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2 1. INTRODUCTION

1. Introduction

This report discusses some numerical aspects of the DACE Toolbox
for MATLAB, [10], which is an implementation of a Kriging model,
based on
e A set of design points (s1,y1),---,(Sm,¥m), with y; denoting
the response at site s; € R".

o A regression model F. This is a linear combination of basis
functions fi,..., fp, chosen by the user, and F(8,z) = f(z) '3,

where f(z) = [fi(z) ... fp(z)]".

e A correlation model R, so that R(f,z,s) €[0,1] is the correla-
tion between the responses at x and s. The vector § € R? holds
parameters of the model.

The toolbox has two major programs

e dacefit. This computes the elements of the Kriging model,
especially the parameters 6 have to be found by solving a non-
linear optimization problem, see Sections 2, 5, 6.

e predictor. Predict the response at an untried site and estimate
its error, Section 3.

Sections 2 and 3 give a short review of the theory from [10]. Section 4
introduces tools for analyzing and regularizing the matrices involved.
Section 5 discusses the type of correlation models that the toolbox is
aimed at, and how to enhance computational efficiency by exploiting
special properties. Also, in Section 5.4 a new class of correlation
models is introduced. Finally, Section 6 presents our algorithm for
finding the optimal # and Section 7 presents some ideas for further
development of the DACE toolbox.
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2. Dacefit

The function dacefit allows multiple responses. For the sake of sim-
plicity, however, we only discuss simple responses, as presented in
Section 1.

Let Se R™*" and Y € R™*! contain the design sites and associated
responses, and define the normalized data S,Y with

S:j = (S:;-u(S:;)/0(S:5), ji=1....n @.1)
Vo= (V7)) foT)

where u(-) and o(-) denote respectively the mean and the standard
deviation. All computation is made with the normalized data, where
the mean is zero and the variance is one in each coordinate direction.

The matrix F € R™*? is defined by F; , = f(s;) ", and for a given set
6 of correlation parameters we define R € R™*™ by R;; = R(0, s;, s;)-

The regression problem
Fg ~Y (2.2)

has the generalized least squares solution

g = (FTR'F) F'R'Y, (2.3)
and the variance estimate
1
o2 = —(Y —FB)TRY(Y - Fp3") . (2.4)
m

The matrix R and thereby 3" and 02 depend on 6. The optimal choice
#* is defined as the mazimum likelihood estimator, the maximizer of

—i(mlno®* +In|R|),

where |R| is the determinant of R. This is equivalent with the defini-
tion in [12]: #* is a minimizer of

»(0) = |RO)|™ -a(8)* . (2.5)

4 2. DACEFIT

The algorithm for finding an optimizer of (2.5) is discussed in Section
6. It is an iterative process, and for large values of m the determination
(" for each new value of § dominates the computational effort. In [10]
we showed that instead of brute force evaluation of (2.3) involving
literal inversion of R — we can proceed as follows: Let

R = cc? (2.6)

denote the Cholesky factorization of the correlation matrix R, which
is symmetric and positive definite (SPD), and introduce the “decorre-
lation transformation”

Y-F3 = (C'Y)— (CT'F) . (2.7)
Then we can reformulate (2.3) to

g = (F F)'F'v,
which we recognize as the solution to the normal equations for the
overdetermined system of equations

Fg ~ Y. (2.8)

Experience shows cf. Sections 4 and 5 that R may be very ill con-
ditioned. This will be transferred to F (which may also inherit a poor
condition of F'). In order to reduce effects of rounding errors we rec-
ommend to find 3% via orthogonal transformation of (2.8): Compute
the “economy size” (or “thin”) QR factorization [6, Section 5.2.6]

F = QG", (2.9)

where Q € R™*? has orthonormal columns and GT € RP*? is upper
triangular. Then the least squares solution to (2.8) is found by back
substitution in the upper triangular system

G'p* =Q'Y. (2.10)
The associated variance estimate is

. | I
o = —||Y - Fp*|* . (2.11)
m
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3. Predictor

The Kriging estimator at site x is given by

§@) = F@TF +r@) (3.1)
where the vector r(z) has components r; = R (6, z, s;), and
v = R'YWY-FB) = C T(Y-Fp). (3.2)
The estimated mean squared error (MSE) is
p(x) = o 1+l = [I7]%) , (3.3)
where
Fo= Clr(x),

v o= GUEF - f(x) .

Thus, for each new site z we just have to compute the vectors f(x)
and r(z) and add two dot products to get the predictor (3.1). The
MSE involves the solution of two triangular systems with matrices
computed during the fitting of the model, (2.6) and (2.9).

The gradients (with respect to z) of the predictor and the MSE are
also of interest. The first one is

§'@) = Jp@) B+ )y (3.4)
where J; and J, is the Jacobian of f and r, respectively,
af; OR
(Jf)ij = 5.’Ej7 (Jr)ij = 5—’E] (0,2, si) - (3.5)

From (3.3) it follows that the gradient of the MSE can be expressed as
¢'(x) = 20°(J,) v— J;iF)
= 202 ((J,If? ~JNG T JJ%)
— 207 (J,,TC’*T(Fw —F) - JfTw) , (3.6)

where w = G~ To.

6 4. SENSITIVITY

4. Interlude: Sensitivity

In Sections 2 and 3 there is a number of expressions like Y = C~1Y
and w = G~ "w. They are shorthand for “Solve the linear systems of
equations CY =Y and G'w = v.”

In this connection it is important to realize that small changes in
the matrix and/or right hand side may lead to large changes in the
solution. If this is the case, the matrix is said to be ill conditioned.
Also, on a computer every arithmetic operation suffers a rounding
error,

fllaod) = (aob)(1+¢) with |g| <ey,

where g is the socalled machine accuracy (or unit round-off ). With
a reliable equation solver the computed solution T to the linear system
Az = b can be shown [6, Section 3.5.1] to satisty

[z -2l _

K(A)ey, (4.1)

]l

where k(A) is the (spectral) condition number of A. In words: we can
expect to “loose” log;,(k) digits because of rounding errors.

