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2 1. Introdution1. IntrodutionThis report disusses some numerial aspets of the DACE Toolboxfor Matlab, [10℄, whih is an implementation of a Kriging model,based on� A set of design points (s1; y1); : : : ; (sm; ym), with yi denotingthe response at site si 2 IRn.� A regression model F . This is a linear ombination of basisfuntions f1; : : : ; fp, hosen by the user, and F(�; x) = f(x)>�,where f(x) = [f1(x) : : : fp(x)℄>.� A orrelation model R, so that R(�; x; s)2 [0; 1℄ is the orrela-tion between the responses at x and s. The vetor �2 IRq holdsparameters of the model.The toolbox has two major programs� daefit. This omputes the elements of the Kriging model,espeially the parameters � have to be found by solving a non-linear optimization problem, see Setions 2, 5, 6.� preditor. Predit the response at an untried site and estimateits error, Setion 3.Setions 2 and 3 give a short review of the theory from [10℄. Setion 4introdues tools for analyzing and regularizing the matries involved.Setion 5 disusses the type of orrelation models that the toolbox isaimed at, and how to enhane omputational eÆieny by exploitingspeial properties. Also, in Setion 5.4 a new lass of orrelationmodels is introdued. Finally, Setion 6 presents our algorithm for�nding the optimal � and Setion 7 presents some ideas for furtherdevelopment of the DACE toolbox.



2. Daefit 32. Dae�tThe funtion daefit allows multiple responses. For the sake of sim-pliity, however, we only disuss simple responses, as presented inSetion 1.Let S 2 IRm�n and Y 2 IRm�1 ontain the design sites and assoiatedresponses, and de�ne the normalized data S; Y withS:;j = �S:;j � �(S:;j)� =�(S:;j); j = 1; : : : ; nY = �Y � �(Y )� =�(Y ) ; (2.1)where �(�) and �(�) denote respetively the mean and the standarddeviation. All omputation is made with the normalized data, wherethe mean is zero and the variane is one in eah oordinate diretion.The matrix F 2 IRm�p is de�ned by Fi;: = f(si)>, and for a given set� of orrelation parameters we de�ne R2 IRm�m by Rij = R(�; si; sj).The regression problemF� ' Y (2.2)has the generalized least squares solution�� = �F>R�1F ��1 F>R�1Y ; (2.3)and the variane estimate�2 = 1m (Y � F��)>R�1(Y � F��) : (2.4)The matrix R and thereby �� and �2 depend on �. The optimal hoie�� is de�ned as the maximum likelihood estimator, the maximizer of� 12 (m ln�2 + ln jRj) ;where jRj is the determinant of R. This is equivalent with the de�ni-tion in [12℄: �� is a minimizer of (�) = jR(�)j 1m � �(�)2 : (2.5)
4 2. DaefitThe algorithm for �nding an optimizer of (2.5) is disussed in Setion6. It is an iterative proess, and for large values ofm the determination�� for eah new value of � dominates the omputational e�ort. In [10℄we showed that instead of brute fore evaluation of (2.3) { involvingliteral inversion of R { we an proeed as follows: LetR = CCT (2.6)denote the Cholesky fatorization of the orrelation matrix R, whihis symmetri and positive de�nite (spd), and introdue the \deorre-lation transformation"~Y � ~F� � �C�1Y �� �C�1F �� : (2.7)Then we an reformulate (2.3) to�� = � ~F> ~F ��1 ~F> ~Y ;whih we reognize as the solution to the normal equations for theoverdetermined system of equations~F� ' ~Y : (2.8)Experiene shows { f. Setions 4 and 5 { that R may be very ill on-ditioned. This will be transferred to ~F (whih may also inherit a poorondition of F ). In order to redue e�ets of rounding errors we re-ommend to �nd �� via orthogonal transformation of (2.8): Computethe \eonomy size" (or \thin") QR fatorization [6, Setion 5.2.6℄~F = QG> ; (2.9)where Q2 IRm�p has orthonormal olumns and G> 2 IRp�p is uppertriangular. Then the least squares solution to (2.8) is found by baksubstitution in the upper triangular systemG>�� = Q> ~Y : (2.10)The assoiated variane estimate is�2 = 1mk ~Y � ~F��k2 : (2.11)



3. Preditor 53. PreditorThe Kriging estimator at site x is given by^y(x) = f(x)>�� + r(x)>� ; (3.1)where the vetor r(x) has omponents ri = R(�; x; si), and� = R�1(Y � F��) = C�>( ~Y � ~F��) : (3.2)The estimated mean squared error (mse) is'(x) = �2 �1 + kvk2 � k~rk2� ; (3.3)where ~r = C�1r(x) ;v = G�1( ~F ~r � f(x)) :Thus, for eah new site x we just have to ompute the vetors f(x)and r(x) and add two dot produts to get the preditor (3.1). Themse involves the solution of two triangular systems with matriesomputed during the �tting of the model, (2.6) and (2.9).The gradients (with respet to x) of the preditor and the mse arealso of interest. The �rst one is^y0(x) = Jf (x)>�� + Jr(x)>� ; (3.4)where Jf and Jr is the Jaobian of f and r, respetively,(Jf )ij = �fi�xj ; (Jr)ij = �R�xj (�; x; si) : (3.5)From (3.3) it follows that the gradient of the mse an be expressed as'0(x) = 2�2 �J>v v � J~r~r�= 2�2 �(J>~r ~F � J>f )G�>v � J>~r ~r�= 2�2 �J>r C�>( ~Fw � ~r)� J>f w� ; (3.6)where w = G�>v.

