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Abstract

We show that there is a trade off among mobility, ca-
pacity, and delay in ad hoc networks. More specifically,
we consider two schemes for mobility of nodes in ad hoc
networks. We divide the entire network by cells whose
sizes can vary with the total number of nodes n, or whose
size is independent of the number of nodes. By restrict-
ing the movement of nodes within these cells, we calcu-
late throughput and delay for randomly chosen pairs of
source-destination nodes, and show that mobility is an
entity that can be exchanged with capacity and delay. We
also investigate the effect of directional antennas in a
static network in which packet relaying is done through
the closest neighbor and verify that this approach attains
better throughput than static networks employing omni-
directional antennas.

1. Introduction

Capacity analysis in ad hoc networks has be-
come an important issue since Gupta and Ku-
mar [6] showed that the capacity of a fixed and
connected wireless network decreases as the num-
ber of nodes n increases. Grossglauser and Tse
[5] presented a two-phase packet forwarding tech-
nique for mobile ad hoc networks (MANET) in
which a source node transmits a packet to the near-
est neighbor, and that relay delivers the packet to the
destination when this destination becomes the clos-
est neighbor of the relay. The scheme was shown [5]
to attain constant per source-destination through-
put as the number of nodes in the MANET increases
by taking advantage that communication among near-
est nodes cope the interference due to far nodes. To
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date, several schemes have traded off delay in or-
der to attain higher capacity in mobile ad hoc net-
works (MANETs) [5], [3], [10], [1], [8], [4].

In this paper, we present new network models to
show that mobility can also be traded as a resource
together with capacity and delay. The idea is to al-
low the nodes execute restricted movements, i.e., each
node moves only inside some given area in the net-
work. By allowing transmissions to closest neighbor
nodes only, we overcome interference from other trans-
mitting nodes. As nodes have restrained mobility, the
delivery from source to destination is done across mul-
tiple hops obtained by relaying this packet along the
path linking the source to the destination. Diggavi et
al [3] considered a restrained one-dimensional mobility
model in which nodes were allowed to execute move-
ments on circles on a sphere. They showed that a con-
stant throughput is still feasible; however, they do not
present the corresponding trade-off associated to mo-
bility, capacity and delay.

Before summarizing the main results of the paper
we review the following definitions [6], [4]:

A throughput of Λ(n) bits per second is feasible if
every node can send information at a rate of Λ(n) bits
per second to its chosen destination.

The delay D(n) of a packet in a network is the time
it takes the packet to reach the destination after it
leaves the source, where queuing delay at the source
is not considered. The average packet delay for a net-
work with n nodes is obtained by averaging over all
packets, all source-destination pairs, and all random
network configurations.

Section 2 summarizes the known network model that
have been used recently to analyze the capacity of wire-
less network [4], [6], [5], [1]. Section 3 presents a re-
stricted mobility model, called Scheme 1, where the size
of the cells varies with the number of nodes n. The as-



sociated throughput and delay are given by1

Λ1(n) = O

���
log(n)

n � , and D1(n) = O(
√

n).

Compared to the static network model [6], Scheme 1
attains a gain of O(log(n)) by using restrained mobil-
ity.
Section 4 presents another restricted mobility model,
called Scheme 2, in which the size of a cell is not a
function of n. Indeed, for a given constant number of
cells l, the size of each cell is 1/l, and the correspond-
ing throughput and delay are

Λ2(n) =
1√
l
O(1), and D2(n) = O � n

l � .

This throughput result is a generalization of the re-
sults by Grossglauser and Tse [5] and represents a re-
duction of 1/

√
l, while the delivery delay is decreased.

This indicates that mobility, capacity, and delay should
be treated as exchangeable entities.

Section 5 presents a modification of the Scheme 2
to allow multiple-copy relaying [2] so that the order of
magnitude of the throughput is preserved, but bounded
delivery delay is attained when the numbers of total
nodes (n) is finite.