The spectral condition number for A € R™*" is defined via the Sin-
gular Value Decomposition (SVD), see e.g. [6, Section 2.7.2],

3

A =UsvV'", (4.2)

where U € R™*™ and V € R"*" are orthogonal and ¥ € R™*" is “di-
agonal” with elements

¥11>%0»>--->%,,>0, p=min{m,n}. (4.3)
Equation (4.2) is equivalent with AV = UX, or

AV;J == EjjU:7j7 ]:1]) (44)
This can be used to show that the spectral norm of the matrix,

14l = m;g)c{llAmll/llmll} = Y, (4.5)
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and the condition number is

I{(A) = 211/2,,,, . (46)

Next, consider the eigensolutions of a symmetric matrix R € R™*™,
Rvj = /\j’l)j, j:L...,m, (47)

with orthonormal eigenvectors v; € R™ and real eigenvalues {\;}.
Without loss of generality we can assume that they are ordered so
that

A2 [Aa| 2o 2 Al (4.8)

In the svD of R we get U =V with V. ; = v;, and (4.4) is equivalent
with Rvj = |/\j"l)]’, i.e. ij = |/\]‘
If R is spD, then all its eigenvalues are positive, and they are equal to

the singular values. Thus, for a symmetric matrix we can express the
condition numbers in terms of the eigenvalues,

2
=3
[

(max [A;]) / (min [A;])
/\1/Am .

Ris spD:  Kk(R) (4.9)

Now consider the matrix H = AT A, where A€ R™*™ with m > n.
From (4.2), the orthogonality of U, and the diagonality of X it follows
that

H = Vvy'uTuxv’ = VdiagX},....,22 )V’ . (4.10)

This shows that H is symmetric and positive semidefinite (some of
the singular values may be zero). Further, it follows that

K(ATA) = (k(A)* . (4.11)

Combined with (4.1) this shows that if we use the normal equations
to find the least squares solution to Az ~ y with an ill conditioned

8 4. SENSITIVITY

A, then we may get only few (if any) correct digits in the computed
solution.

The Cholesky factorization (2.6) can be computed only if R is sPD
— and this is faster than computing the eigenvalues to check their
positivity. An analysis similar to the derivation of (4.11) shows that

K(C) = /r(R) . (4.12)

Note, however, that rounding errors imply that instead of the correct
Cholesky factor we find a perturbed matrix C', which according to [6,
Section 4.2.7] satisfies

CC" = R+A with ||A] =eulR, (4.13)

and if K(R) > &, ', then the matrix R+A may be indefinite, so that
the Cholesky factorization does not exist.

4.1. Regularization

Let R€ R™*™ be a symmetric, ill conditioned matrix and consider
the “regularized” matrix (to use the notation of [7])

R = R+pul with p>0. (4.14)
From (4.7) it is easy to see that
Roj = (\j+pvy, j=1,...,m, (4.15)

with A; = A;(R). This shows that R has the same eigenvectors as R,
and each eigenvalue is increased by pu. Thus, for sufficiently large p
all \j+p > 0,i.e., Ris sPD. Further, if R itself is SPD, then it follows
from (4.9) and (4.15) that

~ A+
w(B) = s

(4.16)

~

and it is easy to show that k(R) < k(R) for y > 0. If R is sPD and
we use u = Key||R||, then the larger eigenvalues suffer insignificant
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changes if K is small, but R+A in (4.13) is spD for sufficiently large
K. We return to this in Section 5.1.

Now, consider the two linear systems of equations,
Rz =b, Rz =b.
In the basis formed by the orthonormal eigenvectors we find
m
b = Zajvj with a; = vj—-rb,
j=1

and it follows from (4.7) and (4.15) that the solutions are
m a; R m o
r = Z 5 U5, r = Z vj .
Jj=1 Aj Jj=1 Aj

Thus, the components in b corresponding to small eigenvalues are
most enhanced in the solution. If R is SPD, then all components are
damped in 7 relative to x, and the components corresponding to the
smallest eigenvalues suffer the largest change.

All the elements in a correlation matrix R are nonnegative, and for
such a matrix it often holds, see [7], that the number of sign changes in
v; grows with j, i.e., the contributions from eigenvectors correspond-
ing to the smallest eigenvalues exhibit a fast oscillating behaviour.
This is damped when we regularize.

Finally, in the objective function (2.5) we use the determinant of R.
It satisfies the relation

R = [N - (4.17)
j=1

Consider two extreme cases, cf. Section 5.1:

R = FE, the matrix of all ones, has the eigenvalues Ay =m, Ay = --- =
A = 0, and |R|'/™ = 0, while |E + pI|'/™ = ptm=0/m w/m — u for
m — 00.

10 5. CORRELATION MODELS

R = I, the unit matrix, hasall \; = 1, |R|"/™ = 1, |[R+puI|"/™ = 1+p.

It should be mentioned that the determinant is not computed by
means of (4.17). Instead we use (2.6),

\R['/™ — |cCT M = (H ij)2/m =11 (C;j/m) . (4.18)

The last formulation is used to avoid the serious risk of underflow.

The idea of replacing an ill conditioned matrix R by R defined by
(4.14) is not new. In Kriging circles it is known as “increasing the
nugget effect”; in general statistics it is “ridge regression”; in in-
verse problems it is “Tikhonov regularization” and in optimization it
is “damped Newton” with Levenberg-Marquardt’s method as a special
case.

5. Correlation Models

We only consider stationary models, i.e., R(6,z,s) depends only on
6 and the difference d = x—s. Further, like [12] we focus on models
that have product form

R(B,z,s) = HRj(a,(a;—s)j). (5.1)

This structure is, however, not explicitly exploited in dacefit.

Basic examples of such models are

EXP R](g,d) = exp(70j|dj\)

‘ (5.2)
GAUSS R;j(6,d) = exp(—0;dj)

for 6; > 0. They are illustrated in Figure 5.1 below. Note that in both
cases the correlation decreases with |d;| and a larger value for §; leads
to a faster decrease. The normalization (2.1) of the data implies that
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Figure 5.1. Correlation functions for —2 < d; < 2.
Dashed, full and dash-dotted line: 6; = 0.2, 1, 5.

|sij| < 1 and therefore we are interested in cases where |d;| < 2, as
illustrated in the figure.

A major scope for the toolbox is to use the Kriging model as a surro-
gate for a continuously differentiable function, and from (3.4) it follows
that J, must be continuous across d; =0 in order to get a continuous
gradient of the Kriging model. This is the case with GAUSS but not
with EXP.

