
Probing-BasedPreprocessingTechniques
for PropositionalSatisfiability

InêsLynceandJõaoMarques-Silva
IST/INESC-ID,TechnicalUniversityof Lisbon,Portugal�

ines,jpms� @sat.inesc.pt

Abstract

Preprocessingis anoftenusedapproach for solvinghard
instancesof propositional satisfiability (SAT). Preprocess-
ing can be usedfor reducing the number of variables and
for drasticallymodifying thesetof clauses,eitherby elimi-
natingirrelevant clausesor by inferring new clauses.Over
the years, a large number of formula manipulation tech-
niques hasbeen proposed, that in somesituationshaveal-
lowedsolvinginstances not otherwise solvablewith state-
of-the-artSAT solvers. Thispaper proposesprobing-based
preprocessing, an integrated approach for preprocessing
propositional formulas,that for the first time integratesin
a singlealgorithm mostof the existing formula manipula-
tion techniques.Moreover, the new unified framework can
beusedto developnew techniques.Preliminaryexperimen-
tal resultsillustrate that probing-basedpreprocessingcan
be effectively usedas a preprocessingtool in state-of-the-
art SAT solvers.

1. Intr oduction

Propositional Satisfiability (SAT) is a well-known NP-
complete problem, with extensive applications in many
fieldsof Computer ScienceandEngineering.SAT hasbeen
thesubjectof intensiveresearchin recent years,with signif-
icant theoretical andpractical contributions.From a prac-
tical perspective, several competing solutionstrategies for
SAT have been proposed. Local searchalgorithms have
allowed solving extremely large satisfiableinstances of
SAT, and in particular have beenshown to be very effec-
tive in randomly generatedinstances of SAT. On the other
hand, several improvementsto thebacktracksearchDavis-
Putnam-Logemann-Loveland algorithm have been intro-
duced, thus allowing to solve either satisfiableandunsat-
isfiable instances.Thesenew backtrack searchalgorithms
utilize advanced conflict analysisprocedures, that record
thecausesof failuresandthatcanthereforebacktracknon-
chronologically.

In addition,therehave beensignificant contributions in
terms of formula manipulation techniques which can in
somecasesyield competitiveapproaches [2, 3, 4, 7, 8]. It is
generally acceptedthattheability to reduceeitherthenum-
berof variables or clausesin instancesof SAT impactsthe
expectedcomputational effort of solving a given instance.
This ability canactually be essentialfor specificandhard
classesof instances.Interestingly, the ability to infer new
clausesmayalsoimpact the expectedcomputationaleffort
of SAT solvers.Observe thatthesenew clausescanbeuse-
ful for reducing thenumber of variables(andconsequently
thenumberof clauses).

This paper proposes the utilization of probing-based
techniques for manipulating propositional satisfiabil-
ity formulas. Probing allows the formulation of hypo-
thetical scenarios,obtained by assigning a value to a
variable, and then applying unit propagation. Further-
more,probing-basedtechniquesbuild upon a very simple
idea: a table of triggering assignments, which regis-
tersthe resultof applyingprobingto every variable in the
propositional formula.

The new probing-basedapproach not only provides a
generic framework for applying differentSAT preprocess-
ing techniques(by establishingconditionson theentriesof
thetableof assignments),but alsocanbeusedto implement
mostexisting formulamanipulation techniques.Moreover,
andto our bestknowledge, representsthefirst approach to
jointly apply variableandclauseprobing.

Thepaper is organizedasfollows. Thenext sectionde-
scribestheproposedframework, which allows the integra-
tion of existing formulamanipulation techniques.Next, ex-
perimental resultsarepresentedandanalyzed. Finally, Sec-
tion 4 overviews relatedwork andsection5 concludes the
paper.