Section 6 presents the throughput-delay analysis for
a fixed network where nodes are endowed with direc-
tional antennas. Nodes relay packets to their closest
neighbors along the path to destinations. We find that

ΛD(n) = O

���
log(n)

n � , and DD(n) = O � � n

log(n) � .

This result is important, because it represents a capac-
ity gain of O(log(n)) compared to the results in Gupta
and Kumar [6], and Yi et al [11].

2. Basic Network Model

The model considered here is that of a wireless ad
hoc network with nodes assumed either fixed or mo-
bile. The network consists of a normalized unit area
torus containing n nodes [4], [6], [5].

For the case of fixed nodes, the position of node i is
given by Xi. A node i is capable of transmitting at a
given transmission rate of W bits/sec to j if [6]

|Xk − Xj | ≥ (1 + ∆)|Xi − Xj |, (1)

where ∆ > 0, so that node Xk will not impede Xi and
Xj communication. This is called the protocol model
[6].

1 Here we use the Knuth’s notation: (a) f(n) = O(g(n)) means
there are positive constants b1 and N1, such that 0 ≤ f(n) ≤

b1g(n) ∀ n ≥ N1. (b) f(n) = Θ(g(n)) means there are posi-
tive constants b2, b3, and N2, such that 0 ≤ b2g(n) ≤ f(n) ≤

b3g(n) ∀ n ≥ N2.

For the case of mobile nodes, the position of node i at
any time is now a function of time. The nodes are as-
sumed to be uniformly distributed on the torus and
there is no preferential direction of movement where
each node moves with speed v(n). The trajectories for
different nodes are independent and identically dis-
tributed. A successful transmission between nodes i
and j is governed again by Eq. (1), where the position
of the nodes are time dependent [5]. Time is slotted to
simplify the analysis. Also, at each time step, a sched-
uler decides which nodes are senders, relays, or des-
tinations, in such a manner that the association pair,
source-destination, does not change with time. Nodes
are assumed to move according to a uniform mobility
model [1]. In this model, the nodes are initially uni-
formly distributed, and move at a constant speed v(n)
and the directions of motion are independent and iden-
tically distributed (iid) with uniform distribution in the
range [0, 2π). As time passes, each node chooses a di-
rection uniformly from [0, 2π) and moves in that direc-
tion, at speed v(n), for a distance z where z is an expo-
nential random variable with mean µ. After reaching
z the process repeats. This model satisfies the follow-
ing properties [1]: (a) At any time t, the position of the
nodes are independent of each other; (b) the steady-
state distribution of the mobile nodes is uniform; and
(c) conditional on the position of a node, the direc-
tion of the node movement is uniformly distributed in
[0, 2π).

3. Scheme 1

We present a restricted mobility scheme that attains
a capacity gain of log(n) compared to the static net-
work model [6]. The throughput still decreases as the
number of nodes n in the network grows to infinity.
However, it serves as a building block for the scheme
presented in the next section, which attains non-zero
asymptotic throughput capacity in a dense network.

The model we propose is shown in Fig. 1. The net-
work is a unit torus divided in square cells, each of area

a(n) as in [4], and they showed that, if a(n) ≥ 2 log(n)
n

,
then each cell has at least one node with high probabil-
ity (whp), i.e., with probability ≥ 1 − 1/n. This condi-
tion guarantees connectivity whp [6], [4].

We now consider an additional assumption that each
node has its movement confined to only one cell. This
means that a node cannot cross the cell edge and per-
colate to a neighbor cell. By doing so, each cell is com-
posed by at least one node whp that moves with speed
v(n), and has no preferential direction of movement
within the cell. The nodes move independently of each
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Figure 1. Unit area torus network divided into
1/a(n) cells, each with size area of a(n).

other, and once they hit the cell boundaries they are
bounced back (with relation to the normal edge).

