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Abstract

Normal forms play a central role in the design of relational databases.
Several normal forms for temporal relational databases have been pro-
posed. These definitions are particular to specific temporal data models,
which are numerous and incompatible.

This paper attempts to rectify this situation. We define a consis-
tent framework of temporal equivalents of the important conventional
database design concepts: functional dependencies, primary keys, and
third and Boyce-Codd normal forms. This framework is enabled by mak-
ing a clear distinction between the logical concept of a temporal relation
and its physical representation. As a result, the role played by temporal
normal forms during temporal database design closely parallels that of
normal forms during conventional database design. These new normal
forms apply equally well to all temporal data models that have timeslice
operators, including those employing tuple timestamping, backlogs, and
attribute value timestamping.

As a basis for our research, we conduct a thorough examination of ex-
isting proposals for temporal dependencies, keys, and normal forms. To
demonstrate the generality of our approach, we outline how normal forms
and dependency theory can also be applied to spatial and spatiotemporal
databases.
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1 Introduction

A central goal of relational database design is to produce a database
schema, consisting of a set of relation schemas. Each relation schema is
a collection of attribute names and their associated domains.

Normal forms are an attempt to characterize “good” relation schemes.
A wide variety of normal forms has been proposed, the most prominent
being third normal form and Boyce-Codd normal form. An extensive
theory has been developed to provide a solid formal footing.

There is also a need for temporal normal forms and underlying con-
cepts that may serve as important guidelines during temporal database
design. In response to this need, an array of temporal normalization
concepts have been previously proposed, including first temporal nor-
mal form [Segev & Shoshani 88], two different variants of time normal
form [Ben-Zvi 82, Navathe & Ahmed 89], and P and Q normal forms
[Lorentzos & Kollias 89].

The proposals are significant since each, in the context of a particular
temporal data model, can be used to design temporal database schemas.
However, the specificity of the proposals is a weakness since a given
normal form inherits the inherent peculiarities of its data model, and,
having chosen a particular temporal normal form, it is unsatisfactory
to be required to define all of the normal forms anew for each of the
two dozen existing temporal data models [Snodgrass 92], should another
model be better suited for representing the semantics of the application.
Furthermore, the existing normal forms often deviate substantially in
nature from conventional normal forms and are in some sense not “true”
extensions of these, for a variety of reasons that we detail later in this
paper.

In this paper, we show how temporal normal forms, including the
related concepts of temporal dependencies and temporal keys, may be
defined so that they apply to all temporal data models, and so that
temporal database design concepts closely parallel their conventional
counterparts. We do not simply focus on a single temporal data model.
Instead, we utilize a new data model, termed the bitemporal conceptual
data model (BCDM), that is, in some sense, the “largest common denom-
inator” of existing temporal models [Jensen et al. 94B]. Specifically, we
have shown how to map relations and operations in several quite dif-
ferent temporal relational data models into relations and operations in
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this data model. This is an important property, as it ensures that the
normal forms expressed in this model are applicable also to other mod-
els. We define the temporal normal forms in the context of this model.
Our proposal accommodates valid-time, transaction-time and bitempo-
ral relations [Snodgrass & Ahn 86, Jensen et al. 94A]. We also note that
the BCDM has been adopted as the underlying data model of the con-
sensus temporal query language TSQL2 [Snodgrass et al. 94]. Design of
TSQL2 schemas thus directly benefits from the definitions of temporal
dependencies and normal forms introduced here.

Our focus is on the design of temporal database schemas. A sub-
stantial body of work exists on the specification and efficient checking
of more general temporal, or dynamic, integrity constraints. The depen-
dencies, keys and normal forms of this paper can be seen as constraints
on database instances, but are different in two respects. Unlike general
constraints, they impact the design of temporal databases. And since
the focus is on database design, on-line checking of the constraints is not
of relevance here.

We also believe that additional normalization concepts are needed
that take the different temporal characteristics of data into considera-
tion, but the development of such concepts is beyond the scope of this
paper. Instead, this paper is restricted to providing data-model inde-
pendent mappings of the existing conventional normalization concepts
to temporal databases.

We also limit the scope of the paper to so-called intra-state depen-
dencies [Böhlen 94]. Intra-state dependencies are defined in terms of
individual snapshots of a temporal database. For example, the con-
ventional notions of functional dependency and multivalued dependency
are, by definition, intra-state dependencies. Inter-state dependencies, on
the other hand, express constraints between attribute values in different
snapshots.

The paper is organized as follows. In Sections 2, 3, and 4, we examine
all existing definitions, to our knowledge, of temporal dependencies, keys,
and normal forms, respectively. This is the first thorough survey of
work in these areas. Each section first briefly describes the relevant
conventional normalization concepts, and lists a number of important
properties that should carry over to their temporal counterparts. On this
basis, the temporal database design proposals known to us are introduced
and evaluated. The existing definitions satisfy many, but not all, of
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the properties required of entirely natural extensions of conventional
normal forms. The existing temporal design concepts provide a valuable
foundation upon which we subsequently build.

The topic of Section 5 is the bitemporal conceptual data model. We
describe the type of relation supported by the BCDM, and briefly de-
scribe a few algebraic operators needed to support the new temporal
normal forms defined in the next section, where we then develop tem-
poral counterparts of the conventional dependencies, keys, and normal
forms, again, limiting ourselves in this paper to intra-state variants. This
is done is such a way that virtually all of the conventional normaliza-
tion theory carries over to the temporal context. The result is that the
role played by temporal normal forms during temporal database design
closely parallels that of normal forms during conventional database de-
sign. This is possible, in part, because of a careful choice of temporal
data model.

To demonstrate the generality of our approach, we outline, in Sec-
tion 8, how normal forms and dependency theory can also be applied to
spatial and spatiotemporal databases [Al-Taha et al. 93]. Conclusions
and future research are the subject of Section 9.

2 Previous Proposals for Temporal Depen-
dencies

In this section, we consider previous proposals of temporal dependencies
(in chronological order, of course!). To provide a basis for this, we first
review the definition of the conventional functional dependency, and then
we highlight those properties that we feel should also be satisfied by
corresponding temporal database dependencies.

2.1 Conventional Functional Dependency

Throughout the paper, we generally use R to denote an arbitrary rela-
tion schema, and r(R) to denote that r is an instance of R. Explicit
(non-temporal) attributes of a relation schema are generally denoted
A1, . . . An, and X and Y are used to denote sets of attributes. For
tuples, the symbol s is used (possibly indexed), and s[X] denotes the
projection of tuple s onto the attributes X.
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For the purpose of database design, a functional dependency [Codd
72A] is an intensional property of a database schema.

Definition: Let relation schemaR be defined asR = (A1, A2, . . . , An),
and let X and Y be sets of attributes of R. The set Y is functionally
dependent on the set X, denoted X → Y , if for all meaningful instances
r of R

∀s1, s2 ∈ r (s1[X] = s2[X]⇒ s1[Y ] = s2[Y ]).

If X → Y , we say that X determines Y . A functional dependency
X → Y is trivial if Y ⊆ X. ut

A functional dependency constrains the set of possible extensions of
a relation. Which functional dependencies are applicable to a schema
reflects the reality being modeled and the intended use of the database.
Determining the relevant functional dependencies is a primary task of
the database designer.

The two most important normal forms, third normal form [Codd 72]
and Boyce-Codd normal form [Codd 74], as well as the concept of key,
all rely on the concept of functional dependency.

Example: To illustrate, consider a database recording the phone num-
bers, departments, and employees in a company. This can be modeled
with the schema Emp = (Name,Dept,PhNo). In this company, an em-
ployee can belong to only one department, meaning that Name→ Dept.
An employee may have several phone numbers, so Name does not deter-
mine PhNo. ut

Definition: The closure of a set of functional dependencies, F , is the
set of dependencies, denoted F+, that can derived from F by applying
the definition of functional dependency. ut

Rather than applying the definition of functional dependency di-
rectly, it is customary to apply a set of inference rules to derive new,
implied dependencies. Armstrong’s axioms, a set of three inference rules,
are among the most popular of such rules. This set has been proven to
be sound and complete, meaning that precisely those dependencies that
can be derived using the definition of functional dependency can also be
derived using the rules [Armstrong 74].
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Example: In the example database, the closure of the two given func-
tional dependencies contains the following additional non-trivial depen-
dences.

{Name, PhNo} → {Dept}
{Name, PhNo} → {Name, Dept}
{Name, PhNo} → {PhNo, Dept}
{Name, PhNo} → {Name, PhNo, Dept} ut

As a basis for the subsequent discussion, we summarize here two
fundamental qualities of functional dependencies.

1. Dependencies are intensional, not extensional, properties.

While it may require only few textual modifications to change an
extensional definition into an obvious intensional counterpart, the
conceptual difference between intensional and extensional concepts
is significant. Dependencies and normal forms are applied to rela-
tion schemas during database design where no instances are present
yet. Thus, extensional definitions make little sense conceptually.

2. Functional dependencies are defined independently of the repre-
sentation of a relation. These concepts are based on semantics,
not on an arbitrary representation.

The meaning of this desideratum will become clearer once the nec-
essary concepts have been introduced; see Section 5.3. Briefly,
in some data models it is possible to have different relation in-
stances that nevertheless contain the same temporal information
(i.e., are snapshot equivalent [Jensen et al. 94B]). Such instances
should satisfy the exact same dependencies. Further, instances in
different temporal data models with the same information content
should satisfy the same dependencies.

While conventional dependencies may share additional qualities, these
two qualities are fundamental and are satisfied by all conventional de-
pendencies, including multivalued and join dependencies.

We add a third desideratum that will be discussed in more detail in
Section 3 on temporal keys. However, it is more appropriately applied
to functional dependencies.
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3. Functional dependencies are used to define keys.

We now characterize each of the previously proposed temporal depen-
dencies based on these desiderata.

2.2 Extensional versus Intensional Database
Constraints

In one of the first papers in temporal databases, Clifford and Warren
make the distinction between extensional database constraints, which
“can be said to hold (or not hold) simply on the basis of the extension
of the database with respect to a single state” [[Clifford & Warren 83],
p. 246] (where “single state” is at a particular point in time), and in-
tensional database constraints, which “can be said to hold (or not hold)
only by examining at least two states of the” valid-time database (this
terminology is somewhat inconsistent with the normal definition of in-
tensional as applying to all possible states, or extensions). They classify
conventional functional dependencies as extensional constraints. They
then show that their intensional logic (ILs) allows one to specify ex-
plicitly that a functional dependency must hold over all states of the
database. Their logic is also able to specify other kinds of intensional
constraints, such as “No employee can later return to the same depart-
ment.”

Concerning the subject of this paper, this early work is preliminary,
in that a functional dependency over time was never defined. Subsequent
efforts, to be discussed next, to define temporal variants of functional
dependencies have taken different tacks. We feel, however, that the gen-
eral approach introduced in Clifford’s paper is the appropriate one. We
will define in Section 6 a temporal functional dependency and associated
normal forms by formalizing the notion that a functional dependency
should hold over all time.

2.3 Dynamic Functional Dependencies

In the context of a formal model for the evolution of databases in time,
Vianu extended the notion of functional dependencies (FDs) to hold over
consecutive states of a database. In this definition, U is a set of attributes
in the relational schema, Ǔ represents the values of these attributes in
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a state of the database, and Û represents the values of these attributes
in the next state of the database (Vianu provides formal definitions for
these sets). The basic idea is to have attribute values in consecutive
states determine values of other attributes in these states.

