
Extracting Provably Correct Rules
from Artificial Neural Networks

Sebastian B. Thrun
University of Bonn

Dept. of Computer Science III
Römerstr. 164, D-5300 Bonn 1, Germany

E-mail: thrun@cs.uni-bonn.de thrun@cmu.edu
Phone: +49-228-550-260 FAX: +49-228-550-382

Abstract

Although connectionist learning procedures have been applied successfully to

a variety of real-world scenarios, artificial neural networks have oftenbeen

criticized for exhibiting a low degree of comprehensibility. Mechanisms that

automatically compile neural networks into symbolic rules offer a promising

perspective to overcome this practical shortcoming of neural network represen-

tations.

This paper describes an approach to neural network rule extraction based onVa-

lidity Interval Analysis (VI-Analysis). VI-Analysis is a generic tool for extracting

symbolic knowledge from Backpropagation-style artificial neural networks. It

does this by propagating whole intervals of activations through the network in

both the forward and backward directions. In the context of rule extraction, these

intervals are used to prove or disprove the correctness of conjectured rules. We

describe techniques for generating and testing rule hypotheses, and demonstrate

these using some simple classification tasks including the MONK’s benchmark

problems. Rules extracted by VI-Analysis are provably correct. No assumptions

are made about the topology of the network at hand, as well as the procedure

employed for training the network.

Keywords: machine learning, artificial neural networks, rule extraction, validity interval

analysis, symbolic and subsymbolic representations

Extracting Provably Correct Rules from Artificial Neural Networks 2

1 Introduction

In the last few years artificial neural networks have been successfully applied to problems

of learning and generalization in a variety of real-world scenarios1. While it has frequently

been reported that neural network classifiers are able to achieve high generalization accuracy

across various application domains, the classification concepts of those networksare usually

barely comprehensible to the human users. This is because typical neural network solutions

consist of a large number of interacting non-linear elements, characterized bylarge sets of

real-valued parameters that are hard to interpret. Distributed internal representations, which

typically emerge during network training, make it even harder to understandwhat exactly a

network has learned, and where it will fail to generate the correct answer.

To date, the most common way to characterize the result of neural network learning is

statistical in nature. Supervised training procedures, such as the Backpropagation algorithm
[Rumelhartet al., 1986], approximate an unknown target function by iteratively minimizing

the output error based on a finite set of pre-classified training instances. Thisiterative process

is usually referred to as(supervised) training or learning.2 After training, the network is

usually evaluated by measuring its generalization accuracy, which is estimated via a separate

hold-out set, i.e., the network is “tested” using further instances that were notused during

training. Often, by performing several training runs the variance of the generalization

rate is estimated as well. Although this statistical method provides a means to foresee future

misclassification rates, it requires that sufficient testing data is available and that futurequeries

are drawn from the same distribution as the hold-out set. If either of these conditions is not

fulfilled, generalization rates alone are not appropriate to characterize the performance of the

network. Hence, in many application domains it is desirable to understand the classification

function realized by the neural network in more detail.

On the other hand, most rule-based, symbolic learning systems offer the desired higher

degree of comprehensibility due to the sparse nature of symbolic rules. Symbolic learning

procedures seek to generate small sets of sparse rules that fit the observed training data. Such

rules can usually be much better interpreted by humans and are thus easier to understand.

Moreover, symbolic rules allow for interfacing with various knowledge-based systems, such

1See[Sejnowski and Rosenberg, 1986], [Waibel, 1989], [Pomerleau, 1989], [LeCunet al., 1990], [Jabriet
al., 1992], and[Tesauro, 1992] for few out of many examples.

2The primary focus of this paper will be on Backpropagation-style networks which have learned some
classification task.

Extracting Provably Correct Rules from Artificial Neural Networks 3

as expert systems or intelligent databases. If neural networks are the learningmethod of

choice (e.g., they are found to have the desired generalization properties), mechanisms which

compile networks into sets of rules offer a promising perspective to overcomethis obvious

shortcoming of artificial neural networks.

The importance of rule verification and extraction for artificial neural networks has long been

recognized. There is a variety of techniques available which vary in the type ofrules, in

the requirements they make on the networks, as well as the training procedures employed

for learning. Since densely interconnected, real-valued networks seem to be hard to map

into rules, these requirements often aim at both lowering the degree of interconnection and

discretizing the real-valued parameters of the networks. Consequently, suchrequirements

usually limit the methods at hand to rather special network architectures andtraining schemes.

Many networks that have been successfully applied in practice, however, donot fulfill such

requirements, and for those networks the proposed techniques fail in extracting meaningful

and sufficiently correct rules. Our goal is to design a more general mechanism which is

applicable to a broader class of artificial neural networks. Hence, we desirethe following list

of properties:

1. No architectural requirements. A general rule identification mechanism is able to

operate with all types of artificial neural networks, including densely interconnected,

unstructured, and recurrent networks.

2. No training requirements. Some of the more powerful extraction algorithms proposed

in the literature rely on special training procedures which facilitate the extraction of

rules. Such procedures have limited applicability, since they usually cannot beapplied

to networks which have been trained with other learning methods. We desire an

algorithm that makes no assumption as to the way the network has been constructed

and the weights and biases have been learned.

3. Correctness. Rule extraction mechanisms differ in the degree of correctness of the

extracted rules. Many approaches to rule extraction generate only approximations to

the underlying network. In order to describe the function realized by a neural network

accurately, it is desirable that the extracted rules describe the neural network as correctly

as possible.

4. High expressive power. The language of rules (syntax) characterizes the compactness

Extracting Provably Correct Rules from Artificial Neural Networks 4

of the extracted symbolic knowledge. Powerful languages are generally desirable,

since more compact rule sets are often easier to understand.

We are not aware of any rule extraction technique which matches all of the above requirements.

Most techniques published thus far yield approximately correct rules only, they rely on a

specialized training routine, and/or make major restrictive assumptions aboutthe topology

of the network at hand. The rule extraction technique described in this paper generates

if-then-type rules that are provably correct, making minimal assumptions concerning the

type of network, and no assumption as to the particular training routine employed. This

technique is based on a generic tool for analyzing dependencies within neural networks,

called Validity Interval Analysis (VI-Analysis or VIA)[Thrun and Linden, 1990]. VI-

Analysis iteratively analyzes the input-output functionality of an artificialneural network

by propagating sets of intervals through the network. The basic notion of VI-Analysis is

presented in Section 2, followed in Section 3 by a demonstration using the simple boolean

function XOR. Subsequently, in Section 4, we will show how VI-Analysis can be applied

to verify rule-like hypotheses. We will then describe several strategies to generate such

hypotheses (Section 5), which completes the description of the rule extracting mechanism.

Section 5 also includes empirical evaluations of rule extraction and verification using the

XOR problem, as well as the more complex MONK’s problems. The paper is concluded by

a brief survey of related approaches (Section 6) and a discussion (Section 7).

2 Validity Interval Analysis

Validity Interval Analysis (VIA or VI-Analysis) is a generic tool for analyzing

Backpropagation-style artificial neural networks. It allows assertions to bemade about the

relation of activation values of a network by analyzing its weights and biases. VI-Analysis

can be applied to arbitrary, trained networks—no requirements are made on the weights and

biases or on the topology of the network at hand. The only assumption we make throughout

this paper is that the non-linear transfer functions of the units in the network are monotonic

and continuous3, as is typically the case in Backpropagation networks.

The basic principle of VI-Analysis is based on so-calledvalidity intervals. Such intervals

3See the discussion at the end of this paper for a relaxation ofthese constraints to piecewise monotonic and
piecewise continuous transfer functions.

Extracting Provably Correct Rules from Artificial Neural Networks 5

constrain the activation patterns4 in the network at hand. More specifically, a validity interval

of a unit specifies a maximum range for its activation value. Initially, the user may assign

arbitrary intervals to all (or a subset of all) units. VI-Analysis then refines these intervals. It

does this by iteratively detecting and excluding activation values that arelogically inconsistent

with the weights and the biases of the network. This mechanism, which will be described in

turn, is truth-preserving in the sense that each activation pattern which is consistent with the

initial set of intervals will also be consistent with the refined, smaller set of intervals.

In the context of rule extraction, initial validity intervals will be generated by a separate

search routine (c.f. Section 5). Starting with an initial set of validity intervals, there are two

possible outcomes of VI-Analysis:� The routineconverges. The resulting intervals form a subspace which includes all

activation patterns consistent with the initial intervals.� A contradiction, i.e. anempty interval, is found. If an empty interval is generated,

meaning that the lower bound of an interval exceeds its upper bound, there will be no

activation pattern whatsoever which can satisfy the constraints imposed by the initial

validity intervals. Consequently, the initial intervals areinconsistent with the weights

and biases of the network. This case will play an important role in rule extraction and

verification.

