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Abstract

Preprocessings an oftenusedapprach for solvinghard
instancesof propositional satisfiability (SAT). Preprocess-
ing can be usedfor redudng the nunber of variables and
for drastically modfying the setof clauses,eitherby elimi-
natingirr elevant clausesor by inferring new clausesOver
the years, a large nunber of formula manipdation tech-
nigues hasbea proposel, thatin somesituationshaveal-
lowed solvinginstancea not othewise solvablewith state-
of-the-artSAT solves. This pape proposesprobingbased
preprocessing an integrated appmoach for preprocessing
propcsitiond formulas,that for the first time integratesin
a single algorithm mostof the existing formula maripula-
tion techniques.Moreover, the new unified framevork can
beusedto developnew techniques.Preliminary expaimen-
tal resultsillustrate that probing-basedpreptocessingcan
be effectivdy usedas a preprocessingtool in state-of-the-
art SAT solves.

1. Intr oduction

Propaitional Satisfiability (SAT) is a well-known NP-
comgete problem, with extensive applicdions in mary
fieldsof Compuer ScierceandEngireering.SAT hasbeen
thesubjectof intensve researclin recen yearswith signif-
icant theaetical and pradical cortributions. From a prac-
tical perspectie, several competing solution strateyies for
SAT have been proposed Locd searchalgorithms have
allowed solving extremely large satisfiableinstance of
SAT, andin particula have beenshavn to be very effec-
tive in randanly geneatedinstancs of SAT. On the other
hand several improvementsto the backrack searchDavis-
Putnan-Logeman-Lovelard algorithm have been intro-
ducel, thus allowing to solwe either satisfiableand unsat-
isfiable instancesThesenew badtrack searchalgaithms
utilize adwanced corflict analysisprocedires, that record
the causef failuresandthatcanthereforebadtrack non-
chrorologically.

In addition,therehave beensignificart contritutions in
terms of formula manipdation techniqies which can in
somecaseyield competitive appoaches[2, 3, 4,7, 8]. Itis
geneally aceptedthattheability to reduceeitherthe num-
ber of variables or clausedn instanceof SAT impactsthe
expectedcomputationd effort of solving a given instance.
This ability canactually be essentiafor specificandhard
classesof instancesinterestingly the ability to infer new
clausesmayalsoimpad the expectedcompuational effort
of SAT solvers.Obsere thatthesenew clausesanbeuse-
ful for redudng the numker of variables(andconsegently
thenunberof clauses).

This paper propases the utilization of probingbased
techniques for maripulating propositiona satisfiabil-
ity formulas. Probirg allows the formulation of hypo-
thetical scenarios,obtained by assigninga value to a
varialle, and then applying unit propagtion. Further
more, proling-basedechrnquesbuild upan a very simple
idea: a table of triggering assignments which regis-
tersthe resultof applying probingto every varialde in the
propasitiond formula.

The new probingbasedappro@h not only provides a
geneic frameavork for applying differentSAT preproess-
ing techniqes(by establishingcorditions on the entriesof
thetableof assignmentsjut alsocanbeusedto implement
mostexisting formula manipdation techniqies.Moreover,
andto our bestknowledge representshefirst appro&h to
jointly apgy variableandclauseprobing

The parer is organizedasfollows. The next sectionde-
scribesthe proposedramewvork, which allows the integra-
tion of existing formulamanipuation technques.Next, ex-
perimentaresultsarepresetedandandyzed Finally, Sec-
tion 4 overviews relatedwork andsection5 corcludes the
pape.

2. Integrating Probing-BasedTechriques

In this sectionwe proposean integrated approach for
implemerting probing-basedtechiques.We start by de-
scribingthe table of assignmentswhich recordsthe prob-



ing results.In addtion, we establishreasonig conditions
for identifying necessary assignmentsand inferring new
clausesFinally, we presenfroblt: aprobingbasedorepro-
cessoffor propasitional satisfiability

2.1. Preliminaries

In what followswe andyze condtionsrelatingsetsof as-
signmentsGivenanassignment ! andaformulay, there-
sult of apdying Boolean CorstraintPropajation (theitera-
tive apgianceof unit propagtion)to ¢ given « is deroted
by BCP(, a). Whenclearfrom thecortext, we usetheno-
tation BCP(«), andthe existene of the CNF formulay is
implicit. Withoutassignmety BCP(y) (or BCP()) derotes
plain unit propagtion, given the existenceof unit clauses.
Assignmenta is referredto as the triggering assignment
of theassignmentin BCP(«). We may alsousethe nota-
tion BCP(A) to dende theresultof apdying unit propaya-
tion astheresultof all assignmetsin thesetof assignmets
A.

