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ABSTRACT

Given a set of known binding sites for a specific
transcription factor, it is possible to build a model of
the transcription factor binding site, usually called
a motif model, and use this model to search for
other sites that bind the same transcription factor.
Typically, this search is performed using a position-
specific scoring matrix (PSSM), also known as a
position weight matrix. In this paper we analyze
a set of eukaryotic transcription factor binding sites
and show that there is extensive clustering of
similar k-mers in eukaryotic motifs, owing to both
functional and evolutionary constraints. The appar-
ent limitations of probabilistic models in represent-
ing complex nucleotide dependencies lead us to a
graph-based representation of motifs. When decid-
ing whether a candidate k-mer is part of a motif or
not, we base our decision not on how well the k-mer
conforms to a model of the motif as a whole, but
how similar it is to specific, known k-mers in the
motif. We elucidate the reasons why we expect
graph-based methods to perform well on motif data.
Our MotifScan algorithm shows greatly improved
performance over the prevalent PSSM-based
method for the detection of eukaryotic motifs.

INTRODUCTION

A transcription factor is a protein that binds to a transcription
factor binding site, and, in doing so, regulates the expression
of a nearby gene. Transcription factor binding sites (TFBS)
are short DNA sequences (usually between 5 and 20 bp)
that generally conform to a consensus but individually may
exhibit considerable variability. These short sequences are
also called DNA motifs. In this paper, we will refer to the
models representing a set of transcription factor binding
sites as motifs, and the individual k-mers that comprise

them as motif occurrences. Finding these binding sites is an
important biological problem stymied by the lack of practical
experimental methods to assay transcription factor binding
under a wide variety of conditions (1). The development of
more accurate computational methods for detecting these
binding sites would lead to deeper insights into complex
biological processes such as development, differentiation,
and oncogenesis.

To date, most computational biologists working in the area
of DNA motifs have focused on the problem of de novo motif
detection. This problem can be summarized as follows: given
a set of DNA sequences that are thought to utilize a common
binding site, identify these sites by searching for a set of
similar k-mers that are statistically over-represented in these
sequences. The canonical example of this problem is search-
ing for transcription factor binding sites in the promoters of
co-expressed genes. This problem is often referred to as the
motif-finding problem. This problem has been addressed
dozens of times, and has led to the development of numerous
algorithms, including MEME (2) AlignAce (3), Weeder (4)
and BioProspector (5). We have developed a de novo
motif-finding algorithm based on similar principles to this
manuscript (6).

An equally important, but relatively unappreciated prob-
lem, is the detection of new occurrences of known motifs.
This problem is crucial to many biologists. Whenever a
novel gene or transcript is detected, one of the first questions
that will be asked is whether there are known binding sites
in its promoter. Thanks to the recent development of tiling
arrays (7) and other high-throughput technologies, we are
on the verge of detecting huge numbers of new transcripts
in all eukaryotic model organisms, yet sensitive methods
for detecting the binding sites that control the expression of
these transcripts are lacking.

Typically, methods tackling this problem have focused on
weight matrix-based methods, or more complex probabilistic
models that also model nucleotide dependencies. In this
paper, we analyze the distribution of k-mers in a large number
of eukaryotic motifs, and find complex dependencies that
are not easily modeled probabilistically. We show that the
inherent complexities in k-mer distribution are due to both
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functional and evolutionary effects, and leverage this analysis
to develop a novel, graph-based algorithm for the detection of
transcription factor binding sites.

The position-specific scoring matrix

By far the most common representation of DNA motifs is the
position-specific scoring matrix (PSSM), also known as a
position weight matrix (PWM). Stormo describes the PSSM
in detail (8). In a PSSM, the motif is of fixed size. Each
position in themotif has four associated probabilities: the
probability of an A, G, C and T at that position. The positions
are assumed to be independent, so a PSSM defines a product
multinomial model: one can calculate a score for a k-mer
given a motif model by simply multiplying the probabilities
of each nucleotide in the k-mer at each position (or, more
typically, summing the logs of the probabilities). The most
popular motif scanning method, TESS (9), uses a PSSM
representation of motifs.

Modeling nucleotide dependencies in motifs

Though the PSSM assumes the independence of positions in
the motif, it has been noted several times that some motifs
exhibit significant dependencies between positions (10-12).
There are two principal ways that nucleotide dependencies
could emerge. First, a change in the sequence of a binding
site could require a compensatory change elsewhere in the
site, modifying its protein binding characteristics. Alterna-
tively, if the occurrences of the motif are related to one
another through evolution, and not created anew each time,
then we expect to see a phylogeny of k-mers within the
motif. These intramotif relationships could result in signifi-
cant dependencies, even in the absence of selection pressure.
There have been several attempts to use richer representations
of the motif to model nucleotide dependencies between
positions, some of which we describe below.

Barash et al. (13) developed a number of Bayesian network
representations of varying complexity for modeling motifs,
with the intent of relaxing the independence assumption of
the PSSM, and described methods for learning these models.
They developed an Expectation Maximization method that
could learn the structure of the model while performing de
novo motif finding. The authors showed that their expressive
motif models improve upon the sensitivity and specificity of
PSSM-based motif detection for simulated data and yeast
regulatory sequences. As is typical with Bayesian networks,
there is a crucial issue of how complex the network should
be. If there are too many parameters, then the model requires
a lot of data to train; too few, and the model falls short of its
potential expressive power.

