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2 1. Introdu
tion1. Introdu
tionThis report dis
usses some numeri
al aspe
ts of the DACE Toolboxfor Matlab, [10℄, whi
h is an implementation of a Kriging model,based on� A set of design points (s1; y1); : : : ; (sm; ym), with yi denotingthe response at site si 2 IRn.� A regression model F . This is a linear 
ombination of basisfun
tions f1; : : : ; fp, 
hosen by the user, and F(�; x) = f(x)>�,where f(x) = [f1(x) : : : fp(x)℄>.� A 
orrelation model R, so that R(�; x; s)2 [0; 1℄ is the 
orrela-tion between the responses at x and s. The ve
tor �2 IRq holdsparameters of the model.The toolbox has two major programs� da
efit. This 
omputes the elements of the Kriging model,espe
ially the parameters � have to be found by solving a non-linear optimization problem, see Se
tions 2, 5, 6.� predi
tor. Predi
t the response at an untried site and estimateits error, Se
tion 3.Se
tions 2 and 3 give a short review of the theory from [10℄. Se
tion 4introdu
es tools for analyzing and regularizing the matri
es involved.Se
tion 5 dis
usses the type of 
orrelation models that the toolbox isaimed at, and how to enhan
e 
omputational eÆ
ien
y by exploitingspe
ial properties. Also, in Se
tion 5.4 a new 
lass of 
orrelationmodels is introdu
ed. Finally, Se
tion 6 presents our algorithm for�nding the optimal � and Se
tion 7 presents some ideas for furtherdevelopment of the DACE toolbox.



2. Da
efit 32. Da
e�tThe fun
tion da
efit allows multiple responses. For the sake of sim-pli
ity, however, we only dis
uss simple responses, as presented inSe
tion 1.Let S 2 IRm�n and Y 2 IRm�1 
ontain the design sites and asso
iatedresponses, and de�ne the normalized data S; Y withS:;j = �S:;j � �(S:;j)� =�(S:;j); j = 1; : : : ; nY = �Y � �(Y )� =�(Y ) ; (2.1)where �(�) and �(�) denote respe
tively the mean and the standarddeviation. All 
omputation is made with the normalized data, wherethe mean is zero and the varian
e is one in ea
h 
oordinate dire
tion.The matrix F 2 IRm�p is de�ned by Fi;: = f(si)>, and for a given set� of 
orrelation parameters we de�ne R2 IRm�m by Rij = R(�; si; sj).The regression problemF� ' Y (2.2)has the generalized least squares solution�� = �F>R�1F ��1 F>R�1Y ; (2.3)and the varian
e estimate�2 = 1m (Y � F��)>R�1(Y � F��) : (2.4)The matrix R and thereby �� and �2 depend on �. The optimal 
hoi
e�� is de�ned as the maximum likelihood estimator, the maximizer of� 12 (m ln�2 + ln jRj) ;where jRj is the determinant of R. This is equivalent with the de�ni-tion in [12℄: �� is a minimizer of (�) = jR(�)j 1m � �(�)2 : (2.5)
4 2. Da
efitThe algorithm for �nding an optimizer of (2.5) is dis
ussed in Se
tion6. It is an iterative pro
ess, and for large values ofm the determination�� for ea
h new value of � dominates the 
omputational e�ort. In [10℄we showed that instead of brute for
e evaluation of (2.3) { involvingliteral inversion of R { we 
an pro
eed as follows: LetR = CCT (2.6)denote the Cholesky fa
torization of the 
orrelation matrix R, whi
his symmetri
 and positive de�nite (spd), and introdu
e the \de
orre-lation transformation"~Y � ~F� � �C�1Y �� �C�1F �� : (2.7)Then we 
an reformulate (2.3) to�� = � ~F> ~F ��1 ~F> ~Y ;whi
h we re
ognize as the solution to the normal equations for theoverdetermined system of equations~F� ' ~Y : (2.8)Experien
e shows { 
f. Se
tions 4 and 5 { that R may be very ill 
on-ditioned. This will be transferred to ~F (whi
h may also inherit a poor
ondition of F ). In order to redu
e e�e
ts of rounding errors we re
-ommend to �nd �� via orthogonal transformation of (2.8): Computethe \e
onomy size" (or \thin") QR fa
torization [6, Se
tion 5.2.6℄~F = QG> ; (2.9)where Q2 IRm�p has orthonormal 
olumns and G> 2 IRp�p is uppertriangular. Then the least squares solution to (2.8) is found by ba
ksubstitution in the upper triangular systemG>�� = Q> ~Y : (2.10)The asso
iated varian
e estimate is�2 = 1mk ~Y � ~F��k2 : (2.11)



3. Predi
tor 53. Predi
torThe Kriging estimator at site x is given by^y(x) = f(x)>�� + r(x)>
� ; (3.1)where the ve
tor r(x) has 
omponents ri = R(�; x; si), and
� = R�1(Y � F��) = C�>( ~Y � ~F��) : (3.2)The estimated mean squared error (mse) is'(x) = �2 �1 + kvk2 � k~rk2� ; (3.3)where ~r = C�1r(x) ;v = G�1( ~F ~r � f(x)) :Thus, for ea
h new site x we just have to 
ompute the ve
tors f(x)and r(x) and add two dot produ
ts to get the predi
tor (3.1). Themse involves the solution of two triangular systems with matri
es
omputed during the �tting of the model, (2.6) and (2.9).The gradients (with respe
t to x) of the predi
tor and the mse arealso of interest. The �rst one is^y0(x) = Jf (x)>�� + Jr(x)>
� ; (3.4)where Jf and Jr is the Ja
obian of f and r, respe
tively,(Jf )ij = �fi�xj ; (Jr)ij = �R�xj (�; x; si) : (3.5)From (3.3) it follows that the gradient of the mse 
an be expressed as'0(x) = 2�2 �J>v v � J~r~r�= 2�2 �(J>~r ~F � J>f )G�>v � J>~r ~r�= 2�2 �J>r C�>( ~Fw � ~r)� J>f w� ; (3.6)where w = G�>v.