Reasoning condtions are analyzd basedon a takular
representatioof triggeringassignments,e. thetableof as-
signmentswhere eachrow represets a triggeringassign-
ment, and eachcolum represets a possibleimplied as-
signment?. In this table,eat 1-valued entry (o, a;) de-
notesan implied assignmenty; given a triggering assign-
menta;. Hene the 1-valued entriesof a given row «o; de-
notetheelementsof setBCP (o).

2.2. Motivating Examples

This sectionanalyzesa few examples,that motivate the
technguesupan which our framework is basedandwhich
allow theidentificationof necessaryassignmets andthein-
ferenceof new clausesConsidera CNF formula ¢ having
thefollowing clauses:

w1 =(aVb) ws = (na Ve Vd)
we=(aV-bVd) ws=(-aV-dVe)
wg=(aV-cVe) wr=(cVe)

wy = (maVe)

This formula hasthe the table of assignmentshavn in
Tale 1. Eachline in the table correspods to the resultof
applying BCP, given a triggering assignmen For exam-
ple, given the assignmena=0 (denotedas (a, 0)), we can
condude from the tablethat BCP((a, 0)) = {(a,0), (b, 1),

(d,1)}.

2.2.1. NecessaryAssignments Obsere that for the two
possibleassignmets to variable a, we always obtainthe

1 Anassignment is apair (I, v) thatdenotesassigningvaluew to lit-
erall.

2 In practicethe tableof assignmentss representedsa sparsematrix
andsothe memoryrequirementsrenever significant.

alalb d|lele
a |l 1
a 1 1 1 1
b 1)1 1 1 1
b 1
c|1 111 1 1
c 1
d 1
d 1
€ 1 11111
e 1

Table 1. Table of assignments

implied assignmen(d, 1). Since variable a mustassume
one of the two possibleassignmentsthenthe assignment
(d, 1) is deemd necessary This corclusionis representg
asBCP((a,0)) NBCP((a,1)) = (d,1) 3

The samecorclusion coud be achieved by corsider
ing clausews = (a V —b V d). Any assignmento the
varialles that satisfiesthe formula must also satisfy this
clause,and so at leastone of the assignmets that satis-
fies the clausemust hold. Given that in this example the
threeassignmets that satisfythe clausealsoimply the as-
signment(d, 1), then this assignmenis part of any as-
signmentthat satisfiesthe CNF formula, and so it is a
necessary assignmentThis corclusion is representedas
BCP({a, 1)) N BCP({b,0)) N BCP({d, 1)) = (d,1) *

The two previous exanples corcern necesaryassign-
mentsconditionsfor formulasatisfiability Next we addess
necessary assignmentgondtions for preventing formula
unsatisfiafdit y.

First, note that the triggering assignmen (e, 0) implies
both (d, 0) and (d, 1), and herce a confict is necesarily
declaed.As aresult,the assignmen(e, 1) is deanednec-
essary

Ancther explanation for the same assignmentcomes
from consideing clausews = (—a V —d V e). The as-
signment(e, 0) makesthis clauseunsatisfiedHence acon-
flict is dedared,andtheassignmente, 1) is deemedneces-
sary Obserethatthenecessaryassignmentsbtairedfrom
unsatisfiabity condtions correspondto the well-known
failed-literal rule [5].

2.2.2. Inferr ed Clauses Besidegheidentification of nec-
essaryassignmets, the table of assignmats can also be
usedfor inferring new clauwses.

3 This condition is the inference rule used in the Stimark's
method[12].
4 Thisruleis utilized in [4] for deriving sharedmplications.



Let us considerthe triggering assignmen (a, 1) and
therespetive implied assignmen(e, 1). Hence theclause
(—a V e) canbeinferred.Clearly, for ead entryin theta-
ble of assignments new binary clausecanbe created In
practiceour goalis to be selectve with which entriesto uti-
lize for inferring new clauses.

Corsider clausew, = (—a V ¢). Each assignmenthat
satisfiesclausew, either implies the set of assignmets
{{a,0),(b,1),(d, 1)} or {(c,1)}. Hene, becauseat least
one of the assignmets that satisfiesw, must hold, the
clause(b V ¢) canbeinferred.