Definition: “A dynamic functional dependency (DFD) over U is an
FD X → Y over Ǔ Û such that, for each A ∈ Y , XA ∩ Ǔ 6= ∅ and
XA ∩ Û 6= ∅. . . . Informally, the above condition on FDs X → Y over
Ǔ Û ensures that X → Y does not imply any nontrivial FDs over Ǔ or
Û . (These would not truly be dynamic constraints.) For example, if
U = ABC, then Ǎ → B̂ is a DFD, while Ǎ → B̂Č is not.” [[Vianu 87],
p. 36] ut

In an example provided by Vianu of an “equal opportunity” policy, a
new salary is determined solely by merit in conjunction with the old
salary. This policy may be encoded in the DFD ˇMERIT ˇSAL→ ˆSAL.

This definition satisfies Desiderata 1 and 2 listed in Section 2.1. No
keys are defined in terms of DFDs.

In the present paper, we will be concerned only with dependencies on
temporal databases that can be expressed on individual snapshots. Dy-
namic functional dependencies address a different problem. Also, we will
accommodate valid-time, transaction-time, and bitemporal relations; dy-
namic dependencies are defined solely over transaction-time relations.

2.4 Temporal Dependency in the Temporal Rela-
tional Model

The Time Relational Model (TRM) [Navathe & Ahmed 89] is a valid-
time data model. Valid-time is supported by appending to each tuple
two time attributes (Ts, Te) denoting that the tuple was valid during the
closed interval [Ts, Te].

As the basis for the definition of a temporal normal form (to be
introduced later), Navathe and Ahmed defined the notion of temporal
dependency as follows.

8



Definition: There exists a temporal dependency between two time-
varying attributes, Ai and Aj , in a relation schema R = (A1, A2, . . . , An,
Ts, Te) if there exists an extension r(R) containing two distinct tuples, t
and t′, that satisfy each of the following three properties.

1. t[K] = t′[K] where K is the time invariant key.

2. t[Te] = t′[Ts]− 1 ∨ t′[Te] = t[Ts]− 1.

3. t[Ai] = t′[Ai] XOR t[Aj ] = t′[Aj ].

[[Navathe & Ahmed 89], p. 156 and [Ahmed 92]] ut

Thus, two attributes are mutually dependent if we are able to find, in
some extension, two tuples that represent the same object of the mod-
eled reality, have consecutive valid-time intervals, and agree on attribute
Ai and disagree on attribute Aj or disagree on Ai and agree on Aj . If
two attributes are not mutually dependent, then they are termed syn-
chronous, as they change simultaneously.

The desire is to include only synchronous attributes in a relation.
Otherwise, when the value of an attribute changes, the other attributes
retain their previous value; these values must be replicated in the new
tuple, creating redundant information.

Example: Consider the following relation instance with time-invariant
key Emp.

Emp Dept Mgr Ts Te
Bill Shipping Zoe 1 4

Bill Loading Zoe 5 10

In this relation instance a temporal dependency exists between the Dept
and Mgr attributes. Because of this temporal dependency, the Emp and
Mgr attribute values had to be copied to a new tuple when Bill changed
departments. ut

This dependency satisfies none of the desiderata listed in Section 2.1.
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2.5 Nested Relations with Valid-Time

Tansel and Garnett showed how nested relations can be augmented with
valid-time to support complex objects [Tansel & Garnett 89]. This data
model uses attribute value timestamping. Attributes have the form
< t, v > where t is a valid-time element (a set of maximal valid-time
intervals) and v is a conventional attribute value. Informally, t indicates
the time intervals when the attribute had the value v. Attribute values
may be either atomic attribute values, as just described, or they may be
nested relations themselves.

This model does not define temporal dependencies. Instead, it de-
fines snapshot multivalued dependencies between atomic attribute val-
ues, where the valid-time associated with the atomic attribute value is
treated as an explicit part of the attribute.

Example: Consider the following relation instance with key Emp. For
simplicity, we only show a single valid-time interval associated with each
attribute.

Emp Dept Mgr

< [1, 10],Bill > < [1, 4],Shipping > < [1, 6],Zoe >
< [5, 10],Loading > < [7, 10], Janet >

The relation contains a single tuple showing Bill’s employment history
for the interval from time 1 until time 10. Temporal intersection of the
attribute timestamp is used to interpret the relation. From time 1 until
time 4, Bill worked for the shipping department and was managed by
Zoe. From time 5 to time 6, Bill worked for the loading department.
During this time his manager remained Zoe. At time 7 and continuing
until time 10, Bill remained at the loading department but had Janet as
his manager.

We can unnest the nested relation to explicitly show the multivalued
dependencies. Some of the tuples produced in the unnesting may not be
meaningful since their attribute timestamps have an empty intersection.

Emp Dept Mgr

< [1, 10],Bill > < [1, 4],Shipping > < [1, 6],Zoe >

< [1, 10],Bill > < [1, 4],Shipping > < [7, 10], Janet >

< [1, 10],Bill > < [5, 10],Loading > < [1, 6],Zoe >

< [1, 10],Bill > < [5, 10],Loading > < [7, 10], Janet >
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The first, third, and fourth tuples in the unnested relation encode the
same facts over the intervals [1,4], [5,6], and [7,10], respectively, as does
the single tuple in the nested relation. The second tuple does not record
a meaningful fact since the intersection of its attribute timestamps is
empty.

If we regard the attributes as atomic, i.e., the timestamps contained
in the attributes are considered explicit values, it should be clear from the
unnested relation that the multivalued dependencies Emp→→ Dept and
Emp→→ Dept hold. Moreover, these dependencies are the traditional
multivalued dependencies used in snapshot database design to obtain
fourth normal form relation schemas. ut

The central observation is that multivalued dependencies exist be-
tween the key attribute and set-valued attributes in nested relations.
While also present in non-temporal nested relations
[Ozsoyoglu & Yuan], the same observation holds when valid-time is added
to the model. Tansel and Garnett use these multivalued dependencies
to guide the normalization of nested valid-time schemas.

2.6 The Interval Extended Relational Model

The interval extended relational model (IXRM) [Lorentzos 91] integrates
(n-dimensional) intervals into the snapshot relational model and meets
in this way the needs of many application areas. The intervals, one per
attribute, may be drawn from any data type, including time and space.
Interval-valued attributes are accommodated, and new operators that
manipulate relations with interval attributes are defined.

The IXRM is not a temporal data model. The timestamps in a tuple
do not specify when that tuple, or even an attribute value in that tuple,
was valid. Put differently, the query language does not interpret interval
attributes as temporal attributes. The IXRM was designed to be used
in applications (e.g., soil management, e.g., [Lorentzos & Kollias 89])
where according interval attributes temporal semantics would render
such attributes of little use. Rather, such timestamps are more prop-
erly thought of as user-defined time [Snodgrass & Ahn 86]. The IXRM
is mentioned here because, while it is not a valid-time model, database
users may think of relations in this model as representing valid-time re-
lations. Indeed, some of the operators of the IXRM query language may
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conveniently be used for valid-time queries.
Lorentzos extended the notion of functional dependency in two ways.

In the following definitions, I(D) denotes the domain of intervals delim-
ited by points in domain D; and X(D) denotes an arbitrary domain of
either points or intervals.

Definition: “If R(A=I(D), B=X(D), C=X(D)) is a relation scheme it
is said that A Interval Functionally Determines (IFD) B if and only if
whenever (a1, b1, c1) ∈ R, (a2, b2, c2) ∈ R and a1 = a2 then b1 = b2.”
[[Lorentzos 91], p. 43] ut

Note that the value of attribute C is not used in the definition. Hence
this dependency is similar to the snapshot functional dependency, with
the added constraint that the left-hand side be an attribute over an
interval domain, interpreted as an atomic value.

Of relevance for the next definition, the result of S-UNFOLD[A](R),
where R is a relation instance and A is an interval-valued attribute of R,
is obtained by “expanding” each tuple of R in turn. An argument tuple
is expanded by generating one result tuple for each point in its A interval
value. The point becomes the new A value of the result tuple which is
otherwise left unchanged. For example, unfolding the tuple ([1, 3], b, c)
yields {(1, b, c), (2, b, c), (3, b, c)}.

Definition: “Let R(A=X(D1), B=X(D2), C=X(D3)) be a relation
scheme and let S = S-UNFOLD[A](R). It is said that A Point Func-
tionally Determines (PFD) B if and only if whenever (a1, b1, c1) ∈ S,
(a2, b2, c2) ∈ S and a1 = a2 then b1 = b2.” [[Lorentzos 91], p. 44] ut

In this dependency, an interval is not interpreted as an atomic value, but
rather as a set of points.

Note that a A PFD implies an IFD, but not vice versa. These de-
pendencies may be combined to treat some interval-valued attributes as
atomic and others as sets of points.

These dependencies are intensional properties, but are tied to the
representation of a relation. They are used to define temporal keys.
Hence they satisfy Desiderata 1 and 3.
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2.7 Wijsen’s Temporal Dependency Theory

Wijsen and his colleagues have recently extended snapshot dependency
theory to an object-based data model, i.e., a data model supporting
object-identity [Wijsen 93, Wijsen et al. 93A]. This data model is a
sequence of snapshot relations indexed by valid-time. Four types of
dependencies are defined: snapshot functional dependencies (SFDs), dy-
namic functional dependencies (DFDs), temporal functional dependen-
cies (TFDs), and interval dependencies (IDs) [Wijsen et a. 93B, Wijsen
et al. 94B].

SFDs are intra-state dependencies, i.e, they are defined in terms of
a single snapshot in a temporal database. Essentially, an SFD is the
conventional functional dependency extended with object-identity.

DFDs, TFDs, and IDs are inter-state dependencies, i.e., they apply
to the sequence of snapshots constituting the temporal relation. Like
SFDs, these dependencies use object identity. DFDs constrain pairs
of adjacent valid-time states; TFDs and IDs constrain a sequence of
multiple valid-time states.

In terms of the desiderata, this proposal satisfies Desideratum 1,
in that the defined dependencies are intensional properties. However,
the reliance on object-identity forces the proposal to be representation-
dependent. The dependencies are used to specify keys, and so satisfy
Desideratum 3.

Recently, Wijsen has adapted his dependency theory to a relational
model without object identity [Wijsen et al. 94A, Wijsen et al. 94B].
This is similar to our temporal functional dependencies, described in
Section 6.1.

2.8 Summary

We have surveyed several interesting definitions of temporal dependen-
cies. A few, such as Tansel and Garnett and Lorentzos, treat relations
with temporal information as snapshot relations with explicit tempo-
ral attributes. The remaining define dependencies, specifically Vianu’s
dynamic dependency, Navathe and Ahmed’s temporal dependency, and
Wijsen et al.’s DFD, TFD, and ID, are inter-state dependencies, and
thus are more ambitious than the intra-state dependencies considered
further in this paper.
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3 Previous Proposals for Temporal Keys

We now turn to the related topic of defining keys for a temporal data
model. We briefly review the notion of keys in conventional databases
and the important properties of conventional keys. Then the existing
temporal database keys are introduced and contrasted with the proper-
ties of conventional keys.