6 4. Sensitivity4. Interlude: SensitivityIn Se
tions 2 and 3 there is a number of expressions like ~Y = C�1Yand w = G�>v. They are shorthand for \Solve the linear systems ofequations C ^Y = Y and G>w = v."In this 
onne
tion it is important to realize that small 
hanges inthe matrix and/or right hand side may lead to large 
hanges in thesolution. If this is the 
ase, the matrix is said to be ill 
onditioned.Also, on a 
omputer every arithmeti
 operation su�ers a roundingerror, 
(a � b) = (a � b)(1 + ") with j"j � "M ;where "M is the so
alled ma
hine a

ura
y (or unit round-o� ). Witha reliable equation solver the 
omputed solution x to the linear systemAx = b 
an be shown [6, Se
tion 3.5.1℄ to satisfykx� xkkxk � �(A)"M ; (4.1)where �(A) is the (spe
tral) 
ondition number of A. In words: we 
anexpe
t to \loose" log10(�) digits be
ause of rounding errors.The spe
tral 
ondition number for A2 IRm�n is de�ned via the Sin-gular Value De
omposition (svd), see e.g. [6, Se
tion 2.7.2℄,A = U�V > ; (4.2)where U 2 IRm�m and V 2 IRn�n are orthogonal and �2 IRm�n is \di-agonal" with elements�11 � �22 � � � � � �pp � 0; p = minfm;ng : (4.3)Equation (4.2) is equivalent with AV = U�, orAV:;j = �jjU:;j ; j=1; : : : ; p ; (4.4)This 
an be used to show that the spe
tral norm of the matrix,kAk � maxx6=0fkAxk=kxkg = �11 ; (4.5)



4. Sensitivity 7and the 
ondition number is�(A) = �11=�pp : (4.6)Next, 
onsider the eigensolutions of a symmetri
 matrix R2 IRm�m,Rvj = �jvj ; j = 1; : : : ;m ; (4.7)with orthonormal eigenve
tors vj 2 IRm and real eigenvalues f�jg.Without loss of generality we 
an assume that they are ordered sothat j�1j � j�2j � � � � � j�mj : (4.8)In the svd of R we get U = V with V:;j = vj , and (4.4) is equivalentwith Rvj = j�j jvj , i.e. �jj = j�j j.If R is spd, then all its eigenvalues are positive, and they are equal tothe singular values. Thus, for a symmetri
 matrix we 
an express the
ondition numbers in terms of the eigenvalues,�(R) = (max j�j j) = (min j�j j) ;R is spd: �(R) = �1=�m : (4.9)Now 
onsider the matrix H = A>A, where A2 IRm�n with m � n.From (4.2), the orthogonality of U , and the diagonality of � it followsthat H = V �>U>U�V > = V diag(�211; : : : ;�2nn) V > : (4.10)This shows that H is symmetri
 and positive semide�nite (some ofthe singular values may be zero). Further, it follows that�(A>A) = (�(A))2 : (4.11)Combined with (4.1) this shows that if we use the normal equationsto �nd the least squares solution to Ax ' y with an ill 
onditioned
8 4. SensitivityA, then we may get only few (if any) 
orre
t digits in the 
omputedsolution.The Cholesky fa
torization (2.6) 
an be 
omputed only if R is spd{ and this is faster than 
omputing the eigenvalues to 
he
k theirpositivity. An analysis similar to the derivation of (4.11) shows that�(C) = p�(R) : (4.12)Note, however, that rounding errors imply that instead of the 
orre
tCholesky fa
tor we �nd a perturbed matrix C, whi
h a

ording to [6,Se
tion 4.2.7℄ satis�esC C> = R+� with k�k � "MkRk ; (4.13)and if �(R) >� "M�1, then the matrix R+� may be inde�nite, so thatthe Cholesky fa
torization does not exist.4.1. RegularizationLet R2 IRm�m be a symmetri
, ill 
onditioned matrix and 
onsiderthe \regularized" matrix (to use the notation of [7℄)bR = R+ �I with � > 0 : (4.14)From (4.7) it is easy to see thatbRvj = (�j + �)vj ; j=1; : : : ;m ; (4.15)with �j = �j(R). This shows that bR has the same eigenve
tors as R,and ea
h eigenvalue is in
reased by �. Thus, for suÆ
iently large �all �j+� > 0, i.e., bR is spd. Further, if R itself is spd, then it followsfrom (4.9) and (4.15) that�( bR) = �1 + ��m + � ; (4.16)and it is easy to show that �( bR) < �(R) for � > 0. If R is spd andwe use � = K"MkRk, then the larger eigenvalues su�er insigni�
ant



4.1. Regularization 9
hanges if K is small, but bR+� in (4.13) is spd for suÆ
iently largeK. We return to this in Se
tion 5.1.Now, 
onsider the two linear systems of equations,R x = b; bR bx = b :In the basis formed by the orthonormal eigenve
tors we �ndb = mXj=1 �jvj with �j = v>j b ;and it follows from (4.7) and (4.15) that the solutions arex = mXj=1 �j�j vj ; bx = mXj=1 �j�j + � vj :Thus, the 
omponents in b 
orresponding to small eigenvalues aremost enhan
ed in the solution. If R is spd, then all 
omponents aredamped in bx relative to x, and the 
omponents 
orresponding to thesmallest eigenvalues su�er the largest 
hange.All the elements in a 
orrelation matrix R are nonnegative, and forsu
h a matrix it often holds, see [7℄, that the number of sign 
hanges invj grows with j, i.e., the 
ontributions from eigenve
tors 
orrespond-ing to the smallest eigenvalues exhibit a fast os
illating behaviour.This is damped when we regularize.Finally, in the obje
tive fun
tion (2.5) we use the determinant of R.It satis�es the relationjRj = mYj=1 �j : (4.17)Consider two extreme 
ases, 
f. Se
tion 5.1:R = E, the matrix of all ones, has the eigenvalues �1 = m, �2 = � � � =�m = 0, and jRj1=m = 0, while jE + �I j1=m = �(m�1)=m mpm! � form!1.