Zhou and Liu (12) described another, simpler extension to
the PSSM model. In their formulation, they incorporate only
pairs of non-overlapping correlated positions. They then
learn the model using a Markov chain Monte Carlo method.
By their estimation, 25% of experimentally verified motifs in
the TRANSFAC database show statistically significant
correlations between positions. They incorporated this
method into a Gibbs sampling algorithm and showed
improved performance in de novo motif finding.

Other analyses, such as that of Xing and Karp (14), have
incorporated prior experimental data on the characteristics
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of certain transcription factor binding domain interactions
into a Bayesian framework. Their MotifPrototyper models
incorporate generic structural signatures from classes of tran-
scription factor binding sites, which they can generalize to
novel motifs belonging to the same family. This approach
shows great promise, since most transcription factors use
one of a small number of types of DNA binding domains.

Relying on complex, heavily parameterized models can be
problematic, especially if their underlying assumptions do not
hold. King and Roth (15) developed a simple non-parametric
method for motif detection, based on the PSSM. Their
method interpolates between a standard PSSM, based on all
of the occurrences of the motif, and a mixture of PSSMs,
where each occurrence of the motif is modeled by its own
PSSM. Their model can identify members of the motif that
would be outliers using a PSSM model. The authors note
that this non-parametric framework can model arbitrary
dependencies, albeit without describing what those dependen-
cies are.

Motivation for a graph-based method of motif detection

As motivation for the development of this algorithm, we offer
an example of how a PSSM model can act contrary to our
expectations, even for a very simple motif. This example
applies analogously to more complex probabilistic models.
We imagine a motif model comprised of three k-mers:
AAA, AAA and AGG. Using a PSSM, a candidate k-mer,
AGG, gets a score of 1.0 x 0.33 x 0.33. A candidate AAG
k-mer scores 1.0 x 0.67 x 0.33. Therefore AAG scores higher
than AGG, despite the fact that we have evidence that the
protein binds AGG, but no such evidence exists for AAG.
Using a probabilistic model, we cannot ensure that an exact
match always scores higher than an inexact match. This is
a desirable property if we believe the known k-mers from
the motif are an unbiased sample of the true motif.

Many biologists would be surprised to learn that an exact
match to a known transcription factor binding site may be
missed when they use a PSSM to search a DNA sequence.
We also note that the addition of new AGG k-mers to the
model significantly reduces the score that a candidate AAA
will achieve. Therefore, with a probabilistic model, these
additional AGG k-mers act not only as evidence for AGG,
but also as evidence against AAA.

We can think of the PSSM approach as measuring the dis-
tance of a candidate k-mer from the ‘centroid’ of the motif
model. In the case of a mixture of PSSMs, it would be a
weighted average distance between the candidate k-mer and
a number of PSSM ‘centroids’. However, a candidate k-mer
that is close in sequence to a subset of k-mers in the motif,
but not necessarily its ‘centroid’ is still likely to be a true
member of the motif. For this reason, it makes more sense
to evaluate a candidate k-mer based on its nearest neighbors,
rather than a model of the entire motif.

MATERIALS AND METHODS
Calculating pairwise nucleotide dependencies in motifs

We gauged the degree of correlation between two columns in
a motif alignment using chi-square values, and used a Monte
Carlo simulation to estimate P-values.
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The formula for the chi-square value is given below.
x> = (O—E)’IE. 1

For a pair of positions in a motif, the observed frequency of a

pair of nucleotides is simply the number of times that pair
occurs together in the k-mers of the motif. The expected freq-
uency of a pair of nucleotides is the product of the frequency
of each nucleotide in its respective column. For each motif in
each dataset we calculated a chi-square value for every pair
of positions, and noted the maximum chi-square value for
that motif. We also generated a distribution of maximum
chi-square values for this motif. We randomly permuted the
columns of the motif alignment at each position, removing
all positional dependencies, and calculated the maximum
chi-square value for all pairs of positions. After one million
iterations, we obtain a null distribution of maximum
chi-square values, with which we can assign a P-value to
our original motif. There are two reasons we did not directly
use the chi-square P-value. First, there are a number of
hypothesis tests being performed in each motif, one for
each pair of positions, which must be corrected for. Further-
more, the accuracy of this P-value is in doubt if the number
of motif members is small. By randomly generating a
distribution of these minimum P-values for each motif, we
ameliorate these problems.

Since we tested a number of motifs for significant dep-
endencies, we also required a multiple hypothesis test
correction. Here we used the R package g-value (16) and
its default parameters to turn our P-values into g-values,
and so control the false discovery rate (FDR).