3.1 Conventional Keys

Definition: The set of attributes X is a superkey of R if X → R. A
superkey is minimal if when any attribute is removed, it is no longer
a superkey. A relation schema may have many minimal keys, termed
candidate keys. One such key is selected as the primary key. ut

Example: In the example database, introduced in the previous section,
there are two superkeys, {Name, PhNo} and {Name, PhNo, Dept}. Only
the former is minimal; hence, it is the primary key, and there are no other
candidate keys. ut

The following five fundamental properties are held by the definitions
of snapshot keys. We find it desirable that temporal keys also have these
properties.

1. Keys are intensional.

2. Keys are properties of stored (base) relations only.

3. Particular attributes are not a priori designated as keys.

In some temporal data models, relations have mandatory times-
tamp attributes. The values of such attributes indicate when the
non-temporal attribute values are valid (or current). The desider-
atum states that these mandatory attributes or other attributes
should not be required to always be (part of) keys. Rather, the
database designer should be able to choose more freely.

4. Keys are independent of the representation.

This desideratum, along with the previous one, will be clarified in
Section 5.3.
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5. Primary keys are minimal.

Next we examine various proposals for temporal keys. Relation in-
stances are used for illustration, even though the notion of key should be
applied to relation schemas during database design. The key attributes
are underlined.

3.2 Keys in the Time Relational Model

In Ben-Zvi’s pioneering dissertation [Ben-Zvi 82], the standard definition
of snapshot key is retained. To explain the notion of temporal key, we
must first introduce the notions of tuple-version, tuple-version-set, and
time-relation as defined in the Time Relational Model.

Definition: “Given a Relation R, a Key K for R, and letting Di =
(d1, d2, d3, . . .dn) denote a typical tuple in R. A Tuple-Version Ii, is
the ordered list: Ii = (Di, Ties, Tirs, Tiee, Tire, Tid).”

“A Tuple-Version-Set, L, is a set of Tuple-Versions {Ii/i = 1, . . .m},
all having the same key value Ki which compose the whole history of a
unique tuple; this tuple can be uniquely determined by the key Ki.”

“Given a Relation R, a Time-Relation Rt is the collection of all tuple-
version-sets {Lj j = 1, . . . n} constructed from R’s tuples.” [[Ben-Zvi 82],
pp. 47–50] ut

The five T attributes used above encode the valid and transaction time
of a tuple-version. A time-relation is a set of tuple-version-sets.

A set of attributes K is a temporal key of a time-relation, Rt, if (1)
the attributes K form a (conventional) key of the corresponding non-
temporal relation, R, and (2) the tuple-version-sets in Rt are defined by
partitioning tuple-versions so that tuple-versions with identical values
for the attributes K are in the same tuple-version-set.

This definitions has several notable properties. Clearly, the definition
of a temporal key is intensional and satifies Desideratum 1. As views are
not discussed in this context, it is not known whether Desideratum 2 is
satisfied. Unlike conventional relations, a time-relation has precisely one
temporal key. This is so because tuple-versions partitioned on a set of
attributes K are generally not guaranteed to also be partitioned on any
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other set of attributes. A temporal key is a priori designated, violating
Desideratum 3, because a particular temporal key is chosen to achieve a
desirable structuring of the tuple-versions. The choice of temporal key is
not determined by the representation of a time-relation, so Desideratum
4 is satisfied. Finally, the notion of minimality of temporal keys for
time-relations makes little sense, since a time-relation can only have a
single key. The temporal key of a time-relation, Rt, may or may not be
a minimal key of the corresponding snapshot relation, R.

3.3 The HQL Data Model

In the data model associated with the query language HQL [Sadeghi et
al. 87], valid-time relations are represented by snapshot relations where
tuples are timestamped with intervals. Thus, a valid-time relation with
explicit attributes A1, . . . , An is represented by a snapshot relation with
schema (A1, . . . , An, start, end).

Without providing further explanation of the notion of key, it is re-
quired that the attributes start and end be part of any primary key.

Two points can be made. First, using both timestamp attributes
seems unnecessary. Indeed, one of the attributes is redundant, violating
the minimality requirement of a primary key. Second, the definition of
key appears to be representation-dependent. In summary, this definition
may satisfy Desiderata 1–3 (insufficient discussion makes it impossible
to know for sure), but it does not satisfy Desiderata 4 or 5.

Example: Consider the following relation instance.

Emp Dept start end

Bill Shipping 1 5

Bill Shipping 5 10

The primary key of the relation schema is {Emp, start, end}. It may
be observed that generally either {Emp, start} or {Emp, end} are suf-
ficient, as {Emp, Start} → end. ut

3.4 The TRM Data Model

A key of a TRM relation schema is defined as follows. In the following
definition, the time-invariant key (TIK) is the primary key of a snapshot
version of the valid-time relation schema.
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Definition: The candidate keys of a TRM relation schema are (TIK,Ts)
or (TIK,Te), i.e., the snapshot key appended with either the start-
ing or ending timestamp. (TIK,Ts) is designated as the primary key.
[Navathe & Ahmed 89] ut

This definition is clearly intensional and therefore satisfies Desider-
atum 1. However, the definition does not satisfy Desideratum 2 since
derived relations have the given key. Similarly, Desiderata 3 and 4 are
not satisfied since Ts (or Te) must be part of a candidate key, and the
definition is dependent on the given tuple-timestamped representation.
We assume Desideratum 5 is satisfied since the TIK is assumed to be a
minimal key.

3.5 The Interval Extended Relational Model

As before, we emphasize that the IXRM is not a temporal data model,
in that it supports only user-defined time [Lorentzos 91]. It can however
be used as the representation of a valid-time relation.

Keys are defined in this data model in terms of point and interval
functional dependencies, in a manner very similar to snapshot keys. A
key is required to be minimal. As Lorentzos mentions “the” key, it is
assumed that only the primary key was being defined. This definition of
key satisfies all but Desideratum 4.

Example: Consider a sample relation instance.

Emp Dept T

Bill Shipping [1,5)

Bill Shipping [5,10)

Bill Shipping [3,10)

The key of this relation is T, since T determines {Emp, Dept}. ut

3.6 The TempSQL Data Model

Gadia and Nair define a special notion of key in the data model asso-
ciated with the query language TempSQL [Gadia 92, Nair & Gadia 92].
To examine this concept, the type of relation employed must be under-
stood first.
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Example: Consider the following relation instance indicating the man-
agers for departments.

Mgr Dept

[10, 14] Bill [10, 19] Shipping
[15, 19] Al

[15, 30] Bill [15, 30] Loading

Attribute values are stamped with finite unions of intervals (i.e., valid-
time elements [Gadia 88]). All information about the Shipping depart-
ment is contained in the first tuple, which states that Bill was the man-
ager from time 10 to 14 and that Al was the manager from time 15 to
19. ut

We now state the definition, then explain it using the example.

Definition: “A relation over R, with K ⊆ R as its key , is a finite set of
non-empty tuples such that no key attribute value of a tuple changes with
time, and no two tuples agree on all their key attributes.” [[Gadia 92]
p. 10] ut

The definition lists two requirements that must be fulfilled for a set
of attributes to be a key. In the example, the attribute Dept is a key
because for each tuple, there is only one value of attribute Dept and no
two tuples have the same value for attribute Dept.

It appears that a key is a property of a relational instance, making
the definition extensional. Also, the definition is independent of the
notion of temporal functional dependency. The dependencies Dept →
Mgr and Mgr → Dept are assumed to hold, making both Dept and
Mgr keys of the schema (Dept, Mgr) in the conventional sense. Yet, in
the relation instance above, the attribute Mgr is not a key in the sense
defined here. An operator is available that restructures the instance to
yield the following, equivalent relation, now with Mgr as the only key.

Mgr Dept

[10, 30] Bill [10, 14] Shipping
[15, 30] Loading

[15, 19] Al [15, 19] Shipping

To summarize, this definition of key satisfies Desiderata 3 and 4, but
does not satisfy Desiderata 1 or 2 (because operators can change the key
of a relation). Primary keys are not defined in the model.
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3.7 Wijsen’s Theory of Keys

In conjunction with their work in temporal dependency theory, Wijsen
and his colleagues have developed a notion of keys for temporal rela-
tions [Wijsen 93, Wijsen et al. 93A]. Three types of keys, snapshot keys
(SK), dynamic keys (DK), and temporal keys (TK), corresponding to
the notions of snapshot functional dependency, dynamic dependency,
and temporal dependency, respectively, are defined. Recall from Sec-
tion 2.7 that a major motivation for this work was to incorporate the
concept of object-identity into a temporal database. As object-identity
is normally a hidden attribute of an object, i.e., is an attribute that can-
not be directly referenced or queried, the defined keys attempt to make
the identification of tuples belonging to the same object possible.

For example, the snapshot key is (informally) defined as follows.

Definition: A snapshot key is a set of attributes that snapshot func-
tionally determines the object-identity of an object, for any snapshot
which can be taken from a temporal database. The snapshot key is also
minimal. [Rephrasing of definition, [Wijsen 93], p. 15] ut
As can be seen from the definition, a snapshot key uses the object-
identity in its definition, though the object-identity is not part of the
key. Notice also, that the snapshot key is an intra-state key, i.e., the
snapshot key does not express constraints between attribute values in
snapshots taken at different times.

This definition satisfies all of the desiderata except Desideratum 4,
since it relies on object-identity.

Dynamic keys and temporal keys are defined using inter-state de-
pendencies. For example, a dynamic key, like a dynamic functional de-
pendency, holds between adjacent states of a temporal database, and
a temporal key, like a temporal functional dependency, holds between
disjoint intervals of time.

Inter-state dependencies and keys are beyond the scope of this paper.
Our temporal key, to be defined later, is very similar to Wijsen’s snapshot
key, except we do not rely on the presence of an object-identity attribute.

3.8 Summary

We have surveyed several interesting notions of keys. Each of the given
proposals adapt the notion of conventional relational keys to temporal
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databases, but none of the keys individually satisfy all five desiderata
in Section 3.1. We base our work on the foundation provided by these
previous proposals.

4 Previous Proposals for Temporal Normal
Forms

We wish to develop normalization concepts that closely parallel their
counterparts in conventional normalization theory. We therefore begin
by briefly reviewing the two most important relational normal forms,
third normal form and Boyce-Codd normal form. This leads to a formu-
lation of the common aspects of conventional normal forms that we wish
our temporal normal forms to possess. Existing temporal normal forms
are then introduced and examined with respect to these properties.

4.1 Conventional Normal Forms

A normal form is an intensional property of a database schema that
follows from a set of (functional, multivalued, or other) dependencies.
The goal of database design is to obtain a set of relation schemas that,
together with their dependencies, satisfy the normal forms.

We define the two most important normal forms, third normal form
[Codd 72] and Boyce-Codd normal form [Codd 74].

Definition: The pair of a relation schema, R, and a set, F , of func-
tional dependencies on R is in Boyce-Codd normal form (BCNF) if for
all non-trivial dependencies X → Y in F+, X is a superkey for R. ut

Definition: The pair of a relation schema, R, and a set, F , of func-
tional dependencies on R is in third normal form (3NF) if for all non-
trivial dependencies, X → Y , in F+, X is a superkey for R or each
attribute in Y is contained in a minimal key for R. ut

The normal forms only allow the existence of certain functional de-
pendencies, making other functional dependencies illegal. As we shall
see, illegal dependencies indicate either the need for null values, the
possible existence of update anomalies, or the presence of redundant in-
formation. By obeying the normal forms, some of these undesired effects
are avoided.
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Example: Returning to the example in Section 2.1, Emp = (Name,
Dept, PhNo), we have Name → Dept. Since Name is not a superkey,
BCNF is violated. As Dept is not part of any minimal key, 3NF is
also violated. As we may expect, a database using this schema exhibits
several problems.