10 5. Correlation ModelsR = I , the unit matrix, has all �j = 1, jRj1=m = 1, jR+�I j1=m = 1+�.It should be mentioned that the determinant is not 
omputed bymeans of (4.17). Instead we use (2.6),jRj1=m = jCC>j1=m = �YCjj�2=m = Y�C2=mjj � : (4.18)The last formulation is used to avoid the serious risk of under
ow.The idea of repla
ing an ill 
onditioned matrix R by bR de�ned by(4.14) is not new. In Kriging 
ir
les it is known as \in
reasing thenugget e�e
t"; in general statisti
s it is \ridge regression"; in in-verse problems it is \Tikhonov regularization" and in optimization itis \damped Newton" with Levenberg-Marquardt's method as a spe
ial
ase.5. Correlation ModelsWe only 
onsider stationary models, i.e., R(�; x; s) depends only on� and the di�eren
e d = x�s. Further, like [12℄ we fo
us on modelsthat have produ
t formR(�; x; s) = nYj=1Rj(�; (x�s)j) : (5.1)This stru
ture is, however, not expli
itly exploited in da
efit.Basi
 examples of su
h models areexp Rj(�; d) = exp(��j jdj j)gauss Rj(�; d) = exp(��jd2j ) (5.2)for �j > 0. They are illustrated in Figure 5.1 below. Note that in both
ases the 
orrelation de
reases with jdj j and a larger value for �j leadsto a faster de
rease. The normalization (2.1) of the data implies that
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Figure 5.1. Correlation fun
tions for �2 � dj � 2.Dashed, full and dash-dotted line: �j = 0:2; 1; 5.jsij j <� 1 and therefore we are interested in 
ases where jdj j <� 2, asillustrated in the �gure.A major s
ope for the toolbox is to use the Kriging model as a surro-gate for a 
ontinuously di�erentiable fun
tion, and from (3.4) it followsthat Jr must be 
ontinuous a
ross dj =0 in order to get a 
ontinuousgradient of the Kriging model. This is the 
ase with gauss but notwith exp.We start by taking a 
loser look at some properties of the matri
esgenerated by (5.1). Numeri
al results are obtained from two 
lassesof problems, de�ned byDesign sites: q�q equidistant mesh over [0; 5℄�[0; 10℄Problem 1: �1(x) = sin 12x1 � sin 12x2Problem 2: �2(x) = sin 2x1 � sin 2x2 (5.3)In this se
tion we use the regression model F(x) = 1 and only look atisotropi
 
orrelation models, i.e., all �j = �. Sin
e �2 os
illates fasterthan �1, we expe
t that �(2) > �(1).5.1. ConditioningIt is well known, see e.g. [3℄, that the 
orrelation matrix may be veryill 
onditioned. In Se
tion 4.1 we dis
ussed two extreme 
ases: If all�j ! 0, then R! E, the matrix with all elements equal to one, while
12 5. Correlation ModelsR ! I , the unit matrix, when all �j ! 1. The matrix E has oneeigenvalue equal to m, and all the other eigenvalues equal to zero.Therefore, for small � we 
an expe
t R to be ill 
onditioned, while alarge � gives a well 
onditioned, signi�
antly positive de�nite R. Thisis illustrated in Figure 5.2.
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θFigure 5.2. Condition numbers for R given by (5.2) and (5.3).Dashed line: q=7. Full line: q=14.Dash-dotted line: q=14, regularized by (5.4)We see that exp gives relatively well 
onditioned 
orrelation matri
esin this �-range, while R(gauss) is severely ill 
onditioned even for quitelarge �-values, and the 
ondition number grows with m, the numberof design sites.Similar to (4.13) it 
an be shown that the 
omputed eigenvalues sat-isfy �j = �j+Æ with jÆj � "MkRk, so that if min j�j j <� "Mmax j�j j ,�(R) >� 1="M, then the matrix is not signi�
antly spd. The 
ompu-tation was done inMatlab, and 
(�(R)) >� 1015 indi
ates that 
om-puted results may be dominated by rounding errors. This 
alls for aregularization as dis
ussed in the paragraph after (4.16). Experimentsshowed thatbR = R+ �I with � = (10+m)"M (5.4)is a good 
ompromise between ensuring that the matrix is signi�
antlyspd without 
hanging the solution too mu
h. This is illustrated inFigure 5.2, where the results for bR(exp) 
annot be distinguished fromthe unregularized R(exp).



5.1. Conditioning 13It is generally agreed, see e.g. [3℄, that the reason for the poor 
on-ditioning of the gauss matrix is the distribution of the o�-diagonalelements in R. This is illustrated in Figure 5.3. For the smaller �-values it is seen that gauss leads to a more even distribution amongsmall and large elements than exp.
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Figure 5.3. Per
entage of o�-diagonal elements in the binsA : [0; 0:01℄; B : ℄0:01; 0:1℄; C : ℄0:1; 0:5℄; D : ℄0:5; 0:9℄; E : ℄0:9; 1℄R given by (5.2) and (5.3) with q = 14Next, Figure 5.4 shows how the two fa
tors in (2.5) vary with �. Asalready seen in Figure 5.2, the modi�
ation (5.4) from R to bR does nota�e
t the results for exp, but it has in
reasing e�e
t on the gauss-results as � de
ays. This, however, is the best we 
an do, and it doesnot spoil the essential information: The fun
tion jR(�)j1=m seems togrowmonotonously from 0 to 1 as � grows from 0 to1. The behaviourof �2 is more 
omplex, but it has an asymptote at �21, the varian
efor the simple least squares solution to (2.2).

14 5. Correlation Models
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Figure 5.4. Fa
tors in (2.5) for 0:1 � � � 100.bR given by (5.2), (5.3) and (5.4) with q=14The produ
t  of the two fun
tions is shown in Figure 5.5. In ea
h ofthe four 
ases the fun
tion  (�) has a unique minimizer,exp gauss�1 �� = 0:141 �� = 0:178�2 �� = 3:16 �� = 1:26 (5.5)As expe
ted, the optimizer for the faster os
illating �2 is larger thanthe optimizer for �1.
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MinimumFigure 5.5.  = j bRj1=m�2 for 0:1 � � � 100.Experimental settings as in Figure 5.4In the remainder of this se
tion we shall 
on
entrate on properties ofthe gauss model. As we have seen, this is the hard one, and this isthe type of model that has interest for surrogate modelling. Most ofthe results that we get will 
arry dire
tly to 
orrelation models of theexp-type.5.2. Use of Drop Toleran
eFigure 5.3 shows that for large values of � many of the elements in Rwill be small, and it is tempting to ignore them. If a large numberof elements are dropped, then R will be sparse, and this gives thepossibility of a speed up by exploiting sparse matrix te
hniques. Morespe
i�
, 
hoose a threshold � 2 [0; 1[ and de�ne the redu
ed matrix �R = �R (�) by( �R )ij = � 0 if Rij � �Rij otherwise (5.6)