2. Integrating Probing-BasedTechniques

In this sectionwe proposean integratedapproach for
implementing probing-basedtechniques.We start by de-
scribingthe tableof assignments,which recordsthe prob-

ing results.In addition, we establishreasoning conditions
for identifying necessaryassignmentsand inferring new
clauses.Finally, wepresentProbIt: aprobing-basedprepro-
cessorfor propositionalsatisfiability.

2.1. Preliminaries

In what followsweanalyzeconditionsrelatingsetsof as-
signments.Givenanassignment� 1 andaformula � , there-
sult of applying Boolean ConstraintPropagation(the itera-
tive applianceof unit propagation) to � given � is denoted
by �����
	��
����� . Whenclearfrom thecontext, weusetheno-
tation �����
	���� , andtheexistence of theCNF formula � is
implicit. Withoutassignment, �����
	���� (or �����
	��) denotes
plain unit propagation,given the existenceof unit clauses.
Assignment� is referredto as the triggering assignment
of theassignmentsin �����
	���� . We mayalsousethenota-
tion �����
	���� to denote theresultof applying unit propaga-
tion astheresultof all assignmentsin thesetof assignments
� .

Reasoningconditions are analyzed basedon a tabular
representationof triggeringassignments,i.e. thetableof as-
signments, where eachrow represents a triggeringassign-
ment, and eachcolumn represents a possibleimplied as-
signment2. In this table,each 1-valued entry 	������������ de-
notesan implied assignment��� given a triggeringassign-
ment ��� . Hence the1-valuedentriesof a given row ��� de-
notetheelementsof set �����
	������ .
2.2. Moti vating Examples

This sectionanalyzesa few examples,thatmotivate the
techniquesupon which our framework is based,andwhich
allow theidentificationof necessaryassignmentsandthein-
ferenceof new clauses.Considera CNF formula � having
thefollowing clauses:���! 	�"$#&%'� ��() 	�*�"
#&*�+�#-,.���/0 	�"$#1*
%�#&,.� ��2) 	�*�"
#&*�,$#-34���50 	�"$#1*
+�#-36� ��7) 	�+�#-36���80 	9*
"
#-+:�

This formula hasthe the tableof assignmentsshown in
Table 1. Eachline in the tablecorresponds to the resultof
applying BCP, given a triggering assignment. For exam-
ple, given the assignment a=0 (denotedas ;�"<�9=?>), we can
conclude from the table that BCP(;9"<�9=?>) = @A;9"B��=C> , ;9%D�:E6> ,
;9,B�:E6>9F .
2.2.1. NecessaryAssignments Observe that for the two
possibleassignments to variable " , we always obtain the

1 An assignmentG is a pair HJILKNMPO thatdenotesassigningvalue M to lit-
eral I .

2 In practicethe tableof assignmentsis representedasa sparsematrix
andsothememoryrequirementsareneversignificant.

Q" " Q % % Q+ + Q, , Q3 3Q" 1 1 1
" 1 1 1 1Q % 1 1 1 1 1
% 1Q+ 1 1 1 1 1
+ 1Q, 1
, 1Q3 1 1 1 1 1
3 1

Table 1. Table of assignments

implied assignment ;9,B�:E6> . Sincevariable " must assume
oneof the two possibleassignments,then the assignment
;9,B�:E6> is deemed necessary. This conclusionis represented
as �����
	9;�"<�9=?>R��S0�����
	9;�"<�:E6>R� ;9,P�TE4> 3

The sameconclusion could be achieved by consider-
ing clause ��/U 	�"V#W*
%)#X,.� . Any assignmentto the
variables that satisfiesthe formula must also satisfy this
clause,and so at leastone of the assignments that satis-
fies the clausemust hold. Given that in this example the
threeassignments thatsatisfytheclausealsoimply theas-
signment ;�,B�:E6> , then this assignment is part of any as-
signmentthat satisfiesthe CNF formula, and so it is a
necessary assignment.This conclusion is representedas
�����
	9;�"<�:E6>R��SY�����
	9;�%D�9=?>R��SY�����
	9;9,B�:E6>�� ;9,B�:E6> 4

The two previous examples concern necessaryassign-
mentsconditionsfor formulasatisfiability. Next weaddress
necessaryassignmentsconditions for preventing formula
unsatisfiabilit y.