In the remainder of this section we will describe the VI-Analysis algorithm.We start by

reviewing the forward propagation rule of the Backpropagation algorithm and introduce basic

notation. The description of VI-Analysis on a simple example, namely a network realizing

the boolean function AND, is followed by a general description of the refinement procedure

in VI-Analysis.

2.1 Notation

The following rules of activation propagation for artificial neural networks may be found in

the literature on the Backpropagation training algorithm, see e.g.[Rumelhartet al., 1986].

Activation values are denoted byxi, wherei refers to the index of the unit in the network.

4By activation pattern we mean a vector of activations generated by the standard forward propagation
equations given below.

Extracting Provably Correct Rules from Artificial Neural Networks 6

If unit i happens to be an input unit, its activation value will simply be the external input

value. If not, letP (i) denote the set of units that are connected to uniti. The activationxi is

computed in two steps:neti = Xk2P (i)wikxk + �ixi = �i(neti)
Here the auxiliary variableneti is callednet-input of unit i, andwik and�i are real-valued

parameters calledweights and biases (thresholds). These parameters are adapted during

Backpropagation learning[Rumelhartet al., 1986] in order to fit a set of training examples.�i denotes the transfer function (squashing function), which usually is given by�i(neti) = 1
1+ e�neti with ��1i (xi) = � ln

� 1xi � 1
�

Since VI-Analysis applies to arbitrary trained networks and does not demand further modi-

fication of the weights and biases of the network, we will omit the procedure for estimating

weights and biases that originally gave Backpropagation its name. Rather, we consider static

network topologies and static values for the weights and biases, i.e., we assume the network

has already been trained successfully. Validity intervals for activation valuesxi are denoted

by [ai; bi]. If necessary, validity intervals are projected into the net-input spaceof a unit i,
where they will be denoted by[a0i; b0i].
2.2 A Simple Example

Before we explain the procedure of interval refinement in it most general form, let us give

some intuitive examples which serve as demonstrations of the main aspects of VI-Analysis.

Consider the network shown in Figure 1a. This network approximates the boolean function

AND and might be the result of Backpropagation learning. Let us assume we are interested

in the classification achieved by the network when there is some small, real-valued noise

added to the input values. In other words, we would like to characterize the robustness of the

learned classification.

We will now give four examples of VI-analyzing this network, demonstrating the major

processing steps and the different cases in VI-Analysis:

1. Forward phase: VI-Analysis consists of two alternating phases, a forward and a

backward phase. In the forward phase, interval constraints on the activationspace

Extracting Provably Correct Rules from Artificial Neural Networks 7

Figure 1: VI-Analysis, forward phase: (a) A simple artificial neural network that realizes the boolean
function AND. (b) The initial intervals are chosen to bex1 2 [0; 0:2] andx2 2 [0:8; 1]. The output activation is
unconstrained. (c) Taking the weights and bias of the network into account, forward propagation of the input
intervals leads to a maximum range for the net-inputnet3 2 [�2:8;�1:2]. (d) This interval is mapped by
the sigmoid transfer function to the final output validity interval: x3 2 [0:05732; 0:23147]. The result of the
analysis reads:If x1 � 0:2 and x2 � 0:8 then x3 2 [0:05732; 0:2314] (and thusx3 < 0:5).

are propagated forward through the network, similar to the forward propagation of

activations in a Backpropagation network. In VI-Analysis, whole activation intervals

are propagated instead of values. To see how this is done, consider Figure 1b-d. In

Figure 1b two initial intervals for the activation values of the input units arespecified.

The inputx1 is constrained to be in[a1; b1] = [0; 0:2], and the inputx2 is in [a2; b2] =[0:8; 1]. Since the network is trained to realize AND, we expect the output to be smaller

than 0:5 for all input vectors that match these interval constraints.

The following procedure is employed to propagate interval bounds through the net-

work. The minimum net-inputnet3 is governed bya03 = a1 � w31 + a2 � w32 + �3 =
0 � 4 + 0:8 � 4� 6 = �2:8. Likewise, the maximum value fornet3 is b03 = �1:2,

leading to the validity interval[a03; b03] = [�2:8;�1:2] for net3. Since we assume

that all transfer functions are continuous, input intervals of the transfer functioncor-

respond directly to output intervals. The validity interval[a3; b3] for x3 is obtained

by applying the transfer function to[a03; b03] yielding �([a03; b03]) = [�(a03);�(b03)] =[�(�2:8);�(�1:2)] = [0:05732; 0:2314] = [a3; b3]. Thus, the output activations have

to be in[a3; b3] = [0:05732; 0:2314]. This completes the forward phase.

It should be noted that the result of this simple analysis can already be interpreted

as a rule:If x1 � 0:2 and x2 � 0:8 then x3 2 [0:05732; 0:2314]. This rule implies

the weaker ruleIf x1 � 0:2 and x2 � 0:8 then x3 < 0:5, which proves the correct

generalization of the learned AND function within the initial input intervals.

Extracting Provably Correct Rules from Artificial Neural Networks 8

Figure 2: VI-Analysis with open intervals: (a) Analogous situation as in the previous figure, but one of the
input units is unconstrained. (b) Activations are bounded by [0; 1]. (c)-(d) VI-Analysis leads to the rule:Ifx1 � 0:2 then x3 2 [0:002472; 0:2314].

2. Forward phase with unconstrained input values: Figure 2 demonstrates the same

forward phase, but one of the input activations is unconstrained. We assume that

activation values are bounded, without loss of generality by[0; 1]. This is trivially true

for non-input units, since the range of� is (0; 1). VI-Analysis can now be applied in

the same manner, leading to[a3; b3] = [0:002472; 0:2314] and the rule:If x1 � 0:2
then x3 2 [0:002472; 0:2314], as shown in Figure 2.

3. Backward phase: VI-Analysis also allows interval constraints to be propagatedback-

wards through the network5. In Figure 3a two initial intervals are specified, one on the

input activationx2 � 0:8 and one on the output activationx3 � 0:8. Since the network

realizes the boolean function AND, it follows intuitively that the inputx1 should be� 0:5.

Figure 3b-d illustrates the forward propagation phase, as described above. Notethat in

Figure 3d only the upper boundb3 of the output interval is modified—the initial lower

bounda3 = 0:8 is tighter than the propagated lower bound��1(a03) = ��1(�2:8) =
0:05732. Figure 3e-f illustrate the backward phase: First, the output interval[a3; b3] is

projected into the validity interval[a03; b03] for net3. This is done via the inverse transfer

function: ��1([0:8; 0:8807]) = [��1(0:8);��1(0:8807)] = [1:386; 2]. Notice in our

example the backward step increases the lower bound fornet3. Second, the validity

interval [a1; b1] is constrained to values thatwill lead to a valid net-input value net3

within [a03; b03]. Consider for example the lower bounda03 = 1:386 for the net-input

5This process it not to be confused with the backward propagation of gradients in the Backpropagation
training algorithm.

Extracting Provably Correct Rules from Artificial Neural Networks 9

Figure 3: VI-Analysis, backward phase: (a) Initial intervals constrain both an input activation and an output
activation. (b)-(d) Intervals are propagated forward. (e)The validity interval onx3 is projected back tonet3
via the inverse sigmoid. In particular,x3 � 0:8 impliesnet3 � 1:386. (f) A simple calculation shows that for
all activation valuesx1 < 0:8465= (1:386� �3 + w32 � 1:0)w�1

31 it is impossible to find an activation valuex2 2 [0:8; 1] such thatnet3 � 1:386. Therefore,x1 � 0:8465. The resulting rule reads:If x2 � 0:8 andx3 � 0:8 then x1 � 0:8465.net3 = w31x1 + w32x2 + �3. Simple arithmetic shows thatx1 = net3�w32x2��3w31
and

thusa1 = minx1 = a0
3�w32b2��3w31

= 1:386�4�1+6
4 = 0:8465. Henceforth, 0:8465 is a

lower bound on the activation ofx1. This procedure illustrates the backward phase

in VI-Analysis: Activations are constrained by the fact that theymust ensure that all

successors i may receive a net-input within their validity interval [a0j; b0j], given that all

other units k connected to these successors contribute appropriate activation values

within their intervals [ak; bk]. Activation ranges excluded by this step cannot occur.