We assume that each node only communicates with
another node from any adjacent cell, and this hap-
pens only when they are close enough to each other
(i.e., both are near to the common edge that sepa-
rates the cells) so that the effect of interference can
be minimized. Thus, a source node will rely on re-
lays across several cells to have its packet delivered to
a destination. Each packet travels via multiple relays
from source to destination following the path close to
the straight line linking source and destination. Each
source-destination pair is chosen uniformly and inde-
pendently from different cells. Fig. 2 shows a packet
whose source node is in cell i and has as its destina-
tion a node in cell d, separated by an average distance
L. Possible cell paths for this packet are {ijfgcd},
{ijfghd}, {iefgcd}, {iefghd}, for example.
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Figure 2. Region ξ(n) where communication be-
tween nodes from adjacent cells is possible.

Grossglauser and Tse [5] showed that transmission
to the nearest node is possible, even when the number
of interferers in the network scale to infinity. This al-
lows a node to schedule transmission to a neighbor node
from an adjacent cell when Eq. (1) is satisfied. In addi-
tion, we assume that both nodes are so close that com-
munication is successful during the entire time slot (or
session). The transmission is half-duplex so that each
node uses half of the communication time slot to trans-
mit at rate of W bits/sec, and the other half to receive
at also W bits/sec. Thus, the average available band-
width is W

2 bits/sec. At each time two nodes commu-
nicate with each other, they exchange packets, so that
each of these sessions can be source-relay, relay-relay,
or relay-destination transmission.

The area where successful communication can occur
is shown in Fig. 2. Basically, it is a semi-circumference

ξ(n) of radius
√

a(n)

2+2
√

2
where two nodes from adjacent

cells can come close to each other so that Eq. (1) is sat-
isfied, i.e., no other node from the other cells will be
closer to them than themselves. For the case in which
more than one node in the same cell are simultane-
ously traveling inside ξ(n), only one of these nodes is
allowed to communicate with a node from the adja-
cent cell. Accordingly, from Fig. 2, the two adjacent
nodes in cells i and j are able to communicate dur-
ing the time they simultaneously travel inside their re-
spective regions ξ(n)’s in their cells as shown. We have
that

ξ(n) =
1

2
π

�&%
a(n)

2 + 2
√

2 � 2

=
π a(n)

24 + 16
√

2
. (2)

Now, the probability of finding a node traveling in-

side ξ(n) is ξ(n)
a(n) , because the node has no preferen-

tial direction of movement in the cell and tends to
move uniformly inside the cell. In addition, because
the nodes have independent and identically distributed
(iid) movements, the probability that both nodes come
to the communication region simultaneously, denoted
by Pc, equals

Pc = ' ξ(n)

a(n) ( 2 = � π

24 + 16
√

2 � 2

= c1. (3)

Hence, Pc does not depend on n.
Because L is the mean distance between two uni-

formly and independently chosen source-destination
nodes in the network, the average path distance across
cells traversed by a packet from source to destination
is O(L). Accordingly, each cell hop has an average size
of

√

a(n). Thus, the mean number of hops traversed

by a packet is O(L)√
a(n)

.

According to the above definition of throughput,
each source generates Λ(n) bits per second and there
are n sources in the network. Also, each bit needs to be



relayed by O(L)√
a(n)

nodes on the average. Thus, the to-

tal number of bits per second served by the entire net-

work needs to be at least O(L)nΛ(n)√
a(n)

. To ensure that all

required traffic is carried, we need that

O(L)nΛ(n)%
a(n)

≤ n
W

2
Pc =⇒ Λ(n) ≤ c2W

%
a(n). (4)

We just proved the following Theorem.

Theorem 1 For Scheme 1 with a(n) = k log(n)
n

, for k ≥
2, to guarantee connectivity, we have

Λ1(n) = O

���
log(n)

n � .