First, note that the triggeringassignment ;�3T�9=?> implies
both ;�,B��=C> and ;9,B�:E6> , and hence a conflict is necessarily
declared.As a result,theassignment ;93:�:E6> is deemednec-
essary.

Another explanation for the sameassignmentcomes
from considering clause ��2Z 	9*
"V#X*
,1#[34� . The as-
signment;�3T�9=?> makesthisclauseunsatisfied. Hence, acon-
flict is declared,andtheassignment;93:�:E6> is deemedneces-
sary. Observe thatthenecessaryassignmentsobtainedfrom
unsatisfiabilit y conditions correspondto the well-known
failed-literal rule [5].

2.2.2. Inferr edClauses Besidestheidentificationof nec-
essaryassignments, the table of assignments can also be
usedfor inferringnew clauses.

3 This condition is the inference rule used in the St̊almarck’s
method[12].

4 This rule is utilized in [4] for deriving sharedimplications.

Let us consider the triggering assignment ;9"<�:E6> and
therespective implied assignment ;93:�TE4> . Hence, theclause
	9*
")#\36� canbe inferred.Clearly, for each entry in the ta-
ble of assignmentsa new binary clausecanbe created. In
practiceourgoalis to beselectivewith whichentriesto uti-
lize for inferringnew clauses.

Considerclause��8] 	9*�"^#_+'� . Each assignmentthat
satisfiesclause ��8 either implies the set of assignments
@A;9"B�9=?>9�';9%D�:E6>9�';9,P�TE4>�F or @A;9+D�:E6>�F . Hence, becauseat least
one of the assignments that satisfies ��8 must hold, the
clause	�%�#-+'� canbeinferred.

In addition, observe that the triggering assignments
;9"B��=C> and ;9"<�:E6> imply theassignments;9%D�:E6> and ;9+D�:E6> , re-
spectively (besidesother triggering assignments). Since
" must be subject to one of the two possible assign-
ments, then one of the assignments in @A;9%��TE4>9�';9+D�:E6>�F
must also hold, and so the clause 	�%&#`+'� can be in-
ferred.

The previous examples illustrate how to infer clauses
from formulasatisfiabilityrequirements.Next, we illustrate
the inferenceof clausesfrom necessaryconditions for pre-
venting formulaunsatisfiability .

First,observe thatthesetof assignments@A;9"B�TE4>9�';9,B�9=?>�F
unsatisfy clause ��(. As a result, the assignments
@A;9"B�:E6>9�';9,B�9=?>�F must not hold simultaneously, and so
theclause 	�*�"
#-,.� canbeinferred.

Alternatively, observe that the assignments
in @A;9"<�:E6>��:;�,B�9=?>�F imply the assignments in
@A;9"B�:E6>9�';9+D�:E6>9�';9,B�9=?>9�';�,B�TE4>9�';93:�TE6>9F , that denote an in-
consistentassignmentdueto variable , . Hence, theassign-
ments@A;�"<�:E6>9�';9,B�9=?>9F mustnot hold simultaneously, andso
theclause 	�*�"
#-,.� canbeinferred.

2.3. Reasoningwith Probing-BasedConditions

Theexamplesof theprevioussectionillustratetheforms
of reasoningthat can be performedgiven information re-
garding theassignments implied by each triggeringassign-
ment. Theseforms of reasoning include identification of
necessaryassignmentsandinferenceof new clauses.In this
sectionwe formalizedifferentconditions, both for identi-
fying necessaryassignmentsandfor inferring new clauses.
All proposedreasoningconditionsresultfrom analyzingthe
consequencesof assignmentsmadetovariablesandof prop-
agating thoseassignmentswith BCP.

