROSOFT[N] <= 0.09 * WEALTH[N]

END CONSTRAINTS

The next example shows other possibilities of imposing constraints.

EXAMPLE 10

CONSTRAINTS

FOR ALL N: NO_OF_COR[N-1] <= NO_OF_COR[N]

FOR N IN {7,8,9}: CASH[N] => MANDATORY_RESERVE[N]
END CONSTRAINTS

3.8 Initial Values Section

This section provides a way for setting initial cash amount and the initial portfolio. The syntax of this section
as well as an example are given below.
INITIAL VALUES

INITIAL CASH = ezxpression

NO_OF_contract_name = expression
NO_OF _contract_name = expression
NO_OF _contract_name = expression

END INITIAL VALUES

EXAMPLE 11

INITIAL VALUES

INITIAL CASH = 5.4E6
NO_OF_IBM = 45
NO_OF_MICROSOFT = 54
NO_OF_COR = 110

END INITIAL VALUES

J.J. LA L LIvINAL LUV Y oo LIUIN

3.9 External Flows Section

The section devoted to modeling external flows is described here. It allows to define external inflows and
external outflows separately, just for the sake of readability, although only one of them is sufficient. The
syntax of this section is given below.
EXTERNAL FLOWS

EXTERNAL INFLOW = -ezpression

EXTERNAL QUTFLOW = ezpression
END EXTERNAL FLOWS

The two following examples (12 and 13) are equivalent.

EXAMPLE 12

EXTERNAL FLOWS
EXTERNAL INFLOW = FORECAST_1[N]
EXTERNAL OQUTFLOW = FORECAST_2[N]
END EXTERNAL FLOWS

EXAMPLE 13

EXTERNAL FLOWS
EXTERNAL INFLOW = FORECAST_1[N] - FORECAST_2[N]
END EXTERNAL FLOWS

Yet another example that shows possibilities of defining external flows.

EXAMPLE 14

EXTERNAL FLOWS
EXTERNAL INFLOW = 2xA1[N-1] - 3%A2[3%N]
EXTERNAL OUTFLOW = CO + C * N

END EXTERNAL FLOWS

3.10 Goal Section

The purpose of the goal section is to specify goals of decision maker. So far only one formulation of a goal
function is supported, the expected value with the risk measure expressed in the form of mean absolute
deviation (2.6). The general construction of the goal section is shown below.
GOAL

TYPE MEAN ABSOLUTE DEVIATION

RISK AVERSION = ezpression
END GOAL

EXAMPLE 15

GOAL
TYPE MEAN ABSOLUTE DEVIATION
RISK AVERSION = 0.4

END GOAL

JIg.11.

3.11 Example model description file

PROBLEM probleml

TYPE PORTFOLIO OPTIMIZATION

PARAMETERS
NO_OF _PERIODS =5
IBM_PAST[-3:-1] = [10, 10, 10]
COMMISSION = 0.01 * 2
MY_RISK_AVERSION = 0.5
CASHO = 19E4
SHARE =0.4

INFLOW[O:10]
OUTFLOW[0:10]
END PARAMETERS

[1, 1, 1! 1! 1, 1! 1, 1, 1’ 1,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

TREE
FILE NAME data2
LABEL NOKIA_VALUE [E00001]
MEAN = 15
VARIANCE = 1
TREND = 0.5
PAST VALUES = IBM_PAST
LABEL HP_VALUE [E00002]
LABEL IBM_VALUE [E00003]

MEAN = 10
VARIANCE =0.1
TREND =1
PAST VALUES = IBM_PAST
END TREE
CONTRACTS

NOKIA, HP, IBM
END CONTRACTS

CONTRACT NOKIA

TYPE SHARE

PRICING NODE DEPENDENT

VALUE = NOKIA_VALUE[N]

CASH FLOW = 0.02 * NOKIA_VALUE[N]
END CONTRACT

CONTRACT HP
TYPE SHARE
PRICING NODE DEPENDENT
VALUE = HP_VALUE[N]
CASH FLOW = 0.02 * HP_VALUE[N]

LA ANVID L VIV DL ool LIUIN Tl

1]
11]

40

END CONTRACT

CONTRACT IBM
TYPE SHARE
PRICING NODE DEPENDENT
VALUE = IBM_VALUE[N]
CASH FLOW = 0.02 * IBM_VALUE[N]
BUY COMMISSION = COMMISSION
END CONTRACT

INITIAL VALUES
INITIAL CASH = CASHO

NO_OF_NOKIA = 100
NO_OF_IBM = 10
NO_OF_HP = 5

END INITIAL VALUES

EXTERNAL FLOWS
EXTERNAL INFLOW
EXTERNAL OUTFLOW

END EXTERNAL FLOWS

INFLOW[N] * 1E3
OUTFLOW[N] * 1E3

GOAL
TYPE MEAN ABSOLUTE DEVIATION
RISK AVERSION = MY_RISK_AVERSION
END GOAL

CONSTRAINTS
FOR ALL N: NOKIA[N] <= SHARE % WEALTH[N]
FOR ALL N: HP[N] <= SHARE * WEALTH[N]
FOR ALL N: IBM[N] <= SHARE % WEALTH[N]
FOR ALL N: CASH[N] => 0.05 * WEALTH[N]
END CONSTRAINTS

END PROBLEM

LA ANVID L VIV DL ool LIUIN Tl

4Ll

Chapter 4
Tree Description File

Tree description file consists of three kinds of sections: TREE section, LABEL sections and NODE sections. The

general structure of this file is as follows:

TREE: name
PERIODS: number
NODES: number
FIRST NODES: mnumber,number,...,number
DIMENSION: number
LABELS: name,name,...,name
LABEL: label
MEAN: number
VARIANCE: number
TREND: number
NODE: number
NODELABEL: label
VALUES: number,number,...,number

PROBABILITY: number
PREDECESSOR: number
SUCCESSORS: number,number,...,number

The TREE section has to begin the file. It describes some general properties of the tree. All is components
are mandatory. The field # PERIODS tells the last time index covered by the tree (so there is one time period
more, namely time period with index 0). The field # NODES gives the information how many NODE sections are
in the file.