Notice that the monotonicity of the transfer function ensures that the projections of

intervals are again intervals. Although the backward phase in VI-Analysis looks

considerably more complex than the forward phase, both phases are strongly related,

as they are realized by the same mechanism in the general VIA algorithm presented in

the next section.

Extracting Provably Correct Rules from Artificial Neural Networks 10

Figure 4: VI-Analysis and inconsistencies: (a) As in the previous figure, there are two initial intervalsassigned
to an input unit and an output unit. Since high output requires both inputs to be high, this set of intervals is
inconsistent with the AND function. (b)-(d) VI-Analysis generates an empty output interval. More specifically,x3 � 0:8 violatesx3 = �(net3) � �(�1:2) = 0:2314. The empty interval proves the inconsistency of the
initial constraints.

4. Inconsistencies: Finally, we will demonstrate how VI-Analysis can detect inconsis-

tencies in the initial set of intervals. Figure 4 shows a situation in which two intervals[a1; b1] = [0; 0:2]and[a3; b3] = [0:8; 1]are specified, very similar to the situation shown

in Figure 3. Now, however, the initial setting is inconsistent with AND, because low

input x1 implies low outputx3. Consequently, the forward propagation phase shown

in Figure 4b-d, which is analogous to that in Figure 2, yields an empty set for the

output valuesx3. This is because the intersection of the intervals[a3; b3] = [0:8; 1] and�([a03; b03]) = �([�6;�1:2]) = [0:00247; 0:2314] is ;. The logical conclusion of the

occurrence of an empty set is the inconsistency of the initial intervals, since there is no

activation pattern for this network which would satisfy all initial interval constraints.

This completes the description of the AND example. Although the example is simple,the

main ideas of VI-Analysis have been demonstrated , namely:� Constraints are specified by initial intervals on the activation patterns. These inter-

vals can be specified by the user. In the case of rule extraction, they are generated

automatically by some search mechanism.� Constraints are propagated in both directions through the network by refining intervals.

All refinements made during this process preserve the consistent activation space and

can be proven to be correct (VIA is truth-preserving).

Extracting Provably Correct Rules from Artificial Neural Networks 11

Figure 5: Weight layer: The set of units in layerP are connected to the unit in layerS. Each unitj (j 2 P[S)
is assigned a validity interval[aj; bj]. By projecting the validity intervals for alli 2 S, intervals[a0i; b0i] for the
net-inputsneti are created. These, plus the validity intervals for all unitsk 2 P, form first-order constraints
on a linear set of equations given by the weights and biases ofthe layer at hand. Linear programming is now
employed to refine interval bounds.� VI-Analysis converges to a refined set of intervals and might or might not detect

inconsistencies in the initial intervals.

In the next section we will describe the general VIA algorithm for arbitrary networks. This

algorithm takes hidden units into account, and the notion of intervals is extended to thenotion

of linear constraints on activations. The reader will notice, however, thatthe principles are

the same as those described above.

2.3 The General VIA Algorithm

Assume without loss of generality that the network is layered and fully connectedbetween

two adjacent layers. This assumption simplifies the description of VI-Analysis. VI-Analysis

can easily be applied to arbitrary non-layered, partially connected networkarchitectures, as

well as recurrent networks not examined here. Consider a single weight layer, connecting a

layer of preceding units, denoted byP, to a layer of succeeding units, denoted byS. Such a

scenario is depicted in Figure 5. As we will see, the problem of refining interval bounds can

be attacked by techniques of linear programming, such as the Simplex algorithm. Assume

there are intervals[ai; bi] 2 [0;1]2 assigned to each unit inP andS. The canonical interval[0;1] corresponds to the state of maximum ignorance about the activation of a unit, and

Extracting Provably Correct Rules from Artificial Neural Networks 12

hence is the default value if no more specific interval is known. In order to make linear

programming techniques applicable, the non-linearities due to the transfer functionof units

in S must be eliminated. As in the AND example, this is done by projecting[ai; bi] back

to the corresponding net-input intervals[a0i; b0i] = ��1([ai; bi]) 2 <̄2.6 The resulting validity

intervals inP andS form a set of linear constraints on the activation values inP:8k 2 P : xk � akxk � bk8i 2 S : neti = Xk2P wikxk + �i � aineti = Xk2P wikxk + �i � bi
Notice that all these constraints are linear in the activation valuesxk. Thus, linear program-

ming can be applied to refine lower and upper bounds for validity intervals individually. As

in the AND example, constraints are propagated in two phases:

1. Forward phase: In order to refine the boundsai and bi of a unit i 2 S, linear

programming is applied to derive new bounds, denoted by ˆai andb̂i:âi = �(â0i) with â0i = minneti = min
Xk2Pwikxk + �ib̂i = �(b̂0i) with b̂0i = maxneti = max
Xk2P wikxk + �i

If âi > ai, a tighter lower bound is found andai is updated by ˆai. Likewise, bi is

updated bŷbi if b̂i < bi.
2. Backward phase: In the backward phase the boundsak andbk of all unitsk 2 P are

refined again using linear programming.âk = minxkb̂k = maxxk
As in the forward phase,ak is updated by ˆak if âk > ak, andbk is updated bŷbk ifb̂k < bk. Note that the update rule in both phases ensures that intervals are changed

monotonically. This implies the convergence of VI-Analysis.

6Here<̄ denotes the set of real numbers extended by�1.

Extracting Provably Correct Rules from Artificial Neural Networks 13

In our experiments, we used the Simplex algorithm. Although this algorithm is known to

take worst-case exponential time in the number of variables (i.e. units in a layer), we did not

yet observe this algorithm to be slow in practice. It should be noted that there exist more

complex algorithms for linear programming which are worst-case polynomial[Karmarkar,

1984].7

Thus far, we have described the refinement procedure for the units connected to a single

weight layer. VI-Analysis iteratively refines all intervals in the network. As in the initial

AND example, both the forward and the backward procedure are iterated for all units in

the network, either until an empty interval is generated (i.e., an inconsistency is found), or

until convergence is observed, using one of the standard convergence criteria. Byrefining

the intervals of all units, constraints are propagated in both directions even through multiple

hidden layers. If several weight layers are involved, however, validityinterval analysis may

fail in identifying all inconsistent activation values. This is because each weight layer is

refined independently of other weights in the network. More specifically, when optimizing

unit intervals connected to a single weight layer, the activations of the preceding unitsi 2 P
are considered to be independent. This worst-case analysis clearly neglects dependencies on

the activations inP which may arise from preceding weights and activations beyond the scope

of the linear analysis, resulting in an overly careful refinement of validity intervals. If such

dependencies are considered, plain linear programming techniques are no longer applicable.

In our initial experiments described in this paper, however, we found VI-Analysis to be

powerful enough to successfully analyze all networks we applied it to.

3 Experimental Results for the XOR Problem

In an initial experiment we applied VI-Analysis to a neural network which was trained to

approximate the boolean function XOR. The network, including its weights and biases, is

depicted in Figure 6. It was trained using the standard Backpropagation algorithm.Five runs

of VI-Analysis with different initial conditions were performed to evaluate the classification

of the network and to demonstrate VI-Analysis. Figure 7 displays the results. Each row

summarizes a single experiment, and each diagram shows the refinement of validity intervals

over time. Each of the five columns corresponds to a particular unit in the network.

7In an earlier paper[Thrun and Linden, 1990] we proposed a more straightforward algorithm which works
much faster by sacrificing some solutions to the interval refinement problem.

Extracting Provably Correct Rules from Artificial Neural Networks 14

(a) (b) to-node
from-node 3 (hidden) 4 (hidden) 5 (output)

1 (input) -4.60248 4.74295
2 (input) -3.19378 2.90011
bias 2.74108 -1.49695

3 (hidden) -4.57199
4 (hidden) 4.64925
bias 2.10176

Figure 6: Learned XOR: (a) Network topology and (b) weights and biases.

1. In the first experiment one input activation was constrained to be small, while the other

input activation had to be large. The resulting output interval indicates the correct8

classification of the network in this interval. It should be noted that a tighterupper

bound on the output activation is found by this analysis as well.

2. Same experiment as above, but in this case both inputs are constrained to be low.

Consequently, VI-Analysis results in a low output interval.

3. In this experiment the output activation was constrained, replacing one of the input

activation constraints. It can be seen that the output constraint is propagated backwards

through the network, resulting in a small input interval for the initially unconstrained

input unit. This result proves the correct generalization within the initial constraints.