In addition, obsere that the triggering assignmets
(a,0) and(a, 1) imply theassignmentsb, 1) and(c, 1), re-
spectvely (besidesother triggering assignmets). Since
a must be subjectto one of the two possible assign-
ments, then one of the assignmets in {(b,1),(c, 1)}
must also hold, and so the clause (b Vv ¢) can be in-
ferred.

The previous exanples illustrate how to infer clauses
from formulasatisfiabilityrequiremets. Next, weiillustrate
theinferenceof clausedrom necessarycorditionsfor pre-
verting formulaunsatisfialiity .

First, obseve thatthe setof assignmentg§(a, 1), (d, 0)}
unsatisfy clause ws. As a result, the assignmets
{{a,1),(d,0)} must not hold simultaneosly, and so
theclawse(—a V d) canbeinferred.

Alternatively, obsere that the assignmets
in  {{(a,1),(d,0)} imply the assignments in
{{a,1),{c,1),(d,0),{d,1),{e, 1)}, that derote an in-
consistenassignmentlueto variabled. Henee, the assign-
ments{(a, 1), (d, 0)} mustnothold simultaneosly, andso
theclawse(—a V d) canbeinferred.

2.3. Reasoningwith Probing-BasedConditions

Theexanplesof the previoussectionillustratetheforms
of reasoningthat can be performedgiven information re-
gardng theassignmets implied by ead triggeringassign-
ment. Theseforms of reasonig include identification of
necessaryassignmets andinferenceof new clauses.n this
sectionwe formalize different condtions, both for identi-
fying ne@ssaryassignmentandfor inferring new clauses.
All propsedreasoningonditionsresultfrom analyingthe
consguenesof assignmets madeto variablesandof prop-
aggting thoseassignmentsvith BCP.

2.3.1. Satisfiability-Based Necessay Assignments The
purpcse of this sectionis to describethe identification of
necesaryassignmentbasedon formula satisfiability con-
ditions. The first condition identifiescommnon implied as-
signmentsgiven the two possibletriggering assignmets
thatcanbeassignedo avariable.

Theorem 2.1 Givena CNF formula p, for any variable =
of the formula, the assignmets defnedby BCP({x,0)) N
BCP((z, 1)) are neessaryassignmats.

Any complde setof assignmetsto thevariadesthatsat-
isfiesthe CNF formula mustassigneithervalueO or 1 to
eachvariable x. If for both assignmets to 2, someother
varialde y is implied to the samevalue v, thenthe assign-
ment(y, v) is deemedne@ssary

Thesecoml condtion identifiescommonimplied assign-
mentsgiven requiredconditionsfor satisfyingeachclause.

Theorem 2.2 Givena CNF formulap, for anyclausew of
the formula, the assignmats definel by (., BCP({/, 1))
are ne@ssaryassignments.

Any compete setof assignmets that satisfiesthe CNF
formula must satisfy all clausesHena, assignmentshat
arecommonto all assignmets that satisfy a given clause
mustbe deemednecesaryassignmets.

2.3.2. Unsatisfiability-Based Necessary Assignments
We now proceed describingthe identification of neces-
sary assignmets basedon formula unsatisfiabilitycond-
tions. As mertionedearlier theseconditions correspondo
thefailed-literalrule [5].

Theorem 2.3 Given a CNF formula ¢, if BCP((z,v))
yieldsa confict, thentheassignmentz, —v) is deemednec-
essary

The previous theoremincludes the condtions regarding
boththeidentificationof inconsistenaissignmentto a vari-
ableandthe identification of unsatisfiedclauses.(Obsenre
thatmostBCP algorithmsdo not distinguishbetwee these
two situationspeinga corflict declarel in bothcases.)

2.3.3. Implication-Based Inferred ClausesAs illus-
trated earlier probing can also be usedfor inferring new
clausesOnesimple appro&h for inferring new clausess
to useead entryin thetableof assignmets.

Theorem?2.4 Given a CNF formula ¢, if (l2,1) €
BCP((l1,1)), then the clause (=i; V [3) is an impli-
cateof .

Clearly this result can yield mary irrelevant bi-
nary clawses. Hene, as describedin Sedion 2.4, the
objedive is to be selectve with which clausesto actu-
ally corsider

2.3.4. Satisfiability-Based Inferr ed Clauses This sec-
tion describs the inferenceof clausesbasedon formula
satisfiabilitycondtions.

Theorem 2.5 Givena CNFformulay, for every pair of lit-
eralsl; andl, for which there existsa variablez sud that,
(l1,1) € BCP({z,0)) A (l2,1) € BCP((z,1)) thenthe
clause(l; V ly) is animplicateof .



