
2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000Practical Scheduling Algorithms for Input-Queued SwitchesJinhui Li and Nirwan AnsariCenter for Communications andSignal Processing ResearchDepartment of Electrical andComputer EngineeringNew Jersey Institute of TechnologyUniversity Heights, Newark,NJ 07102, U.S.A.Abstract | The input-queued (IQ) switching ar-chitecture is becoming an attractive alternative forhigh speed switches owing to its scalability. In thispaper, two new algorithms, referred to as maximumcredit �rst (MCF) algorithm and iterative maximumcredit �rst (IMCF) algorithm, are introduced. Theo-retic analysis shows that the credits of an IQ switchusing MCF are bounded for all admissible rate reser-vations. Simulations show that both MCF and IMCFhave similar performance as the Birkho�-von Neu-mann algorithm which can provide cell delay boundand 100% throughput in terms of QoS guarantees, buthave lower o�-line computational and on-line memorycomplexity. I. IntroductionThere are two basic types of switching architectures: output-queued (OQ) and input-queued (IQ) switching architecture.When a packet arrives at an OQ switch, it is queued in itsoutput queue immediately. The packet will stay in the outputqueue until it is transmitted from the switch, and hence 100%throughput can be achieved in OQ switches. OQ switchescan also provide quality of service (QoS) guarantees by us-ing scheduling mechanisms [1] such as WFQ[2]/PGPS[3] andWF 2Q [4]. The problem of OQ switches is that the fabric ofan N �N OQ switch must run in the worst case N times asfast as its line rate, i.e., the speedup of an OQ switch is N .On the other hand, when a packet arrives at an IQ switch, itis placed in its input queue until it can be scheduled across thefabric. The packet can be transmitted out of the IQ switchimmediately when it arrives the output port. The fabric ofan IQ switch needs only run as fast as the line rate, i.e., thespeedup of an IQ switch is 1.In the high speed networks, fabric and memories with abandwidth operated at N times the line rate may be infea-sible. Thus, the IQ switching architecture has been adoptedfor high speed switch implementation owing to its scalability.One of the major problems with the IQ switching architectureis the head-of-line (HOL) blocking: the HOL cell, which can-not be forwarded because of output contention, can block theoutput-contention-free cells in the same queue when FIFO isused. HOL blocking limits the throughput of the IQ switchusing a single FIFO queue in each input to approximately2 � p2 � 0:586 even under i:i:d: Bernoulli tra�c when N1This work was supported in part by Lucent Technologies, andthe New Jersey Commission on Science and Technology via the NewJersey Center for Wireless Telecommunications.

is large [5]. Under bursty tra�c, it is even worse: the max-imum throughput of such a switch decreases monotonicallywith the burstiness of tra�c, and reaches to 0:5 when bursti-ness is large [6]. Stationary blocking is another problem forFIFO IQ switches: The total throughput of the switch canbe as small as the throughput of a single link under certainperiodic tra�c, even when N is very large [7].Previous research [8][9][10] shows that HOL blocking canbe completely eliminated in IQ switches by adopting virtualoutput queueing (VOQ), in which multiple VOQs directed todi�erent outputs are maintained at each input. Also, thethroughput of an IQ switch can be increased to 100% un-der all admissible independent tra�c by using well designedscheduling algorithms such as longest queue �rst (LQF) [9]algorithm and oldest cell �rst (OCF) [10] algorithm. Though100% throughput can be achieved using IQ switches, otherQoS features such as bandwidth and cell delay still cannot beguaranteed using the above algorithms.Another approach to reduce HOL blocking is to increasethe speed of the fabric. The ratio of bandwidth between fabricand input link is de�ned as speedup. When speedup is largerthan 1 and smaller than N , bu�ers are required at the outputsas well as inputs. This switching architecture with both inputand output bu�ering is called combined input output queueing(CIOQ) switch.Enormous e�orts have been made on providing QoS guar-antees with CIOQ switch. Recently, Chuang et al. proved [11]that a CIOQ switch using stable matching [12] algorithm andcritical cells �rst (CCF) insertion policy with speed up equalto two can exactly mimic an OQ switch that uses push-in�rst-out (PIFO) queueing policy.Other e�orts have been made to achieve QoS guarantees byIQ switch without speedup. Schedule tables in [8] and Store-sort-and-forward (SSF) algorithm [13] can guarantee cell delaywith a �xed schedule that is pre-computed when connectionsare setup. However, they have problems such as computa-tional complexity and rate granularity limitation.Chang et al. proposed [14] the Birkho�-von Neumann al-gorithm based on a decomposition result by Birkho� and vonNeumann for a doubly substochastic matrix. This algorithmcan provide 100% throughput for all non-uniform tra�c. Fur-thermore, if the tra�c is (�; r)-upper constrained, cell de-lay can be deterministically guaranteed using this algorithm.The problem of this algorithm is that the o�-line computa-tional complexity is too high: O(N4:5). If the assigned rate ofthe sessions change frequently, which is more likely in a largeswitch, the algorithm will be impractical. In this paper, weproposed two new algorithms, maximum credit �rst (MCF) al-