Compared to the capacity result obtained in [6], the
result of Theorem 1 represents a gain of O(log(n)).
Thus, by allowing the nodes to execute a restricted mo-
bility pattern we obtain a throughput gain over the static
network model.

Although in this model we have used mobility and
multiuser diversity [7] to overcome interference (note
that Gupta and Kumar [6] could not use multiuser di-
versity because they consider only fixed nodes), the
network still does not scale well with the number of
nodes, i.e., Λ1(n) −→ 0 when n goes to infinity. This
happens because the number of hops necessary to reach
a destination increases with n, so that the same packet
is retransmitted infinite times as n grows to infinity,
thus wasting the available bandwidth. The model we
present in the next section does not have this prob-
lem, and it is indeed a generalization of the results ob-
tained by Grossglauser and Tse [5].

The average delay incurred by a packet to reach the
destination in Scheme 1 is the sum of the average time
a packet spend in each hopping cell in the path to des-
tination. A node travels around the cell boundary on
average every t(n) time-slots that is proportional to

t(n) ∝ ∆S · Pc

v(n)
=⇒ t(n) = O

� %
a(n)

v(n) � , (5)

where ∆S = O(
√

a(n)) is the average distance in one-
round trip inside a cell. Note also that the total num-
ber of hops is O(L/

%
a(n)), and that the speed of each

node must be a function of n because we assume that
the total network area is constant. To model a real net-
work where a node would occupy a constant area, if the
network grows, the entire area must grow accordingly.
Therefore, because in our analysis we maintain the to-
tal area fixed, we must scale down the speed of the
nodes [4]. Accordingly, the velocity of the nodes (v(n))
must decrease with 1/

√
n. Combining all this informa-

tion, the average delay (D1) in Scheme 1 is

D1(n) = (# of hops) · t(n) = O � 1

v(n) � = O(
√

n). (6)

This delay is larger than that obtained by Gupta
and Kumar [6], which was shown to be O(1/

%
a(n)) =

O(
%

n/log(n)) [4]. This is a direct consequence of the
throughput-delay trade-off property [4]. The improve-
ment of capacity is obtained at the cost of increase in de-
lay.

4. Scheme 2

In the previous section we saw that, by having an in-
finite number of relays (or hops), the capacity of the
network decreases as the number of nodes increases.
Here, we show that, by having a finite number of re-
lays and using local transmission to overcome interfer-
ence, we can attain constant throughput as n increases,
but we can also trade-off the number of hops with ca-
pacity and delay, i.e., we can exchange mobility by ca-
pacity and delay, which is a generalization of the re-
sults by Grossglauser and Tse [5].

Fig. 3 shows the network and its cells. Now, the
network area is divided into l square cells and l is a
network design parameter that does not depend on n.
Hence, each cell has area of size 1

l
. Again, we assume

that the n nodes are uniformly distributed over the en-
tire network, but each node is restricted to move only
inside of its cell (one of the l cells). Among the total
number of nodes n, a fraction of them, nS , are ran-
domly chosen as senders, while the remaining nodes,
nR, function like possible receiving nodes [5]. A sender
density parameter θ is defined as nS = θn, where θ ∈
(0,1), and nR = (1 − θ)n. Each node can be a source
for one session and a destination for another session.
Nodes travel with velocity v(n), have no preferential
direction of movements, move independently of each
other, and once they hit cell boundaries they bounce
back with relation to the normal edge. Here, we con-
sider that each node can communicate with its clos-
est neighbor within the transmission range ro, whether
this neighbor is inside its own cell or from an adjacent
cell (when it is traveling around the cell boundary).
For a uniform distribution of the nodes, ro = 1/

√
θπn

[2]. Thus, communication takes place every time nodes
come close enough so that transmission is successful.
Moreover, communication between two nodes from the
same cell can only be a source-destination, or a relay-
destination packet exchange. A relay-relay communica-
tion only happens between nodes from different neigh-
boring cells.