2.3.1. Satisfiability-Based Necessary Assignments The
purpose of this sectionis to describethe identification of
necessaryassignmentsbasedon formulasatisfiabilitycon-
ditions. The first condition identifiescommon implied as-
signmentsgiven the two possibletriggering assignments
thatcanbeassignedto avariable.

Theorem 2.1 Givena CNF formula � , for anyvariable a
of the formula, the assignments definedby �����
	9;Na
�9=?>���S
�����
	9;ba
�TE4>R� arenecessaryassignments.

Any completesetof assignmentsto thevariablesthatsat-
isfies the CNF formula mustassigneithervalue0 or 1 to
eachvariable a . If for both assignments to a , someother
variable c is implied to the samevalue d , thenthe assign-
ment ;Nc���de> is deemednecessary.

Thesecond condition identifiescommonimpliedassign-
mentsgiven requiredconditionsfor satisfyingeachclause.

Theorem 2.2 Givena CNF formula � , for anyclause� of
the formula, theassignmentsdefined by fhg4i������
	9;9jh�:E6>��
arenecessaryassignments.

Any complete setof assignments that satisfiesthe CNF
formula must satisfy all clauses.Hence, assignmentsthat
arecommonto all assignments that satisfy a given clause
mustbedeemednecessaryassignments.

2.3.2. Unsatisfiability-Based Necessary Assignments
We now proceed describingthe identification of neces-
sary assignments basedon formula unsatisfiabilitycondi-
tions.As mentionedearlier, theseconditionscorrespondto
thefailed-literalrule [5].

Theorem 2.3 Given a CNF formula � , if �����
	�;Na
��de>R�
yieldsa conflict, thentheassignment;Na
�'*?de> is deemednec-
essary.

Theprevious theoremincludes theconditions regarding
boththeidentificationof inconsistentassignmentsto avari-
ableandthe identification of unsatisfiedclauses.(Observe
thatmostBCPalgorithmsdo not distinguishbetween these
two situations,beingaconflict declared in bothcases.)

2.3.3. Implication-Based Inferr ed Clauses As illus-
tratedearlier, probing can also be usedfor inferring new
clauses.Onesimpleapproach for inferring new clausesis
to useeach entryin thetableof assignments.

Theorem 2.4 Given a CNF formula � , if ;9j / �:E6>lk
�����
	9;�j � �:E6>R� , then the clause 	9*�j � #mj / � is an impli-
cateof � .

Clearly, this result can yield many irrelevant bi-
nary clauses. Hence, as describedin Section 2.4, the
objective is to be selective with which clauses to actu-
ally consider.

2.3.4. Satisfiability-Based Inferr ed Clauses This sec-
tion describes the inferenceof clausesbasedon formula
satisfiabilityconditions.

Theorem 2.5 Givena CNFformula � , for every pair of lit-
erals j � and j / for which thereexistsa variable a such that,
;9j � �:E6>Vkm�����
	�;Na
�9=?>R�onp;�j / �TE4>qkm�����
	9;Na
�:E6>R� then the
clause	�j � #&j / � is an implicateof � .

Clearly, the two possibletruth assignmentson a�� either
imply ;9j � �:E6> or ;9j / �:E6> , thenoneof thesetwo assignments
musthold.

Theorem 2.6 Givena CNF formula � , for anyclause�r
	�js��t�#1u�u�uB#1jJ��v6�wkx� , all clausesof theform, @6js�Ny:z{;9jJ�Ny��TE4>|k
�����$	9;9js�hy'�:E6>R���'js�hy!k � ��} E4��u�u�u'��~CF are implicatesof � .

Sincetheoriginal clause� mustbesatisfied,any setof z � z
assignments,eachimplied by a differentliteral in � , forms
an implicate of � . We shouldobserve that the number of
clausesthatcanbecreatedis upper-bounded by theCarte-
sianproduct of eachsetof assignmentsthatresultsfrom ap-
plying BCPto eachtriggeringassignment.In addition, ob-
serve theprevioustheoremcanyield clauseswith duplicate
literals.Clearly, simpleprocedurescanbeimplementedthat
filter out theseduplicate literals.