Nucleotide substitution rates

Given a k-mer from a motif, we calculated the prior probabi-
lity that another randomly chosen k-mer from the motif will
have a substitute nucleotide at each position. As an example,
we consider a motif where the first column in the alignment
has nine As and two Gs. For a k-mer in the motif with an A at
this position, the probability that another k-mer in the motif
chosen at random will have a G as a substitute is 20%.
Here, we use the notation P(G|A)=0.2; similarly,
P(A|A)=08, P(G|G)=0.1 and PA|G)=09.
These probabilities apply to one position in one motif, but
we would like to know the expected probabilities over all
positions in all motifs. For each position in each motif, we
calculated the probability that nucleotide [ was a substitute
for nucleotide o.. We weighted this probability by the proba-
bility that this nucleotide came from this position, given o.
For example, if there is an A at this position, then it is
more likely to have come from an A-rich position. The
formula, along with the necessary normalization, is given in
Equation 2 below.
For o, B, v €{A, C, G, T}, and given N columns in total,
then
N
> PilB | o)Pi(@)
E[P(B | )] = —— 2

>3, Py | 0)Pi(a)
i=0

Table 1. Nucleotide substitution rates in motifs

Yeast motifs

1a A C G T 1b A C G T
A 0.785 | 0.058 | 0.083 | 0.085 A 0.280 | 0.400 | 0.392
C 0.054 | 0.793 | 0.066 | 0.077 C 0.250 0.320 | 0.357
G 0.077 | 0.066 | 0.793 | 0.054 G 0.360 | 0.320 0.250
T 0.085 | 0.083 | 0.058 | 0.785 T 0.392 | 0.400 | 0.280

JASPAR motifs

1c A C G T 1d A C G T
A |0684 |0.107 |0.134 |0.120 A 0.324 |0.405 | 0.379
C |0.087 | 0670 |0.089 |0.109 C |o0276 0.270 | 0.345
G |0.109 |0.089 |0.670 |0.087 G |0345 | 0270 0.276
T T

0.120 | 0.134 | 0.107 | 0.684 0.379 | 0.405 | 0.324

la and 1c show substitution probabilities for yeast and JASPAR motifs. Each
column in the matrix represents the probability that the nucleotide at the head
of the column will have each of the other nucleotides as a substitute. 1b and 1d
show the same probabilities, but conditioned on the fact that a substitution has
occurred. This highlights the differences in substitution probabilities.

By averaging the values for all of the columns in all of the

motif alignments, we obtain a 4 X 4 matrix, where each
column in the matrix contains the probability that given a
specific nucleotide in a motif, we will see each of the 4 nt
at the same position in another k-mer in the motif. The mat-
rices for yeast and JASPAR are given in Table 1.

Training the algorithm on simulated motifs. We trained the
two parameters of our algorithm, ®g¢ and O, as follows.
We randomly generated a set of 1000 motifs, where the
information content and length of the motif is sampled
from the averaged distributions from yeast and JASPAR-
motifs. These simulated motifs had no specific dependencies
introduced. We used a simple hill-climbing algorithm to train,
and the same ROC curve as described in the Testing the
Algorithm on Real Data as a measure of performance.
Finally, we trained the same parameters on the yeast and
JASPAR motifs individually. Gratifyingly, the parameter val-
ues were the same for all three experiments. For the three
experiments, Ogg and O, came out to be 0.7 and 0.3, respec-
tively. These values are robust to small changes in value. For
fairness, the optimal number of pseudocounts used by the
PSSM (the sole adjustable parameter of the PSSM) was
also trained based on the same set of motifs and the same
conditions.

RESULTS
The motif data set

The complete dataset we use consists of a set of yeast motifs,
and a set of motifs from multicellular eukaryotes. The yeast
data comes from a genome-wide study by Harbison et al.
(17) We retrieved occurrences from 102 motifs identified
in Saccharomyces cerevisiae as having a P-value of
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<0.001 and as being conserved in at least one other yeast gen-
ome (http://jura.wi.mit.edu/fraenkel/download/release_v24/
GFF). The authors discovered these motifs by analysis of
Chlp—chip data with a number of different motif-finding
algorithms, a literature review and comparative genomics.
We also retrieved occurrences from 95 of 106 motifs from
the JASPAR database (18) for which k-mers as well as weight
matrices are available. The JASPAR database is a curated set
of motifs from multicellular eukaryotes, 49 of which are
human. For all of the following experiments, we use 63
yeast motifs and 90 JASPAR motifs that contain 10 or
more k-mers and >1 unique k-mer.

Complex nucleotide dependencies in motifs. In this section we
analyze the distribution of k-mers in eukaryotic motifs, and
show that there are extensive nucleotide dependencies,
which we identify as clusters of k-mers in a graphical repres-
entation of the motif. This clustering makes motifs inherently
difficult to model probabilistically. Specifically, we demon-
strate how the PSSM falls short in modeling these motifs.

Pairwise dependencies: First, like Zhou and Liu (12), we
calculated how many motifs have at least one pair of posi-
tions with a statistically significant nucleotide dependency
(for more details see Materials and Methods). At a FDR of
5%, we find 18 out of 63 yeast motifs tested, or ~29%,
show significant pairwise dependencies. In the JASPAR data-
base, we find 24 of 90 motifs, or ~27%, with significant
dependencies. These values are in agreement with Zhou
and Liu’s findings for TRANSFAC motifs (12,19).

Pairwise dependencies like these can be modeled fairly
easily in a weight matrix model, by simply including the con-
ditional probabilities at each correlated position. However,
pairwise dependencies are not the only possible type of
dependency. In order to analyze more complex dependencies,
we use a graph-based representation of motifs. Here, k-mers
are represented as nodes in the graph, and edges connect
nodes if the Hamming distance (number of mutations)
between the two k-mers is below a certain threshold. A
pairwise dependency will make a cluster in the graph for
each correlated nucleotide pair; other types of dependencies
will result in different clustering patterns. For instance, a
set of exact matches in the motif may not produce a signifi-
cant pairwise dependency, but will appear as a clique in the
graph. A combination of dependencies that individually may
not be statistically significant may still alter the graph struc-
ture in identifiable ways. We call these dependencies due to
k-mer clustering complex dependencies to differentiate
them from pairwise dependencies.