We start by taking a closer look at some properties of the matrices
generated by (5.1). Numerical results are obtained from two classes
of problems, defined by

Design sites: gxgq equidistant mesh over [0, 5]x[0, 10]

Problem 2: Yo(z) = sin2x; - sin 29

Problem 1: ~ Yi(z) = sinfz; -sin

In this section we use the regression model F(z) = 1 and only look at
isotropic correlation models, i.e., all §; = 6. Since T oscillates faster
than Y;, we expect that #(2) > §(1).

5.1. Conditioning

It is well known, see e.g. [3], that the correlation matrix may be very
ill conditioned. In Section 4.1 we discussed two extreme cases: If all
6; — 0, then R — F, the matrix with all elements equal to one, while

12 5. CORRELATION MODELS

R — I, the unit matrix, when all §; — oco. The matrix £ has one
eigenvalue equal to m, and all the other eigenvalues equal to zero.
Therefore, for small § we can expect R to be ill conditioned, while a
large 6 gives a well conditioned, significantly positive definite R. This
is illustrated in Figure 5.2.

EXP GAUSS

10%

10

10° L

Figure 5.2. Condition numbers for R given by (5.2) and (5.3).
Dashed line: q=7. Full line: q=14.
Dash-dotted line: q=14, regularized by (5.4)

We see that EXP gives relatively well conditioned correlation matrices
in this f-range, while R, uss) is severely ill conditioned even for quite
large #-values, and the condition number grows with m, the number
of design sites.

Similar to (4.13) it can be shown that the computed eigenvalues sat-
isfy \; = \;+6 with |8] & ey[|R]|, so that if min [A;| < ey max|\;| <
k(R) > 1/ey, then the matrix is not significantly spD. The compu-
tation was done in MATLAB, and fl(x(R)) > 10'° indicates that com-
puted results may be dominated by rounding errors. This calls for a
regularization as discussed in the paragraph after (4.16). Experiments
showed that

R = R+ul  with p = (10+m)e, (5.4)

is a good compromise between ensuring that the matrix is significantly
spD without changing the solution too much. This is illustrated in
Figure 5.2, where the results for R(zyp) cannot be distinguished from
the unregularized R(gxp)-
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It is generally agreed, see e.g. [3], that the reason for the poor con-
ditioning of the GAUSS matrix is the distribution of the off-diagonal
elements in R. This is illustrated in Figure 5.3. For the smaller 6-
values it is seen that GAUSS leads to a more even distribution among
small and large elements than EXP.

50% 50%

50% 50%

m

x

o
@
@ @ I
il il <}
u - N

50% 50%

A B C D E A B C D E

Figure 5.3. Percentage of off-diagonal elements in the bins
A: [0,0.01], B:]0.01,0.1), C:]0.1,0.5], D :]0.5,0.9), £:]0.9,1]
R given by (5.2) and (5.3) with ¢ = 14

Next, Figure 5.4 shows how the two factors in (2.5) vary with 6. As
already seen in Figure 5.2, the modification (5.4) from R to R does not
affect the results for EXP, but it has increasing effect on the GAUSS-
results as 8 decays. This, however, is the best we can do, and it does
not spoil the essential information: The function |R(6)|'/™ seems to
grow monotonously from 0 to 1 as 6 grows from 0 to co. The behaviour
of o is more complex, but it has an asymptote at o2, the variance
for the simple least squares solution to (2.2).

14 5. CORRELATION MODELS

RE)M™

02(6) for Problem 2

- - EXP
. |— GAuUss

I =
-1 0 1 2

10 10 10 10
Figure 5.4. Factors in (2.5) for 0.1 <6 < 100.
R given by (5.2), (5.3) and (5.4) with g=14

The product ¥ of the two functions is shown in Figure 5.5. In each of
the four cases the function t(6) has a unique minimizer,

EXP GAUSS
Y, |6 =0.141 | 6* = 0.178 (5.5)
Y, | 6* =3.16 | 6* =1.26

As expected, the optimizer for the faster oscillating Y5 is larger than
the optimizer for ;.
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[ — Problem 1
- = Problem 2
O Minimum

GAUSS

— Problem 1
- - Problem 2
O Minimum H

10 10 10 10°

Figure 5.5. ¢ = |R|"/™¢2 for 0.1 < 6 < 100.
Ezxperimental settings as in Figure 5.4

In the remainder of this section we shall concentrate on properties of
the GAUSS model. As we have seen, this is the hard one, and this is
the type of model that has interest for surrogate modelling. Most of
the results that we get will carry directly to correlation models of the
EXP-type.

5.2. Use of Drop Tolerance

Figure 5.3 shows that for large values of § many of the elements in R
will be small, and it is tempting to ignore them. If a large number
of elements are dropped, then R will be sparse, and this gives the
possibility of a speed up by exploiting sparse matrix techniques. More
specific, choose a threshold 7€ [0, 1] and define the reduced matrix

% = ﬁ(ﬂ by

(ﬁ)l] _ { 0 if Rij <rT (56)

R;; otherwise

16 5. CORRELATION MODELS

Figure 5.6 shows the results for two 7-values. As a measure we use
the relative density in § defined as

rel. density = o R , (5.7)
m

and for the sake of comparison we also give results for the models
CUBIC and SPLINE treated in Sections 5.3 and 5.4. We get the expected

100 H b e

10 &

-2
10 °f - - prROP, T=107° Al

— DROP, =107
‘=* CUBIC and SPLINE
.

3

100
107 10° 10" 10°
0

Figure 5.6. Relative density in ﬁ defined by (5.6),
(5.11) and (5.17). Design sites given by (5.3) with ¢ = 14

increasing sparsity as 8 grows. For small values of # no elements will
be dropped, and we still need the stabilization as in (5.4).

Intuitively, the dropping of small elements gets us closer to the unit
matrix, i.e., we should get a “more positive definite” matrix. This,
however, is not the case, as we can see in Figure 5.7. There is a gap
between 6 ~ 0.63 and € ~ 4.0, where R is indefinite. Outside the gap
the results agree with Figure 5.5.