16 5. Correlation ModelsFigure 5.6 shows the results for two � -values. As a measure we usethe relative density in  �R de�ned asrel. density = # nonzeros in  �Rm2 ; (5.7)and for the sake of 
omparison we also give results for the models
ubi
 and spline treated in Se
tions 5.3 and 5.4. We get the expe
ted
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reasing sparsity as � grows. For small values of � no elements willbe dropped, and we still need the stabilization as in (5.4).Intuitively, the dropping of small elements gets us 
loser to the unitmatrix, i.e., we should get a \more positive de�nite" matrix. This,however, is not the 
ase, as we 
an see in Figure 5.7. There is a gapbetween � ' 0:63 and � ' 4:0, where bR is inde�nite. Outside the gapthe results agree with Figure 5.5.This unexpe
ted behaviour 
an be explained as follows: If we 
hangeR to R+�, then the eigenvalues 
hange,�j(R+�) = �j(R) + Æj' �j(R) + v>j �vj ; (5.8)where the estimate of Æj follows from properties of the Rayleigh quo-tient [14, Se
tion 55℄, and presumes that the matrix � has smallelements. For the 
urrent problem, let Rrs be so small that we de
ideto drop it. Then we also drop Rsr, and assuming that these are the
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omputed with gauss and � = 10�6 in (5.6)Other settings as de�ned in Figures 5.4-5only elements dropped, we have a perturbed matrix  �R = R+� with�rs = �sr = �Rrs as the only nonzero elements in �. Applying (5.8)we get �j( �R ) ' �j(R)� 2RrsVjrVjs � �j(R)�Rrs : (5.9)The lower bound follows from the normalization of vj :jVjrVjsj � jVjr jq1� V 2jr � 0:5 for jVjr j � 1 :Thus, if �j(R) � Rrs, then there is a risk that  �R is singular orinde�nite. If we drop all elements smaller than the threshold � , then� has 
ontributions from all the dropped elements, and from (5.8) it
an be shown thatÆj � �� � � > �m � � ;where � is the maximum number of elements dropped in a row. Com-bining this with (4.15) it is seen that it is possible to guarantee thatbR is positive de�nite if we 
hoose � = m� . In Se
tion 5.5 we giveresults obtained with the regularizationbR =  �R + �I with � = (10+m)"M +pm�� : (5.10)5.3. Lo
al SupportThere is another way that a sparse R may arise, viz. through other
hoi
es of 
orrelation model. The 
ubi
 
orrelation family [8℄ is one

18 5. Correlation Modelssu
h exampleRj(�; d) = 1� 3(1��)2+! �2j + (1��)(1�!)2+! �3jwith �j = minf�j jdj j; 1g : (5.11)In Figure 5.8 we showR(1)j (�; d) = 1� 3�2j + 2�3j ;R(2)j (�; d) = 1� 1:5�2j + 0:5�3j ; (5.12)
orresponding to (�; !) = (0;�1) and (�; !) = (0; 0), respe
tively. As
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Figure 5.8. Cubi
 
orrelation models, (5.12).Dashed, full and dash-dotted line: �j = 0:2; 1; 5.in Figure 5.1 a larger �j redu
es the region of signi�
ant 
orrelation,and as gauss both models have a well de�ned horizontal tangent atdj = 0. From (5.11) we see thatRj(�; d) = � for jdj j � Dj � 1=�j : (5.13)This is zero for both R(1)j and R(2)j , so these models may lead to asparse R, see Figure 5.6. As regards approximation 
hara
teristi
s,we see that�R(1)j�d (�;Dj) = 0; �R(2)j�d (�;Dj) = �1:5�j :



5.3. Lo
al Support 19This implies that R(1)j is better suited when the Kriging model is usedto approximate a 
ontinuously di�erentiable fun
tion �. This is in
ontrast to the use in statisti
s: In [11℄ it is shown that the two param-eters in (5.11) have the statisti
al interpretation � = 
orr(�(0);�(Dj))and ! = 
orr(�0(0);�0(Dj)), and that a proper 
orrelation model(that 
an lead to a positive de�nite R) is obtained only if the param-eters satisfy�2 [0; 1℄; ! 2 [0; 1℄ and � � 5!2 + 8! � 1!2 + 4! + 7 : (5.14)These 
onditions are satis�ed by R(2)j but not by R(1)j .For the test problem (5.3) we get the results shown in Figure 5.9.Both models have a �-region (about [0:32; 2:5℄) where R is not spd:
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R(2)Figure 5.9. R given by (5.12) and (5.3) with q = 14up to almost half of the eigenvalues 
an be negative. The bottomplot shows that if we should use a modi�
ation like (4.14), then wewould have to use � ' 0:29 for R(1) and � ' 1:8 for R(2). Thus, also
20 5. Correlation Modelswith respe
t to providing a proper 
orrelation matrix, model R(1) ispreferable toR(2), but none of them is fully suited to 
over the desiredrange of �-values.We use 
ubi
 to designate R(1). Its sparsity properties are illustratedin Figure 5.6, and it is implemented as 
orr
ubi
 in the DACE Tool-box.5.4. Cubi
 SplineWe are interested in a 
orrelation model that� Shares the properties of gauss and R(1), (5.2) and (5.12), thatit is suited for approximation of 
ontinuously di�erentiable fun
-tions.� Can generate 
orrelation matri
es that are sparse and are nottoo ill 
onditioned.� Is easy to evaluate.A 
ubi
 spline, see e.g. [4℄ or [5℄, satis�es these demands. We exper-imented with several formulations, and settled for the following: Asin (5.11) we let�j = �j jdj j ; (5.15)and de�ne a 
ubi
 spline R(a) on the knots f0; a; 1g with 0<a<1. Thepie
ewise 3rd order polynomialR(a)j (�; d) = 8>>>>><>>>>>: 1� 3a �2j + 1+aa2 �3j for 0 � �j � a11�a (1� �j)3 for a < �j < 10 for �j � 1 (5.16)is twi
e 
ontinuously di�erentiable, and is therefore a 
ubi
 spline. Itsatis�es the boundary 
onditionsg(0) = 1; g0(0) = g(1) = g0(1) = g00(1) = 0 ;