First, insertion anomalies are possible. If we want to insert the de-
partment of an employee but do not know the employee’s telephone
number, either the information cannot be inserted or the phone num-
ber must be represented by a null value. This is also true when we do
not know the employee’s department. Normal forms attempt to avoid
excessive use of null values.

Second, update anomalies are possible through redundant informa-
tion. For example, whenever a new telephone number is inserted for an
employee, the department information must be repeated. Apart from
being wasteful of space, this means that whenever an employee switches
departments, several tuples, one for each of the employee’s telephone
numbers, must be updated. If one such tuple is not updated then an
inconsistency will be generated in the database. Normal forms attempt
to avoid redundancy.

Third, deletion anomalies are possible. Suppose that an employee no
longer needs a telephone, and all telephone numbers for that employee
are deleted from the database. When the last tuple containing that
employee’s telephone is deleted, the removal of that tuple results in the
loss of the employee’s department information. Again, undesirable null
values may be used to overcome this problem. ut

Decomposition is one way to address these problems, by breaking up
a large relational schema into several smaller schemas, each of which
satisfy the normal forms.

Example: All of the anomalies previously mentioned with the example
relational schema are avoided by decomposing the schema into EmpDept
= (Name,Dept) and EmpPhNo = (Name,PhNo), both of which are in
BCNF. ut

In some applications, queries involving a join of two relations occur
frequently. As joins are expensive operations, performance consider-
ations may dictate that the relation schemas be merged, even if the
resulting schema does not conform to a desirable normal form. Thus,
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anomalies and redundancy may be tolerated in order to enhance the
performance of the database management system.

Additional normal forms exist that are more restrictive than BCNF.
For example, fourth normal form [Fagin 77] is a close parallel of BCNF,
but which relies on the notion of multivalued dependencies [Zaniolo 76].

We do not address these normal forms, for two reasons. First, they
are generally believed to have less relevance in practical database design.
Second, no proposals for temporal counterparts of these have been pro-
posed. Still, even though we do not cover these further normal forms in
this survey, temporal versions of such normal forms such as fourth nor-
mal form may be defined within the framework developed in Section 6.3.

For completeness, we should also mention two other normal forms
[Codd 72A]. Second normal form is weaker than third normal form, and
is only of historical interest. First normal form (1NF) is unlike any of
the other normal forms, in that it is not defined in terms of functional
dependencies. Instead, it merely requires that attribute values be drawn
from domains of atomic values, which do not have internal structure.

In summary, the fundamental qualities of the conventional normal
forms may be outlined as follows.

1. Normal forms are intensional, not extensional, properties.

As argued before, while this may be a subtle distinction, it is a
conceptually important one.

2. Normal forms are defined solely in terms of dependencies that exist
or do not exist.

3. Normal forms are properties of stored (base) relations only—re-
dundancy and anomaly issues do not apply to (computed) views.

We have seen that normal forms are motivated by the desire to
avoid update anomalies and redundancy. These issues are only of
interest for base relations as they are the only relations that must
be stored, and they are the only relations that can be updated.
Normal forms do not apply to views or derived relations, and they
are independent of query languages.

4. Normal forms are defined independently of the representation of a
relation. These concepts are based on semantics, not on an arbi-
trary representation.
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The meaning of this desideratum will become clearer once the nec-
essary concepts have been introduced, see Section 5.3.

While conventional normal forms may share additional qualities, these
four qualities are all fundamental and are satisfied by all conventional
normal forms. We characterize each of the previously proposed temporal
normal forms based on these desiderata.

When presenting the various normal forms, it is convenient to illus-
trate these by means of sample relation instances. While normal forms
may be applied to individual instances, we emphasize that normal forms
should be applied to relation schemas during database design.

4.2 Time Normal Form

In his Time Relational Model, Ben-Zvi defined the first temporal nor-
mal form. The definition employs the concepts of contiguous and non-
contiguous time-relations. Intuitively, a time-relation is contiguous if
“there are no ‘holes’ in the effective-time history of each tuple-version
set” ([[Ben-Zvi 82], p. 137]; a formal definition is also provided). To illus-
trate this, consider a tuple-version-set that records the department his-
tory of employee Bill. If it is always the case that when Bill resigns from
one department, he immediately starts in another department, there are
no times (i.e., no “holes”) during Bill’s employment when he does not
have a department value. A time-relation “Rt is non-contiguous if it is
not contiguous.”

Definition: “A time-relation Rt is in time normal form if Relation
R is in any normal form and either all its attributes are contiguous or
non-contiguous.” [[Ben-Zvi 82], p. 139] ut

Here, R is the underlying conventional relation on which Rt is defined
(see Section 3.2).

The rationale for this normal form is two-fold. In the example above,
if tuple-version-sets are known to be contiguous, users need not explic-
itly terminate the employment of an employee in one department when
recording that the employee is now with another department—the sys-
tem is capable of doing this. Next, the contiguity may be exploited in
the implementation of a time-relation. It is not necessary to explicitly
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record when an employee left a department as this time may be inferred
from the time when the when the employee joins another department.

One confusing aspect of the definition is that it refers to attributes as
contiguous or non-contiguous, even though these notions are only defined
for relations. A second confusion is whether first normal form qualifies.
Earlier discussion of R implies that it is in first normal form.

This definition satisfies Desiderata 1 and 3. It does not satisfy
Desiderata 2 (since contiguity is not defined in terms of functional de-
pendencies) or 4 (since the definition of contiguity is in terms of the
representation of the representation of a time-relation).

4.3 First Temporal Normal Form

Segev and Shoshani define, in their Temporal Data Model, a normal
form, 1TNF, for valid-time relations [Segev & Shoshani 88]. To under-
stand this normal form, we need to first describe their data model and
the special variant of the timeslice operator employed there.

Valid-time relation schemas have a distinguished, so-called surrogate,
attribute. Surrogates represent objects in the modeled reality, and the
time-varying attribute values in a tuple of a relation instance may be
thought of as containing information about the object represented by
the surrogate of the tuple.

The special timeslice operator relies on the presence of the surrogate
attribute. It takes a valid-time relation and a time value as arguments
and returns, for each surrogate value, all the values of each time-varying
attribute that are valid at the time given as argument. Thus, the result
contains precisely one tuple per surrogate, valued with at least one time
varying attribute value, valid at the time argument. As another conse-
quence, time varying attributes may be set-valued, leading to a non-1NF
result relation.

Definition: For a relation to be in first temporal normal form (1TNF),
“a time-slice at point t has to result in a standard 1NF-relation.”
[[Segev & Shoshani 88], p. 17] ut

In addition to giving a conceptual definition, the authors present two
representation-dependent definitions of 1TNF, for valid-time relations
represented by snapshot relations using interval and event tuple times-
tamping, respectively. For the interval-based representation, containing
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the attributes TS (the starting valid time) and Te (the ending valid time),
the following definition is given.

Definition: “A relation with a schema, R(S,A1, . . . , An, Ts, Te), is
in 1TNF if there do not exist two tuples r1(s1, a1

1, . . . , a
1
n, t

1
s, t

1
e) and

r2(s2, a2
1, . . . , a

2
n, t

2
s, t

2
e) such that s1 = s2 and the intervals [t1s, t

1
e] and

[t2s, t
2
e] intersect.” [[Segev & Shoshani 88], p. 17] ut

Example: Consider the following interval timestamped relation in-
stance where the Emp attribute is assumed to contain surrogate values.

Emp Dept Ts Te
Bill Shipping 1 4

Bill Loading 5 10

This relation instance is in 1TNF since no two tuples with the same
surrogate have overlapping time intervals. ut

The normal form has a specific purpose within the Temporal Data
Model. In essence, the model extends the relational model with surro-
gates. It then proceeds by defining a timeslice operator that uses the
surrogates in a way that leads to the possibility of getting set-valued
attributes in results of timeslice operations. This normal form is in-
troduced to ensure that the results of timeslice operations are always
tuples with atomic attribute values. Thus, 1TNF is required rather than
desirable.

This normal form has a different motivation than do conventional
normal forms and it is needed because of non-relational extensions in
the data model. First, the normal form is extensional—it applies to
a relation instance, not a relation schema as do conventional normal
forms. Second, the normal form is based on an operator which relies
on a designated attribute, the surrogate attribute. In the conventional
relational model, no attribute is special.

In summary, 1TNF does satisfy Desideratum 4, as a conceptual def-
inition is provided. However, 1TNF does not satisfy Desiderata 1 (since
normal forms are defined on relations, rather than relation schemas), 2
(though the conceptual definition does employ the notion of snapshot
1NF), or 3 (since operators are expected to preserve 1TNF, and are only
defined over 1TNF relations).

25



4.4 Time Normal Form

This normal form for valid-time relations also applies to an interval
tuple-timestamped representation [Navathe & Ahmed 89]. Unlike Ben-
Zvi’s Time Normal Form and Segev and Shoshani’s 1TNF, it is based
on the notion of temporal dependency, defined in Section 2.

Definition: A valid-time relation “is in time normal form (TNF) if
and only if it is in [snapshot] BCNF and there exists no temporal de-
pendency among its time varying attributes.” [[Navathe & Ahmed 89],
p. 157] ut

Example: Consider the following relation instance with time-invariant
key Emp.

Emp Dept Mgr Ts Te
Bill Shipping Zoe 1 4

Bill Loading Zoe 5 10

Our previous observation that a temporal dependency exists between
the Dept and Mgr attributes means that this relation instance violates
TNF. ut

This definition satisfies Desiderata 1 and 2, but it does not satisfy
Desiderata 3 (because operators are defined only on TNF relations) or
4. Also, snapshot normal forms, e.g., BCNF, and therefore snapshot
functional dependencies are applied to the representations of valid-time
relations [Navathe & Ahmed 89], violating Desideratum 4. The clear
distinction between the meaning of and the representation of a valid-
time relation is a more recent development in temporal databases.

4.5 The HSQL Data Model

In the valid-time data model associated with the query language HSQL
[Sarda 90A], there is an explicit distinction between valid-time rela-
tions and their snapshot relation representations. Thus a valid-time
relation R = (A1, . . . , An) is represented by a snapshot relation R =
(A1, . . . , An,PERIOD) [Sarda 90]. It is claimed, but not demonstrated,
that conventional normalization techniques apply to the design of a valid-
time database. One of the purposes of this paper is to give a formal
characterization of the sense in which this is true.
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4.6 P and Q Normal Forms

A so-called P normal form is defined for the Interval Extended Rela-
tional Model. We give a simplified definition; the original definition
([Lorentzos 91], p. 49) used a rather complex algebraic operator.

Definition: The schema of an interval extended relation, representing
a valid-time relation, is said to be in P normal form (PNF) if, in all
extensions of that relation scheme, no two tuples with the same key
value have overlapping or adjacent time intervals. ut

This normal form satisfies Desiderata 1 and 3. In this temporal con-
text, we use relations in the IXRM for representing valid-time relations,
but as discussed above IXRM relations are not valid-time relations. Con-
sequently, PNF does not satisfy Desiderata 2 or 4.

A second normal form is also defined. We now give a simplified
version.