Complex dependencies: The PSSM representation of the
motif maintains the correct nucleotide distribution at each
position in the motif but eliminates any other structural
information. Therefore comparing real motif graphs with
graphs generated using PSSMs serves two purposes: it
gives us a baseline against which we can compare the struc-
ture of real motif graphs, and highlights areas where the
PSSM fails to correctly model the motifs. For each motif in
the dataset, we constructed a PSSM. We then randomly gen-
erated 10 000 motifs using this PSSM as a basis, each with
the same number of k-mers as the original motif, and con-
structed a graph for each. This population of graphs is the
benchmark against which we compare the true motif graphs.
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To measure the overall amount of clustering in each
graph we use the clustering coefficient (20). If we define
the neighborhood of a vertex as the vertices directly
connected to it, then the clustering coefficient of this
vertex is simply the number of edges in its neigh-
borhood, divided by the total number of possible edges in
the neighborhood. The clustering coefficient for the
graph is the average value for all vertices. The higher the
clustering coefficient, the more clustered the graph is, and
generally, the more dependencies there are in the motif.
Duplicate k-mers are a common source of clustering in the
graph, and will turn out to be useful in our experiments,
therefore as another measure of clustering we count the
number of k-mers in each motif that are duplicates of any
other k-mer in the same motif.

We find that in yeast, the clustering coefficient of real
motifs is greater than the average clustering coefficient in
the PSSM-generated motifs in 32 cases, and fewer in
9 cases. The average clustering coefficient is ~1.25 times
greater in real motifs than in the PSSM-generated motifs.
For the JASPAR motifs, the clustering coefficient is greater
in real motifs in 33 cases, and fewer in 4 cases, and the
average clustering coefficient is ~1.5 times greater in real
motifs than in the PSSM-generated motifs. Therefore there
is significantly more clustering in real motifs than in the
PSSM-generated motifs, and the difference is much more
significant than a measure of pairwise dependencies alone
would indicate.

The number of duplicate k-mers is greater in real yeast
motifs than the average PSSM-generated motif in 40 cases,
and fewer in only 6 cases. In JASPAR, the number of dupli-
cate k-mers is greater in real motifs in 42 cases, and fewer in
only 8 cases. The high number of duplicate k-mers will not
come as a surprise to many biologists. However, when
attempting to describe a k-mer distribution probabilistically,
a group of duplicate k-mers will act like a spike of probability
density for this particular sequence. Large deviations in
probability density like this are inherently difficult to para-
meterize. It follows that if there are more duplicate k-mers
in real motifs, then the number of unique k-mers is neces-
sarily fewer in these motifs, so that the sequence of these
motifs is more constrained than the nucleotide distribution
alone indicates.

In sum, these experiments demonstrate that the distribution
of k-mers in motifs deviates from the distribution implied
by the nucleotide distribution in highly significant, and
sometimes surprising ways. These complex dependencies
manifest as clusters in the graph. For a given motif, it is
difficult to predict how the distribution of k-mers will behave,
and because of this, parameterizing these distributions is
difficult. The wide variety of possible motif structures is
evident in Figure 1.

Motif clustering and gene expression

The non-random distribution of k-mers in motifs we
observed, and especially the overabundance of duplicate
k-mers, is evidence that there may be selection pressure
acting to maintain particular motif sequences. If a motif
sequence is specifically selected for, then it is possible that
this sequence affects the expression of its associated genes
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A high scoring
candidate
k-mer

A low scoring
candidate
k-mer

AAA ACG

Figure 1. Graphs of four yeast motifs (a—d) and four JASPAR motifs (e-h)
where MotifScan performed better than a PSSM. Each node represents a
k-mer in the motif; gray edges represent a Hamming distance of one, green
edges represent a Hamming distance of zero. The color of the nodes
represents the ratio of the expected number of this k-mer in a motif randomly
generated from a PSSM to the number in the real motif. A red node indicates
that the PSSM generates this k-mer too frequently, a blue node indicates that
it generates it too infrequently. If the PSSM were a perfect model of the motif,
all nodes would be magenta (i.e. 50% red, 50% blue).

(21). If this is the case, then clusters in the motif graph
correspond to clusters of gene expression.

To investigate this effect in more depth, we used three
yeast microarray experiments downloaded from the Stanford
Microarray Database (http://smd.stanford.edu), from the
papers Segal et al. (22), Brauer et al. (23) and Wang et al.
(24). Brauer et al. (23) measured gene expression in response
to glucose limitation, Segal et al. (22) measured gene expres-
sion under a broad set of conditions, and Wang et al. (24)
measured the rate of mRNA decay. We limited our investiga-
tion to motif occurrences that were present alone in the pro-
moters of genes. Including promoters that contain several
different motifs would make it difficult to infer expression
changes due to the sequence of the individual motif. For
each pair of k-mers in each motif that fulfill this criterion,
we calculated the Hamming distance, and measured the
co-expression of their respective genes using a Pearson
correlation. Then, for each motif, we have a list of Hamming
distances and the associated gene expression correlation.