A source-destination pair is uniformly chosen among
the n nodes, so that the destination does not have to be
necessarily in the same cell as its source. Thus, again, a
packet may traverse relays to reach its destination. We
assume that, once a packet is relayed to a cell, it will
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Figure 3. Unit area torus network divided into l
cells, each with size area of 1

l
.

not be relayed again for another node in the same cell.
Instead, the node will keep the packet in its queue un-
til it reaches the neighborhood of an adjacent cell in
the path toward to the destination, so that it forwards
the packet to the closest receiver node in the neigh-
boring cell. In this model there is no fixed communi-
cation region as in the previous model. Once the node
moves close enough around the cell boundary and there
is a neighbor receiver node from the adjacent cell mov-
ing within the transmission range ro, then it relays the
packet to this neighbor if there is a packet to forward in
that direction, so that it can be either source-relay, or
relay-relay, or relay-destination transmission. The com-
munication is simplex so that each node uses the en-
tire communication time slot to transmit at rate W
bits/sec.

From the above description, we claim that in steady-
state:

• Each node has a packet for another node in the same
cell.

• Each node has a packet for another node in each of
its neighbor cells whose communication is possible.

In addition, for a finite l and a sufficiently large n,
connectivity is guaranteed if 1

l
> 2 log(n)

n
(i.e., the cell

size is greater than 2log(n)/n), and because of the uni-
form distribution of the nodes, each cell will contain
O(n

l
) nodes. Since n −→ ∞, l can be any positive in-

teger and is not a function of n.
As before, L is the mean distance between two uni-

formly and independently chosen source and destina-
tion in the network, thus the average path length across
cells followed by a packet is O(L). Given that each cell
hop has an average size of 1/

√
l, the average number

of hops traversed by a packet until destination is O(L)

1/
√

l
.

According to the definition of throughput, each
source generates Λ(n) bits per second, with nS being

sources in the network. Because each bit needs to be re-
layed on the average by O(L)

1/
√

l
nodes, the total number

of bits per second served by the entire network needs

to be at least O(L)nSΛ(n)

1/
√

l
. Hence, to ensure that all re-

quired traffic is carried, we need that

O(L)nSΛ(n)

1/
√

l
≤ nS W =⇒ Λ(n) ≤ c3W√

l
. (7)

This proves the following Theorem.

Theorem 2 For Scheme 2, for finite l and sufficiently
large n, we have

Λ2(n) =
1√
l
O(1).

Theorem 2 is a generalization of the results by
Grossglauser and Tse [5], given that we have the net-
work into l equal cells. If we set l = 1, Theorem III.5
in [5] follows.

Because a packet is not allowed to move through
the entire network (waiting in the relay queue as in
[5]), it follows a path of cells in the direction of the
destination. Therefore, we should expect a smaller de-
lay than that obtained in the scheme by Grossglauser
and Tse [5]. The average delay (D2) in Scheme 2 is
given by the time the packet spends hopping until it
reaches the destination cell, plus the amount of time
the last relay in the destination cell expends to reach
the destination node. The later is O

(

n
l

)

as we have

O
(

n
l

)

nodes in each cell [4], [8]. The former is given
by the number of hops traversed multiplied by the
time spent per hop (i.e., (# of hops) · t(n)) which is

O � � L

1/
√

l

1
v(n) � 1

√

l � = O(
√

n). However, for a sufficiently

large value of n (and l <<
√

n), the term n
l

dominates√
n, and

D2(n) = O � n

l � . (8)

Comparing D2(n) to the delay attained in the
scheme by Grossglauser and Tse [5], whose de-
lay was shown to be O(n) [8], [4], we conclude that, as
we expected, the delay in Scheme 2 is smaller by a fac-
tor of l.