Clearly, the two possibletruth assignmentsn z; either
imply (l1,1) or (l,1), thenone of thesetwo assignmets
musthold.

Theorem 2.6 Givena CNFformulap, for anyclausew =
(It; V... V1) € o, all clausesof theform, {/; |(l;;,1) €
BCP((lt;,1)),l;; € w,j = 1,..., k} areimplicatesof .

Sincethe original clausew mustbe satisfiedary setof |w|

assignmets, eachimplied by a differentliteral in w, forms
an implicate of . We shouldobseve that the numter of
clauseghat canbe createds upper-boundea by the Carte-
sianprodud of eachsetof assignmets thatresultsfrom ap-
plying BCP to eachtriggeringassignmentln addition ob-
sene the previoustheoremcanyield clauseswith duplicae
literals.Clearly, simpleprocedirescanbeimplemenedthat
filter outtheseduplicae literals.

2.3.5. Unsatisfiability-Based Inferr ed Clauses Next we
describethe inferenceof clausesasedon formulaunsatis-
fiability conditiors.

Theorem 2.7 Givena CNF formula, for all pairsi; and
Iy for which there exists a variable = suc that, (z,0) €
BCP({l1,0)) A (z,1) € BCP({l2,0)) theclause(l; V l2)
is animplicateof .

If two assignmentanply distincttruth valuesonagiven
varialde z;, thenthetwo assignmentshustnot hold simul-
taneasly.

Oneaddtional cordition relatedwith unsatisfiabity is
thefollowing:

Theorem 2.8 Givena CNF formula ¢, for eadh setof as-
signmentsd = {BCP((l;,0)) U...UBCP((l,0))} suc
that there existsa clausew € ¢ , with w(A) = 0, thenthe
clause (1 V... Vi) isanimplicateof .

If the union of setsof assignmets resulting from ap-
plying BCP to a setof k triggering assignmentsinsatis-
fiesagivenclausethenthe simultaneos occurenceof the
k assignmentsustbe prevented.Hence a new clausecan
be createl. Obsere thata strongercondtion canbe estab-
lishedif the condtion w;(BCP(A)) = 0 is used,at the
costof additiond compuational overhead.Moreover, ob-
sene thatthe resultof Theaem 2.8 is relatedwith a tech-
nique propcsedin [6]. For a clause(l vV 3), whereg is a
disjunctionof literals, if assigningvalue 0 to all literalsin
3 yields a corflict, then(3) is animplicate of . The two
techriquesarerelatedsinceboth infer clausesrom unsat-
isfiability requiremats. Thework of [6] assumes specift
clauseand consides BCP of simultaneousetsof assign-
ments. Theorem2.8 allows ary k triggeringassignmets,
but considerghe separateapgdication of BCP (which may
yield fewerimplied assignments).

5 Asaresult,we referto this techniqueasliteral dropping

2.4. Problt: a Probing-BasedSAT Preprocessor

Thereasoningcondtions describé in the previous sec-
tion were usedto implement a SAT prepro@ssor Problt.
This prepro@ssoris organizedasfollows:

1. Createthe table of assignmentdy applying BCP to
eachindividud assignmen

2. Apply arestrctedsetof the reasoningcondtions de-
scribedin the previous sections:

(a) Identificationof necessargssignmets, obtainel
by reasoningconditiors from Theorens 2.1,2.2
and 2.3.

(b) Identificationof equivalentvariablespbtainel by
a restricted apgdication of reasoningcorditions
from Theaem2.4.

3. Iteratefrom 1 while moreequivalert variablescanbe
identified

For the currentversion of Problt we opted not to in-
fer new clausegduring prepro@ssing.Existing experimen-
tal evidencesuggestdhat the inferenceof clausesduring
prepro@ssingcansometimesesultin largenumbes of new
clauseswhich canimpad negatively therun timesof SAT
solvers[7]. Theidentificationof condtions for theselectve
utilization of clausenferenceconditionsduringprepro@ss-
ing is the subjectof futureresearchwork.

As a result, the utilization of Theaem 2.4 is restricted
to the inferene of binary clauseghatleadto the identifi-
cationof equialert variables Remenberthattwo-variade
equivalene (e.g.x < y) is describé by the pair of clauses
(mzVy) A (xV—y), thatcanberepresetedasimplications
(z — y)A(y — z) (andalsoas(—y — —z)A(—z — —y)).
In Probilt, ratherthaninferring new clauseswhich allow to
identify equivalentvariales, it is simplerto identify equiv-
alen@swithout having to infer the correspoding clauses.
Basedonthetableof assignmets, equivalert variadesmay
beidentifiedasfollows:

e If (y,0) € BCP({z,0)) and(y,1) € BCP({x, 1)),
thenz < y.

e If (y,0) € BCP({z,0)) and (x,0) € BCP((y,0)),
thenz < y.