5.4. Spline 21with g(�j) = R(a)j (�; d). Figure 5.10 shows the spline for two a-values
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Figure 5.10. Cubi
 spline models (5.16) for jdj j � 2.Dashed, full and dash-dotted line: �j = 0:2; 1; 5.The spline has an in
e
tion point at � = a=(1+a), whi
h de
reases asa&0. This is equivalent with the peak be
oming narrower, and thespline approa
hes the exp model in Figure 5.1. It is also re
e
ted inthe 
onditioning of the 
orrelation matrix, as shown in Figure 5.11.
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Figure 5.11. Condition number of bR given by(5.4), (5.16) and (5.3) with q = 14Compared with Figure 5.2 the 
ubi
 spline results are between theexp and gauss results. Generally, a smaller a-value gives a smaller
ondition number. The 
utter at the left hand end probably hasthe same explanation as dis
ussed below in 
onne
tion with (5.21).The amplitude of the last peak in the 
utter seems to grow with a,and further investigation showed that there is a small interval arounda = 0:4, where R is inde�nite in a small �-interval, similar to the 
ubi
fun
tions in Se
tion 5.3. Further, an investigation of the error as in
22 5. Correlation ModelsSe
tion 5.5 showed insigni�
ant di�eren
e between the three a-valuesin Figure 5.11. As a 
ompromise between robustness and smoothnesswe de
ided to use a = 0:2, and (5.16) takes the formRj(�; d) = 8><>: 1� 15�2j + 30�3j for 0 � �j � 0:21:25(1� �j)3 for 0:2 < �j < 10 for �j � 1 (5.17)We refer to this as spline. Its sparsity properties are illustratedin Figure 5.6, and it is implemented as 
orrspline in the DACEToolbox.Figure 5.12 shows the 
orresponding obje
tive fun
tion  , 
f. Figures5.5 and 5.7. Note that for the faster os
illating �2 the obje
tivefun
tion  has lo
al minima to the left of the global minimum.
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MinimumFigure 5.12.  (�) = j bR(�)j 1m � �2(�) for 0:01 � � � 10.bR given by (5.17), (5.3) and (5.4) with q = 145.5. Approximation ErrorIn this se
tion we look at the error of the Kriging estimator ^y(x) (3.1)as an approximation to a fun
tion � : IRn 7! IR. The estimator isdetermined by a given set of design points, (si;�(si)); i=1; : : : ;m.We use the design points de�ned in (5.3), and to avoid possible bound-ary e�e
ts, we evaluate the predi
tor on an interior subregion,Test sites: T = 41�41 equidistant meshover [1; 4℄�[2; 8℄ (5.18)



5.5. Error 23For a 
hosen 
orrelation model with parameters � we de�ne the errormeasureEk(�) = maxx2T j^y(k)(x) ��k(x)j ; (5.19)and the measure for the estimated mse, (3.3),�k(�) = �maxx2T j'(k)(x)j�0:5 : (5.20)Index (k) indi
ates that the Kriging model is �tted to data from �k.The squareroot is in
luded in (5.20) to ease 
omparison of the twoerror measures.Figure 5.13 shows the error measures for �ve 
orrelation models. Notethe remarkable agreement between the two error measures, as regardsthe best �-value.Figure 5.14 shows how the models gauss, drop and spline 
onvergeas the number of design sites in
reases. Note the fast 
onvergen
e ofgauss, while the other two models have almost identi
al and slower
onvergen
e.There are two disappointing 
hara
teristi
s with the results from thespline model:1. The 
utter in Ek.2. The slow 
onvergen
e.Complaint no. 1 is shared by the 
ubi
 model but not by the otherthree models. It is 
aused by the produ
t form of the 
orrelation (5.1).If we 
hange (5.15) to� = k ��d k ; (5.21)and use (5.16) with �j repla
ed by � to get R(�; d), then the 
utterdisappears. However, we did not pursue this line further be
ause a hasto be mu
h smaller in order to ensure spd in a reasonable �-range,and the error is of the same order of magnitude as with the modelde�ned by (5.16). The other models shown in Figure 5.13 have (5.21)
24 5. Correlation Models
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5.5. Error 25Complaint no. 2, or { maybe more a

urately: why gauss performs sowell { is harder to explain. We have not found any prior satisfa
toryexplanation of this, but here is our attempt at a partial explanation:Consider (3.1) at a point 
lose to the design site sk,^y(sk+h) = f(sk+h)�� + 
�>r(sk+h) :With the regression model F(x) = 1 and introdu
ing (3.2) and (3.4)this takes the form^y(sk+h) = �� + (Y � ��)>R�1r(sk+h)' �� + (Y � ��)>R�1�r(sk) + Jr(sk)h)� ; (5.22)where Jr is the Ja
obian. It follows that^y(sk) = �� + (Y � ��)>R�1R:;k= �� + (Y � ��)>ek= yk= �(sk) ; (5.23)i.e., the Kriging predi
tor interpolates the design points.Figure 5.15 shows the ve
tors 
� and r(sk) for the gauss and splinemodels, 
omputed with a �-value 
lose to the optimizer, 
f. Fig-ure 5.14, and sk given in the legend. For 
omparison, ��gss = �0:3588,��spl = �0:2770 and the fun
tion value normalized by (2.1) is(�1(sk)� �(Y ))=�(Y ) = 0:5565.For both models the residual ve
tor Y � ��e has elements of orderof magnitude 1, and the ill 
onditioning of Rgss implies that its in-verse has large elements. This is re
e
ted in the 
omponents of 
�gss.In the 
omputation of ^y(sk) (5.23) there will be serious 
an
ellationerror, and this is veri�ed by 
omputation. For the point sk given inFigure 5.15 we �ndj^ygss(sk)��(sk)j = 6.99e-9; j^yspl(sk)��(sk)j = 1.52e-13 :The spline result is as a

urate as we 
an hope for with "M = 2.22e-16.
26 5. Correlation Models
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Figure 5.15. Fa
tors in (5.23) for Problem 1 in(5.3) with q = 10. � = 0:16, sk = [ 259 509 ℄Next, we look at the behaviour 
lose to sk, as expressed by (5.22).Introdu
ing (5.23) we 
an write it in the form^y(sk+h) ' �(sk) + g(sk)>hwith gj = �(Y )�(S:;j) (Jr)>:;j
� : (5.24)In terms of normalized variables the Ja
obians of the two models aregauss : �Jr(sk)�ij = �2�jdijRik ;spline : �Jr(sk)�ij = �jsign(dij)
(�j)Q`6=j R`(�; di) ;Here, dij is the jth 
omponent in the ve
tor di = sk � si, and
(�) = 8><>: �30� + 90�2 for 0 � � � 0:2�3:75(1� �)2 for 0:2 < �j < 10 for � � 1



6. Optimize � 27With the data from above we getggss = � 0:0322�0:4596 � ; gspl = � 0:0359�0:4614 � :For 
omparison, the gradient of � agrees with ggss on the four de
i-mals shown; the maximum relative di�eren
e is 7.8e-7. This meansthat 
lose to sk the Kriging model based on gauss is very 
lose to a�rst order Taylor expansion, while the spline model disagrees on these
ond de
imal in the gradient.This behaviour is worth further investigation. It should be mentionedthat we have experimented also with other problems and with other
hoi
es of the regression fun
tion F , and got similar results.6. Optimize ParametersBy 
omparing Figures 5.5, 5.12 and 5.13 we see a good agreementbetween the minimizing �-value for the error measure � (5.20) andthe optimizer for the obje
tive fun
tion  de�ned in (2.5).Figure 6.1 shows that the smooth behavior of  (�) that was foundin the isotropi
 
ase is also found when the the 
omponents of � areallowed to di�er.An easier identi�
ation of the minimizer is obtained if we look at level
urves for the obje
tive fun
tion, see Figure 6.2.