This unexpected behaviour can be explained as follows: If we change
R to R+A, then the eigenvalues change,

/\](R-‘rA) = /\](R) + (5]'

5.8

~ /\](R) -l-’UjTA’Uj R ( )
where the estimate of d; follows from properties of the Rayleigh quo-
tient [14, Section 55], and presumes that the matrix A has small
elements. For the current problem, let R, be so small that we decide
to drop it. Then we also drop R, and assuming that these are the
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10° |+ . S

107

— Problem 1
10’“’\/ - - Problem 2
| i

10" 10° 10" 10°

Figure 5.7. 1 computed with GAUSS and 7 = 1079 in (5.6)
Other settings as defined in Figures 5.4-5

only elements dropped, we have a perturbed matrix % = R+ A with
A,y = Ay = — R, as the only nonzero elements in A. Applying (5.8)
we get

N(R) = M(R) 2RV Vs > N(R) — Rys . (5.9)
The lower bound follows from the normalization of v;:

VirVis

IN

[Viely/1 = V2 < 0.5 for |Vj,[<1.

Thus, if A;(R) < R,s, then there is a risk that R is singular or
indefinite. If we drop all elements smaller than the threshold 7, then
A has contributions from all the dropped elements, and from (5.8) it
can be shown that

d; > —v-T >-m-T,

where v is the maximum number of elements dropped in a row. Com-
bining this with (4.15) it is seen that it is possible to guarantee that
R is positive definite if we choose p = m7. In Section 5.5 we give
results obtained with the regularization

B = Raul with p=(10+m)ey + vVm-r . (5.10)

5.3. Local Support

There is another way that a sparse R may arise, viz. through other
choices of correlation model. The cubic correlation family [8] is one

18 5. CORRELATION MODELS

such example

R;(0.d) = 1*M512' (1*12’1#5? (5.11)

24w
with & = min{6;|d;|,1} .

In Figure 5.8 we show

D,d) = 1-3¢+2€7,

5.12
20,d) = 1-1.56+0.56, 12

corresponding to (p,w) = (0,—1) and (p,w) = (0,0), respectively. As

Figure 5.8. Cubic correlation models, (5.12).
Dashed, full and dash-dotted line: 8; = 0.2, 1, 5.

in Figure 5.1 a larger 6; reduces the region of significant correlation,
and as GAUSS both models have a well defined horizontal tangent at
d; = 0. From (5.11) we see that

R;(0,d) = p  for|d;| > D; =1/6; . (5.13)

This is zero for both R;l) and R;Q), so these models may lead to a
sparse R, see Figure 5.6. As regards approximation characteristics,
we see that

(1)
IR
ad

R
J
ad

(eaDj) = O:

6, D;) = —1.56; .
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This implies that Rgl) is better suited when the Kriging model is used
to approximate a continuously differentiable function Y. This is in
contrast to the use in statistics: In [11] it is shown that the two param-
eters in (5.11) have the statistical interpretation p = corr(Y(0), Y(D;))
and w = corr(Y'(0), Y'(D;)), and that a proper correlation model
(that can lead to a positive definite R) is obtained only if the param-
eters satisfy

5w? + 8w — 1

1 1 d p> 21> -
p€l0,1], wel0,1] and p > o7

(5.14)
These conditions are satisfied by R§2) but not by R§1).
For the test problem (5.3) we get the results shown in Figure 5.9.
Both models have a §-region (about [0.32,2.5]) where R is not SPD:

(no. of )\iSO)lm

0.5 T T
Xk ix + RO
04 X kXK XXX X « R@
X+ it o+ xx
03 . . o . L Lo
x+ + o+ 4+
0.2 :

« : : J
XX

el T R®

15 XX . R

o i i
10" 10° 10" 10°

Figure 5.9. R given by (5.12) and (5.3) with ¢ = 14

up to almost half of the eigenvalues can be negative. The bottom
plot shows that if we should use a modification like (4.14), then we

3

would have to use p ~ 0.29 for R and w~ 1.8 for R®). Thus, also

20 5. CORRELATION MODELS

with respect to providing a proper correlation matrix, model RM g
preferable to R(2), but none of them is fully suited to cover the desired
range of #-values.

We use CUBIC to designate R, Tts sparsity properties are illustrated
in Figure 5.6, and it is implemented as corrcubic in the DACE Tool-
box.

5.4. Cubic Spline
We are interested in a correlation model that

e Shares the properties of causs and R, (5.2) and (5.12), that
it is suited for approximation of continuously differentiable func-

tions.

e (Can generate correlation matrices that are sparse and are not
too ill conditioned.

e Is easy to evaluate.

A cubic spline, see e.g. [4] or [5], satisfies these demands. We exper-
imented with several formulations, and settled for the following: As
in (5.11) we let

& = 0,ld;], (5.15)

and define a cubic spline R(?) on the knots {0,a,1} with 0<a<1. The
piecewise 3rd order polynomial

3 5 1l4a 4
lfafjﬁ'?f] for OSEJSCL

R (0,d) = (1€ for a<g <1 (516)

1
1-a
0 for ¢ >1

is twice continuously differentiable, and is therefore a cubic spline. It
satisfies the boundary conditions

g(0) =1, ¢'(0)=g(1)=¢'(1) =¢"(1) =0,



5.4. Spline 21

with g(¢;) = R;a) (6,d). Figure 5.10 shows the spline for two a-values

1 -

0.8 ,
065 »

0.4

0.2

0,

2

Figure 5.10. Cubic spline models (5.16) for |d;| < 2.
Dashed, full and dash-dotted line: 6; = 0.2, 1, 5.

o
[N
N

The spline has an inflection point at £ = a/(14+a), which decreases as
a\,0. This is equivalent with the peak becoming narrower, and the
spline approaches the Exp model in Figure 5.1. It is also reflected in
the conditioning of the correlation matrix, as shown in Figure 5.11.

L -=-a=01pn

— a=0.2
‘=-a=03

10

10°

10°

107" 10° 10"

Figure 5.11. Condition number of}A% given by
(5.4), (5.16) and (5.3) with ¢ = 14

Compared with Figure 5.2 the cubic spline results are between the
EXP and GAUSS results. Generally, a smaller a-value gives a smaller
condition number. The flutter at the left hand end probably has
the same explanation as discussed below in connection with (5.21).
The amplitude of the last peak in the flutter seems to grow with a,
and further investigation showed that there is a small interval around
a = 0.4, where R is indefinite in a small f#-interval, similar to the cubic
functions in Section 5.3. Further, an investigation of the error as in
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Section 5.5 showed insignificant difference between the three a-values
in Figure 5.11. As a compromise between robustness and smoothness
we decided to use a = 0.2, and (5.16) takes the form

1 - 1565 4 30&7 for 0<¢& <0.2
R;(0,d) = 1.25(1=¢;)% for 0.2<& <1 (5.17)
0 for & >1

We refer to this as SPLINE. Its sparsity properties are illustrated
in Figure 5.6, and it is implemented as corrspline in the DACE
Toolbox.