Definition: The schema of an interval-extended relation, representing
a valid-time relation, is said to be in Q normal form (QNF) if it is in PNF
and the schema contains exactly one non-key attribute. [Rephrasing of
[Lorentzos 91], p. 51] ut

Example: Consider the following interval timestamped instance with
primary key {Emp, Period}.

Emp Dept Mgr Period

Bill Shipping Zoe [1,5)

Bill Shipping Janet [5,10)

This relation is not in QNF since the Dept and Mgr attributes are both
non-key attributes (and since PNF is violated). ut

This normal form also satisfies Desiderata 1 and 3. As before, since
IXRM relations merely represent valid-time relations and QNF relies on
PNF, QNF does not satisfy Desiderata 2 or 4.
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4.7 Summary

All existing temporal normal forms known to the authors have been
surveyed. While none of them completely satisfied all qualities that
could be expected from a natural extension of conventional normal forms,
each presented interesting ideas. And together the normal forms provide
a platform from which it is possible to reach further.

The data models mentioned in this context present notable excep-
tions, as the majority of the two dozen temporal data models proposed
thus far do not discuss functional dependencies, keys, or normal forms
at all.

On the other hand, it would be best to provide model-independent
definitions. It is generally not possible to apply model-specific definitions
(like those surveyed) of functional dependencies or keys to other data
models in a straightforward fashion.

5 A Bitemporal Conceptual Data Model

We feel that the reason why so many temporal data models have been
proposed, and why so many temporal keys and temporal normal forms
have been defined, is that previous models attempted to simultaneously
retain the simplicity of the relational model, present all the information
concerning an object in one tuple, and ensure ease of implementation
and query evaluation efficiency.

It is clear from the number of proposed models that meeting all of
these goals simultaneously is a difficult, if not impossible task. We there-
fore advocate a separation of concerns. The time-varying semantics is
obscured in the representation schemes by other considerations of pre-
sentation and implementation. We feel that the data model proposed
in this section is the most appropriate basis for expressing this seman-
tics. However, in many situations, it is not the most appropriate way
to present the stored data to users, nor is it the best way to physically
store the data. We have defined mappings to several representations;
these representations may be more amenable to presentation and stor-
age, while retaining the semantics of the conceptual data model.

We first formally characterize a bitemporal relation. Then we define
the set of bitemporal algebra operators necessary for the introduction
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of normal forms. The objects and their operations constitute the bitem-
poral conceptual data model, or BCDM [Jensen et al. 94B]. Finally, we
outline a few of the representational data models in which instances and
operators can be mapped to and from the BCDM.

5.1 Objects in the Model

Tuples in a bitemporal conceptual relation instance are associated with
time values from two orthogonal time domains, namely valid time and
transaction time. Valid time is used for capturing the time-varying na-
ture of the portion of reality being modeled, and transaction time models
the update activity associated with the relation.

For both time domains, we assume that the database system has
limited precision; the smallest time units are termed chronons [Jensen
et al. 94A]. This restriction greatly simplifies implementation, and since
no database system known to the authors supports time domains with
unlimited precision, the restriction appears acceptable.

The time domains have total orders and both are isomorphic to sub-
sets of the domain of natural numbers. The domain of valid times
may be given as DV T = {t1, t2, . . . , tk}, and the domain of transaction
times may be given as DTT = {t′1, t′2, . . . , t′j} ∪ {UC} where UC (“until
changed”) is a distinguished value that is used for indicating that a tuple
is current in the database. A valid-time chronon is thus an element of
DV T , a transaction-time chronon is an element of DTT , and a bitemporal
chronon is an ordered pair of a transaction-time chronon and a valid-time
chronon. We expect that the valid time domain is chosen so that some
times are before the current time and some times are after the current
time. We also define a set of names DA = {A1, A2, . . . , AnA} for explicit
attributes and a set of attribute domains DD = {D1, D2, . . . , DnD}.

In general, the schema of a bitemporal conceptual relation, R, con-
sists of an arbitrary number, e.g., n, of explicit attributes from DA with
domains in DD, and an implicit timestamp attribute, T, with domain
2DTT×DV T . A set of bitemporal functional (and multivalued) dependen-
cies on the explicit attributes are part of the schema. For now, we ignore
these dependencies—they are treated in detail later.

A tuple, x = (a1, a2, . . . , an| tb), in a bitemporal conceptual relation
instance, r(R), consists of a number of attribute values associated with a
bitemporal timestamp value. For convenience, we will employ the term
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“fact” to denote the information recorded or encoded by a tuple, and
we say that “a tuple encodes a fact.” No additional assumptions are
intended by this usage.

An arbitrary subset of the domain of valid times is associated with
each tuple, meaning that the fact recorded by the tuple is true in the
modeled reality during each valid-time chronon in the subset. Each in-
dividual valid-time chronon of a single tuple has associated a subset
of the domain of transaction times, meaning that the fact, valid dur-
ing the particular chronon, is current in the relation during each of the
transaction-time chronons in the subset. Any subset of transaction times
less than the current time and including the value UC may be associ-
ated with a valid time. Notice that while the definition of a bitemporal
chronon is symmetric, this explanation is asymmetric. This asymmetry
reflects the different semantics of transaction and valid time.

We have thus seen that a tuple has associated a set of so-called
bitemporal chronons in the two-dimensional space spanned by transac-
tion time and valid time. Such a set is termed a bitemporal element
[Jensen et al. 94A] and is denoted tb. Because no two tuples with mu-
tually identical explicit attribute values (termed value-equivalent) are
allowed in a bitemporal relation instance, the full time history of a fact
is contained in a single tuple.

In graphical representations of bitemporal space, we choose the x-
axis as the transaction-time dimension, and the y-axis as the valid-time
dimension. Hence, the ordered pair (t, v) represents the bitemporal
chronon with transaction time t and valid time v.

Example: Consider a relation recording employee/department infor-
mation, such as “Al works for the shipping department.” We assume
that the granularity of chronons is one day for both valid time and
transaction time, and the period of interest is some given month in a
given year, e.g., June 1994. Throughout, we use integers as timestamp
components. The reader may informally think of these integers as dates,
e.g., the integer 15 in a timestamp represents the date June 15, 1994.
The current time is assumed to be 19 (i.e., now = 19).

Figure 1(a) shows an instance, empDep, of this relation. A graphi-
cal illustration of the empDep relation is shown in Figure 1(b). Right-
pointing arrows in the graph and the special value UC in the relation
signify that the given tuple is still current in the database and that new
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chronons will be added to the timestamps as time passes and until the
tuple is logically deleted.

The relation shows the employment information for two employees,
Al and Bill, contained in three tuples. The first two tuples indicate when
Al worked for the shipping and loading departments, respectively. These
two tuples are shown in the graph as the regions labelled “(Al, Ship),”
and “(Al, Load),” respectively. The last tuple indicates when Bill worked
for the shipping department, and corresponds to the region of the graph
labelled “(Bill, Ship).” ut

Emp Dept T

Al Shipping {(5, 10), . . . , (5, 15), . . . , (9, 10), . . . , (9, 15),
(10, 5), . . . , (10, 20), . . . , (14, 5), . . . , (14, 20),
(15, 10), . . . , (15, 15) . . . , (19, 10), . . . , (19, 15)}

Al Loading {(UC , 10), . . . , (UC , 15)}
Bill Shipping {(UC , 25), . . . , (UC , 30)}

(a)
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Figure 1: A Conceptual Bitemporal Relation

Depending on the extent of decomposition, a tuple in a bitemporal
relation may be thought of as encoding an atomic or a composite fact.
We simply use the terminology that a tuple encodes a fact and that a
bitemporal relation instance is a collection of (bitemporal) facts.
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Valid-time relations and transaction-time relations are special cases
of bitemporal relations that support only valid time or transaction time,
respectively. Thus a valid-time tuple has associated a set of valid-
time chronons (termed a valid-time element and denoted tv), and a
transaction-time tuple has associated a set of transaction-time chronons
(termed a transaction-time element and denoted tt). For clarity, we use
the term snapshot relation for a conventional relation. Snapshot relations
support neither valid time nor transaction time.

5.2 Operators in the Model

The previous section described the objects in the bitemporal conceptual
data model, tuples timestamped with a bitemporal element. We now
define some algebraic operators on these objects that will be used in the
definition of temporal normal forms. A complete operator set for the
BCDM can be found elsewhere [Jensen et al. 94B, Soo et al. 94].

We first define bitemporal analogues of some of the snapshot rela-
tional operators, to be denoted with the superscript “B”.

Define a relation schema R = (A1, . . . , An|T), and let r be an instance
of this schema. Let D be an arbitrary set of explicit (i.e., non-timestamp)
attributes of relation schema R. The projection on D of r, πB

D(r), is
defined as follows.

πB
D(r) = {z(|D|+1) | ∃x ∈ r (z[D] = x[D])∧

∀y ∈ r (y[D] = z[D]⇒ y[T] ⊆ z[T])∧
∀t ∈ z[T] ∃y ∈ r (y[D] = z[D] ∧ t ∈ y[T])}

The second line ensures that no chronon in any value-equivalent tuple
of r is left unaccounted for, and the third line ensures that no spurious
chronons are introduced.

Let P be a predicate defined on A1, . . . , An. The selection P on r,
σB
P (r), is defined as follows.

σB
P (r) = {z | z ∈ r ∧ P (z[A])}

As can be seen from the definition, σB
P (r) simply performs the familiar

snapshot selection, with the addition that each selected tuple carries
along its timestamp T.
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In the bitemporal natural join, two tuples join if they match on the
join attributes and have overlapping bitemporal element timestamps.
Define r and s to be instances of R and S, respectively, and let R and
S be bitemporal relation schemas given as follows.

R = (A1, . . . , An, B1, . . . , Bl | T)
S = (A1, . . . , An, C1, . . . , Cm | T)

The bitemporal natural join of r and s, r 1Bs, is defined below. As can
be seen, the timestamp of a tuple in the join-result is computed as the
intersection of the timestamps of the two tuples that produced it.

r 1Bs = {z(n+l+m+1) | ∃x∈ r ∃y ∈ s (x[A] = y[A] ∧ x[T] ∩ y[T] 6= ∅∧
z[A] = x[A] ∧ z[B] = x[B] ∧ z[C] = y[C]∧
z[T] = x[T] ∩ y[T])}

We have only defined operators for bitemporal relations. The similar
operators for valid-time and transaction-time relations are special cases.
The valid and transaction-time natural joins are denoted 1V and 1T,
respectively. The same naming convention is used for the remaining
operators.

Finally, we define two operators that select on valid time and trans-
action time. Let t2 denote an arbitrary time value and let t1 denote
a time not exceeding the current time. The valid-timeslice operator
(τB) yields a relation timestamped with transaction-time elements; the
transaction-timeslice operator (ρB) evaluates to a relation timestamped
with valid-time elements1.

τB
t1(r) = {z(n+1) | ∃x ∈ r (z[A] = x[A]∧

z[Tt] = {t2|(t2, t1) ∈ x[T]} ∧ z[Tt] 6= ∅)}

ρB
t2(r) = {z(n+1) | ∃x ∈ r (z[A] = x[A]∧

z[Tv] = {t1|(t2, t1) ∈ x[T]} ∧ z[Tv] 6= ∅)}

τB
t1(r) simply returns all tuples in r that were valid during the valid-time

chronon t1. The timestamp of a returned tuple is set to all transaction-
time chronons associated with t1. ρB

t2(r) performs the same operation
except the selection is performed on the transaction time t2.