gorithm and iterative maximum credit �rst (IMCF) algorithm,which have lower o�-line complexity and similar performanceas the Birkho�-von Neumann algorithm, and more realizable.The rest of the paper is organized as follows. In Section 2,we describe our switch model and algorithms. Discussion andsimulation results of the proposed algorithms are presented inSection 3. Concluding remarks are given in Section 4.II. Our Switch Model and AlgorithmsOur N � N input-queued switch which has no speedupconsisting of N inputs, N outputs and a non-blocking switchfabric such as crossbar. The packets, which may have variablelength, are broken into �xed length cells when they are arriv-ing in the inputs. After the cells crossed the fabric, they arereassembled to the original variable length packets. Time slotis de�ned as the time required to transmit a cell with the linerate. Virtual output queueing is adopted in order to eliminatethe HOL blocking. We denote the VOQ directed to output jat input i as Qi;j .The basic objective of scheduling an input-queued switchis to �nd a contention free matching which is equivalent tosolving a bipartite graph matching problem, as shown in Fig.1(a). Each vertex on the left side represents an input, andthat on the right side represents an output. There have anedge between every input vertex i and every output vertex j.Associated with each edge is a weight, wi;j , which is de�neddi�erently by di�erent algorithms. In Fig. 1(a), the edges withthe weight of 0 are omitted. The scheduler selects a matchingbetween the inputs and outputs with the constraints of uniquepairing, i.e., at most one input can be matched to each output,and vice versa. Then, a cell is transmitted per matched input-output pair if there has a cell in Qi;j . A maximum weightedmatching algorithm computes a matching which can maximizethe aggregate weight. Fig. 1(b) is the maximum weightedmatching solution of Fig. 1(a).Suppose the rate assigned to the tra�c from input i tooutput j is ri;j , which is also the arrival rate of Qi;j . Thetra�c is admissible if and only if the following inequalities aresatis�ed: NXj=1 ri;j � 1; 8i; (1)NXi=1 ri;j � 1; 8j: (2)R = (ri;j) is a doubly substochastic matrix. For any doublysubstochastic matrix R, there exists [14][15] a doubly stochas-tic matrix ~R = (~ri;j) such that ri;j � ~ri;j ; 8i; j. Matrix ~R is adoubly stochastic matrix, if it satis�esNXj=i ~ri;j = 1; 8i; (3)and NXi=i ~ri;j = 1; 8j: (4)~R can be constructed by the following algorithm.Algorithm 11. De�ne rai = 1�Pj=Nj=1 ri;j. Calculate rai for all i.