Figure 5.12 shows the corresponding objective function ¢, cf. Figures
5.5 and 5.7. Note that for the faster oscillating Y, the objective
function ¢ has local minima to the left of the global minimum.

SPLINE

-

— Problem 1
- - Problem 2
O Minimum

107

0

10

10

1

Figure 5.12. (0) = |R(6)|* - 02() for 0.01 < § < 10.
R given by (5.17), (5.3) and (5.4) with ¢ = 14

5.5. Approximation Error

In this section we look at the error of the Kriging estimator g(z) (3.1)
as an approximation to a function Y : R" — IR. The estimator is
determined by a given set of design points, (s;, Y(s;)), i=1,...,m.
We use the design points defined in (5.3), and to avoid possible bound-
ary effects, we evaluate the predictor on an interior subregion,

Test sites: T = 41x41 equidistant mesh

over [1,4]x[2, §] (5.18)
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For a chosen correlation model with parameters 6 we define the error o E,®)
measure :
Ep(6) = max [ (2) — Ti(2)], (5.19) - -
— GAUSS
. 10 : : : =+ SPLINE
and the measure for the estimated MSE, (3.3), — DROP.
0.5 s 1(‘30 10*
@4 (6) = (max [ou(@)])" - (5.20) X0

Index (k) indicates that the Kriging model is fitted to data from Y.
The squareroot is included in (5.20) to ease comparison of the two

error measures. 107 : : : — GAUSS ||
‘= SPLINE
. . DROP
Figure 5.13 shows the error measures for five correlation models. Note "~ cusic
‘
the remarkable agreement between the two error measures, as regards 10" 10° 10*

the best §-value.
Figure 5.13. Error measures (5.19) and (5.20) for Problem 1

Figure 5.14 shows how the models GAUSS, DROP and SPLINE converge with EXP and GAUSS (5.2); SPLINE (5.17);

as the num'ber of design sites increases. Note the' fast convergence of DROP (5.6) with 7 = 105 and pu given by (5.10);
GAUSS, while the other two models have almost identical and slower cusic: RW (5.12). g =14
convergence.
There are two disappointing characteristics with the results from the o IO @)
SPLINE model: 1074
1. The flutter in Ej. 0
2. The slow convergence. ) ‘ 107
A
Complaint no. 1 is shared by the CUBIC model but not by the other 10” - s 00 " s
three models. It is caused by the product form of the correlation (5.1). . N . . _ .
If we change (5.15) to Figure 5.14. 0* and ®,(0*) as functions of ¢ = /m in (5.3).
GAUSS: —v—, DROP: —o—, SPLINE: —a—
¢ = [l[ed], (5.21)
and use (5.16) with ¢; replaced by £ to get R(6,d), then the flutter built in, since

disappears. However, we did not pursue this line further because a has

to be much smaller in order to ensure SPD in a reasonable #-range, exp: R(6,z,s) [T exp(=6;ld;) = exp(—[led|l1)
and the error is of the same order of magnitude as with the model GAUSS : R(6,z,s) = H]. eXP(*ejdi) = exp(—||61/2®d||§)
defined by (5.16). The other models shown in Figure 5.13 have (5.21)
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Complaint no. 2, or — maybe more accurately: why GAUSS performs so
well is harder to explain. We have not found any prior satisfactory
explanation of this, but here is our attempt at a partial explanation:
Counsider (3.1) at a point close to the design site s,

G(skth) = flsi+h)B" + 9" Tr(se+h) .
With the regression model F(z) = 1 and introducing (3.2) and (3.4)
this takes the form
G(sg+h) = B*+ (Y — B*) TR 'r(sp+h)
~ B+ (Y — B) TR (r(sk) + Jr(si)h) . (5.22)
where .J,. is the Jacobian. It follows that
g(sk) = B+ (Y =B*)"R™'Ryy
= B+ (Y =8 e
= Yk
= Y(sg) , (5.23)

i.e., the Kriging predictor interpolates the design points.

Figure 5.15 shows the vectors v* and r(si) for the GAUSS and SPLINE
models, computed with a 6-value close to the optimizer, cf. Fig-
ure 5.14, and s given in the legend. For comparison, 3., = —0.3588,
B, = —0.2770 and the function value normalized by (2.1) is
(T1(sx) — u(¥))/o(Y) = 0.5565.

For both models the residual vector Y — 3*e has elements of order
of magnitude 1, and the ill conditioning of Rgss implies that its in-
verse has large elements. This is reflected in the components of 7.
In the computation of §(sx) (5.23) there will be serious cancellation
error, and this is verified by computation. For the point s; given in
Figure 5.15 we find

|ass (sk) — Y (sg)| = 6.99e-9, |gspr(sk)—Y(sk)| = 1.52e-13.

The SPLINE result is as accurate as we can hope for with g,, = 2.22e-16.
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SPLINE: y*

0.8

0.614

048~

0.2

0 [9)
0 50 100 0 50 100

Figure 5.15. Factors in (5.23) for Problem 1 in

(5.3) with ¢ = 10. § = 0.16, s, = [2 59]

Next, we look at the behaviour close to sg, as expressed by (5.22).
Introducing (5.23) we can write it in the form

G(sg+h) ~  Y(s;)+g(se) h
. U(?) T *
with = ———(J;). "
th g; U(S:’j)( ): Y

In terms of normalized variables the Jacobians of the two models are

(5.24)

Gauss : (Jo(sk)),; = —20;dijRir
0;sign(di;) Q&) [T, Re(0,ds)

SPLINE : (Jr(sk))ij
Here, d;; is the jth component in the vector d; = s — s;, and

—30£ +90€2 for 0<E<0.2
Q) = —3.75(1—=¢)? for 02<¢& <1
0 for £€>1
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With the data from above we get

s 0.0322 o 0.0359
9 = | —0.45% |’ = | —0.4614

For comparison, the gradient of T agrees with ¢g®° on the four deci-

mals shown; the maximum relative difference is 7.8e-7. This means
that close to s the Kriging model based on GAUSS is very close to a
first order Taylor expansion, while the SPLINE model disagrees on the
second decimal in the gradient.

This behaviour is worth further investigation. It should be mentioned
that we have experimented also with other problems and with other
choices of the regression function F, and got similar results.