The field FIRST NODES gives a list of the lowest node numbers for each time index (excluding time index
0). Nodes have to be numbered starting from number 1 for root node (time index 0), ascending, nodes with
greater time index have to be assigned greater numbers than nodes with lower time index. The example of
proper node numbering is given in Fig. 2.1.

The field DIMENSION says the size of data vector assigned to each node. Each dimension of this data vector
has its own label declared in the field LABELS.

Sections LABEL are not mandatory. If given, they deliver mean value, variance, and trend of data subspace
described by a given label.

Sections NODE describe a node of the tree. Node number has to be given according to rules mentioned above.
Node label could be any string. The field VALUES gives vector of values assigned to the node. Probability

18

. LIviul Ul LIVUIN il

of attaining the node is declared in the field PROBABILITY. Two fields: PREDECESSOR and SUCCESSORS are
used to describe the tree structure and give predecessor node number and successor nodes list, respectively
Predecessor of root is 0, and successors of leaves are are denoted by 0, too.

As an example a file describing the tree shown in Fig. 2.1 is given below. Each node has a vector of three
elements associated to it.

TREE: example
PERIODS: 2
NODES: 9
FIRST NODES: 2 4
DIMENSION: 3
LABELS: Contract_1 Contract_2 Contract_3
LABEL: Contract_1
MEAN: 3.00000000
VARIANCE: 1.00000000
TREND: 0.000000000
LABEL: Contract_2
MEAN: 3.00000000
VARIANCE: 1.00000000
TREND: 1.00000000
LABEL: Contract_3
MEAN: 5.00000000
VARIANCE: 1.00000000
TREND: -1.00000000
NODE: 1
NODELABEL: LO0000001
VALUES: 3.00000000 3.00000000 5.00000000
PROBABILITY: 1.00000000
PREDECESSOR: 0
SUCCESSORS: 2 3
NODE: 2
NODELABEL: L0O0000002
VALUES: 2.00000000 3.00000000 3.00000000
PROBABILITY: 0.500000000
PREDECESSOR: 1
SUCCESSORS: 4 5
NODE: 3
NODELABEL: L0O0000003
VALUES: 4.00000000 5.00000000 5.00000000
PROBABILITY: 0.500000000
PREDECESSOR: 1
SUCCESSORS: 7 8
NODE: 4
NODELABEL: LO0000004
VALUES: 1.00000000 3.00000000 1.00000000
PROBABILITY: 0.166666666
PREDECESSOR: 2
SUCCESSORS: 0

NODE:
NODELABEL:
VALUES:

PROBABILITY:
PREDECESSOR:

SUCCESSORS:
NODE:

NODELABEL:

VALUES:

PROBABILITY:
PREDECESSOR :

SUCCESSORS :
NODE:

NODELABEL:

VALUES:

PROBABILITY:
PREDECESSOR :

SUCCESSORS:
NODE:

NODELABEL:

VALUES:

PROBABILITY:
PREDECESSOR:

SUCCESSORS:
NODE:

NODELABEL:

VALUES:

PROBABILITY:
PREDECESSOR :

SUCCESSORS:

5
L0O0000005
2.00000000
0.166666666

2

0

6
L0O0000006
3.00000000
0.166666666

2

0

7
L0O0000007
3.00000000
0.166666666

3

0

8
L00000008
4.00000000
0.166666666

3

0

9
L0O0000009
5.00000000
0.166666666

3

0

3.00000000

4.00000000

5.00000000

6.00000000

7.00000000

2.00000000

3.00000000

3.00000000

4.00000000

5.00000000

“x.

A Iy

Joovulivil L1UIN i

-\

Chapter 5

Output file

5.1 MPS file format description

5.1.1 Row names

Each row name consists of eight characters. First two identify a constraint and the remaining six are zero or

identify a node for which this constraint was generated. Details are described in Table 5.1.

row name description
GO 000000 | goal function (2.7) coefficients
G1 000000 | equation (2.8)
G2 n equation (2.9) for node n
01 n equation (2.1)
02 n equation (2.3)
03 n equation (2.4)
04 n equation (2.2) for contract 1
: equation (2.2) for contract j
J+3 n equation (2.2) for contract J
E+J+3 n constraints defined in constraints section

Table 5.1: Row names

5.1.2 Column names

Each column name consists of eight digits. First two identify a variable and the remaining six are zero or denote

a node in which this variable is used. Variable identifiers are described in comments in MPS file generated.

21

Chapter 6
Program invocation

The name of the tool program is modtool. It takes the following parameters:
-f file name takes file name and produces an MPS file

-h displays help

22

Bibliography

[BDGT87] Birge, J. R., Dempster, M. A. H., Gassmann, H. I., Gunn, E. A., King, A. J., and Wallace, S. W.
A standard input format for multiperiod stochastic linear programs. Mathematical Programming
Society Committee on Algorithms. Newsletter, 17:1-20, 1987.

[KW94] Kall, P. and Wallace, S. W. Stochastic Programming. John Wiley, 1994.

23

