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Abstract

chitecture is becoming an attractive alternative for

The input-queued (IQ) switching ar-

high speed switches owing to its scalability. In this
paper, two new algorithms, referred to as maximum
credit first (MCF) algorithm and iterative maximum
credit first (IMCF) algorithm, are introduced. Theo-
retic analysis shows that the credits of an IQ switch
using MICF are bounded for all admissible rate reser-
vations. Simulations show that both MCF and IMCF
have similar performance as the Birkhoff-von Neu-
mann algorithm which can provide cell delay bound
and 100% throughput in terms of QoS guarantees, but
have lower off-line computational and on-line memory
complexity.

I. INTRODUCTION

There are two basic types of switching architectures: output-
queued (OQ) and input-queued (IQ) switching architecture.
When a packet arrives at an OQ switch, it is queued in its
output queue immediately. The packet will stay in the output
queue until it is transmitted from the switch, and hence 100%
throughput can be achieved in OQ switches. OQ switches
can also provide quality of service (QoS) guarantees by us-
ing scheduling mechanisms [1] such as WFQ[2]/PGPSJ[3] and
W F’Q [4]. The problem of OQ switches is that the fabric of
an N x N OQ switch must run in the worst case N times as
fast as its line rate, i.e., the speedup of an OQ switch is V.
On the other hand, when a packet arrives at an IQ switch, it
is placed in its input queue until it can be scheduled across the
fabric. The packet can be transmitted out of the IQ switch
immediately when it arrives the output port. The fabric of
an IQ switch needs only run as fast as the line rate, i.e., the
speedup of an I1Q switch is 1.

In the high speed networks, fabric and memories with a
bandwidth operated at N times the line rate may be infea-
sible. Thus, the IQ switching architecture has been adopted
for high speed switch implementation owing to its scalability.
One of the major problems with the IQ switching architecture
is the head-of-line (HOL) blocking: the HOL cell, which can-
not be forwarded because of output contention, can block the
output-contention-free cells in the same queue when FIFO is
used. HOL blocking limits the throughput of the IQ switch
using a single FIFO queue in each input to approximately
2 — V2 ~ 0.586 even under i.i.d. Bernoulli traffic when N
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is large [5]. Under bursty traffic, it is even worse: the max-
imum throughput of such a switch decreases monotonically
with the burstiness of traffic, and reaches to 0.5 when bursti-
ness is large [6]. Stationary blocking is another problem for
FIFO IQ switches: The total throughput of the switch can
be as small as the throughput of a single link under certain
periodic traffic, even when N is very large [7].

Previous research [8][9][10] shows that HOL blocking can
be completely eliminated in IQ switches by adopting virtual
output queueing (VOQ), in which multiple VOQs directed to
different outputs are maintained at each input. Also, the
throughput of an IQ switch can be increased to 100% un-
der all admissible independent traffic by using well designed
scheduling algorithms such as longest queue first (LQF) [9]
algorithm and oldest cell first (OCF) [10] algorithm. Though
100% throughput can be achieved using IQ switches, other
QoS features such as bandwidth and cell delay still cannot be
guaranteed using the above algorithms.

Another approach to reduce HOL blocking is to increase
the speed of the fabric. The ratio of bandwidth between fabric
and input link is defined as speedup. When speedup is larger
than 1 and smaller than N, buffers are required at the outputs
as well as inputs. This switching architecture with both input
and output buffering is called combined input output queueing
(CIOQ) switch.

Enormous efforts have been made on providing QoS guar-
antees with CIOQ switch. Recently, Chuang et al. proved [11]
that a CIOQ switch using stable matching [12] algorithm and
critical cells first (CCF) insertion policy with speed up equal
to two can exactly mimic an OQ switch that uses push-in
first-out (PIFO) queueing policy.

Other efforts have been made to achieve QoS guarantees by
1Q switch without speedup. Schedule tables in [8] and Store-
sort-and-forward (SSF) algorithm [13] can guarantee cell delay
with a fixed schedule that is pre-computed when connections
are setup. However, they have problems such as computa-
tional complexity and rate granularity limitation.

Chang et al. proposed [14] the Birkhoff-von Neumann al-
gorithm based on a decomposition result by Birkhoff and von
Neumann for a doubly substochastic matrix. This algorithm
can provide 100% throughput for all non-uniform traffic. Fur-
thermore, if the traffic is (o, r)-upper constrained, cell de-
lay can be deterministically guaranteed using this algorithm.
The problem of this algorithm is that the off-line computa-
tional complexity is too high: O(N*?). If the assigned rate of
the sessions change frequently, which is more likely in a large
switch, the algorithm will be impractical. In this paper, we
proposed two new algorithms, maximum credit first (MCF) al-



which have lower off-line complexity and similar performance
as the Birkhoff-von Neumann algorithm, and more realizable.
The rest of the paper is organized as follows. In Section 2,
we describe our switch model and algorithms. Discussion and
simulation results of the proposed algorithms are presented in
Section 3. Concluding remarks are given in Section 4.