6. Optimize Parameters

By comparing Figures 5.5, 5.12 and 5.13 we see a good agreement
between the minimizing -value for the error measure ® (5.20) and
the optimizer for the objective function ¢ defined in (2.5).

Figure 6.1 shows that the smooth behavior of ¢(f) that was found
in the isotropic case is also found when the the components of 8 are
allowed to differ.

An easier identification of the minimizer is obtained if we look at level
curves for the objective function, see Figure 6.2.
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Figure 6.1. () (2.5) for Y1 in (5.3) with ¢ = 14.
6 €10.01,10]x[0.1,10]. GAUSS model

Y for Yl
10*

o0

10"

Figure 6.2. Level curves for ¢(0) for T in (5.3) with ¢ = 14.
GAUsS model. The asterisk marks the minimizer, 8 = [0.100 0.316]
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6.1. Algorithm

Let the parameter vector § have ¢ components, e.g., ¢g=1 for the
isotropic models treated in Section 5 and ¢=2 in Figures 6.1 and
6.1. We seek (an approximation to) 6* in the region 0 < ¢; < 6; <
uj, j=1,...,q. The program dacefit can handle the following cases
and mixtures of them,

- Some 6; are fixed indicated by £; = u;

- Warm start indicated by {£; <8; <w;

- Cold start indicated by 8; < ¢ or 8; > u;
We shall only discuss cases where there is at least one unknown pa-
rameter.

The algorithm for minimizing the function v, (2.5), should take into
account that
1. each evaluation of ¢ is expensive. It involves the evaluation and
factorization of R(f) and the solution of (2.8), but

2. Figures 5.5, 5.12, 5.13 and 6.2 indicate that there is no point in
finding the minimizer with great accuracy, and

3. the function is well behaved — at least if we approach the mini-

mizer from above, but

4. computation of the gradient of ¢) with respect to the components
of 8 is possible, but would involve considerable extra effort.

These considerations lead us to choose a pattern search method. More
specific, we use the following modified version of the Hooke & Jeeves
method, see e.g. [9, Section 2.4]. Rather than the usual approach,
where the parameters get absolute changes, we work with a vector A
of relative changes.

The main algorithm is
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ALGORITHM Optimize 6

Given 9(0)7 l, u

[0,A] :=start(8Y) £, u)

for k=1,..., kmax 1°
0:=0
0 := explore(0, A, £, u)
[0, A] := move(, 6, A)
A := rotate(A) 2°

end

Remarks
1° Experiments showed that kpnax = max{2, min{q,4}} is a good
compromise between efficiency and desired accuracy.

2° In order to avoid “backtracking”, the components of A are dif-
ferent, and we rotate the components by taking the indices in
the order 2,...,q,1.

The easy case for the starting algorithm is when there is only one free
parameter: start the search close to the upper bound. If we have two
or more cold start parameters, we have to take into account that
may have several local minima, as illustrated in Figures 6.4 and 6.5.
The probability of landing in a wrong local minimum was considerably
reduced by using an elaborate starting procedure. Except for check
of legal inputs (0 < £; < u; etc.) this has the form

ALGORITHM [0, A] := start(8'”), ¢, u)

f:= 0(0); N =10 3°
for 7=1,....q
if {;=u; then A;:=1; 6;:=u; 4°
else
A= 9i/(a+2) 20
if 9j<£j or 0j>’u]‘ then
0; = (Kju;)l/g; N:=NUj 5°
end
end

end
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if #N >1 then

0:=0, J:=MN: 6°
for k=1,...,#N

ji=Ng 6:=6

vi=e unNi=3; U= 1%

a:=min{ln(ly @0x) @lnuvp}

|=

v = v*/® 7°
for 1 =1,2,3,4
Vi=vi®0
if () <(f) then
9 :=9;
if Y(¥) <¢(@) then 0:=9; J:=j
else break 8°
end
end
Swap A; and Ay 9°
end
Remarks
3° N is the set of indices for which a proper starting value is not
given.
4° Equality constraint.
5° No proper starting point given. Choose a point close to the

upper bound.

6° For each component of 8§ without a proper starting value, try
up to four points with that component reduced considerably
faster than the others; cf. 7° and Figures 6.3 - 6.5.

7° v is determined so that v® ® @ hits a lower bound.
8° Stop the i-loop: we have passed a local minimum.

9° Direction number J had the largest step in the introductory
search, and should have the smallest step now; cf. 2°.

The loop in optimize starts by an ezplore step, where each free pa-
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rameter §; in turn is increased in an attempt to reduce the objective
function. If this fails, then a decreased 6;-value is tried. Parameter
values at a bound are only allowed one-sided change.

ALGORITHM 6 := explore(6, A, ¢, u)
for 7=1,....q
if éj < uj then
9:=46
if 6; ={; then 9; :=/; A;p; atbd := true
elseif 0; =u; then 9;:= uj/A;.N; atbd := true
else ¥; :=min{f; xA;, u;}; atbd := false
if ¢Y(¥) <¢(F) then 6:=9
elseif not atbd then
ﬁj = max{Gj/Aj, ﬁj}
if ¥(9) <¢(8) then 6:=19
end
end
end

Finally, the change from Htob may indicate a pattern. This is inves-
tigated in

ALGORITHM [#,A] := move(@&,A)
if #=0 then A :=A!/’
else
v:=00 @; notstop := true
while notstop
Y:=000v
if any(¥; </{; or ¥; > u;) then
notstop := false

o = max{a | §;08 > {; and O;vF < u;}
=000
end

if Y(¥) <(f) then 6:=19; v:=0?
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else notstop := false
end

A= Al

end

The performance of the algorithm is illustrated in Figures 6.3 - 6.5

;
o
o
o
o
S ©
o ‘
5 10°
el

Figure 6.3. Search path. GAUSS model with Y1 from (5.3), ¢ = 14.
Squares: Points tried in start.  Star: starting point.
Plus: explore step.  Ring: move step.
Asterisk: as in Figure 6.2

10

10 I

10"

The swapping of the coordinates in Figure 6.5 was made to illustrate
that the algorithm may also choose to reduce 6, faster.
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10

<10

Figure 6.4. Search path. SPLINE model with Y1 from (5.3), ¢ = 14.
Legend as in Figure 6.3

10

1

107
10"

10"

Figure 6.5. Search path for the data from datal in the DACE
Toolbox, with swapped coordinates. m = 75. GAUSS model.
Legend as in Figure 6.3
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6.2. Testing