2.3.5. Unsatisfiability-BasedInferr ed Clauses Next we
describetheinferenceof clausesbasedon formulaunsatis-
fiability conditions.

Theorem 2.7 Givena CNF formula � , for all pairs j � and
j / for which there exists a variable a such that, ;Na
�9=?>1k
�����$	9;9j � �9=?>R��n\;ba
�TE4>
k������
	9;9j / �9=?>�� theclause 	�j � #qj / �
is an implicateof � .

If two assignmentsimply distincttruthvaluesonagiven
variable a�� , thenthetwo assignmentsmustnot hold simul-
taneously.

Oneadditional condition relatedwith unsatisfiability is
thefollowing:

Theorem 2.8 Givena CNF formula � , for each setof as-
signments� @D�����
	9;9j � �9=?>R�e�1u�u'uB�^�����
	9;9js�<�9=?>R�9F such
that there existsa clause� k�� , with ��	���� = , thenthe
clause, 	�j � #-u�u'uP#-j � � is an implicateof � .

If the union of setsof assignments resulting from ap-
plying BCP to a set of ~ triggering assignmentsunsatis-
fiesa givenclause,thenthesimultaneous occurrenceof the
~ assignmentsmustbeprevented.Hencea new clausecan
becreated. Observe thata strongercondition canbeestab-
lished if the condition �$�6	N�����
	������ = is used,at the
cost of additional computational overhead.Moreover, ob-
serve that the resultof Theorem 2.8 is relatedwith a tech-
niqueproposedin [6]. For a clause 	�j�#-��� , where � is a
disjunctionof literals, if assigningvalue 0 to all literals in
� yields a conflict, then 	b��� is an implicateof � . The two
techniquesarerelatedsinceboth infer clausesfrom unsat-
isfiability requirements.Thework of [6] assumesa specific
clauseandconsiders BCP of simultaneoussetsof assign-
ments5. Theorem2.8 allows any ~ triggeringassignments,
but considersthe separateapplication of BCP (which may
yield fewer implied assignments).

5 As a result,we referto this techniqueasliteral dropping.

2.4. ProbIt: a Probing-BasedSAT Preprocessor

Thereasoningconditions described in theprevioussec-
tion were usedto implement a SAT preprocessor, ProbIt.
This preprocessoris organizedasfollows:

1. Createthe table of assignmentsby applying BCP to
eachindividual assignment.

2. Apply a restrictedsetof the reasoningconditions de-
scribedin theprevioussections:

(a) Identificationof necessaryassignments,obtained
by reasoningconditions from Theorems2.1,2.2
and 2.3.

(b) Identificationof equivalentvariables,obtainedby
a restricted application of reasoningconditions
from Theorem2.4.

3. Iteratefrom 1 while moreequivalent variablescanbe
identified.

For the current version of ProbIt we opted not to in-
fer new clausesduringpreprocessing.Existingexperimen-
tal evidencesuggeststhat the inferenceof clausesduring
preprocessingcansometimesresultin largenumbersof new
clauses,which canimpact negatively therun timesof SAT
solvers[7]. Theidentificationof conditionsfor theselective
utilizationof clauseinferenceconditionsduringpreprocess-
ing is thesubjectof futureresearchwork.