4. Same situation, but this time the output is constrained to be small. The resultof this

experiment differs from the previous result in that VI-Analysis does not constrainthe

second input to be larger than 0.5, which is what one would expect. Indeed, closer

examination of the network at hand demonstrates that such a rule would be incorrect,

since there exist low input values for the second input unit which satisfy all initial

constraints.

5. In the last experiments we imposed contradicting initial intervals on the activation

values of the network. VI-Analysis thus generates an empty interval, which indicates

the inconsistency of the initial intervals. Contradictions play a crucial rolein the

general rule verification mechanism described in the next section.

8correct in the sense of a to real-valued input extended XOR

Extracting Provably Correct Rules from Artificial Neural Networks 15

1 2 3 4

unit 1 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 2 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 3 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 4 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 5 (output)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 1 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 2 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 3 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 4 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 5 (output)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 1 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 2 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 3 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 4 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 5 (output)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 1 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 2 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 3 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 4 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 5 (output)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 1 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 2 (input)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 3 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 4 (hidden)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

unit 5 (output)

0

0.2

0.4

0.6

0.8

1

(a)

(b)

(c)

(d)

(e) ���	
Figure 7: VI-Analysis on XOR: Each row summarizes one experiment. The gray area indicatesthe devel-
opment of validity intervals over the iterations of VI-refinement for each of the 5 units (columns) in the XOR
network. Dots indicate the initial setting of the intervals. (a) Forward propagation: If one input is low and the
other is high, the output will be high. (b) Similar situationfor two low inputs. (c) Backward propagation of
constraints: If one input is high and the output is constrained to be high as well, the other input can be shown
to be low. (d) Similar situation, but with low output. In thiscase there are low inputs for input unit # 2 that will
cause low output, even though input #1 is high. This results demonstrates the generalization of the originally
discrete XOR problem in the input space. (e) Contradiction:Both input are forced to be high, but the output
is forced to be low. After 1 iteration VI-Analysis detects a contradiction (arrow), since the lower bound of the
output unit exceeds the upper bound. This proves that the initial intervals are inconsistent.

Extracting Provably Correct Rules from Artificial Neural Networks 16

4 Rule Verification

VI-Analysis can be applied to verify the correctness of hypotheses on the networkclassifica-

tion. Generally speaking, rule hypotheses are represented by a set of validity intervals on (a

subset of) the input units of the trained network, as well as a target output class. Thus, they

correspond to rules of the type:

If input 2 some hypercube I then class is C .

If input 2 some hypercube I then class is not C .

for some target classC. HereI abbreviates the antecedent hypercubeI = [ai; bi]m of the

rule to be verified.

In this section we will demonstrate how VI-Analysis can be used to prove conjectures like

these. For simplicity, assume the output of the network is codedlocally, i.e., there arec
classes, and each output unitj (j = 1; : : : ; c) corresponds to one of these classes. Input

patterns are classified by propagating activations through the network and then applying

the winner-take-all rule to the output activations. In other words, the input is classified as

belonging to classCj (j = 1; : : : ; c) if and only if8j 0 6= j : x0j < xj
Rules are verified by contradictions. More specifically, letviaI[xj < x0j] denote the truth

value of running validity interval analysis when the (linear) output constraintxj < x0j is added

to the initial interval constraintsI = [ai; bi]m. If viaI[xj < x0j] = false, a contradiction

has occurred during VI-Analysis. Hence the initial input intervals are inconsistent with the

conjecturexj < x0j, and thusxj � x0j. If viaI[xj < x0j] = true VI-Analysis converged

without contradiction, and nothing can be said about the relation ofxj andx0j under the

constraints imposed by the initial intervalsI.

The operatorviaI[�] can be applied to rule verification. Assume the target classCj is

represented by unitj for somej = 1; : : : ; c. Then the rule

If input 2 some hypercube I = [ai; bi]m then class is Cj .
is provably correct if8j 0 = 1; : : : ; c with j 0 6= j : viaI[xj < x0j] = false

Extracting Provably Correct Rules from Artificial Neural Networks 17

This is to say, VI-Analysis rejects for allj 0 6= j the hypothesis that the output of unitj will

be smaller than the output of unitj 0. Consequently, output unitj will always take the largest

activation value among all output units. Note that proving this rule requiresc � 1 iterations

of the complete VI-Analysis procedure.

Negated rules can be proven via a single VI-Analysis. The rule

If input 2 some hypercube I = [ai; bi]m then class is not Cj .
can be verified by showing thatviaI[x1 � xj; x2 � xj; : : : ; xj�1 � xj; xj+1 � xj; : : : ; xc � xj] = false
If VI-Analysis finds the desired contradiction, then for each input pattern within the input

intervals there exist somej 0 6= j with xj0 > xj. Thus, the input is never in classCj, which

proves the conjectured rule.

Notice that VI-Analysis can also be applied to networks with a single output unit used

to distinguish two classes only. In this case, positive rules can be verified by showing thatviaI[xoutput< 0:5] = false, and negative rules can be verified byviaI[0:5� xoutput] = false.
To summarize, VI-Analysis provides a powerful tool for verifying the correctness of con-

jectured rules. It does this by (a) inverting the rule and (b) detecting logical contradictions.

A contradiction is a proof that the opposite of the rule never holds true, which implies the

correctness of the original rule. VI-Analysis is truth-preserving. Hence proofs ofthis kind

are correct and not only approximations. It may happen, however, that VI-Analysis is not

able to prove the correctness of the rule at hand. In general, there are two reasons why

VI-Analysis may fail to do so: Either the rule does not correctly describe the classification

of the network (and hence is wrong), or VI-Analysis is just not able to detect a contradiction.

As stated in the previous section, VI-Analysis is not guaranteed to find contradictions due to

the independent optimization of different weight layers. Not finding a contradiction doesof

course not imply that the opposite holds true.

5 Rule Extraction Strategies

The previous section describes how to apply VI-Analysis to verify the correctness of con-

jectured rules. In order toextract rules, mechanisms have to be invoked that systematically

Extracting Provably Correct Rules from Artificial Neural Networks 18

generate hypotheses which are subsequently verified by VI-Analysis. We will nowdescribe

search heuristics that allow for systematically generating and testing rules in order to find (a)

the most general and (b) the most relevant rules. We will describe both a search technique

for finite (discrete) domains and one for real-valued domains. These heuristicsby no means

establish the uniquely best technique for generating rules—depending on the classification

domain and potential background knowledge, rule extraction strategies may vary among dif-

ferent application domains. In our experiments, however, they turned out to be appropriate

for extracting reasonably general rules.

5.1 Discrete Rules and Graph Search

If the domain of the networks isfinite9, i.e., if there are finitely many instances that exhaus-

tively characterize the target function, there is a simple but expensive strategy to extract rules

from arbitrary trained networks: Classify all input instances and apply boolean algebra to

simplify the logical expression resulting from the network queries (e.g. by transforming this

expression into a set of expressions in disjunct normal form, one for each of thec classes).

Common examples for finite input domains are classification tasks over binary feature vectors.

While this straightforward rule extraction technique will always generate aset of rules that

correctly describes the function represented by the network, the process of testing each input

pattern in the domain of the network is expensive and usually computationally intractable for

larger domains.

In finite domains VI-Analysis can be applied to cut whole regions in the search space by

evaluating more general rules. To see this, consider the space of possible rules. This space

can be described byc directed acyclic graphs (DAGs) in which nodes correspond to rules,

which are ordered from the most general to the most specific. The root of such a graphforms

the most general rule and is of the typeeverything is in class C. The leaves correspond to a

single instance in the input space of the network. Figure 8 shows such a rule search graph.

Each rule in the graph spans a subtree of more specific rules which logically follow from this

rule. VI-Analysis is now applied in breadth-first manner: As soon as VI-Analysis proves the

correctness of a general rule, the whole subgraph spanned by the corresponding rule node

belongs to the same class and needs no further investigation. The breadth-first search scheme

may decrease the number of tests significantly. This reduction of the search space, however,

9In the literature on machine learning, finite domains are often referred to asdiscrete domains. We will use
these terms interchangeably.

Extracting Provably Correct Rules from Artificial Neural Networks 19

Figure 8: Example rule-DAG: A rule graph for rules over three boolean attributesy1, y2, andy3 is shown. The
graph is ordered from most general (left) to most specific (right) rules. Rule hypotheses (nodes) are generated
and tested breadth-first. Once VI-Analysis succeeds in proving or disproving the class membership for a general
rule, the whole subtree spanned by this rule is removed from the search list.

comes at the expense of running VI-Analysis instead of single forward propagations, asis

required for the pure classification of an instance.