28 6. Optimize �

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−15

10
−10

10
−5

10
0

θ
1

ψ  for  ϒ
1

θ
2Figure 6.1.  (�) (2.5) for �1 in (5.3) with q = 14.�2 [0:01; 10℄�[0:1; 10℄. gauss model

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

ψ  for  ϒ
1

θ
1

θ 2

Figure 6.2. Level 
urves for  (�) for �1 in (5.3) with q = 14.gauss model. The asterisk marks the minimizer, �� = [0:100 0:316℄



6.1. Algorithm 296.1. AlgorithmLet the parameter ve
tor � have q 
omponents, e.g., q=1 for theisotropi
 models treated in Se
tion 5 and q=2 in Figures 6.1 and6.1. We seek (an approximation to) �� in the region 0 < `j � �j �uj ; j=1; : : : ; q. The program da
efit 
an handle the following 
asesand mixtures of them,- Some �j are �xed indi
ated by `j = uj- Warm start indi
ated by `j � �j � uj- Cold start indi
ated by �j < `j or �j > ujWe shall only dis
uss 
ases where there is at least one unknown pa-rameter.The algorithm for minimizing the fun
tion  , (2.5), should take intoa

ount that1. ea
h evaluation of  is expensive. It involves the evaluation andfa
torization of R(�) and the solution of (2.8), but2. Figures 5.5, 5.12, 5.13 and 6.2 indi
ate that there is no point in�nding the minimizer with great a

ura
y, and3. the fun
tion is well behaved { at least if we approa
h the mini-mizer from above, but4. 
omputation of the gradient of  with respe
t to the 
omponentsof � is possible, but would involve 
onsiderable extra e�ort.These 
onsiderations lead us to 
hoose a pattern sear
h method. Morespe
i�
, we use the following modi�ed version of the Hooke & Jeevesmethod, see e.g. [9, Se
tion 2.4℄. Rather than the usual approa
h,where the parameters get absolute 
hanges, we work with a ve
tor �of relative 
hanges.The main algorithm is

30 6. Optimize �Algorithm Optimize �Given �(0); `; u[�;�℄ := start(�(0); `; u)for k = 1; : : : ; kmax 1Æb� := �� := explore(�;�; `; u)[�;�℄ := move(b�; �;�)� := rotate(�) 2ÆendRemarks1Æ Experiments showed that kmax = maxf2; minfq; 4gg is a good
ompromise between eÆ
ien
y and desired a

ura
y.2Æ In order to avoid \ba
ktra
king", the 
omponents of � are dif-ferent, and we rotate the 
omponents by taking the indi
es inthe order 2; : : : ; q; 1.The easy 
ase for the starting algorithm is when there is only one freeparameter: start the sear
h 
lose to the upper bound. If we have twoor more 
old start parameters, we have to take into a

ount that  may have several lo
al minima, as illustrated in Figures 6.4 and 6.5.The probability of landing in a wrong lo
al minimum was 
onsiderablyredu
ed by using an elaborate starting pro
edure. Ex
ept for 
he
kof legal inputs (0 < `j � uj et
.) this has the formAlgorithm [�;�℄ := start(�(0); `; u)� := �(0); N := ; 3Æfor j = 1; : : : ; qif `j = uj then �j := 1; �j := uj 4Æelse�j := 2j=(q+2) 2Æif �j<`j or �j>uj then�j := (`ju7j)1=8; N := N [ j 5Æendendend



6.1. Algorithm 31if #N > 1 thenb� := �; J := N 1 6Æfor k = 1; : : : ;#Nj := N k; � := b�v := e; vN := 12 ; vj := 116� := minfln(`N � �N )� ln vN gv := v�=5 7Æfor i = 1; 2; 3; 4# := vi � b�if  (#) �  (�) then� := #;if  (#) �  (�) then � := #; J := jelse break 8ÆendendSwap �1 and �J 9ÆendRemarks3Æ N is the set of indi
es for whi
h a proper starting value is notgiven.4Æ Equality 
onstraint.5Æ No proper starting point given. Choose a point 
lose to theupper bound.6Æ For ea
h 
omponent of � without a proper starting value, tryup to four points with that 
omponent redu
ed 
onsiderablyfaster than the others; 
f. 7Æ and Figures 6.3 - 6.5.7Æ v is determined so that v5 � b� hits a lower bound.8Æ Stop the i-loop: we have passed a lo
al minimum.9Æ Dire
tion number J had the largest step in the introdu
torysear
h, and should have the smallest step now; 
f. 2Æ.The loop in optimize starts by an explore step, where ea
h free pa-
32 6. Optimize �rameter �j in turn is in
reased in an attempt to redu
e the obje
tivefun
tion. If this fails, then a de
reased �j-value is tried. Parametervalues at a bound are only allowed one-sided 
hange.Algorithm � := explore(�;�; `; u)for j = 1; : : : ; qif `j < uj then# := �if �j = `j then #j := `j ��1=2j ; atbd := trueelseif �j = uj then #j := uj=�1=2j ; atbd := trueelse #j := minf�j ��j ; ujg; atbd := falseif  (#) <  (�) then � := #elseif not atbd then#j := maxf�j=�j ; `jgif  (#) <  (�) then � := #endendendFinally, the 
hange from b� to � may indi
ate a pattern. This is inves-tigated inAlgorithm [�;�℄ := move(b�; �;�)if b� = � then � := �1=5elsev := � � b�; notstop := truewhile notstop# := � � vif any(#j � `j or #j � uj) thennotstop := false�� := maxf� j �jv�j � `j and �jv�j � ujg# := � � v��endif  (#) <  (�) then � := #; v := v2