As a result, the utilization of Theorem 2.4 is restricted
to the inference of binary clausesthat leadto the identifi-
cationof equivalent variables.Rememberthattwo-variable
equivalence (e.g.a_��c) is described by thepairof clauses
	9*�a�#�c��Pn0	ba�#)*?c�� , thatcanberepresentedasimplications
	ba_��c��'n�	bc1��a�� (andalsoas 	9*?cV��*?a��'n$	9*?a_��*?c���� .
In ProbIt,ratherthaninferring new clauseswhich allow to
identify equivalentvariables,it is simplerto identify equiv-
alenceswithout having to infer the corresponding clauses.
Basedonthetableof assignments,equivalent variablesmay
beidentifiedasfollows:
� If ;Nce�9=?>1k������
	�;Na
�9=?>R� and ;bce�:E6>1k������
	9;ba
�TE4>R� ,

thena_��c .� If ;Nce�9=?>1k������
	�;Na
�9=?>R� and ;ba
�9=?>Vk������$	9;Nc���=C>R� ,
thena_��c .

Moreover, thesamereasoning canbeappliedto identify
thetwo-variableequivalence a_��*�c .

3. Experimental Results

In thesesectionwe presentexperimentalresultsto eval-
uatetheusefulnessof thenew algorithm.First, we analyze
the improvementson JQuest2by integrating ProbIt as a
preprocessor. Then, experimental resultsobtained for Pro-
bIt+JQuest2are comparedwith resultsobtained for other
state-of-the-artSAT solvers.

Family ProbIt ProbIt+JQ2 JQuest2
barrel(8) 18.36 700.28 1,118.12

longmult(16) 544.18 1,725.17 4,658.67
queueinvar(10) 48.04 70.96 30.00

miters(25) 166.53 248.11 (2)11,175.65
fvp-unsat-1.0(4) 648.57 1,599.44 549.75
quasigroup(22) 61.21 531.43 735.25

Table 2. Improvements on JQuest2

ProbIthasbeen integratedon top of JQuest2,a compet-
itive Java SAT solver 6. JQuest2is a backtracksearchSAT
solver, basedon efficient datastructures,and implement-
ing themosteffective backtracksearchtechniques,namely
clauserecording and non-chronological backtrack, search
restarts,andadaptivebranchingheuristics.Oneof themain
objectivesof JQuest2is allowing the rapid prototypingof
new SAT algorithms.SinceProbIt is still an evolving pre-
liminary implementation,the utilization of JQuest2facili-
tatestheevaluationandconfigurationof ProbIt.

Tables2 and3 give the CPU time in seconds required
for solving for differentclassesof problem instances,that
includesomeof thehardestinstances.For each benchmark
suite, the total number of instancesis shown. For all ex-
perimental resultsa P-IV@1.7GHz Linux machine with 1
GByte of physical memory wasused.The CPU time was
limited to 5000seconds.Consequently, weadded5000sec-
ondsfor each instancenot solved in theallowed CPUtime
(the number of abortedinstancesis indicated in parenthe-
sis).

In Table 2, ProbIt+JQuest2 (JQuest2with ProbIt inte-
grated)is compared with the original JQuest2.Moreover,
the time requiredfor thepreprocessorProbIt is alsogiven.
Table 3 comparesProbIt+JQuest2 with otherSAT solvers,
namely zChaff and2clseq.zChaff is oneof themostcom-
petitive SAT solvers. On the other hand, 2clseq is also
known a competitive SAT solver, characterizedby integrat-
ing formulamanipulation techniques.

From the obtained results,several conclusions can be
drawn:

� ProbIt+JQuest2comesoutasthemostrobustsolveron
the set of probleminstancesconsidered.Despitebe-
ing implemented in Java, which necessarilyyields a
slower implementation, ProbIt+JQuest2 performance
is indeed comparableto state-of-the-artSAT solvers.

� The performance of ProbIt+JQuest2is comparableto
2clseqin instanceswhereformulamanipulation helps

6 JQuest2 entered in the second stage of the indus-
trial category in the SAT’2003 Competition (see
http://www.satlive.org/SATCompetition/2003/comp03report/).