II. Our SwiTCH MODEL AND ALGORITHMS

Our N x N input-queued switch which has no speedup
consisting of N inputs, N outputs and a non-blocking switch
fabric such as crossbar. The packets, which may have variable
length, are broken into fixed length cells when they are arriv-
ing in the inputs. After the cells crossed the fabric, they are
reassembled to the original variable length packets. Time slot
is defined as the time required to transmit a cell with the line
rate. Virtual output queueing is adopted in order to eliminate
the HOL blocking. We denote the VOQ directed to output j
at input 7 as Q;;.

The basic objective of scheduling an input-queued switch
is to find a contention free matching which is equivalent to
solving a bipartite graph matching problem, as shown in Fig.
1(a). Each vertex on the left side represents an input, and
that on the right side represents an output. There have an
edge between every input vertex ¢ and every output vertex j.
Associated with each edge is a weight, w; ;, which is defined
differently by different algorithms. In Fig. 1(a), the edges with
the weight of 0 are omitted. The scheduler selects a matching
between the inputs and outputs with the constraints of unique
pairing, i.e., at most one input can be matched to each output,
and vice versa. Then, a cell is transmitted per matched input-
output pair if there has a cell in @; ;. A maximum weighted
matching algorithm computes a matching which can maximize
the aggregate weight. Fig. 1(b) is the maximum weighted
matching solution of Fig. 1(a).

Suppose the rate assigned to the traffic from input ¢ to
output j is r; ;, which is also the arrival rate of @; ;. The
traffic is admissible if and only if the following inequalities are
satisfied:

N
D riy <1, (1)

N
D iy <LV (2)

R = (ri ;) is a doubly substochastic matrix. For any doubly
substochastic matrix R, there exists [14][15] a doubly stochas-
tic matrix R = (7;,;) such that r; ; < 7 ;, Vi, j. Matrix R is a
doubly stochastic matrix, if it satisfies

1, Vi, (3)
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and

iy = 1,V3. (4)

R can be constructed by the following algorithm.

Algorithm 1

1. Define ra; =1 — Z;if’ rij. Calculate ra; for alli.

3. Calculate rr = N — zzi\]]]::]N ri, j.

ra;rb;

4. Let fi,]‘ =rij+

rT

The computational complexity of Algorithm 1 is O(N?).

Suppose every ();,; has a credit ¢;; which is a real vari-
able that has the initial value of 0. At the beginning of every
time slot, c;; increases by 7; ;. Then the scheduler selects
the matching according to the current credits of VOQs. De-
fine service matrix at time slot n as S(n) = (s;,;(n)), where
;.5 (n) equals to 1 if input-output pair (4,7) is in the match-
ing, otherwise s;;j(n) = 0. In this paper, we only consider
permutation matrices as the service matrix S, implying that
there are always exactly N pairs in every matching. From all
the permutation matrices, the MCF algorithm selects the one
which can maximize the aggregate credit, i.e.,

argmax[y _ si 5 (m)ei;(n)],
i

where, Zi sij(n) =, sij(n) =1,Vi,j. The service matrix
S can be found by maximum weighted matching algorithm
which has a computational complexity of O(N?) [16]. The
cells in VOQs are transmitted across the fabric according to
their corresponding values in service matrix S: If s;; equals
to 1 and @;,; is not empty, then the HOL cell of Q; ; will be
transmitted to output j. In the meanwhile, ¢; ; decreases by
si,; for all 4,5. Thus, c¢;;(n), the credit of Q;; at the end of
time slot n, is

cij(n) = cij(n—1) —sij(n) +7ij. (5)

where, ¢; j(n — 1) is the credit of Q;,; at the end of time slot
n—1.

Owing to the O(N?) complexity, MCF algorithm is difficult
to implement in high speed networks, so we propose an iter-
ative approximation of MCF algorithm: iterative maximum
credit first (IMCF) algorithm. IMCF performs the following
three steps in each iteration:

1. Request: Each unmatched input sends a request to ev-
ery output.

2. Grant: If an unmatched output receives any requests, it
chooses the one with the largest credit. Ties are broken
randomly.

3. Accept: If an input receives any grants, it chooses the
one with the largest credit. Ties are broken randomly.
IMCF stops when there has no unmatched input and output.

It converges in at most IV iterations, and the service matrix
S selected by IMCF is always a permutation matrix.

