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1.1.   Introduction 

This paper describes our approaches for coordinating the actions of extremely large 
numbers of distributed, loosely connected, embedded computing elements.  In such 
networks, centralized control and information processing is impractical.  If control 
and processing can be decentralized, the communications bottleneck is removed and 
the system becomes more robust.  Since conventional computing paradigms provide 
limited insight into such decentralized control, we look to biology for inspiration.   

Due to progress in the miniaturization of sensors and computing elements and in the 
development of necessary power sources, large arrays of networked wireless sensor 
elements may soon be realizable.  The challenge is to develop software that enables 
such amorphous arrays to self-organize in ways that enable the sensing capabilities of 
the whole to exceed that of any individual sensor.  

Our goal is to devise local rules of interaction that cause useful computational 
structures to emerge out of an array of distributed sensor nodes.  These distributed 
logical structures appear in the form of local differences in sensor node state.  These 
local state differences serve to form distributed circuits among nodes, allowing 
groups of nodes to perform cooperative sensing and computing functions that are not 
possible at any single node.  Further, since the local differences emerge and are not 
pre-programmed, there is never a need to assign specific functions to specific nodes.    

In this paper we describe two methods, each using only local interactions between 
nodes to detect the presence and heading of some local transient property of the 
environment (e.g., presence of a warm body).  These methods provide a purely 
distributed means of computing the direction and likely destination of a sensed 
movement, with no need for centralized data analysis or explicit data fusion.  Such a 
prediction could activate sensors ahead of the movement of the sensed object, turning 
on more expensive sensing functions that are normally dormant to save power.  An 
active minefield could use the techniques to attract mines to the most likely avenue of 
approach.  Streetlights could be turned on ahead of cars on a road less traveled. 
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1.2. Related Research 

Our research focus is on future applications of sensor networks wherein the sensor 
nodes themselves will be extremely small, cheap, and simple, and will be deployed 
somewhat haphazardly or randomly.  Examples of such networks can be found at UC 
Berkley, where the goal is to create sensor nodes the size of dust particles that can be 
released in large quantities from the air.  Such sensor networks have very limited 
computational capabilities, and are unlikely to have sophisticated on-board position 
location capabilities such as GPS.   

A number of other methods for monitoring object presence and movement have been 
developed, but many of these methods are limited in scope and related to a narrow 
application, or require sophisticated sensors and centralized processing.  The most 
relevant is the work being done at MIT on amorphous computing and the work being 
done at USC on directed diffusion in sensor networks, although neither of the two 
encompasses our system.   

MIT is making progress on pattern formation in amorphous networks in the context 
of Paintable Computing and “shape formation” via the use of origami mathematics 
[Nagpal 2001].   These patterns are not used in the context of object tracking.  MIT 
uses some of the same basic primitives we use in pattern formation, but the overall 
methods are different.   

The USC work [Intanagonwiwat 2000] uses directed diffusion for object tracking, but 
it assumes that each sensor knows its location, and can inform a user of an intruder’s 
position via directed diffusion.  We make no assumptions about node location. 

Our use of a virtual pattern sets up a virtual heterogeneous network in which different 
sensors have different functions depending upon their position in the pattern.  We are 
aware of no previous attempt to use the sensor distribution and network structure 
itself to track objects and predict movement direction. 

1.3. Pheromone Messaging 

We use a diffusion-based messaging paradigm called virtual pheromones [Payton, et 
al 2000, 2002].  Virtual pheromones provide a simple messaging scheme that 
establishes a gradient among a large number of distributed, locally communicating 
nodes.  In earlier work, we have used a custom-made IR transceiver unit, as shown in 
Figure 1, to transmit and receive virtual pheromones in 8 distinct directions.  
However, in most of the sensor node applications described in this paper, we envision 
using RF communications between nodes, and therefore constrain ourselves to omni-
directional transmission and reception of virtual pheromone signals.  A virtual 
pheromone is encoded as a single modulated message packet consisting of a type 
field, a hop-count field, and a data field.  The type is an integer that identifies a 
unique pheromone class for the message.  The data field may be used to optionally 
transmit a few bytes of data.  The hop-count is used to establish how far a pheromone 
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may travel from its originating source 
and to establish simple pheromone 
gradients.  The originating node sets 
the hop-count to an integral number of 
times the message is to be relayed, and 
sends the message to its local 
neighbors.  Upon receipt, the hop-
count field is decremented and the 
message retransmitted without any 
need for acknowledgement.  If a node 
receives the same type of pheromone 
from multiple sources, only the 
message with the highest hop-count value is selected for re-transmission.  This results 
in a uniform gradient leading away from the source.  These rules for message 
propagation provide a distributed version of the wavefront propagation method used 
in Dijkstra's shortest-path algorithm [Dijkstra 1959].   

1.4. Motion Prediction Methods 

In the following, we describe two different motion prediction methods.  In the first 
method, a temporal differencing technique is used to obtain very coarse motion 
detection and prediction for objects moving across a sensor array.  In the second 
method, patterns are formed within the sensor array to differentiate nodes.  
Interactions between such differentiated nodes produce more precise motion 
detection and prediction.   