Family ProbIt+JQ2 2clseq zChaff
barrel(8) 700.28 1,634.23 487.91

longmult(16) 1,725.17 2,201.37 2,191.08
queueinvar(10) 70.96 83.23 5.52

miters(25) 248.11 170.84 (2)10,537.49
fvp-...-1.0(4) 1,599.44 (2)13,545.74 549.75

quasigroup(22) 531.43 3,726.91 348.07

Table 3. Comparison with other solvers

on solvinganinstance.This explainswhy zChaff per-
formanceis not competitive for theseinstances.

� ProbIt+JQuest2 performance is also compara-
ble to zChaff on instanceswhere more sophisti-
cated backtrack search techniques are required.
Nonetheless, and when compared to JQuest2 re-
sults,ProbIt+JQuest2mayrequiremoretime to solve
a family of benchmark examples. This can be ex-
plained by the time required for applying ProbIt
techniques.Clearly this is a drawbackwhenthenum-
berof variablesin theCNF formulais not reduced.

4. RelatedWork

The ProbIt algorithmdescribed in the previous section
usesprobingasthebasisfor implementing anumberof for-
mulamanipulation techniques.In thissectionwerelatePro-
bIt with previouswork in probing andformulamanipulation
techniques.

4.1. Probing-BasedTechniques

In the SAT domain, the ideaof establishinghypotheses
andinferring factsfrom thosehypotheseshasbeenexten-
sively studiedin therecent past[3, 4, 5, 6].

The failed literal rule is a well-known andextensively
usedprobing-basedtechnique (seefor example [5]): if the
assignment a = yields a conflict (dueto BCP), thenwe
mustassigna E . This rule is coveredby necessaryas-
signmentsobtained from unsatisfiabilityconditions (Theo-
rem2.3).

Variable probing is a probing-basedtechnique, which
consistsof applying the branch-merge rule to each vari-
able[3] 7. Common assignmentsto variablesareidentified,
by detecting and merging equivalent branches 8. Observe
thatvariable probingis coveredby reasoningconditionses-
tablishedwith Theorem2.1.

7 The branch-merge rule is the inferencerule usedin the St̊almark’s
Method[12].

8 In addition, variable probing is often used as part of look-ahead
branchingheuristicsin SAT solvers[9].

Clause Probing is similar to variable probing, even
though variable probing is basedon variablesand clause
probing is basedon clauses.Clauseprobing consistsof
evaluating clause satisfiability requirements for identi-
fying common assignmentsto variables. Common as-
signmentsare deemed necessaryfor a clauseto become
satisfied and consequently for the formula to be satis-
fied. Thesetechniques have been applied to SAT in [10]
and more recently in [4]. In our framework, clauseprob-
ing is captured by Theorem 2.2. To the bestof our knowl-
edge, no other work proposesthe joint utilization of vari-
ableandclauseprobing.

The notion of literal dropping, that considers applying
setsof simultaneous assignments for inferring clausesthat
subsumeexisting clauses,is described for example in [6].
As mentioned earlier, someof the clauseinferencecondi-
tions proposedby Theorem 2.8 canbe relatedwith previ-
oustechniquesfor literal dropping, proposingmoregeneral
conditions for inferring clauses,but basedon lesspower-
ful unit propagation.

4.2. Other Manipulation Techniques

Two-variableequivalenceis a well-known formulama-
nipulationtechniquethathasbeen integratedin ProbIt (see
Section2.4). Additional two-variable equivalence condi-
tions can be established,namely by the identification of
strongly connectedcomponents [1]. It is interestingto ob-
serve that theexisting stronglyconnectedcomponentsin a
CNF formulaarecapturedfrom theconstructionof theas-
signmenttableandtheapplicationof Theorem2.4.Further-
more,sophisticatedtechniqueshave been developedto de-
tectchainsof biconditionals[8, 11].

The 2-closure of a 2CNF sub-formula[7] allows to in-
fer additional binaryclauses.Theidentification of thetran-
sitive closureof the implicationgraphis obtained from the
constructionof theassignmenttableandtheapplicationof
Theorem 2.4: if ;bce�:E6>1k������
	9;ba
�:E6>R� then create clause
	9*?a&#)c�� .