6 4. Sensitivity4. Interlude: SensitivityIn Setions 2 and 3 there is a number of expressions like ~Y = C�1Yand w = G�>v. They are shorthand for \Solve the linear systems ofequations C ^Y = Y and G>w = v."In this onnetion it is important to realize that small hanges inthe matrix and/or right hand side may lead to large hanges in thesolution. If this is the ase, the matrix is said to be ill onditioned.Also, on a omputer every arithmeti operation su�ers a roundingerror, (a � b) = (a � b)(1 + ") with j"j � "M ;where "M is the soalled mahine auray (or unit round-o� ). Witha reliable equation solver the omputed solution x to the linear systemAx = b an be shown [6, Setion 3.5.1℄ to satisfykx� xkkxk � �(A)"M ; (4.1)where �(A) is the (spetral) ondition number of A. In words: we anexpet to \loose" log10(�) digits beause of rounding errors.The spetral ondition number for A2 IRm�n is de�ned via the Sin-gular Value Deomposition (svd), see e.g. [6, Setion 2.7.2℄,A = U�V > ; (4.2)where U 2 IRm�m and V 2 IRn�n are orthogonal and �2 IRm�n is \di-agonal" with elements�11 � �22 � � � � � �pp � 0; p = minfm;ng : (4.3)Equation (4.2) is equivalent with AV = U�, orAV:;j = �jjU:;j ; j=1; : : : ; p ; (4.4)This an be used to show that the spetral norm of the matrix,kAk � maxx6=0fkAxk=kxkg = �11 ; (4.5)



4. Sensitivity 7and the ondition number is�(A) = �11=�pp : (4.6)Next, onsider the eigensolutions of a symmetri matrix R2 IRm�m,Rvj = �jvj ; j = 1; : : : ;m ; (4.7)with orthonormal eigenvetors vj 2 IRm and real eigenvalues f�jg.Without loss of generality we an assume that they are ordered sothat j�1j � j�2j � � � � � j�mj : (4.8)In the svd of R we get U = V with V:;j = vj , and (4.4) is equivalentwith Rvj = j�j jvj , i.e. �jj = j�j j.If R is spd, then all its eigenvalues are positive, and they are equal tothe singular values. Thus, for a symmetri matrix we an express theondition numbers in terms of the eigenvalues,�(R) = (max j�j j) = (min j�j j) ;R is spd: �(R) = �1=�m : (4.9)Now onsider the matrix H = A>A, where A2 IRm�n with m � n.From (4.2), the orthogonality of U , and the diagonality of � it followsthat H = V �>U>U�V > = V diag(�211; : : : ;�2nn) V > : (4.10)This shows that H is symmetri and positive semide�nite (some ofthe singular values may be zero). Further, it follows that�(A>A) = (�(A))2 : (4.11)Combined with (4.1) this shows that if we use the normal equationsto �nd the least squares solution to Ax ' y with an ill onditioned
8 4. SensitivityA, then we may get only few (if any) orret digits in the omputedsolution.The Cholesky fatorization (2.6) an be omputed only if R is spd{ and this is faster than omputing the eigenvalues to hek theirpositivity. An analysis similar to the derivation of (4.11) shows that�(C) = p�(R) : (4.12)Note, however, that rounding errors imply that instead of the orretCholesky fator we �nd a perturbed matrix C, whih aording to [6,Setion 4.2.7℄ satis�esC C> = R+� with k�k � "MkRk ; (4.13)and if �(R) >� "M�1, then the matrix R+� may be inde�nite, so thatthe Cholesky fatorization does not exist.4.1. RegularizationLet R2 IRm�m be a symmetri, ill onditioned matrix and onsiderthe \regularized" matrix (to use the notation of [7℄)bR = R+ �I with � > 0 : (4.14)From (4.7) it is easy to see thatbRvj = (�j + �)vj ; j=1; : : : ;m ; (4.15)with �j = �j(R). This shows that bR has the same eigenvetors as R,and eah eigenvalue is inreased by �. Thus, for suÆiently large �all �j+� > 0, i.e., bR is spd. Further, if R itself is spd, then it followsfrom (4.9) and (4.15) that�( bR) = �1 + ��m + � ; (4.16)and it is easy to show that �( bR) < �(R) for � > 0. If R is spd andwe use � = K"MkRk, then the larger eigenvalues su�er insigni�ant



4.1. Regularization 9hanges if K is small, but bR+� in (4.13) is spd for suÆiently largeK. We return to this in Setion 5.1.Now, onsider the two linear systems of equations,R x = b; bR bx = b :In the basis formed by the orthonormal eigenvetors we �ndb = mXj=1 �jvj with �j = v>j b ;and it follows from (4.7) and (4.15) that the solutions arex = mXj=1 �j�j vj ; bx = mXj=1 �j�j + � vj :Thus, the omponents in b orresponding to small eigenvalues aremost enhaned in the solution. If R is spd, then all omponents aredamped in bx relative to x, and the omponents orresponding to thesmallest eigenvalues su�er the largest hange.All the elements in a orrelation matrix R are nonnegative, and forsuh a matrix it often holds, see [7℄, that the number of sign hanges invj grows with j, i.e., the ontributions from eigenvetors orrespond-ing to the smallest eigenvalues exhibit a fast osillating behaviour.This is damped when we regularize.Finally, in the objetive funtion (2.5) we use the determinant of R.It satis�es the relationjRj = mYj=1 �j : (4.17)Consider two extreme ases, f. Setion 5.1:R = E, the matrix of all ones, has the eigenvalues �1 = m, �2 = � � � =�m = 0, and jRj1=m = 0, while jE + �I j1=m = �(m�1)=m mpm! � form!1.