1Operator ρ was originally termed the rollback operator, hence its name.
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Example: Consider the empDep relation shown in Figure 1(a). The
following result is produced by τB

12(empDep).

Emp Dept Tt
Bill Ship {5, . . . , 19}
Bill Load {UC}

Using the graphical representation, valid timeslice can be visualized by
drawing a horizontal line through the graph at the given valid time.
The tuples returned are those that overlap with the drawn line. The
timestamps of the returned tuples are set to the segments of transaction
time corresponding to the overlapped regions. ut

There also exist variants that extract a snapshot relation from a
valid-time relation (τV) and that extract a snapshot relation from a
transaction-time relation (ρT). To extract from r the tuples valid at
time t1 and current in the database during t2 (termed a snapshot of
r), either τV

t1(ρB
t2(r)) or ρT

t2(τB
t1(r)) may be used; these two expressions

evaluate to the same snapshot relation.
Note that since relations in the data model are homogeneous, i.e.,

all attribute values in a tuple are associated with the same timestamp
[Gadia 88], the valid or transaction timeslice of a relation will not intro-
duce any nulls into the resulting relation.

5.3 Summary

We have previously described the role of the BCDM in the context
of a temporal DBMS where data models are needed for several tasks
[Jensen et al. 94B]. Specifically, the BCDM is intended to provide the
conceptual model that the query language, e.g., TSQL2, is based on.
Other, so-called representational data models are better suited for the
tasks of physical storage or data display and are utilized for those tasks.
As a consequence the conceptual database schema, designed using nor-
malization techniques to be described in the next section, is captured in
the context of the BCDM.

The integration of several temporal data models within the same
DBMS hinges on the concept of snapshot equivalence, to be defined in
Section 7. Snapshot equivalence is a formalization of the notion that
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two temporal relations have the same information content, and it pro-
vides a natural means of comparing rather disparate representations.
We have previously developed mappings, respecting snapshot equiva-
lence, between instances of the BCDM and instances of each of the five
existing bitemporal data models: a 1NF tuple timestamped data model
[Snodgrass 87], a data model based on 1NF timestamped change requests
recorded in backlog relations [Jensen et al. 91], a non-1NF data model
in which attribute values were stamped with rectangles in transaction-
time/valid-time space [Gadia 92] (discussed in Section 3.6), a bitempo-
ral data model where a bitemporal relation is a sequence of non-1NF
[McKenzie 88, McKenzie & Snodgrass 91], and a 1NF data model using
five timestamps [Ben-Zvi 82] (discussed in Sections 3.2 and 4.4). We also
showed how the relational algebraic operators defined in the previous
section could be mapped to analogous operators in the representational
models.

A database designer would design the conceptual schema of the da-
tabase as a (normalized) collection of BCDM relation schemas. The
mappings then make it possible to store and display BCDM relations
as snapshot equivalent instances of other data models. In the next sec-
tion, we show how existing dependency theory generalizes naturally to
the BCDM. Defining dependencies in terms of BCDM schemas, which
are purely conceptual and not intended for implementation, satisfies the
desiderata in Sections 2.1, 3.1 and 4.1, respectively, that dependencies,
keys, and normal forms be independent of a particular representation of
a temporal relation.

6 Generalizing Dependency and Normal
Form Theory

In this section we generalize in turn the concepts of functional depen-
dencies, keys, and the normal forms themselves.

6.1 Temporal Dependencies

Functional dependencies are intensional, i.e., they apply to every pos-
sible extension. This intuitive notion already encompasses time, for a
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functional dependency may be interpreted as applying at any time in
reality and for any stored state of the relation.

To be more specific, consider the restricted case of a transaction-
time relation r, with schema R = (A1, . . . , An|T), and a parallel snap-
shot relation r′ with the same schema (but without the implicit times-
tamp attribute): R′ = (A1, . . . , An). The current state of r, denoted
by ρT

now(r), where “now” denotes the current time, will faithfully track
the current state of r′. Past states of r′ will be retained in r, and
can be extracted via ρT

t (r), with “t” being the desired past point in
time. A functional dependency on R′ will hold for all possible exten-
sions, and hence for all past states of r′. Hence, the same functional
dependency must hold for all snapshots of r (this insight first appeared
over a decade ago [Clifford & Warren 83]). A similar argument can be
applied to valid-time relations and to bitemporal relations, yielding the
following characterization.

Definition: Let X and Y be sets of non-timestamp attributes of a
temporal relation schema, R. A temporal functional dependency , de-
noted X

T→Y , exists on R if, for all meaningful instances r of R,
∀t, t′ ∀s1, s2 ∈ τt(ρt′(r)) (s1[X] = s2[X]⇒ s1[Y ] = s2[Y ]). ut

Note that temporal functional dependencies are generalizations of con-
ventional functional dependencies. In the definition of a temporal func-
tional dependency, a temporal relation is perceived as a collection of
snapshot relations. Each such snapshot of any extension must satisfy
the corresponding functional dependency.

Also note that this definition applies equally well to valid-time, trans-
action-time, and bitemporal relations, utilizing the relevant variants of
the transaction and valid timeslice operators. While we differentiate
operator variants with the superscripts “V” (for valid-time), “T” (for
transaction-time) and “B” (for bitemporal), the temporal functional de-
pendency is generic, applying to all forms of temporal relations, with
the appropriate operator variants coming into play. The “T” designa-
tion in a temporal functional dependency refers to the generic adjective
“temporal”, not the specific adjective “transaction-time.”

The close parallel between conventional functional dependencies and
temporal functional dependencies means that inference rules such as
Armstrong’s axioms have close temporal counterparts that play the same
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role in the temporal context as do the non-temporal rules in the non-
temporal context.

Example: Consider again the database associating phone numbers,
departments, and employees in a company. While employees come and
go, and phones are added and dropped as needed, at any one time an
employee can belong to only one department, and may have zero, one,
or several phone numbers. Expressing these constraints as temporal
dependencies, we have Name T→ Dept and {Name, PhNo} T→ {Name,
PhNo, Dept}. ut

Temporal multivalued dependencies [Zaniolo 76] may be defined us-
ing the same template as that used for defining temporal functional
dependencies.

Snapshot dependencies apply to snapshot relations, and temporal
dependencies apply to temporal relations. Further, a snapshot relation
records information that is currently believed to currently be true. A
bitemporal relation with the same explicit attributes is capable of also
recording previous beliefs and beliefs about the past and future. In this
sense, a bitemporal relation schema may record more information than
its snapshot counterpart.

If a temporal relation schema is used for recording the same infor-
mation as its snapshot counterpart, a snapshot functional dependency
on the snapshot schema implies the corresponding temporal functional
dependency on the temporal relation, and vice versa. To make this
correspondence between snapshot functional dependencies and temporal
functional dependencies more precise, it is practical to first make pre-
cise the notion of snapshot and temporal relation schemas recording the
same information.

Definition: Let R = (A1, A2, . . . , An) be a snapshot relation schema
and RB = (A1, A2, . . . , An|T) be a bitemporal relation schema. Let
r and rB range over all possible instances of schemas R and RB , re-
spectively. Then, schemas R and RB are said to record corresponding
information if the following three conditions are satisfied.

(1) ∀rB ∀t1, t2 (t1 6= t2 ⇒ τV
t2(ρB

t1(rB)) = ∅)
(2) ∀rB ∃r (r = τV

now(ρB
now(rB)))

(3) ∀r ∃rB (τV
now(ρB

now(rB)) = r) ut
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Note that the first condition restricts instances of RB to only record
information that is valid precisely when it is also current in the database.
Using this definition, the following relationship exists between snapshot
and temporal functional dependencies.

Theorem 1: Let R be a snapshot relation schema, and let X and Y
be subsets of the attributes of R. Also, let RB be a bitemporal relation
schema with same explicit attributes as R. Let the two schemas record
corresponding information. Then X → Y holds for R if and only if
X

T→Y holds for RB .
Proof: The two directions of implication are shown in turn. To show
the first, we assume that X → Y holds on R and show that an arbitrary
instance rB of RB satisfies X T→Y . To show this, we must show that
for all t1 and t2, τV

t2(ρB
t1(rB)) satisfies X → Y . From the premise of the

theorem, it follows immediately that this is the case for t1 = t2 = now
and for t1 6= t2. Now consider the remaining case, where t1 = t2 6= now.
We must show that for all t, rt = τV

t (ρB
t (rB)) satisfies X → Y . Again

by the premise, R and RB also recorded corresponding information at
(any) time t. At time t, now = t, so the definition of the premise implies
that rt is identical to some instance of R. As r satisfies the dependency,
so does rt.

The second direction of implication is straightforward. If X T→Y holds
for RB then for all instances rB(RB) and times t1 and t2, X → Y holds
for τV

t2(ρB
t1(rB)). Since R and RB record corresponding information, each

instance of r(R) is identical to some timeslice of an instance of RB and
thus satisfies the dependency. ut

It is important to note that two separate data models are involved
here. The dependency X → Y applies to the snapshot data model only,
whereas X T→Y applies to temporal data models: valid-time, transaction-
time, and bitemporal data models. The theorem gives specific content
to the statement that the notion of temporal functional dependency as
defined in this paper are natural generalizations of the well-known notion
of a snapshot functional dependency.

However, it is not always the case that functional dependencies on
snapshot schemas generalize to snapshot functional dependencies on tem-
poral schemas, even when the timestamp attribute is factored in (c.f.,
[Sarda 90]). Assume that (A1, . . . , An|T) is the schema for a temporal
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relation R. An instance of R can be interpreted in two rather different
ways: as an instance in the bitemporal conceptual data model, where the
timestamp attribute is implicit and is accorded a special semantics, or
as an instance in the snapshot data model, with schema (A1, . . . , An,T),
where T is simply another explicit attribute. We can compare functional
dependencies in the two interpretations.

Theorem 2: With X and Y denoting arbitrary non-timestamp at-
tributes of a relation schema,

X ∪ {T} → Y 6⇒ X
T→Y.

Proof: The following instance satisfies Emp ∪ {T} → Dept but not
Emp T→Dept.

Emp Dept T

Bill Shipping 10 – 25

Bill Loading 15 – 30

Note that the implication does hold when Y ⊆ X. ut

The problem is that the timestamp attribute is considered to be atomic
by the snapshot functional dependency.

It turns out, however, that the converse does hold.

Theorem 3: Letting X and Y be sets of non-timestamp attributes of
a relation schema,

X
T→Y ⇒ X ∪ {T} → Y.

Proof: Assume that X T→Y holds in R and let r be an arbitrary instance
of R. Assume that X ∪ {T} → Y does not hold, i.e., that there exist
two separate tuples s1 and s2 in r such that s1[X ∪ {T}] = s2[X ∪ {T}]
but s1[Y ] 6= s2[Y ]. Let (t, t′) be a bitemporal chronon in s1[T], and let
s′1 = s1[A1, . . . An] and s′2 = s2[A1, . . . An]. By construction, s′1, s

′
2 ∈

τt(ρt′(r)). However, s′1[X] = s′2[X] and by assumption s1[Y ] 6= s2[Y ],
and hence X T→Y is not satisfied. The implication of the theorem is hence
true by contradiction. ut
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6.2 Temporal Keys

Since temporal functional dependencies are a natural extension of con-
ventional functional dependencies, definition of the concepts of temporal
keys and temporal closure are straightforward. For that reason, the pre-
sentation is brief.