5.2 Results Obtained for the MONK’s Problems

We applied DAG breadth-first search to the MONK’s problems. The three MONK’s problems

constitute a set of benchmark problems for inductive machine learning algorithms[Thrunet

al., 1991]. They are discrete classification problems defined in an artificial “robot” domain,

in which robots are described by six different attributes, adopted from[Wneket al., 1990]:x1: head shape 2 round, square, octagonx2: body shape 2 round, square, octagonx3: is smiling 2 yes, nox4: holding 2 sword, balloon, flagx5: jacket color 2 red, yellow, green, bluex6: has tie 2 yes, no

The target concepts of the problems are:� Problem M1:

(head shape = body shape) or (jacket color = red)

Figure 9 shows the resulting classification and the weights and biases of the trained

network.

Extracting Provably Correct Rules from Artificial Neural Networks 20� Problem M2:

Exactly two of the six attributes have their first value.

Figure 10 shows the resulting classification and the weights and biases of the trained

network.� Problem M3:

(jacket color = green and holding = sword)

or (jacket color = not blue and body shape = not octagon)

Figure 11 shows the resulting classification and the weights and biases of the trained

network. Note that in this problem the training set contained noisy training instances

which accounts for the failure of Backpropagation to achieve 100% classification

accuracy. The most successful network forM3 was trained with a weight decay term.

In Chapter 9 of the MONK’s Report, Backpropagation solutions to the MONK’s problems

are presented (c.f. Figures 9, 10, and 11). The networks solving these problems had 17

input units, each corresponding to one of the 17 input feature values, and one hidden layer

with 2 or 3 hidden units. Although the classification rate achieved by the Backpropagation

algorithm compares favorably to other approaches presented in this study, it has been argued

that Backpropagation is limited in that it does not allow for a precise interpretation of the

results, unlike symbolic learning techniques such as decision trees. Hence, weapplied VI-

Analysis and breadth-first rule extraction to these networks. Note that these networks were

not trained with the intention of easing their analysis—rather they represent ad hoc solutions

to the MONK’s classification problems.

The following observation turned out to be essential for increasing the rule verification power

of VI-Analysis in the context of the MONK’s problems: The input coding of all networks

was local, i.e., to each feature value we assigned a separate unit whichwas set to 1, if the

corresponding feature was present, and 0 otherwise. Since different values of oneand the

same feature are mutually exclusive, exactly one (out of 2 to 4, depending on the particular

feature) input unit may be on, while all other units belonging to this feature must be off.

A slightly weaker form of this constraint can be easily expressed in the languageof linear

programming: For each of the six features we constrained the input activations such that the

sum of all activation values was exactly 1. This results in six new linearconstraints on the

input patterns, one for each of the six features describing the instances. These additional

constraints were simply appended to the standard interval constraintsI. It is surprising that

Extracting Provably Correct Rules from Artificial Neural Networks 21

holding
sword flag balloon

jacket color
red yellow green blue red yellow green blue red yellow green blue

hastie
y n y n y n y n y n y n y n y n y n y n y n y n

y rou rou

n rou rou

y squ rou

n squ rou

y oct rou

n oct rou

y rou squ

n rou squ

y squ squ

n squ squ

y oct squ

n oct squ

y rou oct

n rou oct

y squ oct

n squ oct

y oct oct

n oct oct

is body head
smiling shape shape

MONK’s problem MONK1: weights and biases

to-node
from-node hidden1 hidden2 hidden3 output

input 1 (headshape round) -6.503145 0.618412 -1.660409
input 2 (headshape square) 1.210703 1.939613 2.972592
input 3 (headshape octagon) 5.356444 -3.597301 -1.266992
input 4 (body shape round) -6.692434 2.129635 -2.032242
input 5 (body shape square) 6.457639 0.864312 4.260765
input 6 (body shape octagon) 0.225053 -2.428098 -1.839603
input 7 (is smiling yes) 0.096995 0.131133 0.053480
input 8 (is smiling no) -0.011828 0.135277 0.107302
input 9 (holding sword) -0.076848 0.459903 -0.008368
input 10 (holding balloon) -0.016940 0.151738 0.148955
input 11 (holding flag) -0.087298 0.196521 0.023554
input 12 (jacketcolor red) 5.735210 4.337359 -0.865479
input 13 (jacketcolor yellow) -2.257168 -1.410376 0.494681
input 14 (jacketcolor green) -2.232257 -1.109825 0.382717
input 15 (jacketcolor blue) -1.710642 -1.452455 0.479513
input 16 (hastie yes) -0.109696 0.434166 0.276487
input 17 (hastie no) -0.111667 0.131797 0.310714
bias 0.486541 0.142383 0.525371

hidden 1 9.249339
hidden 2 8.639715
hidden 3 -9.419991
bias -3.670920

Figure 9: MONK’s problem MONK1: The network learned and generalized successfully.

Extracting Provably Correct Rules from Artificial Neural Networks 22

holding
sword flag balloon

jacket color
red yellow green blue red yellow green blue red yellow green blue

hastie
y n y n y n y n y n y n y n y n y n y n y n y n

y rou rou

n rou rou

y squ rou

n squ rou

y oct rou

n oct rou

y rou squ

n rou squ

y squ squ

n squ squ

y oct squ

n oct squ

y rou oct

n rou oct

y squ oct

n squ oct

y oct oct

n oct oct

is body head
smiling shape shape

MONK’s problem MONK2: weights and biases

to-node
from-node hidden 1 hidden2 output

input 1 (headshape round) -4.230213 3.637149
input 2 (headshape square) 1.400753 -2.077242
input 3 (headshape octagon) 1.479862 -2.492254
input 4 (body shape round) -4.363966 3.835199
input 5 (body shape square) 1.154510 -2.347489
input 6 (body shape octagon) 1.542958 -2.227530
input 7 (is smiling yes) -3.396133 2.984736
input 8 (is smiling no) 1.868955 -2.994535
input 9 (holding sword) -4.041057 4.239548
input 10 (holding balloon) 1.293933 -2.195403
input 11 (holding flag) 1.160514 -2.272035
input 12 (jacketcolor red) -4.462360 4.451742
input 13 (jacketcolor yellow) 0.749287 -1.869545
input 14 (jacketcolor green) 0.640353 -1.727654
input 15 (jacketcolor blue) 1.116349 -1.332642
input 16 (hastie yes) -3.773187 3.290757
input 17 (hastie no) 1.786105 -3.296139
bias -1.075762 -0.274980

hidden1 -11.038625
hidden2 -9.448544
bias 5.031395

Figure 10: MONK’s problem MONK2: The network learned and generalized successfully.

Extracting Provably Correct Rules from Artificial Neural Networks 23

holding
sword flag balloon

jacket color
red yellow green blue red yellow green blue red yellow green blue

hastie
y n y n y n y n y n y n y n y n y n y n y n y n

y rou rou

n rou rou

y squ rou

n squ rou

y oct rou

n oct rou

y rou squ

n rou squ

y squ squ

n squ squ

y oct squ

n oct squ

y rou oct

n rou oct

y squ oct

n squ oct

y oct oct

n oct oct

is body head
smiling shape shape

MONK’s problem MONK3: weights and biases

to-node
from-node hidden1 hidden2 output

input 1 (headshape round) -0.029477 -0.008986
input 2 (headshape square) -0.376094 -0.364778
input 3 (headshape octagon) -0.051924 -0.028672
input 4 (body shape round) 0.991798 0.991750
input 5 (body shape square) 1.031170 1.027708
input 6 (body shape octagon) -1.284263 -1.279808
input 7 (is smiling yes) -0.303940 -0.314212
input 8 (is smiling no) -0.216766 -0.221040
input 9 (holding sword) -0.064305 -0.052110
input 10 (holding balloon) -0.257165 -0.243988
input 11 (holding flag) -0.131509 -0.122790
input 12 (jacketcolor red) 1.001415 1.004192
input 13 (jacketcolor yellow) 0.898066 0.896869
input 14 (jacketcolor green) 0.670929 0.673218
input 15 (jacketcolor blue) -1.280272 -1.272798
input 16 (hastie yes) -0.354472 -0.355268
input 17 (hastie no) 0.040973 0.037927
bias -0.319686 -0.343492

hidden1 1.762523
hidden2 1.759077
bias -1.501492

Figure 11: MONK’s problem MONK3: Due to noise in the training set, the network had a small errorin the
classification, indicated by the boxes in the classificationdiagram.