10 5. Correlation ModelsR = I , the unit matrix, has all �j = 1, jRj1=m = 1, jR+�I j1=m = 1+�.It should be mentioned that the determinant is not omputed bymeans of (4.17). Instead we use (2.6),jRj1=m = jCC>j1=m = �YCjj�2=m = Y�C2=mjj � : (4.18)The last formulation is used to avoid the serious risk of underow.The idea of replaing an ill onditioned matrix R by bR de�ned by(4.14) is not new. In Kriging irles it is known as \inreasing thenugget e�et"; in general statistis it is \ridge regression"; in in-verse problems it is \Tikhonov regularization" and in optimization itis \damped Newton" with Levenberg-Marquardt's method as a speialase.5. Correlation ModelsWe only onsider stationary models, i.e., R(�; x; s) depends only on� and the di�erene d = x�s. Further, like [12℄ we fous on modelsthat have produt formR(�; x; s) = nYj=1Rj(�; (x�s)j) : (5.1)This struture is, however, not expliitly exploited in daefit.Basi examples of suh models areexp Rj(�; d) = exp(��j jdj j)gauss Rj(�; d) = exp(��jd2j ) (5.2)for �j > 0. They are illustrated in Figure 5.1 below. Note that in bothases the orrelation dereases with jdj j and a larger value for �j leadsto a faster derease. The normalization (2.1) of the data implies that



5.1. Conditioning 11
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Figure 5.1. Correlation funtions for �2 � dj � 2.Dashed, full and dash-dotted line: �j = 0:2; 1; 5.jsij j <� 1 and therefore we are interested in ases where jdj j <� 2, asillustrated in the �gure.A major sope for the toolbox is to use the Kriging model as a surro-gate for a ontinuously di�erentiable funtion, and from (3.4) it followsthat Jr must be ontinuous aross dj =0 in order to get a ontinuousgradient of the Kriging model. This is the ase with gauss but notwith exp.We start by taking a loser look at some properties of the matriesgenerated by (5.1). Numerial results are obtained from two lassesof problems, de�ned byDesign sites: q�q equidistant mesh over [0; 5℄�[0; 10℄Problem 1: �1(x) = sin 12x1 � sin 12x2Problem 2: �2(x) = sin 2x1 � sin 2x2 (5.3)In this setion we use the regression model F(x) = 1 and only look atisotropi orrelation models, i.e., all �j = �. Sine �2 osillates fasterthan �1, we expet that �(2) > �(1).5.1. ConditioningIt is well known, see e.g. [3℄, that the orrelation matrix may be veryill onditioned. In Setion 4.1 we disussed two extreme ases: If all�j ! 0, then R! E, the matrix with all elements equal to one, while
12 5. Correlation ModelsR ! I , the unit matrix, when all �j ! 1. The matrix E has oneeigenvalue equal to m, and all the other eigenvalues equal to zero.Therefore, for small � we an expet R to be ill onditioned, while alarge � gives a well onditioned, signi�antly positive de�nite R. Thisis illustrated in Figure 5.2.
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5.1. Conditioning 13It is generally agreed, see e.g. [3℄, that the reason for the poor on-ditioning of the gauss matrix is the distribution of the o�-diagonalelements in R. This is illustrated in Figure 5.3. For the smaller �-values it is seen that gauss leads to a more even distribution amongsmall and large elements than exp.
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Figure 5.3. Perentage of o�-diagonal elements in the binsA : [0; 0:01℄; B : ℄0:01; 0:1℄; C : ℄0:1; 0:5℄; D : ℄0:5; 0:9℄; E : ℄0:9; 1℄R given by (5.2) and (5.3) with q = 14Next, Figure 5.4 shows how the two fators in (2.5) vary with �. Asalready seen in Figure 5.2, the modi�ation (5.4) from R to bR does nota�et the results for exp, but it has inreasing e�et on the gauss-results as � deays. This, however, is the best we an do, and it doesnot spoil the essential information: The funtion jR(�)j1=m seems togrowmonotonously from 0 to 1 as � grows from 0 to1. The behaviourof �2 is more omplex, but it has an asymptote at �21, the varianefor the simple least squares solution to (2.2).
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5.2. Drop Tolerane 15
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MinimumFigure 5.5.  = j bRj1=m�2 for 0:1 � � � 100.Experimental settings as in Figure 5.4In the remainder of this setion we shall onentrate on properties ofthe gauss model. As we have seen, this is the hard one, and this isthe type of model that has interest for surrogate modelling. Most ofthe results that we get will arry diretly to orrelation models of theexp-type.5.2. Use of Drop ToleraneFigure 5.3 shows that for large values of � many of the elements in Rwill be small, and it is tempting to ignore them. If a large numberof elements are dropped, then R will be sparse, and this gives thepossibility of a speed up by exploiting sparse matrix tehniques. Morespei�, hoose a threshold � 2 [0; 1[ and de�ne the redued matrix �R = �R (�) by( �R )ij = � 0 if Rij � �Rij otherwise (5.6)