Definition: A set of attributes X of a temporal relation schema is a
temporal superkey of R if X T→R. The primary temporal key is a minimal
temporal superkey. ut

Example: Considering again the Emp relation schema introduced in
Section 2.1, we see that there are two temporal superkeys, {Name,
PhNo} and {Name, PhNo, Dept}, with the former being minimal, and
thus serving as the primary temporal key. ut

As with functional dependencies, snapshot keys generalize to tempo-
ral keys, but only when using temporal dependencies. Specifically, if X
is the primary key of the (snapshot) relation schema R, then X is also
the primary temporal key, but if X ∪ {T} is the (snapshot) primary key
of the representation of the temporal relation, it may not be the case
that X is a temporal key.

6.3 Temporal Normal Forms

We can now generalize snapshot normal forms in a manner similar to
generalizing keys.

Definition: A pair (R,F ) of a temporal relation schema R and a set
of associated temporal functional dependencies F is in temporal Boyce-
Codd normal form (TBCNF) if

∀ X T→Y ∈ F+ (Y ⊆ X ∨X T→R). ut

Definition: A pair (R,F ) of a temporal relation schema R and a set
of associated temporal functional dependencies F is in temporal third
normal form (T3NF) if for all non-trivial temporal functional dependen-
cies X T→Y in F+, X is a temporal superkey for R or each attribute of
Y is part of a minimal temporal key of R. ut
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The comments made in connection with dependencies in Section 6.1
about the inadequacy of using snapshot definitions incorporating the
timestamp attribute apply here as well. For example, Theorem 1 can be
generalized to R is in BCNF if and only if RB is in TBCNF.

Example: The relational schema Emp = (Name, Dept, PhNo |T) vio-
lates both T3NF and TBCNF. ut

These definitions are based on the temporal functional dependencies
described in Section 6.1, which, in turn, were extensions of the snapshot
functional dependencies.

As in our definitions, Tansel and Garnett [Tansel & Garnett 89] adapt
well-understood snapshot techniques to a temporal setting, but the two
approaches are quite different. In Section 2.5, we saw how Tansel and
Garnett applied snapshot dependency theory directly to support normal-
ization for their nested valid-time relations. Tansel and Garnett do not
define new temporal dependencies; rather, they use conventional snap-
shot dependencies on timestamped attributes. Essentially, they have
embedded a valid-time model within a nested snapshot model, and then
directly applied conventional dependency and normalization techniques.
In contrast, the temporal normal forms defined above are based on a
temporal data model, the BCDM, where conventional dependency the-
ory and normalization concepts do not directly apply, but must first be
extended temporally.

Temporal versions of other conventional normal forms based on func-
tional and multivalued dependencies may be expressed analogously, e.g.,
second normal form and fourth normal form. One can also define tem-
poral variants of join dependencies [Rissanen 77], fifth normal form (also
called project-join normal form) [Fagin 79], embedded join dependencies
[Fagin 77], inclusion dependencies [Casanova et al. 84], template depen-
dencies [Sadri & Ullman 82], domain-key normal form [Fagin 81], and
generalized functional dependencies [Sadri 80]. The extensions exploit
the intensional quality of these properties (i.e., applying to every ex-
tension implies applying over all time), as well as the simplicity of the
bitemporal conceptual data model.
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6.4 Evaluation

It should be clear from the preceding discussion that the bitemporal
conceptual data model, with its associated definitions of functional de-
pendency and normal forms, satisfies all desiderata listed in Section 2.1.
It should also be evident that the definition of key in this model satis-
fies all five desiderata listed in Section 3.1, and that TBCNF and T3NF
satisfy all four desiderata listed in Section 4.1.

We now briefly compare our approach in turn to each of the previ-
ously proposed definitions of temporal normal forms and temporal keys.

The purpose of Ben-Zvi’s Time Normal Form [Ben-Zvi 82] was to
make updates more user friendly and to aid in chosing a space efficient
internal representation of a time-relation. The normal form required the
“corresponding” snapshot relation to be in any normal form. It also
utilized the concept of contiguity, which does not rely on any notion of
dependency.

The normal form 1TNF was introduced as a requirement to relations
in the Temporal Data Model [Segev & Shoshani 88] that ensures that
the results of applying a special valid-timeslice operator are 1NF rela-
tions. Without this requirement, non-1NF results are posible because
the definition of the operator relies on the presence of a distinguished
surrogate attribute [Segev & Shoshani 88]. The timeslice operators de-
fined in Section 5.2 do not rely on any distinguished attribute and always
returns 1NF relations. In our framework, 1TNF may be defined as fol-
lows: A relation schema R is in 1TNF if the surrogate attribute S is a
temporal key, i.e., S T→R. Thus, 1TNF is an application of the concept
of a key.

Time normal form (TNF) was defined to ensure that time-varying
attributes were synchronous, i.e., change at the same time [Navathe &
Ahmed 89]. This aspect is not accommodated in our definitions of tem-
poral normal forms.

Using our definition of temporal key, P Normal Form (PNF) [Lorent-
zos 91] will automatically be satisfied. In our framework, PNF is thus
also an application of the concept of a key. Q Normal Form appears to
have similarities with Navathe’s concept of synchrony, and in any case
is not accommodated in our definitions.

The snapshot normal forms were also applied to the representations
of valid-time relations in several data models [Navathe & Ahmed 89,
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Sarda 90, Lorentzos 91, Tansel & Garnett 89]. This contrasts our frame-
work, where temporal normal forms are applied to conceptual temporal
relations.

Concerning keys, we formalized and extended the notions present in
the HQL [Sadeghi et al. 87], HSQL [Sarda 90], and IXRM [Lorentzos 91]
data models, using the more general concept of temporal dependency.

7 Properties of Temporal Normal Forms

In conventional database design, the notions of lossless-join and depen-
dency preserving decomposition are essential. This section covers issues
related to these notions in the temporal context.

During database design a conventional (i.e., non-temporal) relation
schema is brought to satisfy a normal form by decomposing it. A decom-
position should have two important properties. First, the decomposition
should be lossless, i.e., the contents of the original relation should be
available simply by performing a natural join on the new relations, per-
mitting the decomposition to be reversed without loss of information.
More formally, a decomposition of schema R is lossless if every exten-
sion of R is the natural join of its projection onto the schemas resulting
from the decomposition.

Definition: Let X and Y be arbitrary sets of non-timestamp at-
tributes of a temporal relation schema R. Then the pair X,Y is a
lossless-join decomposition with respect to the join 1 if, for all r(R)
that satisfy the set of functional dependencies on R,

r = πX(r) 1 πY (r). ut

It is possible to guarantee that a given decomposition is lossless. This
condition is used to guide the decomposition process, ensuring that the
generated decompositions are practical. Assume that a single schema is
decomposed into two smaller schemas. If both of the smaller schemas
contain a superkey of one of the smaller schemas then the decomposition
is guaranteed to be lossless.
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Theorem 4: The decomposition X,Y of a relation schema R with a set
of functional dependencies F is lossless (w.r.t. 1) if

X ∩ Y → X ∈ F+ or X ∩ Y → Y ∈ F+ .

Proof: The proof may be found elsewhere [Ullman 88, Korth & Silber-
schatz 86]. ut

Second, the decomposition should be dependency preserving, in that
it must be possible to ensure that all dependencies are preserved when
a relation is updated without requiring any joins to be performed.

Definition: A decomposition D = {R1, . . . , Rm} of R is dependency
preserving with respect to a set of functional dependencies F if

(πR1(F ) ∪ · · · ∪ πRm(F ))+ = F+.

Here, πRi(F ) denotes the set of functional dependencies from F defined
on the attributes of Ri [Ullman 88]. ut

Some decomposition algorithms can be proven to be dependency pre-
serving; others jettison this property in favor of more desirable ones,
such as the lossless-join property. For example, Korth and Silberschatz
present a simple 3NF decomposition algorithm that preserves dependen-
cies, and they present a BCNF decomposition algorithm that generally
does not preserve dependencies (but always yields a lossless-join decom-
position) [Korth & Silberschatz 86]. Note that BCNF is more restrictive
than 3NF and therefore avoids more redundancy than does 3NF. While
it is always possible to obtain a 3NF decomposition that is dependency
preserving and lossless, such is not the case for BCNF. If a dependency
preserving BCNF decomposition is not possible, 3NF is usually preferred,
at the risk of added data redundancy.

We now apply these concepts to temporal relations. Specifically, we
utilize the temporal natural join operator to identify such lossless join
decompositions.
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Definition: Let X and Y be arbitrary sets of explicit attributes of
a temporal relation schema R. Then the pair X,Y is a lossless-join
decomposition with respect to the join 1B if for all r(R) that satisfy the
set of temporal functional dependencies on R, r = πBX(r) 1BπBY (r). ut

In order to prove the temporal equivalent of Theorem 4, a few aux-
iliary definitions are helpful.

Definition: Two bitemporal relation instances, r and s, are snapshot
equivalent, r

S≡ s, if for all times t and for all times t′ not exceeding the
current time, τV

t (ρB
t′(r)) = τV

t (ρB
t′(s)). ut

The notions of snapshot equivalence and identity of relations coincide
in the BCDM, as shown by the next theorem.

Theorem 5: Let r1 and r2 be relation instances in the BCDM model.
Then r1 = r2 ⇔ r1

S≡ r2 .
Proof: If r1 and r2 are identical, surely they are also snapshot equiva-
lent.

The reverse implication is shown by assuming that if r1 and r2 not
identical, they are not snapshot equivalent, either. It is assumed that
the two relations have the same schema because otherwise the proof is
trivial. If r1 and r2 are not identical then two cases may occur.

First, one relation , r1, say, may have a tuple, u, that is not value-
equivalent to any tuple in the other, r2. Since all tuples have non-empty
timestamps by definition, there exists a chronon, (t′, t), in the timestamp
of u. Thus, τV

t (ρB
t′(r1)) 6= τV

t (ρB
t′(r2)), showing that the two relations are

not snapshot equivalent.
Second, if each tuple in one relation has a value-equivalent tuple in

the other, the only difference possible is that a pair of value-equivalent
tuples have different timestamps. We may thus assume that a chronon
(t′, t) exists in the timestamp of a tuple u of r1, but does not exist in
the timestamp of the (single) value-equivalent tuple of r2. This means
that τV

t (ρB
t′(u)) 6∈ τV

t (ρB
t′(r2)), showing again that the two relations are

not snapshot equivalent. ut

With the property of snapshot equivalence, we define the property of
snapshot subset.
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Definition: A temporal relation instance, r, is a snapshot subset of a

temporal relation instance s, r
S

⊆ s, if for all times t1 not exceeding the
current time and all times t2, τV

t2(ρB
t1(r)) ⊆ τV

t2(ρB
t1(s)). ut

Here, the similar property does not apply. Specifically, r1

S

⊆ r2 does
not imply r1 ⊆ r2. For example, let r1 = {(Bill|{(5, 10)})} and r2 =

{(Bill|{(5, 10), (5, 11)})}. Then r1

S

⊆ r2, but r1 6⊆ r2 as the two relations
contain distinct tuples.

Lemma: For two bitemporal relation instances r and s over the same
schema,

(r
S

⊆ s ∧ s
S

⊆ r)⇔ r
S≡ s. ut

We can now prove the temporl equivalent of Theorem 4. As a result
of this theorem, the algorithms for normal form decomposition in con-
ventional relational databases are applicable to temporal databases as
well.