6.1. Algorithm 33else notstop := falseend� := �1=4endThe performan
e of the algorithm is illustrated in Figures 6.3 - 6.5
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Figure 6.3. Sear
h path. gauss model with �1 from (5.3), q = 14.Squares: Points tried in start. Star: starting point.Plus: explore step. Ring: move step.Asterisk: as in Figure 6.2The swapping of the 
oordinates in Figure 6.5 was made to illustratethat the algorithm may also 
hoose to redu
e �2 faster.
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Figure 6.4. Sear
h path. spline model with �1 from (5.3), q = 14.Legend as in Figure 6.3
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h path for the data from data1 in the DACEToolbox, with swapped 
oordinates. m = 75. gauss model.Legend as in Figure 6.3



6.2. Testing 356.2. TestingWe have tested the algorithm on the 5 problems given in Table 6.1.Problems 4 and 5 are immediate generalizations of (5.3).pno Des
ription ` u1 Data given in data1 in the DACE Toolbox.m=75. Test sites: 312 grid on [20; 80℄2.kY k1 = 44:7. :1:1 20202 Data with �1 as de�ned by (5.3) withq=14; m=196. Test sites given by (5.18).kY k1 ' 1. :01:1 10103 Data with �2 as de�ned by (5.3) withq=14; m=196. Test sites given by (5.18).kY k1 ' 1. :01:1 10104 Data with �1(x) = Qj sin 12xj , where thedesign sites are from a uniform q3 grid on[0; 5℄ � [0; 10℄ � [0; 15℄. q=10; m=1000.Test sites: 113 grid on [1; 4℄�[2; 8℄�[3; 12℄kY k1 ' 1. :01:1:1 1010105 Data with �2(x) =Qj sin 2xj . Design andtest sites as in problem 4. kY k1 ' 1. :01:1:1 101010Table 6.1. Test problemsFor ea
h problem we use both the gauss and the spline model, andin ea
h 
ase we �nd both the isotropi
 and anisotropi
 solution. Inthe latter 
ase we also test the warm start 
apability, by re�ning the�. In the testing we also give the error measure � de�ned by (5.20).Further, we give results from repla
ing the algorithm of Se
tion 6.1with fminsear
h from theMatlab Optimization Toolbox, Version 2.To be able to make a fair 
omparison, we let it work on the variables� = ln �, give it the same starting point, �j = (ln `j + 7 lnuj)=8, anduse the very 
oarse stopping 
riteria given by

36 6. Optimize �optimset('TolX',.005, 'MaxIter',100*q, ...'MaxFunEvals',500*q)pno Meth. nval ��  (��) �(��)1 df 12 2.58 4.33e-02 1.27fms 23 2.67 4.31e-02 1.31grid 41 2.82 2.43e-01 1.392 df 13 .166 1.50e-10 1.17e-07fms 29 .184 1.46e-10 1.04e-07grid 61 .178 4.25e-11 1.07e-073 df 11 1.33 1.11e-02 7.46e-04fms 23 1.33 1.11e-02 7.45e-04grid 61 1.26 2.56e-03 6.92e-044 df 14 .264 7.06e-08 1.42e-05fms 27 .315 5.98e-08 1.70e-05grid 61 .316 8.19e-09 1.71e-055 df 5 10.0 2.68e-01 3.48e-01fms 37 10.0 2.68e-01 3.48e-01grid 61 10.0 2.68e-01 3.48e-01Table 6.2. Isotropi
 gauss model.df The algorithm from Se
tion 6.1, implemented in da
efitfms fminsear
h as des
ribed abovegrid Minimum over logarithmi
 equidistant grid over [`; u℄.nval grid pointsThe results in Tables 6.2 - 6.5 give rise to the following remarks,1. The algorithm used in da
efit is robust. In all 
ases it �ndsthe right lo
al minimum.2. As expe
ted, it is easier to optimize � for an isotropi
 modelthan an anisotropi
 model, but the latter normally gives a betterresult in terms of smaller values both for  and �.



6.2. Testing 37pno Meth. nval ��  (��) �(��)1 df 13 .203 2.00e-02 3.56e-01fms 31 .195 1.97e-02 3.42e-01grid 41 .200 1.11e-01 3.50e-012 df 10 .111 2.51e-05 5.75e-03fms 30 .101 2.46e-05 6.15e-03grid 61 .100 7.21e-06 6.26e-033 df 13 .418 1.78e-01 1.20e-01fms 27 .394 1.59e-01 1.32e-01grid 61 .398 3.62e-02 1.30e-014 df 5 4.22 9.99e-01 5.44e-01fms 15 4.22 9.99e-01 5.44e-01grid 61 .141 1.50e-05 2.75e-025 df 5 4.22 9.99e-01 5.16e-01fms 15 4.22 9.99e-01 5.16e-01grid 61 3.16 1.23e-01 4.90e-01Table 6.3. Isotropi
 spline model.Legend as in Table 6.23. Generally a smaller value for the obje
tive fun
tion  
orre-sponds to a smaller value of the error measure �, but there areenough ex
eptions to this rule to 
on�rm our statement thatis does not make sense to 
ompute the minimizer with highera

ura
y.4. The results for the gauss model with Problem 3 are surprising:the optimal  is de
reased by a fa
tor 100 when we 
hange fromisotropi
 to anisotropi
 model, but the error measure is in
reasedby the same fa
tor. This should be investigated further.5. Generally, fminsear
h gives essentially the same solution as ourspe
ial purpose algorithm, with the ratio of fun
tion evaluationsvarying between 2 and 9. In the 
ase illustrated in Figure 6.5(pno=1 in Table 6.3) fminsear
h �nds a wrong lo
al minimum(whi
h leads to a smaller error measure, however.)