Both methods are applicable to a distributed network of locally connected sensor 
nodes, commonly called a sensor network.  Each sensor measures some local 
transient property of the environment (e.g., presence of a warm body or an object), at 
a limited range, so the optimal distribution of sensor nodes would be at inter-node 
distances just less than double their maximum sensing range.  In each of the methods 
below, sensors do not directly measure velocity - only the presence or absence of the 
object.  The network connections are considered to be wireless, and nodes have no 
knowledge of their neighbors or even of their own location.  All communication is by 
means of unreliable short range broadcast. 

If there is a way to determine distance between nodes, e.g. signal strength, it is 
possible to select a more uniformly distributed subset of nodes in order to obtain a 
better gradient.  One or more nodes emit a special distribution pheromone message, 
containing a minimum and maximum range parameter.  Receiving nodes that are 
within the specified range will join the active subset of nodes.  Those outside the 
specified limits become inactive.  Only active nodes relay the distribution 
pheromone.  Sometimes this type of pre-conditioning results in better pattern 
formation in the subsequent steps. 
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Figure 1: Transceiver for virtual pheromones
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1.4.1. A Temporal Differencing Technique 

The first technique creates a very simple pattern in the sensor array when each node 
compares its activation level from one moment to the next.  In a two-state 
implementation, we will label the states ON and OFF.  An ON node is either directly 
sensing the object or is experiencing an increasing activation level indicating it is 
potentially in the path of the object’s motion.  All other nodes are OFF.   

Any node that senses the object turns ON and originates a pheromone with a high 
activation.  It does not need to check for incoming messages.  The activation message 
is diffused throughout the sensor node population creating a complete gradient of 
activation, using the algorithm described in Section 1.3.  We assume that message 
diffusion is much faster than the movement of the objects the nodes sense.  As an 
object moves, different nodes sense it and take over the job of initiating the 
pheromone gradient.   

Nodes that do not directly sense the object base their state on the difference between 
the activation level of the last message they received and the level of the current 
message.  As the object moves, different nodes sense it and become pheromone 
initiators, and others that no longer sense it stop sending their pheromones.  This 
causes the gradient to slide across the sensor node network.  The change in activation 
of each node from one moment 
to the next is positive in front of 
the movement, zero to the sides, 
and negative to the rear.  In 
Figure 2, nodes that sense an 
object at geographic position A 
at time 1 create a gradient field.  
At time 2, other nodes at point 
B sense the object, resulting in 
the second gradient.  When each 
node receives the gradient 
message at time 2, it subtracts 
the activation level from time 1 
from the new time 2 activation, 
and gets a value that is either 
positive, negative or zero.   

Therefore, the simple activation rule is 
to turn ON if the temporal differen
resulting activation pattern is useful 
object that may not continue to trave
of Figure 2 is a large number of ran
superimposed on the temporal differe
center of the path of the object (at 0
activated nodes will drop as azimu

g
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Figure 2. Temporal difference pattern in 
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activated nodes in a particular direction roughly corresponds to the likelihood that the 
object will move in that direction. 

It is difficult to extend the object’s motion vector to nodes ahead of the object in a 
more focused way without requiring directional messaging.  One strategy using 
directional messaging would be for each node to keep track of the gradient vector as 
the object moves toward it.  If any node subsequently senses the object directly, it can 
conclude the object came from the direction of steepest ascent, which is still in 
memory.  The sensing node sends activation pheromone as before, but the message 
that goes in the direction of the object’s movement is annotated to tell nodes that 
receive it to turn ON.  Nodes that receive the annotated message forward it in the 
same direction, while again sending unannotated messages to all other neighbors so 
they can track changes in the gradient over time.   

1.4.2.  Focused Predictions Using Pattern Formation  

In the second technique, sensor nodes are differentiated into parallel spatial bands to 
provide motion detection along different axes.  In this method, a virtual pattern of 
bands emerges through specially designed local interactions between nearby nodes.  
This results in a pattern state within individual nodes that either sensitizes or 
desensitizes them to particular activation/inhibition signals from neighboring nodes.  
Activation/inhibition rules are designed such that messages signaling the presence of 
an object are inhibited along bands of the same type, but are propagated into bands of 
a different type as shown in Figure 3.  This, in effect, leads to a form of moving edge 
detection for objects moving across the sensor array from one spatial band to another.  

Band Creation  
Bands are generated by first 
choosing two “anchor nodes” 
lying on opposite ends of a 
diameter of the sensor net.  
These anchor nodes 
determine the orientation of 
the initial set of bands.  
Starting with an identical 
pattern state in all nodes, one 
of the two anchor nodes 
initiates a pheromone signal 
that creates a gradient throughout the entire network.  When this signal reaches the 
second anchor node, the recipient issues a second pheromone signal.  This second 
signal propagates using rules comparable to directed diffusion [Intanagonwiwat 
2000], wherein signals only advance along the axis of steepest ascent of the first 
gradient.  We call this a “white” pheromone signal because all nodes that receive it 
will switch to a white pattern state, thereby forming a white band as shown in the 
leftmost frame in Figure 4.   