We have tested the algorithm on the 5 problems given in Table 6.1.
Problems 4 and 5 are immediate generalizations of (5.3).

pno | Description / u

1 Data given in datal in the DACE Toolbox. 1 20
m=T75. Test sites: 31? grid on [20,80]%. | .1 20
[V ]|oo = 44.7.
2 | Data with Y, as defined by (5.3) with | .01 10
g=14, m=196. Test sites given by (5.18). 1 10
IV o = 1.
3 | Data with Yo as defined by (5.3) with | .01 10
g=14, m=196. Test sites given by (5.18). 1 10

[V ]loo = 1.
4 | Data with Yq(z) = [];sin 1x;, where the | .01 10
design sites are from a uniform ¢3 grid on 1 10

0,5 x [0,10] x [0,15]. ¢=10, m=1000. | .1 | 10
Test sites: 11° grid on [1,4]x[2, 8] x[3, 12]

V]l 1.
5 | Data with Yo(z) =[], sin2z;. Design and | .01 10
test sites as in problem 4. ||V || ~ 1. 1 10

Table 6.1. Test problems

For each problem we use both the GAuss and the SPLINE model, and
in each case we find both the isotropic and anisotropic solution. In
the latter case we also test the warm start capability, by refining the
6. In the testing we also give the error measure ® defined by (5.20).

Further, we give results from replacing the algorithm of Section 6.1
with fminsearch from the MATLAB Optimization Toolbox, Version 2.
To be able to make a fair comparison, we let it work on the variables
¢ =1n#é, give it the same starting point, (; = (In¢; + 7lnw;)/8, and
use the very coarse stopping criteria given by
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optimset (’TolX’,.005, ’MaxIter’,100%*q,
’MaxFunEvals’,500%q)

pno | Meth. | nval | 6" Y(67) B(67)
1 daf 12 2.58 | 4.33e-02 1.27
fms 23 2.67 | 4.31e-02 1.31
grid 41 2.82 | 2.43e-01 1.39
2 df 13 166 | 1.50e-10 | 1.17e-07
fms 29 184 | 1.46e-10 | 1.04e-07
grid 61 178 | 4.25e-11 1.07e-07
3 df 11 1.33 | 1.11e-02 | 7.46e-04
fms 23 1.33 | 1.11e-02 | 7.45e-04
grid 61 1.26 | 2.56e-03 | 6.92e-04
4 df 14 .264 | 7.06e-08 | 1.42e-05
fms 27 315 | 5.98e-08 | 1.70e-05
grid 61 316 | 8.19e-09 | 1.71e-05
5 df 5 10.0 | 2.68e-01 | 3.48e-01
fms 37 10.0 | 2.68e-01 | 3.48e-01
grid 61 10.0 | 2.68e-01 | 3.48e-01

Table 6.2. Isotropic GAUSS model.
df  The algorithm from Section 6.1, implemented in dacefit
fms fminsearch as described above
grid Minimum over logarithmic equidistant grid over [{,u].
nval grid points

The results in Tables 6.2 - 6.5 give rise to the following remarks,

1. The algorithm used in dacefit is robust. In all cases it finds
the right local minimum.

2. As expected, it is easier to optimize 6 for an isotropic model
than an anisotropic model, but the latter normally gives a better
result in terms of smaller values both for ¢ and ®.
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pno | Meth. | nval | 6" Y (6™) P(67) pno | Method | nval 0" »(67) P(67)

1 df 13 .203 | 2.00e-02 | 3.56e-01 1 df 16 1.36, 4.79 3.71e-02 1.17
fms 31 195 | 1.97e-02 | 3.42e-01 warm 9 1.36, 4.96 3.71e-02 1.17
grid 41 .200 | 1.11e-01 | 3.50e-01 fms 59 4.24, 1.39 4.00e-02 | 9.77e-01

2 df 10 | .111 | 2.51e-05 | 5.75e-03 grid 441 1.41, 5.32 2.11e-01 1.21
fms 30 .101 | 2.46e-05 | 6.15e-03 2 df 21 .0947, .353 6.44e-11 | 7.36e-08
grid 61 .100 | 7.21e-06 | 6.26e-03 warm 10 .0884, .341 6.30e-11 | 7.77e-08

3 df 13 418 | 1.78e-01 | 1.20e-01 fms 81 0911, .304 6.16e-11 | 8.17e-08
fms 27 394 | 1.59e-01 | 1.32e-01 grid 651 .1000, .316 1.83e-11 | 7.63e-08
grid 61 398 | 3.62e-02 | 1.30e-01 3 df 13 487, 4.16 6.71e-04 | 5.32e-02

4 df 5 4.22 | 9.99e-01 | 5.44e-01 warm 11 408, 2.17 6.69e-04 | 4.46e-02
fms 15 4.22 | 9.99e-01 | 5.44e-01 fms 74 491, 3.85 6.68e-04 | 4.28e-02
grid 61 .141 | 1.50e-05 | 2.75e-02 grid 651 501, 3.98 1.52e-04 | 4.44e-02

5 df 5 4.22 | 9.99e-01 | 5.16e-01 4 df 38 0.0670, .277, .554 | 7.33e-09 | 1.39e-04
fms 15 | 4.22 | 9.99e-01 | 5.16e-01 warm 19 .0783, .302, .783 | 6.03e-09 | 3.43e-04
grid 61 3.16 | 1.23e-01 | 4.90e-01 fms 174 .0806, .296, .754 6.01e-09 | 2.99e-04

Table 6.3. Isotropic SPLINE model. grid | 1936 | .1000, .251, .631 | 9.48e-10 | 2.99e-04
Legend as in Table 6.2 5 df 27 273, 3.07, 3.07 4.75e-01 1.31
warm 19 .273, 3.07, 3.07 4.75e-01 1.31

fms 30 4.22, 5.62, 5.62 9.99e-01 | 5.24e-01
grid 1936 .251, 3.98, 3.98 6.04e-02 1.65

3. Generally a smaller value for the objective function ¢ corre- Table 6.4. Results with anisotropic GAUSS model.

sponds to a smaller value of the error measure ®, but there are Legend as in Table 6.2
enough exceptions to this rule to confirm our statement that

is does not make sense to compute the minimizer with higher

6. With the anisotropic SPLINE model in Table 6.4 fminsearch
accuracy.

stops prematurely for pno = 2,3, 5, probably because TolX was
4. The results for the GAUSS model with Problem 3 are surprising;: chosen too large.