Moreover, the samereasonig canbe appliedto identify
thetwo-variableequvalene@ x « —y.

3. Experimental Results

In thesesectionwe presenexperimentalresultsto eval-
uatethe usefulnes®f the new algorithm.First, we andyze
the improvementson JQuest2by integrating Problt as a
prepro@ssor Then experimenté resultsobtainel for Pro-
blt+JQuest2are compmaredwith resultsobtaired for other
state-of-the-arBAT solvers.



Family Problt || ProblttJQ2| JQuest2 Family Problt+JQ2 2clseq zChdf
barrel(8) || 18.36 700.28 1,11812 barrel(8) 700.28 1,634.23 48791
longmut(16) | 544.18 1,72517 4,65867 longmult(16) 1,75.17 2,201.37 2,19108
queteirvar(10 48.04 70.96 30.00 queueinvar(10) 70.96 83.23 5.52
miters(25)|| 16653 248.11| (2)11,17565 miters(25) 248.11 170.84| (2)10,53749
fvp-unsat-1.0(% | 64857 || 1,59944 54975 fvp-...-1.0(4) || 1,59.44 | (2)13,5%6.74 54975
guasigrouf?) 61.21 531.43 73525 guasigroup(22) 531.43 3,7%6.91 34807

Table 2. Improvements on JQuest2

Table 3. Comparison with other solvers

Problthasbeen integratedon top of JQuest2a compé-
itive Java SAT solver &, JQuestds a badktrack searchSAT
solver, basedon efficient datastructures,and implemert-
ing the mosteffective badktrack searchtechnigies,namdy
clauserecordng and non-ctronologcal badtrack, search
restartsandadaptive branding heuristics. Oneof themain
objedives of JQuest2s allowing the rapid prototypingof
new SAT algorithms.SinceProbltis still an evolving pre-
liminary implementation, the utilization of JQuestacili-
tatesthe evaluationandcorfigurationof Probilt.

Tables2 and 3 give the CPU time in second required
for solving for differentclasse®f problan instancesthat
includesomeof the hardesinstancs. For eat bencimark
suite, the total numbe of instanceds shaovn. For all ex-
perimentaresultsa P-IV@1.7GHz Linux machne with 1
GByte of physical memay wasused.The CPU time was
limited to 5000second. Consegjuently we added 5000sec-
ondsfor ead instancenot solvedin the allowed CPUtime
(the numbe of abortedinstancess indicaed in parerhe-
sis).

In Table 2, Problt+JQust2 (JQuest2with Problt inte-
grated)is compaed with the original JQuest2 Moreover,
the time requiredfor the preprocssorProbiltis alsogiven.
Tabe 3 compaesProblt+JQust2 with other SAT solvers,
namdy zChdf and2clseq.zChaf is oneof the mostcom-
petitive SAT solvers. On the other hand, 2clseqis also
known a competitive SAT solver, chaacterizedy integrat-
ing formulamanipdation technques.

From the obtaned results,several condusionscan be
drawn:

e Problt+JQuest2omesoutasthemostrobustsolveron
the set of probleminstancesconsidered.Despitebe-
ing implemened in Java, which ne@ssarilyyields a
slower implementation, Problt+JQust2 performane
is indead comparableto state-of-the-arBAT solvers.

e The performare of Problt+JQuest2s compaableto
2clseqin instancesvhereformulamanipuation helps

indus-
(see

6 JQuest2 entered in the second stage of the
trial catgory in the SAT'2003 Competition
http://www.satlive.oig/SAT Competition/2003/com&report/).

on solvinganinstanceThis explainswhy zChaff per
formanceis not competitive for theseinstancs.

e Problt+JQuest2 performane is also compara-
ble to zChaff on instanceswhere more sophisti-
cated badtrack search technques are required.
Noneheless, and when compared to JQuest2re-
sults, Problt+JQuet2 may requiremoretime to solve
a family of bendmark exanples. This can be ex-
plained by the time required for applying Problt
techniques.Clearlythis is a dravbackwhenthe num-
berof variadesin the CNF formulais notredued.