GREEN

RE
D

W
HI

TE

YELLOW

GREEN

RE
D

W
HI

TE

YELLOW

 
Figure 3.  Orthogonal sets of parallel bands are 

used to detect movement along specific directions. 
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After nodes have 
switched to a white 
pattern state, they 
transmit a limited-
range “red” 
pheromone signal.  
This causes all 
nodes that receive it 
that are not already 
in the white pattern 
state to switch to 
the red pattern state, 
as shown in the 
middle frame of 
Figure 4.  Likewise, 
nodes in the red pattern state transmit a white pheromone signal that switches all non-
red nodes within range to the white pattern state.  The net result is a sequence of 
parallel bands as shown in the rightmost frame of Figure 4. 

A set of bands orthogonal to the first is formed using gradients initiated from both of 
the anchor nodes.  Midway between the two anchor nodes, these gradients meet with 
equal hop counts, and the nodes in that region switch to a green pattern state.  Just as 
before, nodes in the green pattern state send a pheromone that triggers neighboring 
nodes to switch to the yellow pattern state.  Likewise, nodes in the yellow pattern 
state send messages to switch neighbors to the green pattern state.  This results in 
another set of parallel yellow / green stripes that is orthogonal to the original red / 
white stripes.  Because the green and yellow pattern states are independent of the red 
and white pattern states, each node can be a member of both the green/yellow and the 
red/white stripe patterns.  The same process could be used to create a number of 
different band orientations to achieve any desired resolution of motion sensitivity. 

Detection and 
Prediction 
Once stripes have 
formed, the resulting 
pattern states can aid 
in detection of a 
moving object.  
When a sensor 
detects an object, it 
sends out a short-
range priming 
pheromone labeled 
with its pattern state 
as shown in Figure 5.  
Nodes that receive 

 red band
white band

 
Figure 4.  Formation of initial set of parallel bands. 
 
Figure 5.  A warning signal (yellow) propagates through 

the network after persistent motion is detected. 
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this message and lie in a different stripe band become sensitized for a short time.  If a 
sensitized node detects an object, it sends out a warning to be propagated.  This 
warning message is accepted and propagated only by nodes that lie on the same band 
as both the priming sensor and the warning sensor.  The initial warning message is 
weak and does not travel far.  If the detected object continues to move in the same 
direction, the warning message is reinforced at receiving nodes and propagates 
further.  If motion is no longer detected along the given direction, the warning 
pheromone at these nodes decays and the nodes revert to their original state.  This 
provides a simple form of motion prediction whereby nodes far from the moving 
object register a warning if the object continues to move toward them. 

1.5. Data Extraction 

These methods provide a purely distributed means of computing the direction and 
likely destination of a sensed movement, with no need for centralized data analysis or 
explicit sensor data fusion.  In the preceding discussion, we have used the results of 
the distributed computation only to change node state.  However, it may be desirable 
to view the states of nodes, e.g., to follow the activation path to the sensed object.  
We would like the sensor array to act as a distributed display embedded in the 
environment.  In effect, each node becomes a pixel, or an annotation, on the 
immediate environment.  The node’s position within the environment provides 
context to interpret the meaning of the transmitted information. 

The easiest solution would be to put colored blinking lights on each node; but this 
limits the type of data that can be represented.  Our approach, called the World-
Embedded Display [Payton et al, 2002], is to visualize the distributed data in the 
collection of nodes directly, in situ.  The user wears an augmented reality (AR) head-
mounted display, shown in Figure 7.  Each node transmits a character of data via 
infrared, and a camera mounted on the head mounted display with an IR filter reads 
the data.  The system converts the character into a symbol that is drawn on the video 
shown in the display.  Figure 7 illustrates the effect: two of our mobile robots as they 

      

Figure 7.  AR head-mounted display has pencil-cam to image IR data 
transmitted from individual sensor nodes.  Gradient superimposed on nodes.
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are viewed in the AR display, with the pheromone gradient arrows floating above 
them.  

1.6. Conclusion 

We have described two purely distributed methods for computing the direction and 
likely destination of an object of interest, with no need for centralized data analysis or 
explicit sensor data fusion.  These algorithms apply to spatially distributed collections 
of simple sensing nodes with only local communication and rudimentary processing 
capabilities.   

The temporal differencing scheme is very simple and has the nice property of waking 
up the most nodes in directions that are likeliest to be in the object’s path.  This 
results in a sort of heuristic search pattern for the future movements of the object, 
which is desirable in many applications.  The prediction can be somewhat more 
focused using a more constrained type of messaging. 

The second technique produces a tightly focused motion prediction without requiring 
directed messaging.  It detects object movement that crosses an oriented pattern, and 
uses the pattern to activate nodes in the path of motion.  The pattern must be oriented 
correctly for motion to be detected; it is possible for several different orientations to 
coexist in the network. 

This paper is concerned with motion extrapolation, not the identification problem.  
However, without the ability to uniquely identify objects, these approaches can be 
fooled much like the eye is fooled into perceiving motion with a movie marquee.  If 
sensors can accurately identify objects, pheromones could be labeled with a feature 
ID, making node state ID-specific.  These issues are left for future work. 
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