Extracting Provably Correct Rules from Artificial Neural Networks 24

headshape bodyshape issmiling holding jacketcolor hastie class
round red M1
square red M1

octagon red M1
round red M1

round round M1
square red M1

square square M1
octagon red M1

octagon octagon M1

round square yellow notM1
round square green notM1
round square blue notM1

round octagon yellow notM1
round octagon green notM1

round octagon blue notM1
square round yellow notM1

square round green notM1
square round blue notM1

square octagon yellow notM1
square octagon green notM1
square octagon blue notM1

octagon round yellow notM1
octagon round green notM1

octagon round blue notM1
octagon square yellow notM1

octagon square green notM1
octagon square blue notM1

Figure 12: Rules extracted from the network trained on the MONK’s problemM1.

without these additional input constraints VI-Analysis was unable to find reasonable rules at

all.

The results of VI-Analysis for each of the three MONK’s problems, respectively, are sum-

marized here.� M1: (c.f. Figure 9) The most general rules found by VI-Analysis are shown in Figure

12. As can be seen from this figure, VI-Analysis found a number of general rules for

the target concept. It failed, however, in detecting the most general rules possible. For

example, the attributebody shape may only take on the valuesround, square,

or octagon, and thus the first three rules depicted in Figure 12 can be combined

yielding

if jacket color is red thenM1.

Extracting Provably Correct Rules from Artificial Neural Networks 25

headshape bodyshape issmiling holding jacketcolor hastie class
round red M3
round yellow M3

round green M3
square red M3

square yellow M3
square green M3

blue notM3

octagon notM3

Figure 13: Rules extracted from the network trained on the MONK’s problemM3.

This rule also covers the fourth, sixth and eighth rules listed. Further logical simplifi-

cation leads to the desired classification:

(head shape = body shape) or (jacket color = red)� M3: (c.f. Figure 11). The rules generated by VI-Analysis for theM3 problem are

listed in Figure 13. Here VI-Analysis succeeded in extracting the most general rules.

The two negative rules depicted in this Figure suffice to describe the classification

completely.� M2: (c.f. Figure 10) As might be seen from the concept description of the problem

M2, this problem is not representable in a compact set of hypercube-type rules at all.

Consequently, VI-Analysis can only find a set of highly cluttered, specific rules that

are hard to interpret by human observers. In order to prove the correctness ofM2

efficiently, we extended the expressive power of the rule language in VI-Analysis to

arbitrary linear constraints on the input activations of the network at hand. In thecase

of M2, we VI-analyzed the three simple linear constraints:

– The sum of all first feature values is � 1.

– The sum of all first feature values is 2.

– The sum of all first feature values is � 3.

Note that these rules are of the typem-of-n. VI-Analysis successfully verified all three

conjectured rules. Thus, it was analytically shown that the network has learned the

correct classification.

The VI-Analysis ofM2 demonstrates the true expressive power of the VI-Analysis.

The rule language consists of all sets of linear constraints on the input and the output

Extracting Provably Correct Rules from Artificial Neural Networks 26

activations, rather than hypercubes only. It should be noted, however, that no automated

search was involved in analyzingM2, as the tested hypotheses were generated manually.

Although mechanisms which search the space of all linear hypotheses in the input space

(or whole sets thereof) can easily be designed, it seems questionable as to whether this

can be done efficiently. Such mechanisms are beyond the scope of this paper.

5.3 Growing Rules

We will now draw out attention to real-valued domains. While at least in principle finite

domains allow for exhaustively testing all input patterns, real-valued domains are infinite and

exhaustive search techniques cannot be applied. Therefore, one needs other techniques to

form and verify rules.

In this section we will describe an approach to rule extraction that is based upon iteratively

growing training instances. Assume a data point is given which is classifiedby the network as

belonging to some classC. Obviously, VI-Analysis will easily prove the correctness of this

classification, simply by constraining the input intervals to exactly this very data point. This

is because VI-Analysis degrades to the standard forward propagation of activation values if

each input interval contains a single point only, and the “proof” in this case is trivial.

Starting with this point, the input intervals can be iteratively extended tomore general rules

by adding small random values to the bounds of the input intervals. Each time one of the

input intervals is enlarged by some random amount, VI-Analysis is applied to verify if this

more general rule is still provably correct. If VI-Analysis succeeds, thelarger input interval

is maintained, otherwise it will be set to its previous values. This iterative growing procedure

allows the gradual approximation of more general rules, based on a single input pattern which

acts as a seed. If the network transfer functions are continuous, the almost-certain (i.e., with

probability 1) existence and VIA-provability of small non-point rules can be shown.In our

case we applied the technique of growing intervals to the XOR problem, and enlarged input

intervals completely randomly. Therefore, for each starting point there might be a whole set

of resulting rules, depending on the order in which the input intervals are modified. Figure

14 summarizes the result for the XOR example. Figure 14a displays the output of the XOR

network over the two-dimensional hypercube spanned by the input units, and Figure 14b-d

displays some rules found by random rule growing starting with the starting points(1; 0),(0; 1), (0; 0), (1; 1), and(:5; :5).

Extracting Provably Correct Rules from Artificial Neural Networks 27

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Figure 14: Rules for XOR: (a) shows the function generated by the network. The vertical and the horizontal
axis measure the two input variables, and the gray-scale measures the network output (white=1, black=0). (b)
Rules found from growing the two patterns(0; 0) and(1; 1). For these hypercubes the output of the network
will always be greater than 0:5. (c) Same for the starting points(0; 1) and(1; 0) and (d)(0:5; 0:5). Here the
output is provably smaller than 0:5.

Extracting Provably Correct Rules from Artificial Neural Networks 28

Growing training data results inlegitimate preconditions that ensure the same classification

as the classification obtained by the training instance at hand. Hence the resulting preimage

generalizes the training instance in the input space. It is worth mentioning thatVI-Analysis

bears some resemblance to symbolic explanation-based learning techniques (EBL)[DeJong

and Mooney, 1986], [Mitchell et al., 1986]. In symbolic EBL,weakest preconditions are

extracted by observing and analyzing a chain of symbolic rule inferences. These weakest

preconditions generalize single training instances in the feature space. Unlikeartificial neural

networks, symbolic rules facilitate the extraction of such preimages, sincethey are easy to

invert. Growing legitimate preimages by means of VI-Analysis can thus be viewed as the

neural network counterpart to weakest preconditions in symbolic EBL.

6 Related Work

Several researchers have proposed a variety of mechanisms to extract rules from artificial

neural networks, which have been constructed from training data. Unlike the technique

proposed in this paper, most of the approaches seek to assign semantic concepts to the

individual hidden and output units of a network. Often they translate each hidden unit into a

separate rule. For example, Towell and Shavlik[Towell, 1991], [Towell and Shavlik, 1992]

describe a method which analyzes the weights and biases of a neural network in orderto

translate the network step-by-step into a set of rules with equivalent structure. In order

to do so, the weights and biases of the network are truncated and discretized, resulting in

approximately correct rules. These rules correspond directly to the links and units in the

network. Consequently, the technique benefits if the networks at hand are only sparsely

connected. In their approach, initial domain knowledge is employed for pre-structuring the

networks. Similar methods have been proposed by Fu[Fu, 1989], and Mahoney and Mooney
[Mahoney and Mooney, 1993], [Mahoney and Mooney, 1992]. Tresp and Hollatz[Tresp and

Hollatz, 1993] and Giles and Omlin[Giles and Omlin, 1993] describe rule extraction methods

for a restrictive class of network architectures with specific transfer functions. Tresp and

Hollatz’s method is restricted to single-layer networks with Gaussianactivation functions. In

the case of[Giles and Omlin, 1993], the networks are higher-order recurrent networks which

are trained to approximate finite state automata.

In all the approaches listed above certain assumptions are made about the structure, as well

as the sparseness of the networks, in order to make the task of rule extraction manageable.

Extracting Provably Correct Rules from Artificial Neural Networks 29

VI-Analysis differs from these approaches, since it analyses the network as awhole instead of

translating the network layer-by-layer. Moreover, the rules found by VI-Analysis are provably

correct, making VI-Analysis a promising candidate for larger networks with multiple hidden

layers.