As one might expect, the data are noisy, so to improve the
specificity of these results we combined data from all three
microarray experiments. We tested to see if there was a sta-
tistically significant correlation (P < 0.01) between Hamming
distance and co-expression using Kendall’s tau, a rank-based
measure of correlation. We find that out of a total of 33
motifs for which there is sufficient data available, 7 have
statistically significant negative correlations in all three
microarray experiments. In other words, for these motifs,
similar k-mers have similar expression patterns and clusters
of k-mers in the motif graph correlate with clusters of gene

expression. The seven motifs are YDR026¢, DAL82, BASI,
SPT23, HAP4, ADR1 and MBP1. No motifs were foundto
have statistically significant positive correlations in all three
experiments. The most obvious example of clustering affect-
ing gene expression is ADRI1 (Figure 1b), which has two
unconnected clusters.

The eventual goal of the analysis of transcription factor
binding sites is to understand the expression of the genes
that are under their control. Most current analyses of gene
expression that utilize motifs note the presence or absence
of motifs in the promoter of a gene, but do not pay heed to
the actual sequence of the motifs. Here we have shown that
the k-mer clusters we see in the motifs graphs are functionally
relevant in some cases, perhaps gaining the cell finer control
over gene expression.

Motif clustering and DNA duplication

The clustering of k-mers with similar gene expression
patterns explains a fraction of the clustering we see in yeast
motifs. Here we show how evolution may also play a signifi-
cant role. Clusters of k-mers could occur due to selection
pressure and convergent evolution, as suggested by the
gene expression example above; these clusters could also
be due to k-mers being related through relatively recent
duplication events.

To test whether k-mers in yeast motifs could be related
through recent DNA duplications, we analyzed the conserva-
tion of nearby motif occurrences and the DNA flanking these
occurrences. For each motif, we took every pair of k-mers
located fewer than 100 nt apart (but not overlapping), and
calculated the probability of these k-mers being identical,
compared with k-mers >100 nt apart. We find that motif
occurrences 100 bases or fewer apart are 25% more likely
to be identical than those >100 bases apart, indicating that
these cases might be due to tandem DNA duplications.
However, this similarity may also be explained by variations
in GC content.

We calculated the amount of conservation in the 10 nt
flanking each side of the motif occurrences. We find that
for a pair of identical k-mers fewer than 100 nt apart, the
DNA flanking these k-mers is significantly more conserved
than for a pair of non-identical k-mers from the same motif.
The results of this experiment are shown in Figure 2. This
data again suggest that some nearby, identical motif occur-
rences are related through duplication events. The alternative,
that the flanking DNA has functional significance, requires
that the conserved flanking positions be dependent on other
positions in the motif. This is certainly possible, particularly
for the nearest flanking positions (i.e. the motif is 1 nt longer
than reported, and dependent on another nucleotide within the
motif), but is more unlikely for positions further away.

Therefore we believe that clusters in the motif graphs
emerge partly due to evolutionary effects, where some
binding sites are the product of DNA duplication events
that generate a phylogeny of k-mers in the graph. These rela-
tionships naturally leads to more clustering, and more exact
matches in the graph. There is some evidence that short
DNA duplications are common in eukaryotic genomes (25).
In yeast, tandem duplications followed by chromosomal rear-
rangements have been suggested as a common evolutionary
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. identical k-mer
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Figure 2. Conservation of flanking DNA for identical and different k-mers in yeast motifs. This graph shows the average conservation of flanking nucleotides for
pairs of k-mers located within 100 bases of each other from all yeast motifs in S.cerevisiae. The length of k-mers varies from 5 to 19 nt. Nucleotides surrounding
groups of identical k-mers are more likely to be identical than nucleotides surrounding groups of different k-mers from the same motif. The two sides of the
binding site are symmetrical since transcription factor binding sites do not have 5'-3’ directionality. Note that given the background nucleotide distribution, we
expect a value of ~26% identity to indicate no conservation. Error bars represent 1 SD and were estimated with the bootstrap.

mechanism (26,27), and gene duplications are also common
(28). However, unlike the evolution of genes, motif evolution
need not rely on DNA duplications (29).

Nucleotide substitution rates in motifs

Before we describe the algorithm itself, there is one final
analysis that will prove important. One major advantage of
a graph-based method over a probabilistic method for the
motif detection problem is that because we retain all known
motif occurrences in the model, we can identify the indivi-
dual substitutions that would be required for the candidate
k-mer to become a known motif k-mer. The rate of nucleotide
substitution in motifs is significantly non-uniform, so this
information becomes extremely useful for motif detection.
Accordingly, we calculated empirical nucleotide substitution
frequencies in eukaryotic motifs for use in our algorithm.
Specifically, we calculated the likelihood of each nucleotide
substituting for every other in each motif in the dataset.
These frequencies are shown in Table 1. For details of how
the table was generated see Materials and Methods.