16 5. Correlation ModelsFigure 5.6 shows the results for two � -values. As a measure we usethe relative density in  �R de�ned asrel. density = # nonzeros in  �Rm2 ; (5.7)and for the sake of omparison we also give results for the modelsubi and spline treated in Setions 5.3 and 5.4. We get the expeted
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18 5. Correlation Modelssuh exampleRj(�; d) = 1� 3(1��)2+! �2j + (1��)(1�!)2+! �3jwith �j = minf�j jdj j; 1g : (5.11)In Figure 5.8 we showR(1)j (�; d) = 1� 3�2j + 2�3j ;R(2)j (�; d) = 1� 1:5�2j + 0:5�3j ; (5.12)orresponding to (�; !) = (0;�1) and (�; !) = (0; 0), respetively. As
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5.3. Loal Support 19This implies that R(1)j is better suited when the Kriging model is usedto approximate a ontinuously di�erentiable funtion �. This is inontrast to the use in statistis: In [11℄ it is shown that the two param-eters in (5.11) have the statistial interpretation � = orr(�(0);�(Dj))and ! = orr(�0(0);�0(Dj)), and that a proper orrelation model(that an lead to a positive de�nite R) is obtained only if the param-eters satisfy�2 [0; 1℄; ! 2 [0; 1℄ and � � 5!2 + 8! � 1!2 + 4! + 7 : (5.14)These onditions are satis�ed by R(2)j but not by R(1)j .For the test problem (5.3) we get the results shown in Figure 5.9.Both models have a �-region (about [0:32; 2:5℄) where R is not spd:
10

−1
10

0
10

1
10

2
0

0.1

0.2

0.3

0.4

0.5

(no. of   λ
j
 ≤ 0 ) / m

R(1)

R(2)

10
−1

10
0

10
1

10
2

−2

−1.5

−1

−0.5

0

0.5

1

min  λ
j

θ

R(1)

R(2)Figure 5.9. R given by (5.12) and (5.3) with q = 14up to almost half of the eigenvalues an be negative. The bottomplot shows that if we should use a modi�ation like (4.14), then wewould have to use � ' 0:29 for R(1) and � ' 1:8 for R(2). Thus, also
20 5. Correlation Modelswith respet to providing a proper orrelation matrix, model R(1) ispreferable toR(2), but none of them is fully suited to over the desiredrange of �-values.We use ubi to designate R(1). Its sparsity properties are illustratedin Figure 5.6, and it is implemented as orrubi in the DACE Tool-box.5.4. Cubi SplineWe are interested in a orrelation model that� Shares the properties of gauss and R(1), (5.2) and (5.12), thatit is suited for approximation of ontinuously di�erentiable fun-tions.� Can generate orrelation matries that are sparse and are nottoo ill onditioned.� Is easy to evaluate.A ubi spline, see e.g. [4℄ or [5℄, satis�es these demands. We exper-imented with several formulations, and settled for the following: Asin (5.11) we let�j = �j jdj j ; (5.15)and de�ne a ubi spline R(a) on the knots f0; a; 1g with 0<a<1. Thepieewise 3rd order polynomialR(a)j (�; d) = 8>>>>><>>>>>: 1� 3a �2j + 1+aa2 �3j for 0 � �j � a11�a (1� �j)3 for a < �j < 10 for �j � 1 (5.16)is twie ontinuously di�erentiable, and is therefore a ubi spline. Itsatis�es the boundary onditionsg(0) = 1; g0(0) = g(1) = g0(1) = g00(1) = 0 ;