From Theorem 2, Eq. (8), and comparing with [5],
we conclude that we can trade-off mobility as a resource
with capacity and delay. By restraining the nodes to
move inside cells of size area 1

l
, the O(1) through-

put obtained in [5] is reduced by a factor of
√

l, while
the delivery delay is decreased by a factor of l. Thus,
Scheme 2 is a generalization of the network model by
Grossglauser and Tse [5].

Although the average delivery delay is given by Eq.
(8), we have shown [2] that the delivery delay is an ex-
ponential random variable for a mobile ad hoc network.



Accordingly, from the tail of the exponential distribu-
tion, this delay can last to infinity even when n is fi-
nite [2]. The next section presents a modified version of
Scheme 2 that allows more than one copy of a packet
to be forwarded at the destination cell, such that fi-
nite delivery delay is possible for finite values of n.

5. Scheme 2 with Multi-Copy Relaying

at Destination Cell

We now introduce an improved packet forwarding
strategy [2] for mobile ad hoc networks that attains
the Θ(1) capacity of the basic scheme by Grossglauser
and Tse [5], but provides bounded delay when the num-
ber of nodes n is fixed.

We maintain all assumptions from Scheme 2, but
change the last relaying phase in which a node (a sender
or relay) from an adjacent cell has to forward a packet
to the destination cell. Hence, once a relay node reaches
the boundary of the destination cell, it forwards at once
copies of the packet to multiple one-time relay nodes lo-
cated at the destination cell that are within the trans-
mission range ro of him. By doing so, the time within
which a copy of the packet reaches its destination can
be decreased in that cell. The first one-time relay node
that reaches the destination close enough delivers the
packet.

In Scheme 2, a relay approaching the destination
cell transmits to its nearest receiver neighbor in the
destination cell, so that interference caused by other
nodes is low, allowing reliable communication. How-
ever, it may be the case that the relay can have more
than one receiver neighbor node from the destination
cell in the transmission range, and we can take advan-
tage of that. We allow those additional receiving neigh-
bor nodes to also have a copy of the packet. Hence, in-
stead of only one copy, K-copies will follow different
random routes in the destination cell and can find the
destination node earlier compared to Scheme 2. In ad-
dition, packets are assumed to have header informa-
tion for scheduling and identification purposes, and a
time-to-live (TTL) threshold field as well. We assume
that, before any packet is transmitted between nodes,
a handshake takes place at the beginning of the time
slot, such that no relay transmits a packet that a des-
tination has already received. In this way we enforce
only one-copy delivery. Also, after the TTL expires, the
packet is dropped from the additional relaying nodes
queues which did not deliver the copy of the packet.

For K = 1, it has been shown [2], [10] that the de-
livery delay random variable d has an exponential dis-
tribution with parameter λ = 2 ro v which results from
evaluating the flux of nodes entering a circle of radius

ro during a differential time interval considering the
nodes uniformly distributed over the entire network of
unit area and traveling at speed v. Accordingly, even for
finite n, the delivery delay can last to infinity. For a uni-
form distribution of the nodes, ro = 1/

√
πθn. Hence,

the radius ro decreases with 1/
√

n. The velocity of the
nodes also decreases with 1/

√
n. Hence, λ = 1

Θ(n) . In

[2] we extend this model to consider the case K > 1
and find that the tail of the exponential distribution
is cut off resulting a new delivery delay random vari-
able dK which is related to d by [2]

dK ≈ 1

λ
ln � K

K − 1 + e−λd � , (9)

for a steady-state uniform distribution resulting as mo-
tion of nodes. Hence, for a fixed n and 1 < K << n,
the maximum delay dK tends to a constant value as
d increases. Thus, the delivery delay is bounded for fi-
nite n.