Under neutral selection pressure, transitions are more
common than transversions (30). We also see this trend in
nucleotide substitution rates in motifs. This is not surprising
since purines are biochemically similar to purines and pyrim-
idines to pyrimidines, which we expect to make a difference
for protein binding. This effect is significant in yeast and
JASPAR motifs, with some substitutions being up to 50%
more likely than others. One might also expect that a nucleo-
tide’s complement would be a likely substitute since the base
pair at that position would remain the same; however, unlike
the transition—transversion effect, this is not always the case.
We can leverage the data in these matrices in our algorithm.
For instance, for a JASPAR motif comprised of CAA k-mers,
we know that the prior probability that TAA is also a k-mer in

the motif is 50% higher than GAA. In a weight matrix, this
information is absent.

The motif detection algorithm

Our method differs from those discussed in the introduction
in a two key ways, which are justified by our analysis of
transcription factor binding sites. First, our scheme takes a
nearest-neighbor approach to motif detection. Similar to the
k-nearest neighbors classification method, a candidate
k-mer’s score is based on a comparison with the most similar
members of the motif, not on a model based on the motif as a
whole. Therefore we do not abstract the k-mers of the motif to
another representation, but retain all known motif members in
our model. Second, we incorporate prior probabilities of
nucleotide substitutions within motifs into our score. Our
experiments have demonstrated significant differences in
these probabilities.

MotifScan’s scoring system. To score a candidate k-mer with
our model, we first define what it means to be a good candi-
date k-mer for a motif, and outline a heuristic based on that.
We describe three desiderata here:

(1) Sequence Similarity (SS): The candidate should be
close in sequence to at least one member of the motif.
The fewer mutations it is from this matching k-mer, the
higher the score should be.

(ii) Identical k-mers (IK): The more copies of this matching
k-mer there are in the motif, the higher the score should
be. The more times a k-mer appears, the more likely it
is that a closely related k-mer is also part of the motif.
We refer to a number of duplicate copies of a k-mer in
the motif as an ‘identity group’.

(iii) Identity group similarity (IGS): The greater the number
of identity groups of k-mers in the motif similar to the
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candidate, the higher the score should be. Each new
identity group is evidence in favor of this candidate.

In total, there are two parameters to train, corresponding to
the first two desiderata. The third desideratum is omitted,
since the optimal value was found to be very close to unity.
Each parameter is raised to an exponent, which depends on
properties of the motif (see Equation 3 below). The first
parameter, Ogg, determines the relative score of zero
mutations versus one, two or more mutations. We score suc-
cessive numbers of mutations as O, where d is the number
of mutations. For example, if we choose Qg to be 0.5, then a
motif k-mer two mutations from the candidate k-mer contri-
butes 0.25 (0.5%) as much to the final score as an exact
match. The second parameter, Ok, determines how much
we value additional k-mers in an identity group. Here the
exponent is the number of k-mers in the identity group. If
we choose O to be 0.5, then an identity group of two mem-
bers contributes 1.5 times (0.5 + 0.25) as much to our score as
an identity group of one member (0.5), and an identity group
of three members contributes 1.75 times as much (0.5 + 0.25
+ 0.125). For details on how these parameters were trained
see Materials and Methods.

he k-mer with more likely substitutions. Then the score
for the candidate is calculated according to Equation 3.
A simple example in Figure 3 illustrates the process.
The score for a candidate k-mer is calculated according to
Equation 3. A simple example in Figure 3 illustrates the
process.

N n
Score = Z @gs@wsa)l,bz) Z O 3
i=1 J=1

Here N is the total number of unique k-mers, d is the
Hamming distance and »; is the number of k-mers in identity
group i. Onsesr p2) (the nucleotide substitution parameter) is
the appropriate value from our nucleotide substitution matrix,
where b1 (the nucleotide in the candidate k-mer) is substitu-
ting for b2 (the nucleotide in the motif k-mer). If d is greater
than 1, then Ong 42 18 the average of all of the substitution
probabilities (given in Table 1, a and c).

Pseudo-k-mers. One advantage that probabilistic methods
have over enumerative is the ability to generalize based on
small sample sizes, owing to the inherently probabilistic
nature of the model, and the addition of pseudocounts,
which act as a regularizer (31). In a similar vein, we
attempted to improve our algorithm by generating a small
number of ‘pseudo-k-mers’ based on the distribution of
nucleotides in our motif. The distribution of nucleotides itself
uses a small pseudocount (0.1). These ‘pseudo-k-mers’ act
just like pseudocounts in a PSSM, i.e. as regularizers to
make small datasets ‘smoother’. After cross-validation on
simulated motifs, we found that the addition of pseudo-k-
mers did not improve performance.

Significance tests: P-values and the false discovery rate. To
gauge whether a particular score is significant, we need to
transform the heuristic score into a P-value. Here we describe
several ways of doing this. For each of the yeast motifs,
we use the probes from Harbison et al.’s (17) Chlp—chip
experiments in which the motif did not appear to generate a

Yeast motifs

SKN7 . RCST \ >

()

MA0063

MA0082

MAO0077

Figure 3. An example of the MotifScan algorithm assessing two candidate
k-mers. Gray edges represent a Hamming distance of one, green edges
represent exact matches. The thickness of the arrows represents the amount of
weight the algorithm places on each match. The Hamming distance of each
candidate-motif match is noted above the arrows. Even though for both
candidates, the average Hamming distance to the motif is the same, the high
scoring candidate is an exact match to a cluster of three k-mers, which
contributes the majority of its score, whereas the low scoring candidate is two
mutations away from each of the clusters of three k-mers.

null distribution of scores, which we can use to assign a
P-value to any given score. These P-values will be conser-
vative since our assumption is that the sequences used to
generate the null distribution do not contain any real motif
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occurrences. If they do, then the resulting P-values will be
less significant.