5.4. Spline 21with g(�j) = R(a)j (�; d). Figure 5.10 shows the spline for two a-values
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22 5. Correlation ModelsSetion 5.5 showed insigni�ant di�erene between the three a-valuesin Figure 5.11. As a ompromise between robustness and smoothnesswe deided to use a = 0:2, and (5.16) takes the formRj(�; d) = 8><>: 1� 15�2j + 30�3j for 0 � �j � 0:21:25(1� �j)3 for 0:2 < �j < 10 for �j � 1 (5.17)We refer to this as spline. Its sparsity properties are illustratedin Figure 5.6, and it is implemented as orrspline in the DACEToolbox.Figure 5.12 shows the orresponding objetive funtion  , f. Figures5.5 and 5.7. Note that for the faster osillating �2 the objetivefuntion  has loal minima to the left of the global minimum.
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5.5. Error 23For a hosen orrelation model with parameters � we de�ne the errormeasureEk(�) = maxx2T j^y(k)(x) ��k(x)j ; (5.19)and the measure for the estimated mse, (3.3),�k(�) = �maxx2T j'(k)(x)j�0:5 : (5.20)Index (k) indiates that the Kriging model is �tted to data from �k.The squareroot is inluded in (5.20) to ease omparison of the twoerror measures.Figure 5.13 shows the error measures for �ve orrelation models. Notethe remarkable agreement between the two error measures, as regardsthe best �-value.Figure 5.14 shows how the models gauss, drop and spline onvergeas the number of design sites inreases. Note the fast onvergene ofgauss, while the other two models have almost idential and sloweronvergene.There are two disappointing harateristis with the results from thespline model:1. The utter in Ek.2. The slow onvergene.Complaint no. 1 is shared by the ubi model but not by the otherthree models. It is aused by the produt form of the orrelation (5.1).If we hange (5.15) to� = k ��d k ; (5.21)and use (5.16) with �j replaed by � to get R(�; d), then the utterdisappears. However, we did not pursue this line further beause a hasto be muh smaller in order to ensure spd in a reasonable �-range,and the error is of the same order of magnitude as with the modelde�ned by (5.16). The other models shown in Figure 5.13 have (5.21)
24 5. Correlation Models
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5.5. Error 25Complaint no. 2, or { maybe more aurately: why gauss performs sowell { is harder to explain. We have not found any prior satisfatoryexplanation of this, but here is our attempt at a partial explanation:Consider (3.1) at a point lose to the design site sk,^y(sk+h) = f(sk+h)�� + �>r(sk+h) :With the regression model F(x) = 1 and introduing (3.2) and (3.4)this takes the form^y(sk+h) = �� + (Y � ��)>R�1r(sk+h)' �� + (Y � ��)>R�1�r(sk) + Jr(sk)h)� ; (5.22)where Jr is the Jaobian. It follows that^y(sk) = �� + (Y � ��)>R�1R:;k= �� + (Y � ��)>ek= yk= �(sk) ; (5.23)i.e., the Kriging preditor interpolates the design points.Figure 5.15 shows the vetors � and r(sk) for the gauss and splinemodels, omputed with a �-value lose to the optimizer, f. Fig-ure 5.14, and sk given in the legend. For omparison, ��gss = �0:3588,��spl = �0:2770 and the funtion value normalized by (2.1) is(�1(sk)� �(Y ))=�(Y ) = 0:5565.For both models the residual vetor Y � ��e has elements of orderof magnitude 1, and the ill onditioning of Rgss implies that its in-verse has large elements. This is reeted in the omponents of �gss.In the omputation of ^y(sk) (5.23) there will be serious anellationerror, and this is veri�ed by omputation. For the point sk given inFigure 5.15 we �ndj^ygss(sk)��(sk)j = 6.99e-9; j^yspl(sk)��(sk)j = 1.52e-13 :The spline result is as aurate as we an hope for with "M = 2.22e-16.
26 5. Correlation Models
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Figure 5.15. Fators in (5.23) for Problem 1 in(5.3) with q = 10. � = 0:16, sk = [ 259 509 ℄Next, we look at the behaviour lose to sk, as expressed by (5.22).Introduing (5.23) we an write it in the form^y(sk+h) ' �(sk) + g(sk)>hwith gj = �(Y )�(S:;j) (Jr)>:;j� : (5.24)In terms of normalized variables the Jaobians of the two models aregauss : �Jr(sk)�ij = �2�jdijRik ;spline : �Jr(sk)�ij = �jsign(dij)
(�j)Q`6=j R`(�; di) ;Here, dij is the jth omponent in the vetor di = sk � si, and
(�) = 8><>: �30� + 90�2 for 0 � � � 0:2�3:75(1� �)2 for 0:2 < �j < 10 for � � 1



6. Optimize � 27With the data from above we getggss = � 0:0322�0:4596 � ; gspl = � 0:0359�0:4614 � :For omparison, the gradient of � agrees with ggss on the four dei-mals shown; the maximum relative di�erene is 7.8e-7. This meansthat lose to sk the Kriging model based on gauss is very lose to a�rst order Taylor expansion, while the spline model disagrees on theseond deimal in the gradient.This behaviour is worth further investigation. It should be mentionedthat we have experimented also with other problems and with otherhoies of the regression funtion F , and got similar results.6. Optimize ParametersBy omparing Figures 5.5, 5.12 and 5.13 we see a good agreementbetween the minimizing �-value for the error measure � (5.20) andthe optimizer for the objetive funtion  de�ned in (2.5).Figure 6.1 shows that the smooth behavior of  (�) that was foundin the isotropi ase is also found when the the omponents of � areallowed to di�er.An easier identi�ation of the minimizer is obtained if we look at levelurves for the objetive funtion, see Figure 6.2.
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6.1. Algorithm 296.1. AlgorithmLet the parameter vetor � have q omponents, e.g., q=1 for theisotropi models treated in Setion 5 and q=2 in Figures 6.1 and6.1. We seek (an approximation to) �� in the region 0 < `j � �j �uj ; j=1; : : : ; q. The program daefit an handle the following asesand mixtures of them,- Some �j are �xed indiated by `j = uj- Warm start indiated by `j � �j � uj- Cold start indiated by �j < `j or �j > ujWe shall only disuss ases where there is at least one unknown pa-rameter.The algorithm for minimizing the funtion  , (2.5), should take intoaount that1. eah evaluation of  is expensive. It involves the evaluation andfatorization of R(�) and the solution of (2.8), but2. Figures 5.5, 5.12, 5.13 and 6.2 indiate that there is no point in�nding the minimizer with great auray, and3. the funtion is well behaved { at least if we approah the mini-mizer from above, but4. omputation of the gradient of  with respet to the omponentsof � is possible, but would involve onsiderable extra e�ort.These onsiderations lead us to hoose a pattern searh method. Morespei�, we use the following modi�ed version of the Hooke & Jeevesmethod, see e.g. [9, Setion 2.4℄. Rather than the usual approah,where the parameters get absolute hanges, we work with a vetor �of relative hanges.The main algorithm is