Theorem 6: The decomposition X,Y of a temporal relation schema,
R, with a set of temporal dependencies, F , is lossless (w.r.t. 1B) if

X ∩ Y T→X ∈ F+ or X ∩ Y T→Y ∈ F+.

Proof: Assume that X ∩ Y T→X holds on R and let r be an arbitrary
instance of R. Let A, B, and C partition the attributes of R so that
A = X ∩Y , B = X−Y , and C = Y −X. Showing that the definition of
lossless holds is equivalent to showing that r

S≡ πBX(r) 1BπBY (r), which
in turn is equivalent to showing each of

r
S

⊆ πBX(r) 1BπBY (r) and r
S

⊇ πBX(r) 1BπBY (r) .

To show the first inclusion, let u = (uA, uB , uC |t) ∈ r. By definition
of πB , u1 = (uA, uB |t1) ∈ πBX(r) with t1 ⊇ t. Also u2 = (uA, uC |t2) ∈
πBY (r) with t2 ⊇ t. By the definition of 1B, u′ = (uA, uB , uC |t′) ∈ r with
t′ = t1 ∩ t2 ⊇ t. Without use of the premise, this proves the inclusion.

To prove the second inclusion, pick two arbitrary tuples in the joining
relations on the right hand side. Let u1 = (u1

A, uB |t1) ∈ πBX(r) and
u2 = (u2

A, uC |t2) ∈ πBY (r). The inclusion follows if we can show that
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the result of u1 1Bu2(= u′) is a snapshot subset of r. If u1
A 6= u2

A or
t′ = t1 ∩ t2 = ∅, the result of u1 1Bu2 is empty, and the relationship
holds.

Otherwise, u′ = (uA, uB , uC |t′) where uA = u1
A = u2

A. Now, for
each chronon e ∈ t′ we need to show that there is a tuple u ∈ r with
u = (uA, uB , uC |t) and e ∈ t. Tuple u1 must be (partially) derived from
a tuple ue ∈ r for which ue[A] = uA and ue[B] = uB and e ∈ ue[T ]
(since t′ ⊆ t1). Similarly, because e ∈ t2, tuple u2 must be (partially)
derived from a tuple u′e ∈ r with u′e[A] = uA and u′e[C] = uC and
e ∈ u′e[T ]. At the outset, we assumed that X ∩ Y T→X. We defined
A = X ∩ Y and B = X − Y , so B ⊆ X and thus A T→B. This temporal
functional dependency, along with the presence of ue in r, implies that
u′e[B] = ue[B] = uB (since u′e[A] = ue[A]). But then the tuple u′e in r is
precisely the tuple u, the existence of which we were to show as proof of
the second inclusion.

Finally, assuming that X ∩ Y T→Y (instead of X ∩ Y T→X) leads to a
similar proof. ut

Every concept defined above is applicable, as special cases, to both
valid-time and transaction-time relations, using the appropriate tempo-
ral operators.

The following theorem states three additional properties of the tem-
poral natural join. The snapshot natural join has a parallel for each of
these properties. For example, the first property states that in general,
a decomposition is lossy, i.e., may produce additional, spurious tuples
that makes it impossible to identify the true information.

Theorem 7: Let r be a bitemporal relation instance of a schema that
includes the sets X and Y of non-timestamp attributes. Also let γ
be an instance of a bitemporal relation schema with precisely the non-
timestamp attributes X, and let λ be an arbitrary relation instance. The
following three properties hold.

r
S

⊆ πB
X(r) 1BπB

Y (r)

πB
X(r)

S

⊆ πB
X(πB

X(r) 1BπB
Y (r))

πX(γ 1Bλ)
S

⊆ γ
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Proof: The proof of the first property follows from the first half of the
previous proof.

The proof of the second property follows from the first property and

the fact that if r
S

⊆ r′ are arbitrary instances of a relation schema R then

πX(r)
S

⊆ πX(r′). To see this is true, let xsX be an arbitrary tuple in a
snapshot at transaction time t′ and valid time t of the left hand side
relation. This means that there exists a tuple xX with (t′, t) ∈ xX [T ] in
the left hand side. Then, by the definition of projection, ∃x ∈ r (x[X] =
xX ∧ (t′, t) ∈ x[T ]). By the assumption, ∃x′ ∈ r′ (x′[X] = x[X]∧ (t′, t) ∈
x′[T ]). Thus, applying the definition of projection, xsX is in the snapshot
at transaction time t and valid time t′ of the right hand side relation.

Finally, to prove the third property, assume that a tuple xsX be-
longs to τV

t (ρB
t′(πX(γ 1Bλ))). Then there is an x in πX(γ 1Bλ) such

that x[X] = xsX ∧ (t′, t) ∈ x[T ]. By the definition of 1B, ∃x′ ∈ γ
(x′[X] = x[X] ∧ x[T ] ⊆ x′[T ]). The existence of tuple x′ means that
xsX ∈ τV

t (ρB
t′(γ)). ut

In an entirely analogous way, by using the modified version of the
relational operators given in Section 5.2 and the concept of snapshot
equivalence, one can extend all the other properties of functional depen-
dencies to hold for temporal functional dependencies.

Our approach uses the bitemporal conceptual data model, along with
the timeslice operators ρ and τ , to define the notion of a temporal func-
tional dependency. It is possible to map such dependencies into represen-
tational data models. Specifically, if appropriate valid and transaction
timeslice operators are defined in the representational model, then the
definition of temporal functional dependency and the various temporal
normal forms apply directly to that model.

Elsewhere [Jensen et al. 94B] we have provided timeslice operators
for the popular data models of tuple timestamping (e.g., [BenZvi 82, Na-
vathe & Ahmed 89, Sadeghi 87, Sarda 90A, Snodgrass 87, Snodgrass 93]),
backlogs (e.g., [Kim 78, Jensen et al. 92]), and attribute value times-
tamping (e.g., [Clifford and Croker 87, Tansel 86, Gadia 88, Lorent-
zos & Johnson 88, McKenzie 88, McKenzie & Snodgrass 91]). Those
operators, combined with the definitions provided in this paper, enable
model-specific definitions of temporal functional dependencies, keys, and
normal forms.
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The result is a consistent and wholesale application of existing de-
pendency and normalization theory to valid-time, transaction-time, and
bitemporal databases in a wide variety of temporal relational data mod-
els.

8 Application to Spatial Databases

The graphical representation of a bitemporal element as an area in
the two-dimensional valid-time/transaction-time space (see Figure 1(b))
leads one to consider spatial databases, which are either two dimensional
(e.g., index by latitude and longitude over the surface of the Earth, c.f.,
[Mark et al. 89]) or three dimensions (e.g., the third dimension being
altitude or depth, c.f., [Jones 89]). In fact, the entire discussion of gen-
eralizing normal form and dependency theory to accommodate time can
be applied to space. In this section, we outline this correspondence.

Each relation in the spatial data model would be “space-stamped”
with an implicit spatial element S, which is a set of n-dimensional quanta
(the spatial analogue of the temporal “chronon”). For two-dimensional
modeling, bispatial elements would be used; for three-dimensional mod-
eling, trispatial elements would be used. In the following, we will focus
on geographical applications that require modeling the surface of the
Earth in two dimensions [Bracken & Webster 89].

Relations can be of several general types.

Space and time invariant — modeled with a valid-time element of “all
time” (from beginning to forever) and a bispatial element of “ev-
erywhere.” An example is the relation ParentOf = (Parent, Child).

Space invariant, time varying — modeled with a bispatial element of
everywhere. An example is the Emp = (Name, Dept, PhNo | T)
relation discussed in detail earlier.

Space varying, time invariant — modeled with a valid-time element of
all time. An example is the relation Elevation = (Value | S), with
a value at each point on the Earth (geographical databases do not
consider geological processes that could change the elevation, so
for all practical purposes it is time invariant).
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Space and time varying — modeled with an arbitrary bitemporal/bispa-
tial element, a set of 4-dimensional quanta. An example is the
Emp = (Name, Dept, PhNo | S-T) relation modeling employees
that commute between two (or more) different company plants and
who are possibly in different departments in different locations.

Spatial extensions of the relational operators could be defined. For
example, x-slice and y-slice operators, analogous to valid and transaction
timeslice, could be defined. The spaceslice of a relation r, then, is a
relation containing the tuples in r that apply to specified values of x and
y.

The functional dependency X → Y can be generalized to a spatial
functional dependency, denoted X

SP→Y , by formalizing the dependency
predicate to apply to all space slices of all possible extensions, as well
as a spatiotemporal functional dependency, denoted X

SP-T→ Y , that would
take all space slices and time snapshots of all possible extensions. The
spatial and spatiotemporal functional dependencies introduced here are
highly restricted, as they are defined in terms of single space slices and
time snapshots.

Like the temporal functional dependency, these dependencies would
be natural generalizations of the snapshot functional dependency. More
specifically, the statement concerning temporal functional dependencies
in Theorem 1 would also apply to these new dependencies.

Finally, it is possible to generalize all of the other dependency re-
sults, multivalued, fourth and fifth normal forms, etc. to the spatial and
spatiotemporal regimes.

9 Summary and Future Research

In this paper, we have defined consistent temporal extensions of the
concepts of functional dependencies, keys, and normal forms. We briefly
surveyed conventional normalization concepts and extracted desiderata
enumerating those properties of conventional concepts that we would
like temporal normalization concepts to also possess. We further con-
ducted the first thorough survey of previous contributions related to
temporal relational database design. In part, this was done in attempt
to build maximally on existing contributions and to put our proposal
into a proper perspective.
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Our definitions were shown to be more natural extensions than those
previously proposed, in the sense that they satisfied all desiderata. The
generality of our approach was indicated by applying it to spatial data-
bases. The result is a consistent and wholesale application of existing
dependency and normalization theory to valid-time, transaction-time,
bitemporal, spatial, and spatiotemporal databases, in a variety of ex-
isting temporal relational data models, allowing temporal and spatial
database design to closely track conventional database design.

We emphasize here the three fundamental decisions that made this
possible. First, we used snapshot equivalence of temporal relations (de-
fined as having identical snapshots over all valid and transaction times)
as a formalization of the notion of temporal relations having the same
information content. Second, we focused on the semantics of temporal
relations rather than their representation. Our use of snapshot equiva-
lence on conjunction with the fact that query languages of representa-
tional models generally provide the means of computing snapshots en-
abled this conceptual focus. The concepts apply globally, across most if
not all existing representational temporal data models. As a result, new
concepts are not needed for each representational data model. Third, we
chose a simple data model that has the important feature that relation
instances with the same information content are identical.

Our normal forms do not address all the issues that come into play
when the schema for a temporal database is being designed. First, the
normal forms do not consider the semantics of time-varying attributes,
such as whether they are continuously varying or are stepwise con-
stant. Secondly, the normal forms do not consider important efficiency
concerns. Specifically, synchronous attributes, as defined by Navathe
[Navathe & Ahmed 89], may be seen to affect the space efficiency of the
storage of a temporal relation or the time efficiency of evaluating a tem-
poral query, yet are not relevant to the semantics of the temporal rela-
tion. Finally, more general inter-state (and inter-slice) constraints such
as “No employee can later return to the same department,” or “No em-
ployee can be assigned to departments in geographically separate plants”
should be explored.

A fully articulated design methodology utilizing the normal forms
presented here and taking into account the time semantics of tuples and
attributes and efficiency concerns is still needed.
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