38 6. Optimize �pno Method nval ��  (��) �(��)1 df 16 1.36, 4.79 3.71e-02 1.17warm 9 1.36, 4.96 3.71e-02 1.17fms 59 4.24, 1.39 4.00e-02 9.77e-01grid 441 1.41, 5.32 2.11e-01 1.212 df 21 .0947, .353 6.44e-11 7.36e-08warm 10 .0884, .341 6.30e-11 7.77e-08fms 81 .0911, .304 6.16e-11 8.17e-08grid 651 .1000, .316 1.83e-11 7.63e-083 df 13 .487, 4.16 6.71e-04 5.32e-02warm 11 .408, 2.17 6.69e-04 4.46e-02fms 74 .491, 3.85 6.68e-04 4.28e-02grid 651 .501, 3.98 1.52e-04 4.44e-024 df 38 0.0670, .277, .554 7.33e-09 1.39e-04warm 19 .0783, .302, .783 6.03e-09 3.43e-04fms 174 .0806, .296, .754 6.01e-09 2.99e-04grid 1936 .1000, .251, .631 9.48e-10 2.99e-045 df 27 .273, 3.07, 3.07 4.75e-01 1.31warm 19 .273, 3.07, 3.07 4.75e-01 1.31fms 30 4.22, 5.62, 5.62 9.99e-01 5.24e-01grid 1936 .251, 3.98, 3.98 6.04e-02 1.65Table 6.4. Results with anisotropi
 gauss model.Legend as in Table 6.26. With the anisotropi
 spline model in Table 6.4 fminsear
hstops prematurely for pno = 2; 3; 5, probably be
ause TolX was
hosen too large.7. In Se
tion 5.5 we found that gauss was surprisingly a

urateand mu
h better than spline. Comparing Tables 6.3 and 6.4we see that for pno=1 we get more a

urate results by meansof the spline 
orrelation model.



6.3. Computing Time 39pno Method nval ��  (��) �(��)1 df 19 .100, .255 1.89e-02 2.54e-01warm 7 .100, .361 1.53e-02 2.59e-01fms 96 .100, .366 1.52e-02 2.58e-01grid 441 .100, .376 7.98e-02 2.58e-012 df 23 .0670, .148 2.01e-05 7.88e-03warm 11 .0670, .114 1.86e-05 7.10e-03fms 24 4.22, 5.62 9.95e-01 1.08grid 651 .0631, .126 5.85e-06 7.88e-033 df 17 .266, 1.54 1.20e-01 4.85e-01warm 10 .266, 1.48 1.20e-01 4.64e-01fms 24 4.22, 5.62 9.95e-01 9.55e-01grid 651 .251, 1.58 2.79e-02 5.39e-014 df 19 .795, 10.0, 10.0 3.44e-01 8.18e-01warm 14 0.782, 10.0, 10.0 3.44e-01 8.40e-01fms 191 0.783, 10.0, 10.0 3.44e-01 8.39e-01grid 1936 .631, 10.0, 10.0 4.68e-02 1.265 df 27 .273, 3.07, 3.07 4.75e-01 1.31warm 19 .273, 3.07, 3.07 4.75e-01 1.31fms 30 4.22, 5.62, 5.62 9.99e-01 5.24e-01grid 1936 .251, 3.98, 3.98 6.04e-02 1.65Table 6.5. Results with anisotropi
 spline model.Legend as in Table 6.26.3. Computing TimeThe 
omputational e�ort in da
efit is dominated by the Choleskyfa
torization (2.6), whi
h is an O(m3) pro
ess. This is performednval times, where nval is the number of fun
tion evaluations duringthe optimization. From Se
tion 6.2 it follows that nval grows slowlywith the number of free elements in �, and as a simple model for theexe
ution time we 
an takeTda
efit ' a �m3 : (6.1)Suppose that we want to 
ompute � values with predi
tor, at thesites x2 IR��n. This involves the 
omputation of the ��p regressionmatrix F(x) and the m�� 
orrelation matrix r(x) and performing the
40 6. Optimize �inner produ
ts in (3.1). The e�ort grows linearly with � and m, andT ^ypredi
tor ' b � � �m : (6.2)If we also want the mse, we further have to perform the O(� � m2)transformation er = C�1r(x), andT ^y;'predi
tor ' 
 � � �m2 : (6.3)These 
onsiderations are 
orroborated by Figure 6.6.
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Figure 6.6. Times in se
onds on a Sun�re 10k forda
efit and predi
tor.Problems generated by �1 in (5.3) for q = 4; 5; : : : ; 31.gauss model with ` = [:01; :01℄; u = [10; 10℄



7. Con
lusion 417. Con
lusionThe Matlab fun
tions in the DACE toolbox version 2.0 seem towork well. As pointed out in this report, there are, however, someopen questions that need further investigation� Why is gauss su
h a good 
orrelation model for Kriging asmooth fun
tion?� Is it possible to �nd a model that 
ombines the good sparsityproperties and well-
onditioning of the spline model with bet-ter approximation properties?� The surprising results with gauss on the test problem (5.3)when we 
hange from isotropi
 to anisotropi
 model.Currently we have the following plans for further items in the toolbox,� A regression model that uses produ
ts of 
ubi
 splines in then dimensions (with bi
ubi
 splines as a spe
ial example, whenn = 2).� An algorithm for optimization of \expensive" fun
tions, where ^yis used as a surrogate for the fun
tions. Basi
 ideas as des
ribedin e.g., [1℄, [2℄ and [13℄.

42 8. Notation8. Notationm; n number of design sites and their dimensionalityp number of basis fun
tions in regression modelq number of elements in �F(�; x) regression model, F(�; x) = f(x)>�R(�; w; x) 
orrelation fun
tionC Cholesky fa
torization of R, R = CTCfj basis fun
tion for regression modelf p-ve
tor, f(x) = [f1(x) � � � fp(x)℄>F expanded design m�p-matrix, see Se
tion 2~F ; ~Y transformed data, see (2.7)R m�m-matrix of sto
hasti
-pro
ess 
orrelationsr m-ve
tor of 
orrelationsS m�n matrix of design sitessi ith design site, ve
tor of length n. s>i = Si;:U�V > svd { Singular Value De
omposition, see (4.2)vj eigenve
tor, see (4.7)x n-dimensional trial pointxj jth 
omponent in xXi;:, X:;j ith row and jth 
olumn in matrix X , respe
tivelyY m-ve
tor of responsesyi response at ith design site, yi = �(si)^y predi
ted response, see (3.1)� p-ve
tor of regression parameters, see (2.10)
 m�q-matrix of 
orrelation 
onstants, see (3.1)� parameters of 
orrelation model, q-ve
tor



Referen
es 43�j eigenvalue, see (4.7)�2 pro
ess varian
e, see (2.11)�jj singular value� ba
kground fun
tion, � : IRn 7! IR'(x) mean squared error of ^y, see (3.3)� elementwise (Hadamard) multipli
ation� elementwise divisionmse mean squared error, p 5gauss Gauss 
orrelation model, see (5.2)spd symmetri
, positive de�nitespline Cubi
 spline 
orrelation model, see (5.17)
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