30 6. Optimize �Algorithm Optimize �Given �(0); `; u[�;�℄ := start(�(0); `; u)for k = 1; : : : ; kmax 1Æb� := �� := explore(�;�; `; u)[�;�℄ := move(b�; �;�)� := rotate(�) 2ÆendRemarks1Æ Experiments showed that kmax = maxf2; minfq; 4gg is a goodompromise between eÆieny and desired auray.2Æ In order to avoid \baktraking", the omponents of � are dif-ferent, and we rotate the omponents by taking the indies inthe order 2; : : : ; q; 1.The easy ase for the starting algorithm is when there is only one freeparameter: start the searh lose to the upper bound. If we have twoor more old start parameters, we have to take into aount that  may have several loal minima, as illustrated in Figures 6.4 and 6.5.The probability of landing in a wrong loal minimum was onsiderablyredued by using an elaborate starting proedure. Exept for hekof legal inputs (0 < `j � uj et.) this has the formAlgorithm [�;�℄ := start(�(0); `; u)� := �(0); N := ; 3Æfor j = 1; : : : ; qif `j = uj then �j := 1; �j := uj 4Æelse�j := 2j=(q+2) 2Æif �j<`j or �j>uj then�j := (`ju7j)1=8; N := N [ j 5Æendendend



6.1. Algorithm 31if #N > 1 thenb� := �; J := N 1 6Æfor k = 1; : : : ;#Nj := N k; � := b�v := e; vN := 12 ; vj := 116� := minfln(`N � �N )� ln vN gv := v�=5 7Æfor i = 1; 2; 3; 4# := vi � b�if  (#) �  (�) then� := #;if  (#) �  (�) then � := #; J := jelse break 8ÆendendSwap �1 and �J 9ÆendRemarks3Æ N is the set of indies for whih a proper starting value is notgiven.4Æ Equality onstraint.5Æ No proper starting point given. Choose a point lose to theupper bound.6Æ For eah omponent of � without a proper starting value, tryup to four points with that omponent redued onsiderablyfaster than the others; f. 7Æ and Figures 6.3 - 6.5.7Æ v is determined so that v5 � b� hits a lower bound.8Æ Stop the i-loop: we have passed a loal minimum.9Æ Diretion number J had the largest step in the introdutorysearh, and should have the smallest step now; f. 2Æ.The loop in optimize starts by an explore step, where eah free pa-
32 6. Optimize �rameter �j in turn is inreased in an attempt to redue the objetivefuntion. If this fails, then a dereased �j-value is tried. Parametervalues at a bound are only allowed one-sided hange.Algorithm � := explore(�;�; `; u)for j = 1; : : : ; qif `j < uj then# := �if �j = `j then #j := `j ��1=2j ; atbd := trueelseif �j = uj then #j := uj=�1=2j ; atbd := trueelse #j := minf�j ��j ; ujg; atbd := falseif  (#) <  (�) then � := #elseif not atbd then#j := maxf�j=�j ; `jgif  (#) <  (�) then � := #endendendFinally, the hange from b� to � may indiate a pattern. This is inves-tigated inAlgorithm [�;�℄ := move(b�; �;�)if b� = � then � := �1=5elsev := � � b�; notstop := truewhile notstop# := � � vif any(#j � `j or #j � uj) thennotstop := false�� := maxf� j �jv�j � `j and �jv�j � ujg# := � � v��endif  (#) <  (�) then � := #; v := v2



6.1. Algorithm 33else notstop := falseend� := �1=4endThe performane of the algorithm is illustrated in Figures 6.3 - 6.5
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6.2. Testing 356.2. TestingWe have tested the algorithm on the 5 problems given in Table 6.1.Problems 4 and 5 are immediate generalizations of (5.3).pno Desription ` u1 Data given in data1 in the DACE Toolbox.m=75. Test sites: 312 grid on [20; 80℄2.kY k1 = 44:7. :1:1 20202 Data with �1 as de�ned by (5.3) withq=14; m=196. Test sites given by (5.18).kY k1 ' 1. :01:1 10103 Data with �2 as de�ned by (5.3) withq=14; m=196. Test sites given by (5.18).kY k1 ' 1. :01:1 10104 Data with �1(x) = Qj sin 12xj , where thedesign sites are from a uniform q3 grid on[0; 5℄ � [0; 10℄ � [0; 15℄. q=10; m=1000.Test sites: 113 grid on [1; 4℄�[2; 8℄�[3; 12℄kY k1 ' 1. :01:1:1 1010105 Data with �2(x) =Qj sin 2xj . Design andtest sites as in problem 4. kY k1 ' 1. :01:1:1 101010Table 6.1. Test problemsFor eah problem we use both the gauss and the spline model, andin eah ase we �nd both the isotropi and anisotropi solution. Inthe latter ase we also test the warm start apability, by re�ning the�. In the testing we also give the error measure � de�ned by (5.20).Further, we give results from replaing the algorithm of Setion 6.1with fminsearh from theMatlab Optimization Toolbox, Version 2.To be able to make a fair omparison, we let it work on the variables� = ln �, give it the same starting point, �j = (ln `j + 7 lnuj)=8, anduse the very oarse stopping riteria given by