For the JASPAR motifs, we use scores based on a null
distribution from a uniformly random sequence of DNA.
The resulting P-values are then corrected for based on the
calculated GC content in the input DNA sequences, and
their associated Markov dependencies. The length of the
Markov chain depends on the length of the input sequences,
with 20 data points required per parameter. This method is
not nearly as reliable as using real data, therefore for more
accurate results using these motifs, we advise using a pre-
computed table of Markov dependencies based on DNA simi-
lar to the input sequences (e.g. a collection of promoter DNA
from the appropriate species). An even better option is to use
real data to directly generate the P-value tables, as we did for
yeast motifs. The appropriate background DNA to use is
context-specific, depending on where in the genome one is
searching.

We set an upper limit on the FDR of our results using
the sequential method of Benjamini and Hochberg (32).
Although the positive FDR (pFDR) method of Storey (33)
is more powerful, Storey states that as m,, the proportion of
null hypotheses that are true, tends to 1, this method and
Benjamini’s methods become identical. In our case, we
expect T, (the fraction of k-mers not in the motif) to be
close to 1.

Testing the algorithm on real data. We evaluated the perfor-
mance of our motif detection using leave-one-out cross-
validation: (i) For every k-mer in every motif in the dataset,
we generated a random DNA sequence 5000 bases long, and
seeded this sequence with the k-mer. (ii) We built a PSSM
model and a MotifScan model using all of the k-mers in
the motif except the seeded k-mer and assigned scores to
all of the positions in the sequence. Note that identical k-
mers to that seeded may still exist in the motif. (iii) We sorted
all of the resulting scores from all of the sequences from best
to worst. As we traversed this list, we flagged each result as a
true positive or a false positive.

To gauge performance, we used a modified version of a
receiver operating characteristic curve (34) (ROC curve).
The ROC curve is a plot of the true positive fraction (sensi-
tivity) versus the true negative fraction (l-specificity). The
area under this curve is a measure of performance over a
range of sensitivities. A modification of the ROC curve,
known as the ROCSO, is often used for database searching.
This curve plots true positives against false positives, but
only up to the first 50 false positives. The reason for doing
this is that most of the ROC curve is uninformative, as
there can be orders of magnitude more true negatives than
true positives. We use an ROC" curve, which is very similar
to an ROC™°, with the sole change that we use N as the num-
ber of allowed false positives instead of 50, where N is the
total number of k-mers in the motif. This way the number
of false positives allowed scales linearly with the number
of true positives in the dataset.

We compared the performance of MotifScan and the
PSSM by identifying motifs where one of the two methods
significantly outperformed the other, and ignoring those
motifs where the results were comparable. If the area under
the ROC curve for a certain motif was 5% more, or greater,
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for one method than the other, this was counted as a win for
that algorithm.

With the yeast dataset, we find that 25 of 63 motifs have an
area under the ROC curve at least 5% greater with our algo-
rithm than with a PSSM. Only 1 of 63 motifs has an area at
least 5% greater with a PSSM than with our algorithm. With
the JASPAR dataset, the figures are 46 of 90 and 8 of 90,
respectively. A list of the most significantly different motifs
in each database is given in Table 2. The greatest improve-
ments in ROC" area for MotifScan over the PSSM were 69
and 74% for the yeast and JASPAR motifs, respectively.
The greatest improvements in ROC" area for the PSSM
over MotifScan were only 6 and 13%, respectively. An
Excel file containing the complete list of ROC areas is
available at http://motifscan.stanford.edu/roc_results.xls.

Figure 1 includes graphs of four yeast motifs and four
JASPAR motifs where MotifScan performs well relative to
the PSSM; specifically, for each of these graphs, the area
under the ROC curve is at least 5% greater using MotifScan
than using a PSSM. The graphs were chosen to be a represen-
tative subset of the complete set. There are a number of
notable features in these graphs. In general, we can see that
motifs have diverse structures, that clustering is prevalent,
and that exact matches are common. In ADRI1, we see two
unconnected clusters, owing to a significant pairwise depen-
dency. Accordingly, few of these k-mers are generated by
the PSSM. MAO0063, MA0O082 and MAO103 have central
regions where the mass of the PSSM is concentrated, and
clusters of nodes at the peripheries that the PSSM rarely
generates. MAOO77, RCS1 and SOK2 all show significant
numbers of subclusters and especially groups of exact
matches. Some of these subclusters are generated by the
PSSM, but many neighboring clusters are not. The yeast
motif that MotifScan performs best on relative to the
PSSM, SKN7, has a diffuse structure, with no obvious center.
Almost none of the k-mers in this graph are generated
sufficiently often by the PSSM.

Using MotifScan. The MotifScan algorithm can be accessed
through a web-application, at http://motifscan.stanford.edu.
The user may scan a DNA sequence for any or all of the
yeast motifs or JASPAR motifs described above. The
algorithm is also available for download at the same location.
It is coded in Python (http://www.python.org), and requires
Python version 2.3 or newer. MotifScan will use psyco
(http://psyco.sourceforge.net) for a performance gain, if it is
installed.