the optimal v is decreased by a factor 100 when we change from . .
7. In Section 5.5 we found that GAUSS was surprisingly accurate

and much better than SPLINE. Comparing Tables 6.3 and 6.4

we see that for pno=1 we get more accurate results by means
5. Generally, fminsearch gives essentially the same solution as our of the SPLINE correlation model.

isotropic to anisotropic model, but the error measure is increased

by the same factor. This should be investigated further.

special purpose algorithm, with the ratio of function evaluations
varying between 2 and 9. In the case illustrated in Figure 6.5
(pno=1 in Table 6.3) fminsearch finds a wrong local minimum

(which leads to a smaller error measure, however.)
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pno | Method | nval 0" (™) P(67)
1 df 19 100, .255 1.89e-02 | 2.54e-01
warm 7 100, .361 1.53e-02 | 2.59e-01
fms 96 .100, .366 1.52e-02 | 2.58e-01
grid 441 .100, .376 7.98e-02 | 2.58e-01
2 df 23 .0670, .148 2.01e-05 | 7.88e-03
warm 11 .0670, .114 1.86e-05 | 7.10e-03
fms 24 4.22, 5.62 9.95e-01 1.08
grid 651 .0631, .126 5.85e-06 | 7.88e-03
3 df 17 .266, 1.54 1.20e-01 | 4.85e-01
warm 10 .266, 1.48 1.20e-01 | 4.64e-01
fms 24 4.22, 5.62 9.95e-01 | 9.55e-01
grid 651 .251, 1.58 2.79e-02 | 5.39e-01
1 af 19 | .795, 10.0, 10.0 | 3.44e-01 | 8.18e-01
warm 14 0.782, 10.0, 10.0 | 3.44e-01 | 8.40e-01
fms 191 | 0.783, 10.0, 10.0 | 3.44e-01 | 8.39e-01
grid 1936 | .631, 10.0, 10.0 | 4.68e-02 1.26
5 df 27 .273, 3.07, 3.07 | 4.75e-01 1.31
warm 19 .273, 3.07, 3.07 | 4.75e-01 1.31
fms 30 4.22,5.62, 5.62 | 9.99e-01 | 5.24e-01
grid 1936 | .251, 3.98, 3.98 | 6.04e-02 1.65

Table 6.5. Results with anisotropic SPLINE model.
Legend as in Table 6.2

6.3. Computing Time

The computational effort in dacefit is dominated by the Cholesky
factorization (2.6), which is an O(m?) process. This is performed
nval times, where nval is the number of function evaluations during
the optimization. From Section 6.2 it follows that nwval grows slowly
with the number of free elements in #, and as a simple model for the
execution time we can take

Tdacefit =~ a- m3 . (61)

Suppose that we want to compute v values with predictor, at the
sites € R”*"™. This involves the computation of the vxp regression
matrix F(z) and the mxv correlation matrix r(z) and performing the

40 6. OPTIMIZE 6

inner products in (3.1). The effort grows linearly with » and m, and
T};@redictor = b v-m. (62)

If we also want the MSE, we further have to perform the O(v - m?)

transformation ¥ = C~1r(z), and
T}g}r’fdictor = cv 'm2 . (63)

These considerations are corroborated by Figure 6.6.

10°

« it
v yh,v=25
, A yh,v=100 : : "
10°H a4 yh&ev=25 |:: : : Q»‘*Q’
> yh&@v=100 | : W
9‘?&
i
10" £ : : : w‘?? : 3
: : : ;
*
* DDP
*
[N
10° b : : G " s g
L ol
* > aaqa’ A
1 * > P i 4 aan A8
10 E B #ol L > AﬂﬂAA 4
* 1 ' X i PREESH H <A1 %é VY
B 3 i3 ged Vvvvvvvvvv
10 4 8.8 s g vevyiTY
L ¢ ¢ g ]
10° ‘
10" 10° 10°

Number of design points, m
Figure 6.6. Times in seconds on a Sunfire 10k for
dacefit and predictor.
Problems generated by Y1 in (5.3) for g =4,5,...,31.

GAUSS model with £ = [.01, .01], u = [10,1 10]
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7. Conclusion

The MATLAB functions in the DACE toolbox version 2.0 seem to
work well. As pointed out in this report, there are, however, some
open questions that need further investigation
e Why is GAUSS such a good correlation model for Kriging a
smooth function?

e Is it possible to find a model that combines the good sparsity
properties and well-conditioning of the SPLINE model with bet-
ter approximation properties?

e The surprising results with GAUSS on the test problem (5.3)
when we change from isotropic to anisotropic model.

Currently we have the following plans for further items in the toolbox,

e A regression model that uses products of cubic splines in the
n dimensions (with bicubic splines as a special example, when
n=2).

e An algorithm for optimization of “expensive” functions, where 3
is used as a surrogate for the functions. Basic ideas as described
in e.g., [1], [2] and [13].
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8. NOTATION

8. Notation

Pl
=
i@*@ﬁ

2

£

g
Q &

T
s I R S

<

Uy’

number of design sites and their dimensionality
number of basis functions in regression model

number of elements in 6

regression model, F(3,z) = f(z) T3

correlation function

Cholesky factorization of R, R =C"TC

basis function for regression model

pvector, f(a) = [fi(a) - fp(@)]T

expanded design m Xxp-matrix, see Section 2
transformed data, see (2.7)

m X m-matrix of stochastic-process correlations
m-vector of correlations

mxn matrix of design sites

ith design site, vector of length n. s] = S; .
svD  Singular Value Decomposition, see (4.2)
eigenvector, see (4.7)

n-dimensional trial point

jth component in z

ith row and jth column in matrix X, respectively
m-vector of responses

response at ith design site, y; = Y(s;)
predicted response, see (3.1)

p-vector of regression parameters, see (2.10)
mxg-matrix of correlation constants, see (3.1)

parameters of correlation model, g-vector
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Aj eigenvalue, see (4.7)
o process variance, see (2.11)
Xij singular value
T background function, T: R" —» R

() mean squared error of g, see (3.3)

® elementwise (Hadamard) multiplication

%) elementwise division

MSE mean squared error, p 5

GAUSS Gauss correlation model, see (5.2)

SPD symmetric, positive definite

SPLINE Cubic spline correlation model, see (5.17)
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