As in Scheme 2 the total delivery delay for a packet,
measured from the source to the destination, is divided
in two parts: the time the packet spends to reach the
destination cell, plus the time the relay in the desti-
nation cell expends to reach the destination node. The
former was shown to be O(

√
n), and for a fixed n this

delay is finite. However, the latter can last to infinity as
discussed above if only one copy is looking for the des-
tination. Hence, by forwarding K-copies in the destina-
tion cell, the total delivery delay is given by

D2K = O(
√

n) + dK , (10)

that is finite for a fixed n. Thus, a delay of hours in
single-copy forwarding to the destination cell can be
reduced to a few minutes or even a few seconds for
multi-copy relaying, depending on the network param-
eter values.

We have shown [2] that the throughput per source-
destination pair for the multi-copy relaying approach
remains at Θ(1) [5]. Thus, by multi-copy forwarding at
the destination cell in the modified version of Scheme
2, we do not change the order of the capacity. Hence,
Theorem 2 still holds here.

6. Fixed Nodes with Directional Anten-

nas

In this section, we present a model where nodes are
static, but endowed with directional antennas. Previ-
ous works [11], [9] have considered capacity analysis
for static networks using directional antennas, where
they showed that no scheme using directed beams can
circumvent the constriction on capacity in dense net-
works. In our study, we present a slight different model-
ing approach compared to previous directional antenna



analysis [11], [9], where we constrain the communica-
tion only between closest neighbors by using very nar-
row beams. The network model is shown in Fig. 4. A
source-destination pair of nodes is randomly chosen so
that we want to send a packet from cell a to cell t, for
example, relying on multiple relays (or hops) using di-
rectional antenna transmission along close neighbors
in the path to the destination. The nodes are deployed
uniformly in the network area torus. As in Scheme 1,
the network is divided in 1/a(n) cells, each with an
area a(n). We assume a(n) ≥ 2 log(n)/n, so that each
cell has at least one node whp [4]. Fig. 4 shows a source
node in cell a that has destination at a node in cell t
separated by a distance L. Accordingly, the cell path
along the closest neighbors is {afghmnot}.

a
b

p

ec

s trq

o
k l m

n

jihgf

d � a(n)

� a(n)

L

Figure 4. Unit area torus network divided into
1/a(n) cells eachwith size area of a(n). Transmis-
sions are employed using bi-directional antennas,
with very narrow beams, between closest neigh-
bors from adjacent cells along the path to desti-
nation.

We want to obtain the average throughput for a
source-destination pair uniformly chosen among all n
nodes, as well as the delay behavior. The relay trans-
missions are scheduled at regular time intervals so that
each node is assigned a time slot to transmit success-
fully to its closest neighbor in the path to destination.
This is a time schedule constraint as a node can only
point its antenna to a close neighbor at consecutive
time intervals. For the example shown in Fig. 4, each
node has eight neighbors, given that we assume a torus
net, so that it can communicate to each of them at reg-
ular eight slot time interval respectively, i.e., a Time
Division Multiple Access (TDMA) with bi-directional
beam transmission. At each time that two nodes point
their antennas to each other they exchange packets, so
that each of these sessions can be either source-relay,
relay-relay, or relay-destination transmission. Interfer-
ence is overcome by the use of directional beams to
the nearest neighbor, so that Eq. (1) is satisfied. Again

we assume that the transmissions are half duplex, i.e.,
the communication time slot is divided in two equal
parts. Each node transmit at W bits/sec. So the aver-
age available bandwidth is W/2 bits/sec.

Given that L is the mean distance between two
uniformly and independently chosen source-destination
pair in the network, the average path distance across
cells traversed by a packet is O(L). Accordingly, each
cell hop has average size of

√

a(n). Thus, the mean
number of hops traversed by a packet until destina-
tion is O(L)√

a(n)
.

According to the definition of throughput, each
source generates Λ(n) bits per second. Given that each

bit needs to be relayed on the average by O(L)√
a(n)

nodes,

the total number of bits per second served by the en-

tire network needs to be at least O(L)nΛ(n)√
a(n)

. To ensure

that all required traffic is carried, we need that

O(L)nΛ(n)%
a(n)

≤ n
W

2
∆t, (11)

where ∆t = 1
8 , which comes from the TDMA transmis-

sion schedule approach2. Thus,

Λ(n) ≤ c4W
%

a(n). (12)

This proves the following Theorem.