DISCUSSION

We have developed a novel, graph-based supervised motif
detection algorithm, which addresses apparent limitations in
current probabilistic models. We compared the performance
of our method to that of the PSSM, the de facto standard
for motif detection, for the detection of both yeast and
multicellular eukaryote motifs, and showed greatly improved
performance. Our experiments indicate that the PSSM,
and probabilistic methods in general, are a poor fit to
many eukaryotic motifs, and that enumerative methods such
as ours have many advantages. We find that there is exten-
sive clustering of k-mers in eukaryotic motifs, which is
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Table 2. A table of results comparing the performance of MotifScan and a PSSM for the detection of yeast and multicellular eukaryotic motifs

Yeast motifs

JASPAR motifs

Area under Area under

MotifScan > PSSM+ 5% ROC curve MotifScan > PSSM+ 10% ROC curve
Motif Name | # % | MotifScan | PSSM Motif Name | # X | MotifScan | PSSM

mers mers

ADR1 29 100% 49% MA00O1 97 86% 58%
CAD1 22 78% 67% 90-100% MA0002 29 88% 67%
CING 135 100% 84% 80-90% MAO005 90 54% 33%
FKHA 154 100% 90% 60-80% MAO0006 24 100% 80%
GCN4 177 100% 82% 40-60% MAO008 25 100% 78%
GLN3 79 98% 79% 20-40% MAOO1 1 12 100% 26%
HAP4 37 90% 82% 0-20% MAO0O14 12 2% 7%
MSN2 32 72% 60% MAO0O15 80 82% 66%
MSN4 37 100% 73% MA0020 21 100% 86%
PHD1 116 100% 62% MA0031 20 100% 65%
RAP1 112 89% 76% MA0034 25 29% 12%
RCS1 59 90% 75% MAO0037 63 100% 65%
RDST 10 100% 88% MA0038 53 66% 37%
REX 11 93% 84% MAO0040 18 72% 60%
ROX1 28 99% 82% MAOQO41 47 77% 61%
SKN7 125 91% 229% MA0044 13 50% 5%
SOK2 184 100% 65% MA0054 70 100% 55%
SPT2 13 65% 56% MAO0056 20 100% 79%
SPT23 53 100% 83% MA0057 16 36% 22%
SUTH 42 31% 229% MAO0063 17 100% 48%
SWi4 128 100% 90% MA0067 31 95% 25%
SWI6 179 100% 81% MA0070 18 67% 53%
TECH 9% 100% 92% MA0077 76 93% 63%
UME6 88 95% 88% MAOO80 57 100% 65%
YAP7 o1 90% 62% MAO081 49 100% 70%
MAO0084 28 73% 39%
MA0086 40 100% 83%
MAO087 23 100% 78%
MA0089 34 100% 87%
MA0092 29 67% 35%
MAO0095 17 100% 86%
MA0098 40 100% 82%
MAO0103 73] 100% 69%
MAO105 18 74% 60%

Area under Area under

PSSM > MotifScan + 5% ROC curve PSSM > MotifScan + 10% ROC curve
Motif Name | # % | MotifScan | PSSM Motif Name | # X | Motifscan | PSSM

mers mers

ABF1 29 l_79% 85% MA0007 24 48% 59%
MAO018 16 18% 31%
MAO0024 10 79% 92%
MAO0045 14 4% 15%

We show only those motifs where the performance of the two algorithms is significantly different. The number of motifs where MotifScan outperforms the PSSM is

significantly greater in both yeast and JASPAR motifs.

substantially different from the prevailing ‘diffused consen-
sus’ (or consensuses) model. There are two major reasons
why this is the case.

We find that the k-mer clusters have functional signifi-
cance. For a significant fraction of yeast motifs, the sequence
of the motif, and not simply its presence or absence, affects
the expression levels of the associated genes. Therefore,
assigning a binding site to the appropriate motif subcluster
may be an important step in understanding its gene expres-
sion. This observation is useful for future, integrative anal-
yses of transcription factor binding sites and gene

expression, and affirms the utility of a graph-based model
in other aspects of transcription factor binding site analysis.

We showed that there is an evolutionary cause for k-mer
clusters in motifs. Identical k-mers are more likely to be
located in the same intergenic regions than non-identical k-
mers, and clusters of identical k-mers within a motif are
more likely to share conservation in flanking nucleotides.
This makes it likely that DNA duplications are producing
some of these motif occurrences.

In general, probabilistic methods suffer in motif detection
because they assume that the k-mers in the motif are random
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samples from a smooth distribution, with consensus
sequences as the modes of the distribution. In fact, as is
evident in the graphs in Figure 1, the distribution may have
many ‘spikes’ of probability density due to small subclusters,
particularly clusters of duplicated k-mers. Conversely,
there are also regions of negligible probability density, i.e.
k-mers that we would expect to appear in the motif given
the nucleotide composition, that never do. Irregularly shaped
distributions like these are naturally difficult to model para-
metrically. Since virtually all de novo motif-finding algo-
rithms are based around the PSSM, or a diffused consensus
model, it is not unreasonable to suggest that currently
known motifs could be missing k-mers that become statisti-
cally significant if analyzed with the model we propose.
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