36 6. Optimize �optimset('TolX',.005, 'MaxIter',100*q, ...'MaxFunEvals',500*q)pno Meth. nval ��  (��) �(��)1 df 12 2.58 4.33e-02 1.27fms 23 2.67 4.31e-02 1.31grid 41 2.82 2.43e-01 1.392 df 13 .166 1.50e-10 1.17e-07fms 29 .184 1.46e-10 1.04e-07grid 61 .178 4.25e-11 1.07e-073 df 11 1.33 1.11e-02 7.46e-04fms 23 1.33 1.11e-02 7.45e-04grid 61 1.26 2.56e-03 6.92e-044 df 14 .264 7.06e-08 1.42e-05fms 27 .315 5.98e-08 1.70e-05grid 61 .316 8.19e-09 1.71e-055 df 5 10.0 2.68e-01 3.48e-01fms 37 10.0 2.68e-01 3.48e-01grid 61 10.0 2.68e-01 3.48e-01Table 6.2. Isotropi gauss model.df The algorithm from Setion 6.1, implemented in daefitfms fminsearh as desribed abovegrid Minimum over logarithmi equidistant grid over [`; u℄.nval grid pointsThe results in Tables 6.2 - 6.5 give rise to the following remarks,1. The algorithm used in daefit is robust. In all ases it �ndsthe right loal minimum.2. As expeted, it is easier to optimize � for an isotropi modelthan an anisotropi model, but the latter normally gives a betterresult in terms of smaller values both for  and �.



6.2. Testing 37pno Meth. nval ��  (��) �(��)1 df 13 .203 2.00e-02 3.56e-01fms 31 .195 1.97e-02 3.42e-01grid 41 .200 1.11e-01 3.50e-012 df 10 .111 2.51e-05 5.75e-03fms 30 .101 2.46e-05 6.15e-03grid 61 .100 7.21e-06 6.26e-033 df 13 .418 1.78e-01 1.20e-01fms 27 .394 1.59e-01 1.32e-01grid 61 .398 3.62e-02 1.30e-014 df 5 4.22 9.99e-01 5.44e-01fms 15 4.22 9.99e-01 5.44e-01grid 61 .141 1.50e-05 2.75e-025 df 5 4.22 9.99e-01 5.16e-01fms 15 4.22 9.99e-01 5.16e-01grid 61 3.16 1.23e-01 4.90e-01Table 6.3. Isotropi spline model.Legend as in Table 6.23. Generally a smaller value for the objetive funtion  orre-sponds to a smaller value of the error measure �, but there areenough exeptions to this rule to on�rm our statement thatis does not make sense to ompute the minimizer with higherauray.4. The results for the gauss model with Problem 3 are surprising:the optimal  is dereased by a fator 100 when we hange fromisotropi to anisotropi model, but the error measure is inreasedby the same fator. This should be investigated further.5. Generally, fminsearh gives essentially the same solution as ourspeial purpose algorithm, with the ratio of funtion evaluationsvarying between 2 and 9. In the ase illustrated in Figure 6.5(pno=1 in Table 6.3) fminsearh �nds a wrong loal minimum(whih leads to a smaller error measure, however.)

38 6. Optimize �pno Method nval ��  (��) �(��)1 df 16 1.36, 4.79 3.71e-02 1.17warm 9 1.36, 4.96 3.71e-02 1.17fms 59 4.24, 1.39 4.00e-02 9.77e-01grid 441 1.41, 5.32 2.11e-01 1.212 df 21 .0947, .353 6.44e-11 7.36e-08warm 10 .0884, .341 6.30e-11 7.77e-08fms 81 .0911, .304 6.16e-11 8.17e-08grid 651 .1000, .316 1.83e-11 7.63e-083 df 13 .487, 4.16 6.71e-04 5.32e-02warm 11 .408, 2.17 6.69e-04 4.46e-02fms 74 .491, 3.85 6.68e-04 4.28e-02grid 651 .501, 3.98 1.52e-04 4.44e-024 df 38 0.0670, .277, .554 7.33e-09 1.39e-04warm 19 .0783, .302, .783 6.03e-09 3.43e-04fms 174 .0806, .296, .754 6.01e-09 2.99e-04grid 1936 .1000, .251, .631 9.48e-10 2.99e-045 df 27 .273, 3.07, 3.07 4.75e-01 1.31warm 19 .273, 3.07, 3.07 4.75e-01 1.31fms 30 4.22, 5.62, 5.62 9.99e-01 5.24e-01grid 1936 .251, 3.98, 3.98 6.04e-02 1.65Table 6.4. Results with anisotropi gauss model.Legend as in Table 6.26. With the anisotropi spline model in Table 6.4 fminsearhstops prematurely for pno = 2; 3; 5, probably beause TolX washosen too large.7. In Setion 5.5 we found that gauss was surprisingly aurateand muh better than spline. Comparing Tables 6.3 and 6.4we see that for pno=1 we get more aurate results by meansof the spline orrelation model.