Other rule extraction mechanisms rely on special training procedure that areapplied during

network training. For example, McMillan[McMillan, 1992], [McMillan et al., 1992] de-

scribes a system in which the task of rule extraction is simplified by imposing regularization

constraints on the network during training. Once the network is trained in this manner, de-

pendencies are sparse, and the mapping to a set of rules is straightforward. A second neural

network training scheme is described by Craven and Shavlik[Craven and Shavlik, 1993]. In

their rule extraction algorithm, a weight regularization term is applied during training which

aims at grouping weight values into discrete classes. Discrete weights facilitate the extraction

of certain types of symbolic rules (namelym-of-n rules) from trained networks. Note that

the weight regularization term replaces the need for initial knowledge, as reported in[Towell,

1991] and[Towell and Shavlik, 1992]. In both of these extraction schemes the effectiveness

of the rule extraction mechanism, as well as the degree of correctness of the extracted rules,

relies crucially on the particular training procedure invoked. VI-Analysis differs from these

approaches in that it does not make any assumptions regarding the training procedure for the

network at hand. Rule extraction based on VI-Analysis is thus applicable to a muchbroader

class of networks.

VI-Analysis bears close resemblance to sensitivity analysis. Unlike allof the above ap-

proaches which translate networks unit-by-unit, sensitivity analysis characterizes the network

output by systematic variations in the input patterns and examining the changes in the net-

work classification (in some cases including the changes in its derivatives). Like VI-Analysis,

sensitivity analysis analyses the network as a whole. An approach to rule extraction based on

sensitivity analysis has been proposed by Goh and Wong[Goh and Wong, 1993]. Sensitivity

analysis, however, yields only approximately correct rules.10

It should be noted that some of the rule extraction mechanisms listed above have notbeen

designed with the same objectives as the method proposed in this paper. For example, some

researchers have argued that rule-enforcing constraints on the training procedure, as well

10It seems feasible, although not necessarily computationally tractable, that further analysis of the magnitude
of the weights and biases of the network (or alternatively the higher-order input-output derivatives) can be
employed to generate provably correct rules based upon sensitivity analysis.

Extracting Provably Correct Rules from Artificial Neural Networks 30

as certain structure on the network topology, might significantly improve the generalization

rate, given that the target concept can be easily described by rules. Since we are interested in

rule extraction from arbitrary networks we make no assumption about the training procedure

at hand. Thus, VI-Analysis is also applicable to those more structured networks.Indeed,

we expect the resulting rule sets to be even better if rule-enforcing regularization terms are

already applied during training.

7 Discussion

In this paper we have proposed a generic technique for extracting provably correct rules

from arbitrary pre-trained artificial neural networks. The rule extraction mechanism relies

on VI-Analysis, which is a tool for analyzing trained neural networks. VI-Analysis verifies

the correctness of conjectured rules by searching inconsistencies. It does thisby propagating

and refining rule-knowledge (validity intervals) through the network in both forward and

backward direction. We have demonstrated how VI-Analysis can be employed as a powerful

proving-engine for the verification of symbolic rules. Two systematic rule search schemes,

one for discrete domains and one for real-valued domains, are proposed and empirically

evaluated on the XOR and the MONK’s problems.

In the beginning of this paper we outlined four desired properties for a general rule extraction

mechanism. VI-Analysis fulfills most of these demands:

1. No architectural requirements. Rule extraction using VI-Analysis does not make any

architectural commitments whatsoever regarding the network to be analyzed. Indeed,

by analyzing the network as a whole rather than compiling networks unit-by-unit,

rules can be extracted from densely interconnected networks with arbitraryreal-valued

weights and biases. This includes recurrent networks not described here.11 In its current

form VI-Analysis relies exclusively on the assumption that all transfer functions are

monotonic and continuous, as it the case in Backpropagation networks. As described

below, VI-Analysis can be extended to piecewise monotonic transfer functions, which

includes for example Radial-Basis functions[Moody and Darken, 1989].

2. No training requirements. Since VI-Analysis analyses trained networks, the rule

11See for example[Jordan, 1986], [Elman, 1988], and[Williams and Zipser, 1989] for literature on recurrent
networks).

Extracting Provably Correct Rules from Artificial Neural Networks 31

extraction mechanism described in this paper does not require any special training

procedure. Consequently, VI-Analysis is applicable to a variety of networks. For

example, many neural network applications that have proven to be successful inpractice

have not been trained to facilitate the extraction of rules. Examples includespeech

recognition[Waibel, 1989], speech synthesis[Sejnowski and Rosenberg, 1986], robot

navigation[Pomerleau, 1989], handwritten digit recognition[LeCun et al., 1990],

medical diagnostics[Jabriet al., 1992], and game playing[Tesauro, 1992]. Unlike

rule extraction mechanisms which require a special training routine, VI-Analysis is

generally applicable to a broad variety of artificial neural networks, including those

listed above.

3. Correctness. The extracted rules are provably correct, i.e. rule extraction based on

VI-Analysis generates rules that correctly describe the target network. Thecorrectness

of rules is a direct implication of the truth-preservation property of VI-Analysis.

4. Expressive power. Formally, the expressive power of the rule language of VI-Analysis

is the set of linear constraints on the activation patterns for the input and the output

layer. We have demonstrated that this language is sufficient for expressing hypercube

constraints. It furthermore allows the representation ofm-of-n rules. In fact, the

language of linear constraints includes most types of rules studies in the context of

artificial neural networks. It excludes, however, various rule types of rules studied in

symbolic AI. To give a simple example, the rule“the output is always smaller than

the input” can not be verified by VI-Analysis, since linear constraints may not applied

across several layers. VI-Analysis also excludes higher-order rules12, as studied for

example by Giles and Omlin[Giles and Omlin, 1993]. If such rules are to be verified,

non-linear optimization techniques must replace the Simplex algorithm. We conclude

that we have partially met our goal of a powerful rule language. More general rule

languages are clearly desirable.

There are several limitations and open questions that warrant future research:� While VI-Analysis is truth-preserving, it might fail to prove the correctness of correct

rules. This is because each weight layer is evaluated separately, neglecting dependen-

cies that arise across multiple weight layers. By evaluating weight layerseparately,

12rules with products of variables

Extracting Provably Correct Rules from Artificial Neural Networks 32

techniques of linear programming become applicable. On the other hand, VI-Analysis

might be too careful when refining intervals. It might miss existing contradictions.

Non-linear optimization techniques which optimize the network as a whole are prospec-

tive candidates for overcoming this limitation. Since non-linear optimization usually

suffers from local minima, it is generally unclear whether the resulting rules would still

correctly describe the underlying network. Sacrificing the correctness goal, however,

might be appropriate if the resulting rule verification algorithms turns out to be superior

to VI-Analysis.� So far, the space of strategies for generating rule conjectures has not yet been fully

explored. In this paper we described two basic approaches, one for discrete and one

for real-valued domains. The latter mechanism, for example, used a random search

strategy to grow antecedents of a rule. There are a wide variety of more efficient

strategies to grow input intervals in real-values domains. For example, one could start

with identifying irrelevant features by removing whole input interval constraints. If

the total volume of the rule is to be maximized, parallel search techniques suchas

Genetic Algorithms[Holland, 1984], [Goldberg, 1989] become applicable. At a first

glance, the genetic string could encode the current setting of validity intervals, and the

performance measure to be maximized may be the volume covered by these intervals,

or a similar function.

As Tom Dietterich [personal communication] pointed out, symbolic learning algo-

rithms such as decision tree learning[Quinlan, 1986] may be used to generate rule

hypotheses as well. Symbolic learning procedures directly generate sets of ruleswhich

approximate the set of training instances. Once such rules have been generated, they

are promising candidates for an artificial neural network trained on the samedata.� Rule verification based on VI-Analysis is complex, if the network at hand is large. This

is because VI-Analysis refines the validity intervals iteratively, which involves many

complete runs of the Simplex algorithm. In this paper we did not address computational

efficiency at all. While for the simple cases we analyzed thus far, VI-Analysis was

consistently found to terminate quickly, we suspect that VI-Analysis might be awfully

slow when applied to networks two or more orders of magnitude larger. Research on

speeding up VI-Analysis and other faster rule provers will then be warranted.� One of the major strengths of the approach described in this paper is also one of

Extracting Provably Correct Rules from Artificial Neural Networks 33

its weaknesses, namely the correctness of rules. While non-correct rule extraction

mechanisms are less likely to scale to large networks with many hidden layers, the

correctness of the extracted rules may lead to very specific rules. Generally speaking,

if the function learned by the neural network is complex and highly cluttered, any

correct rule extraction mechanism will be forced to generate a large set ofhighly

specific rules. In such cases it might be more desirable to invoke mechanismswhich

trade off correctness versus generality and produce overly general rules. Forsuch a

mechanisms it is desirable that the human user has explicit control over this trade-off.� Two important assumption of VI-Analysis in its current form are the monotonicity

and the continuity of the transfer functions in the network. These assumptions can be

relaxed to piecewise monotonic and piecewise continuous transfer function, resulting

in assigning whole sets of intervals to each unit. Algorithms for evaluating and

propagating sets of intervals—rather than single intervals—are straightforward, but

they come at the price of increased computational complexity. It remains to be shown

whether such algorithms will be efficiently applicable in practice.� VI-Analysis is a generic tool for analyzing dependencies in artificial neural networks.