2. De�ne rbj = 1�Pi=Ni=1 ri;j. Calculate rbj for all j.3. Calculate rr = N �Pi=N;j=Ni=1;j=1 ri; j.4. Let ~ri;j = ri;j + rairbjrr .The computational complexity of Algorithm 1 is O(N2).Suppose every Qi;j has a credit ci;j which is a real vari-able that has the initial value of 0. At the beginning of everytime slot, ci;j increases by ~ri;j . Then the scheduler selectsthe matching according to the current credits of VOQs. De-�ne service matrix at time slot n as S(n) = (si;j(n)), wheresi;j(n) equals to 1 if input-output pair (i; j) is in the match-ing, otherwise si;j(n) = 0. In this paper, we only considerpermutation matrices as the service matrix S, implying thatthere are always exactly N pairs in every matching. From allthe permutation matrices, the MCF algorithm selects the onewhich can maximize the aggregate credit, i.e.,arg maxS [Xi;j si;j(n)ci;j(n)];where, Pj si;j(n) =Pi si;j(n) = 1; 8i; j. The service matrixS can be found by maximum weighted matching algorithmwhich has a computational complexity of O(N3) [16]. Thecells in VOQs are transmitted across the fabric according totheir corresponding values in service matrix S: If si;j equalsto 1 and Qi;j is not empty, then the HOL cell of Qi;j will betransmitted to output j. In the meanwhile, ci;j decreases bysi;j for all i; j. Thus, ci;j(n), the credit of Qi;j at the end oftime slot n, isci;j(n) = ci;j(n� 1)� si;j(n) + ~ri;j : (5)where, ci;j(n� 1) is the credit of Qi;j at the end of time slotn� 1.Owing to the O(N3) complexity, MCF algorithm is di�cultto implement in high speed networks, so we propose an iter-ative approximation of MCF algorithm: iterative maximumcredit �rst (IMCF) algorithm. IMCF performs the followingthree steps in each iteration:1. Request: Each unmatched input sends a request to ev-ery output.2. Grant: If an unmatched output receives any requests, itchooses the one with the largest credit. Ties are brokenrandomly.3. Accept: If an input receives any grants, it chooses theone with the largest credit. Ties are broken randomly.IMCF stops when there has no unmatched input and output.It converges in at most N iterations, and the service matrixS selected by IMCF is always a permutation matrix.Property 1 At the end of any time slot, the credits of an IQswitch using MCF or IMCF satisfy the following equations:8<: PNj=1 ci;j = 0; 8iPNi=1 ci;j = 0; 8jPi;j ci;j = 0 : (6)Property 2 In any time slot just before the service matrix iscalculated, the credits of an IQ switch using MCF or IMCFsatisfy the following equations:8<: PNj=1 ci;j = 1; 8iPNi=1 ci;j = 1; 8jPi;j ci;j = N : (7)