Theorem 3 For a given node using directional antenna
transmission to closest neighbor along the path to desti-

nation, with a(n) = k log(n)
n

, for k ≥ 2, to guarantee con-
nectivity, we have

ΛD(n) = O

� �
log(n)

n � .

This result represents a better bound on throughput
capacity than the O(1/

%
n log(n)) obtained by Gupta

and Kumar [6], and those obtained in [11]. Indeed,
it is a gain of O(log(n)) and agrees with Peraki and
Servetto’s results [9] obtained for a single directed
beam, where they use a different approach applying
networking flow analysis to calculate the network trans-
port capacity (i.e., maximum stable throughput). This
is the same capacity scalability obtained for Scheme 1.
We see that capacity is still constrained in dense net-
works. It is due to the wasting of the available band-
width to forward the same packet over multiple hops
by an amount of time that scales with n.

The average delay incurred by a packet to reach
the destination is the sum of the average time a
packet spends hopping along the path to its destina-
tion. The total number of hops to reach destination is

2 Other diversity scheme could be assumed as well.



O(L/
%

a(n)). Accordingly, the delay using directional
antenna transmission to nearest neighbor is given by

DD(n)=(# of hops)∆t=O

�
1%
a(n)� =O � � n

log(n) � . (13)

Compared to Eq. (6) this represents a delay reduction
of O(1/

%
log(n)). Thus, the use of directional antenna

with fixed nodes although have the same throughput
scalability as Scheme 1, it offers a smaller delay on av-
erage than the restricted mobility case.

Therefore, employing directional antenna transmis-
sion between closest nodes along the path to destina-
tion is equivalent, in terms of throughput performance,
to nodes executing restricted mobility as in Scheme 1,
while providing a smaller packet delivery delay.

7. Performance Comparisons

To obtain a benchmark of throughput and delay for
wireless ad hoc networks, we compare in Table 1 the
schemes studied with the previous works by Gupta and
Kumar [6], and Grossglauser and Tse [5].

Schemes Throughput Delay

comparisons gain increase
Scheme 1

Gupta & Kumar
log(n)

√

log(n)

Grossglauser & Tse
Scheme 2

√
l l

Directional antenna
Gupta & Kumar

log(n) none

Scheme 1
Directional antenna

none
√

log(n)

Table 1. Throughput gain and delay increase ob-
tained from comparing previous works [6], [5]
with restricted mobility schemes and directional
antenna transmission.

The results suggest that using mobility or enhanced
physical layer properties (directional antennas in this
case) can improve throughput or delay.

8. Conclusions

We have analyzed four schemes for ad hoc wire-
less networks. The first three schemes considered nodes
with restricted mobility. The nodes have restrained mo-
bility area that can be either a function of n, or inde-
pendent of n. We show that on all these cases we can
trade-off the mobility resource with capacity and de-
lay. In the first scheme the capacity does not scale
well, while in the second scheme the throughput has

non-zero asymptotic behavior in dense networks, and
it is shown to be a generalization of the Grossglauser
and Tse [5] results. The third scheme is a modified ver-
sion of the second, in which we allow multiple packet
copies to be forwarded at the destination cell so that
we attain bounded delay for a finite number of nodes n.
The fourth scheme studied was that of a static ad hoc
network using directional antennas with transmission
restricted to closest neighbors in the path along des-
tination. We showed that the capacity still decreases
with n having the same scalability law as that obtained
in the first scheme of restricted mobility, however pre-
senting a smaller delay. Therefore, the directional an-
tenna scheme provides better throughput performance
than static networks employing omnidirectional anten-
nas, and presents smaller delay than in restricted mo-
bility.
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