6.3. Computing Time 39pno Method nval ��  (��) �(��)1 df 19 .100, .255 1.89e-02 2.54e-01warm 7 .100, .361 1.53e-02 2.59e-01fms 96 .100, .366 1.52e-02 2.58e-01grid 441 .100, .376 7.98e-02 2.58e-012 df 23 .0670, .148 2.01e-05 7.88e-03warm 11 .0670, .114 1.86e-05 7.10e-03fms 24 4.22, 5.62 9.95e-01 1.08grid 651 .0631, .126 5.85e-06 7.88e-033 df 17 .266, 1.54 1.20e-01 4.85e-01warm 10 .266, 1.48 1.20e-01 4.64e-01fms 24 4.22, 5.62 9.95e-01 9.55e-01grid 651 .251, 1.58 2.79e-02 5.39e-014 df 19 .795, 10.0, 10.0 3.44e-01 8.18e-01warm 14 0.782, 10.0, 10.0 3.44e-01 8.40e-01fms 191 0.783, 10.0, 10.0 3.44e-01 8.39e-01grid 1936 .631, 10.0, 10.0 4.68e-02 1.265 df 27 .273, 3.07, 3.07 4.75e-01 1.31warm 19 .273, 3.07, 3.07 4.75e-01 1.31fms 30 4.22, 5.62, 5.62 9.99e-01 5.24e-01grid 1936 .251, 3.98, 3.98 6.04e-02 1.65Table 6.5. Results with anisotropi spline model.Legend as in Table 6.26.3. Computing TimeThe omputational e�ort in daefit is dominated by the Choleskyfatorization (2.6), whih is an O(m3) proess. This is performednval times, where nval is the number of funtion evaluations duringthe optimization. From Setion 6.2 it follows that nval grows slowlywith the number of free elements in �, and as a simple model for theexeution time we an takeTdaefit ' a �m3 : (6.1)Suppose that we want to ompute � values with preditor, at thesites x2 IR��n. This involves the omputation of the ��p regressionmatrix F(x) and the m�� orrelation matrix r(x) and performing the
40 6. Optimize �inner produts in (3.1). The e�ort grows linearly with � and m, andT ^ypreditor ' b � � �m : (6.2)If we also want the mse, we further have to perform the O(� � m2)transformation er = C�1r(x), andT ^y;'preditor '  � � �m2 : (6.3)These onsiderations are orroborated by Figure 6.6.
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Figure 6.6. Times in seonds on a Sun�re 10k fordaefit and preditor.Problems generated by �1 in (5.3) for q = 4; 5; : : : ; 31.gauss model with ` = [:01; :01℄; u = [10; 10℄



7. Conlusion 417. ConlusionThe Matlab funtions in the DACE toolbox version 2.0 seem towork well. As pointed out in this report, there are, however, someopen questions that need further investigation� Why is gauss suh a good orrelation model for Kriging asmooth funtion?� Is it possible to �nd a model that ombines the good sparsityproperties and well-onditioning of the spline model with bet-ter approximation properties?� The surprising results with gauss on the test problem (5.3)when we hange from isotropi to anisotropi model.Currently we have the following plans for further items in the toolbox,� A regression model that uses produts of ubi splines in then dimensions (with biubi splines as a speial example, whenn = 2).� An algorithm for optimization of \expensive" funtions, where ^yis used as a surrogate for the funtions. Basi ideas as desribedin e.g., [1℄, [2℄ and [13℄.

42 8. Notation8. Notationm; n number of design sites and their dimensionalityp number of basis funtions in regression modelq number of elements in �F(�; x) regression model, F(�; x) = f(x)>�R(�; w; x) orrelation funtionC Cholesky fatorization of R, R = CTCfj basis funtion for regression modelf p-vetor, f(x) = [f1(x) � � � fp(x)℄>F expanded design m�p-matrix, see Setion 2~F ; ~Y transformed data, see (2.7)R m�m-matrix of stohasti-proess orrelationsr m-vetor of orrelationsS m�n matrix of design sitessi ith design site, vetor of length n. s>i = Si;:U�V > svd { Singular Value Deomposition, see (4.2)vj eigenvetor, see (4.7)x n-dimensional trial pointxj jth omponent in xXi;:, X:;j ith row and jth olumn in matrix X , respetivelyY m-vetor of responsesyi response at ith design site, yi = �(si)^y predited response, see (3.1)� p-vetor of regression parameters, see (2.10) m�q-matrix of orrelation onstants, see (3.1)� parameters of orrelation model, q-vetor



Referenes 43�j eigenvalue, see (4.7)�2 proess variane, see (2.11)�jj singular value� bakground funtion, � : IRn 7! IR'(x) mean squared error of ^y, see (3.3)� elementwise (Hadamard) multipliation� elementwise divisionmse mean squared error, p 5gauss Gauss orrelation model, see (5.2)spd symmetri, positive de�nitespline Cubi spline orrelation model, see (5.17)
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