4. RelatedWork

The Problt algorithm describé in the previous section
usegprobingasthebasisfor implemening a number of for-
mulamanipuldion techniqies.In this sectionwe relatePro-
blt with previouswork in probing andformulamanipuldion
techriques.

4.1. Probing-BasedTechniques

In the SAT doman, the ideaof establishinghypotheses
andinferring factsfrom thosehypothesesdhasbeenexten-
sively studiedin therecen past[3, 4, 5, 6].

The failed literal rule is a well-knowvn and extersively
usedprobing-tasedtechrnique (seefor example [5]): if the
assignmenx = 0 yields a confict (dueto BCP),thenwe
mustassignz = 1. This rule is coveredby neessaryas-
signmentobtainal from unsatisfiabilitycondtions (Theo-
remz2.3).

Variable probing is a probingbasedtechique, which
consistsof apgdying the branch-mege rule to ead vari-
able[3] 7. Comman assignmentto variablesareidentified,
by deteding and memging equvalert branctes®. Obsere
thatvarialde probingis coveredby reasoningcondtions es-
tablishedwith Theaem2.1.

7 The branch-mege rule is the inferencerule usedin the S@imark’s
Method[12].

8 In addition, variable probing is often used as part of look-ahead
branchingheuristicsin SAT solvers[9].



Clause Probing is similar to variable probing even
thouch varialle probing is basedon variablesand clause
probing is basedon clauses.Clause probing consistsof
evauating clause satisfiability requiremats for identi-
fying common assignmentsto variables. Comnon as-
signmentsare deaned neessaryfor a clauseto bemme
satisfied and consegently for the formula to be satis-
fied. Thesetechniges have bean appliedto SAT in [10]
and morerecertly in [4]. In our framework, clauseprob-
ing is capturel by Theaem 2.2. To the bestof our knowl-
edge no othe work proposeghe joint utilization of vari-
ableandclauseprobing

The notion of literal dropping that consides applying
setsof simultaneos assignmets for inferring clauseghat
subsumesxisting clauses,is describe for example in [6].
As mentiored earlier someof the clauseinferencecond-
tions propssedby Theaem 2.8 canbe relatedwith previ-
oustechniaiesfor literal droppng, propasingmoregereral
condtions for inferring clauses,but basedon lesspower-
ful unit propagtion.

4.2. Other Manipulation Tedchniques

Two-variable equivalenceis a well-known formulama-
nipulationtechrique thathasbeen integratedin Problt(see
Section 2.4). Additional two-variable equvalerce cond-
tions can be establishednamely by the identificaion of
strongly conrectedcompnerts [1]. It is interestingto ob-
sene thatthe existing stronglycomectedcommpnentsin a
CNF formulaarecapuredfrom the constructionof the as-
signmentableandtheapgdication of Theaem2.4.Further
more, sophisticatedechiqueshave been developedto de-
tectchans of biconditionals[8, 11].

The 2-closue of a 2CNF sub-formula[7] allows to in-
fer addtional binary clausesTheidentificaion of thetran-
sitive closureof theimplication graphis obtaineal from the
constructionof the assignmentableandthe applicationof
Theaem 2.4:if (y,1) € BCP((z, 1)) thencrede clause
(mz Vy).

More recently a competitive SAT solver incorpording
hyper-resolutionwith binaryclauseshasbeenproposed?].
Given thesetof clauses(—ly V) A (mla V) Ao A (=l V
) A(l1 Via V... Vi Vy), hyperresolutionallows infer-
ring (x V y). Once again, obsere thatthis techriqueis cov-
eredby the constructiorof theassignmettableandthe ap-
plicationof Theaem2.4:if (x,0) € BCP((y, 1)) thencre-
ateclawse(z V y).

Compared with existing work, probingbasedprepro-
cessingechiquesnot only naturallycapure all the above
mentiored formula manipuation techriques, but also fur-
therallow the development of new techriques.In addition,
the propcsed unified framework also allows relating and
compringdifferentformulamanipuation techriques.

5. Conclusions

This pager introduces Problt, a new probingbasedfor-
mula manipuation SAT prepro@ssor Problthasbeenim-
plemerted as a unified formula manipuation framework,
basedon probing assignmets, that capturesa signifi-
cant number of formula manipuldion techiques. More-
over, this new appoachintegratesfor the first time most
formula manipulation techhiques and allows develop-
ing new techniqies.In addition,the obtainel experimental
resultsclearly indicae that Problt is effective in increas-
ing therohustnes®f state-of-the-arBAT solvers.
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