Theorem 1 The credits of an IQ switch using MCF algo-rithm are bounded for all admissible rate reservations, i.e.,j ci;j j<1.III. Discussion and SimulationsLet Si;j(n) be the cumulative number of slots that are as-signed to Qi;j by time slot n. Then the credit of Qi;j isci;j(n) = ~ri;j � n� Si;j(n): (8)For any n � m,Si;j(n)� Si;j(m) = ~ri;j(n�m)� ci;j(n) + ci;j(m): (9)If we assume the lower bound and upper bound of the creditare c� and c+, respectively, and let �c = c+ � c�, thenri;j(n�m)��c � Si;j(n)�Si;j(m) � ri;j(n�m)+�c: (10)Eq. (10) implies that if Ai;j , the tra�c from input i to outputj, conforms to (�i;j ; ri;j), i.e.,Ai;j(n)�Ai;j(m) � ri;j(n�m) + �i;j ; (11)then the cell delay from input i to output j is bounded byd(�i;j +�c)=ri;je.Chang et al. show [14] if Eq. (1) and (2) are satis�ed, thenthe Birkho�-von Neumann algorithm can guaranteeSi;j(n)� Si;j(m) � ri;j(n�m)� ui;j ; (12)for all i; j, n � m, where ui;j � U = N2 � 2N + 2.Comparing Eq. (10) with Eq. (12), we can say if the �c ofMCF and IMCF is comparable with U = N2 � 2N + 2, thenMCF and IMCF are as good as the Birkho�-von Neumannalgorithm in terms of QoS guarantees. Simulation results ofc+, c�, and �c are shown in Table 1. The simulations aremade under various non-uniform rate reservations on input-queued switches with N = 16, N = 32, and N = 64. Table1 shows the �c of MCF and IMCF, which are much smallerthan U .Fig. 2 shows the distribution of the percentage of cellswhich experience various delays over a 16 � 16 IQ switchusing MCF, IMCF and the the Birkho�-von Neumann al-gorithm under non-uniform tra�c with a total tra�c loadof 90%. Tra�c Ai;j conforms to (�i;j ; ri;j) for all i; j, inwhich �i;j = 1000ri;j . Thus, the designed delay bound is1000 + dui;j=ri;je time slots for the Birkho�-von Neumannalgorithm, and is 1000 + d�c=ri;je time slots for MCF andIMCF. The simulation result shows that the cell delay boundis less than 1200 time slots for all the algorithms as we ex-pected. Fig. 2 demonstrates that the performance of thethe Birkho�-von Neumann algorithm and IMCF are almostidentical, and MCF has a tighter bound than the other twoalgorithms.When ri;j , the reserved rate between input i and output j,changes, MCF and IMCF need to recalculate ~R. On the otherhand, the Birkho�-von Neumann algorithm not only need torecalculate ~R, but also need to decompose it again. It hasthe complexity of O(N4:5), and is termed as o�-line compu-tational complexity in [14]. Owing to the high o�-line com-putational complexity, the Birkho�-von Neumann algorithmwill be hard to implement in a dynamic environment. Table2 compares the computational and memory complexity of the

Birkho�-von Neumann algorithm, MCF, and IMCF. It indi-cates that MCF and IMCF have higher on-line computationalcomplexity, but have lower o�-line computational complexityand on-line memory complexity.IV. ConclusionsIn this paper, we proposed two new algorithms, MCF andIMCF, which have the similar performance as the Birkho�-von Neumann algorithm in terms of QoS guarantees, but haveless o�-line computational and on-line memory complexity,which makes these new algorithms easier to be implementedin practice. References[1] H. Zhang, \Service disciplines for guaranteed performance ser-vice in packet-switching networks," Proc. IEEE, 83(10), pp.1374 -1396, 1995.[2] A. Demers, S. Keshav, and S. Shenkar, \Analysis and simulationof a fair queueing algorithm," Internet. Res. and Exper., vol. 1,1990.[3] A.K. Parekh, R.G. Gallager, \A generalized processor sharingapproach to 
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TABLE 1. Maximum and minimum creditN 16 32 64U 226 962 3970Algorithm c+ c� �c c+ c� �c c+ c� �cMCF 1:08 �1:07 2:15 1:05 �0:96 2:01 0:95 �0:98 1:93IMCF 1:36 �3:69 5:05 1:06 �4:15 5:21 1:16 �3:35 4:51TABLE 2. Computational and memory complexityAlgorithm o�-line complexity on-line complexity on-line memory complexityBirkho�-von Neumann O(N4:5) O(logN) O(N3logN)MCF O(N2) O(N3) O(N2)IMCF O(N2) O(N2) O(N2)
Request Graph

(a) (b)

A Maximum Weight Matchw1;2 = 4
w4;4 = 3
w1;1 = 3w2;3 = 4w2;2 = 3w3;3 = 3w3;4 = 1

w1;1 = 3w2;2 = 3w3;3 = 3w4;4 = 3Figure 1: A Bipartite graph matching example: (a) the request graph, (b) a maximum weighted matching.
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(a) (b)Figure 2: Cell delay distribution