More recently, a competitive SAT solver incorporating
hyper-resolutionwith binaryclauseshasbeenproposed[2].
Given thesetof clauses	9*�j � #�a���n�	9*
j / #�a���nYu�u{u:n�	9*
jJ��#
a���n\	�j � #qj / #qu{u�u.#VjJ��#Yc�� , hyper-resolutionallows infer-
ring 	baY#!c�� . Onceagain, observe thatthis techniqueis cov-
eredby theconstructionof theassignment tableandtheap-
plicationof Theorem2.4: if ;Na
�9=?>�k-�����
	�;Nce�:E6>�� thencre-
ateclause 	ba&#)c�� .

Compared with existing work, probing-basedprepro-
cessingtechniquesnot only naturallycaptureall theabove
mentioned formula manipulation techniques,but also fur-
therallow thedevelopment of new techniques.In addition,
the proposed unified framework also allows relating and
comparingdifferentformulamanipulation techniques.

5. Conclusions

This paper introduces ProbIt, a new probing-basedfor-
mula manipulation SAT preprocessor. ProbIt hasbeenim-
plemented as a unified formula manipulation framework,
basedon probing assignments, that capturesa signifi-
cant number of formula manipulation techniques.More-
over, this new approachintegratesfor the first time most
formula manipulation techniques and allows develop-
ing new techniques.In addition,theobtained experimental
resultsclearly indicate that ProbIt is effective in increas-
ing therobustnessof state-of-the-artSAT solvers.

References

[1] B. Aspvall, M. F. Plass,andR. E. Tarjan. A linear-time al-
gorithm for testing the truth of certainquantifiedboolean
formulas. Information ProcessingLetters, 8(3):121–123,
March1979.

[2] F. Bacchus.EnhancingDavis Putnamwith extended binary
clausereasoning.In AAAI’02, August2002.

[3] D. L. Berre. Exploiting the real power of unit propagation
lookahead. In LICS Workshopon Theoryand Applications
of SatisfiabilityTesting, June2001.

[4] R. I. Brafman. A simplifier for propositionalformulaswith
many binaryclauses.In IJCAI’01, August2001.

[5] J.Crawford andL. Auton. Experimentalresultsonthecross-
over point in satisfiabilityproblems.In AAAI’93, pages22–
28,1993.

[6] O. DuboisandG. Dequen.A backbone-searchheuristicfor
efficient solving of hard3-satformulae. In IJCAI, August
2001.

[7] A. V. Gelder andY. K. Tsuji. Satisfiabilitytestingwith more
reasoningand lessguessing. In D. S. Johnsonand M. A.
Trick, editors,SecondDIMACSImplementationChallenge.
AmericanMathematicalSociety, 1993.

[8] C. M. Li. Integrating equivalency reasoninginto davis-
putnamprocedure.In AAAI’00, pages291–296,July2000.

[9] C. M. Li andAnbulagan. Look-aheadversuslook-backfor
satisfiabilityproblems. In CP’97, pages341–355,October
1997.

[10] J.P. Marques-SilvaandT. Glass.Combinationalequivalence
checking usingsatisfiabilityandrecursive learning.In Proc.
of the ACM/IEEE Design,Automationand Test in Europe
Conference, pages145–149,March1999.

[11] R. Ostrowski, Éric Grégoire,B. Mazuren,andL. Sais. Re-
covering andexploiting structuralknowledgefrom cnf for-
mulas.In CP’02, pages185–199,September2002.

[12] G. St̊almarck.A systemfor determiningpropositionallogic
theoremsby applyingvaluesandrulesto tripletsthataregen-
eratedfrom a formula,1989. SwedishPatent467076(Ap-
proved1992),US Patent5 276897(approved1994),Euro-
peanPatent0 403454(approved1995).