Property 1 At the end of any time slot, the credits of an 1Q
switch using MCF or IMCF satisfy the following equations:

z.gzl Ci,j = 0, Vi
i Cig =0, Vi - (6)
ci; =10

i.J
Property 2 In any time slot just before the service matriz is

calculated, the credits of an IQ) switch using MCF or IMCF
satisfy the following equations:

S icig =1, Vi
Sie; =1, Vi - (7)



rithm are bounded for all admissible rate reservations, i.e.,
| cij |< oo

III. DISCUSSION AND SIMULATIONS

Let S; j(n) be the cumulative number of slots that are as-
signed to i ; by time slot n. Then the credit of Q; ; is

cij(n) =Fij - n— S ;(n). (8)
For any n > m,

Sij(n) = Sij(m) =7i;(n—m) —cij(n)+cij(m). (9
If we assume the lower bound and upper bound of the credit
are ¢~ and ¢, respectively, and let A, = ¢t — ¢, then

rij(n—m)—=Ac < S;j(n)—=Si;(m) <rij(n—m)+A. (10)

Eq. (10) implies that if A; ;, the traffic from input i to output
j, conforms to (o j,7i;), i.e.,

Aij(n) = Aij(m) < rij(n—m)+0i;, (11)
then the cell delay from input ¢ to output j is bounded by
[(oi; + Ac)/rij]

Chang et al. show [14] if Eq. (1) and (2) are satisfied, then
the Birkhoff-von Neumann algorithm can guarantee

Sij(n) = Sij(m) = rij(n—m) — uij, (12)
for all 4,5, n > m, where u;; <U = N? — 2N + 2.

Comparing Eq. (10) with Eq. (12), we can say if the A, of
MCF and IMCF is comparable with U = N? — 2N + 2, then
MCF and IMCF are as good as the Birkhoff-von Neumann
algorithm in terms of QoS guarantees. Simulation results of
c¢t, ¢, and A, are shown in Table 1. The simulations are
made under various non-uniform rate reservations on input-
queued switches with N = 16, N = 32, and N = 64. Table
1 shows the A, of MCF and IMCF, which are much smaller
than U.

Fig. 2 shows the distribution of the percentage of cells
which experience various delays over a 16 x 16 I1Q switch
using MCF, IMCF and the the Birkhoff-von Neumann al-
gorithm under non-uniform traffic with a total traffic load
of 90%. Traffic A;; conforms to (ojj,r:;) for all ¢,7, in
which o;; = 1000r;,;. Thus, the designed delay bound is
1000 + [us,;/ri;] time slots for the Birkhoff-von Neumann
algorithm, and is 1000 + [A./r; ;] time slots for MCF and
IMCEF. The simulation result shows that the cell delay bound
is less than 1200 time slots for all the algorithms as we ex-
pected. Fig. 2 demonstrates that the performance of the
the Birkhoff-von Neumann algorithm and IMCF are almost
identical, and MCF has a tighter bound than the other two
algorithms.

When r; ;, the reserved rate between input 4 and output j,
changes, MCF and TMCF need to recalculate R. On the other
hand, the Birkhoff-von Neumann algorithm not only need to
recalculate R, but also need to decompose it again. It has
the complexity of O(N*?), and is termed as off-line compu-
tational complexity in [14]. Owing to the high off-line com-
putational complexity, the Birkhoff-von Neumann algorithm
will be hard to implement in a dynamic environment. Table
2 compares the computational and memory complexity of the

cates that MCF and IMCF have higher on-line computational
complexity, but have lower off-line computational complexity
and on-line memory complexity.

IV. CONCLUSIONS

In this paper, we proposed two new algorithms, MCF and
IMCF, which have the similar performance as the Birkhoff-
von Neumann algorithm in terms of QoS guarantees, but have
less off-line computational and on-line memory complexity,
which makes these new algorithms easier to be implemented
in practice.
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Percentage of Cells (%)

TABLE 1. Maximum and minimum credit

N 16 32 64
U 226 962 3970
Algorithm | ¢t c” A, ct c” A, ct - A,
MCF 1.08 | —1.07 | 2.15 | 1.05 | —0.96 | 2.01 | 0.95 | —0.98 | 1.93
IMCF 1.36 | —3.69 | 5.05 | 1.06 | —4.15 | 5.21 | 1.16 | —3.35 | 4.51

TABLE 2. Computational and memory complexity

Algorithm off-line complexity | on-line complexity | on-line memory complexity
Birkhoff-von Neumann O(N%9) O(logN) O(N3logN)
MCF O(N?) O(N?) O(N?)
IMCF O(N?) O(N?) O(N?)
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Figure 1: A Bipartite graph matching example: (a) the request graph, (b) a maximum weighted matching.
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