As such it can be applied to problems other than rule extraction. In this paper, for

example, we exclusively focussed on constraining input and output activations. VI-

Analysis allows hidden activations to be constrained as well. This might be useful

for figuring out the role of hidden unit activations in the computation, in order to

assign semantic meaning to hidden units. Satinder Singh [personal communication]

has pointed out that validity intervals can also be assigned to weights and biases,

characterizing the dependence of the network’s output on the weights and biases of the

network.

These directions are currently completely unexplored, since our primary interest in

VI-Analysis has been the automated extraction of preimages and rules.

Acknowledgment

I wish to thank Tom Dietterich, Clayton McMillan, and Tom Mitchell for their invaluable

feedback that has influenced this research. I thank Clayton McMillan for his comments on

an earlier draft of this paper. I also thank Armin Cremers for his steady support during the

Extracting Provably Correct Rules from Artificial Neural Networks 34

course of this research. The “Deutsche Formschungsgemeinschaft” has in part supported this

work by a travel grant.

References

[Craven and Shavlik, 1993] Mark W. Craven and Jude W. Shavlik. Learning symbolic rules

using artificial neural networks. In Paul E. Utgoff, editor,Proceedings of the Tenth Inter-

national Conference on Machine Learning, San Mateo, CA, 1993. Morgan Kaufmann. to

appear.

[DeJong and Mooney, 1986] Gerald DeJong and Raymond Mooney. Explanation-based

learning: An alternative view.Machine Learning, 1(2):145–176, 1986.

[Elman, 1988] Jeffrey L. Elman. Finding structure in time. Technical Report CRL Technical

Report 8801, Center for Research in Language, University of California, San Diego, 1988.

[Fu, 1989] Li-Min Fu. Integration of neural heuristics into knowledge-based inference.

Connection Science, 1(3):325–339, 1989.

[Giles and Omlin, 1993] C. Lee Giles and Christian W. Omlin. Rule refinement with recur-

rent neural networks. InProceedings of the IEEE International Conference on Neural

Network, pages 801–806, San Francisco, CA, March 1993. IEEE Neural Network Council.

[Goh and Wong, 1993] T. G. Goh and Francis Wong. Semantic extraction using neural net-

work modelling ans sensitivity analysis. To be found in the neurprose archive (anonymous

ftp from archive.cis.ohio-state.edu:pub/neuroprose/thgoh.sense.ps.Z), 1993.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, 1989.

[Holland, 1984] John H. Holland. Genetic algorithms and adaptation. InProceedings of

Ill-Defined Systems, England, 1984.

[Jabriet al., 1992] M. Jabri, S. Pickard, P. Leong, Z. Chi, B. Flower, and Y. Xie. ANN based

classification for heart defibrillators. In J. E. Moody, S. J. Hanson, and R. P. Lippmann,

editors,Advances in Neural Information Processing Systems 4, pages 637–644, San Mateo,

CA, 1992. Morgan Kaufmann.

Extracting Provably Correct Rules from Artificial Neural Networks 35

[Jordan, 1986] Michael I. Jordan. Serial order: A parallel distributed processing approach.

Technical Report ICS Report 8604, Institute for Cognitive Science, University ofCalifor-

nia, 1986.

[Karmarkar, 1984] N. Karmarkar. A new polynomial-timealgorithm for linearprogramming.

Combinatorica, 4:373–395, 1984.

[LeCunet al., 1990] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1:541–551, 1990.

[Mahoney and Mooney, 1992] J. Jeffrey Mahoney and Raymond J. Mooney. Combining

symbolic and neural learning to revise probabilistic theories. InProceedings of the 1992

Machine Learning Workshop on Integrated Learning in Real Domains, Aberdeen Scotland,

July 1992.

[Mahoney and Mooney, 1993] J. Jeffrey Mahoney and Raymond J. Mooney. Combining

neural and symbolic learning to revise probabilistic rule bases. In J. E. Moody, S. J.

Hanson, and R. P. Lippmann, editors,Advances in Neural Information Processing Systems

5, San Mateo, CA, 1993. Morgan Kaufmann. (to appear).

[McMillan et al., 1992] Clayton McMillan, Michael C. Mozer, and Paul Smolensky. Rule

induction through integrated symbolic and subsymbolic processing. In J. E. Moody, S. J.

Hanson, and R. P. Lippmann, editors,Advances in Neural Information Processing Systems

4, pages 969–976, San Mateo, CA, 1992. Morgan Kaufmann.

[McMillan, 1992] Clayton McMillan. Rule Induction in a Neural Network through In-

tegrated Symbolic and Subsymbolic Processing. PhD thesis, University of Colorado,

Department of Computer Science, Boulder, 1992.

[Mitchell et al., 1986] Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli.

Explanation-based generalization: A unifying view.Machine Learning, 1(1):47–80,

1986.

[Moody and Darken, 1989] John Moody and Chris Darken. Fast learning in networks of

locally-tuned processing units.Neural Computation, 1:281–294, 1989.

Extracting Provably Correct Rules from Artificial Neural Networks 36

[Pomerleau, 1989] D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neural

network. Technical Report CMU-CS-89-107, Computer Science Dept. Carnegie Mellon

University, Pittsburgh PA, 1989.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees.Machine Learning, 1:81–106,

1986.

[Rumelhartet al., 1986] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.

Learning internal representations by error propagation. In D. E. Rumelhart and J.L.

McClelland, editors,Parallel Distributed Processing. Vol. I + II. MIT Press, 1986.

[Sejnowski and Rosenberg, 1986] T. J. Sejnowski and C. R. Rosenberg. Nettalk: A parallel

network that learns to read aloud. Technical Report JHU/EECS-86/01, John Hopkins

University, 1986.

[Tesauro, 1992] Gerald J. Tesauro. Practical issues in temporal difference learning.Machine

Learning Journal, 8, 1992.

[Thrun and Linden, 1990] S. Thrun and A. Linden. Inversion in time. InProceedings of the

EURASIP Workshop on Neural Networks, Sesimbra, Portugal, Feb 1990. EURASIP.

[Thrunet al., 1991] Sebastian B. Thrun, Jerzy Bala, Eric Bloedorn, Ivan Bratko, Bojan

Cestnik, John Cheng, Kenneth De Jong, Saso Džeroski, Douglas Fisher, Scott E. Fahlman,

Rainer Hamann, Kenneth Kaufman, Stefan Keller, Igor Kononenko, Juergen Kreuziger,

Ryszard S. Michalski, Tom Mitchell, Peter Pachowicz, Yoram Reich, Haleh Vafaie, Walter

Van de Welde, Walter Wenzel, Janusz Wnek, and Jianping Zhang. The MONK’s problems

- a performance comparison of different learning algorithms. Technical Report CMU-CS-

91-197, Carnegie Mellon University, Pittsburgh, PA, December 1991.

[Towell and Shavlik, 1992] Geoffrey Towell and Jude W. Shavlik. Interpretation of artificial

neural networks: Mapping knowledge-based neural networks into rules. In J. E. Moody,

S. J. Hanson, and R. P. Lippmann, editors,Advances in Neural Information Processing

Systems 4, pages 977–984, San Mateo, CA, 1992. Morgan Kaufmann.

[Towell, 1991] Geoffrey Towell. Symbolic Knowledge and Neural Networks: Insertion,

Refinement and Extraction. PhD thesis, University of Wisconsin–Madison, 1991.

Extracting Provably Correct Rules from Artificial Neural Networks 37

[Tresp and Hollatz, 1993] VolkerTresp and Jürgen Hollatz. Network structuring and training

using rule-based knowledge. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors,

Advances in Neural Information Processing Systems 5, San Mateo, CA, 1993. Morgan

Kaufmann. (to appear).

[Waibel, 1989] A. H. Waibel. Modular construction of time-delay neural networks for speech

recognition.Neural Computation, 1:39–46, 1989.

[Williams and Zipser, 1989] R. J. Williams and D. Zipser. A learning algorithm for contin-

ually running fully recurrent neural networks.Neural Computation, 1(2):270–280, 1989.

also appeared as: Technical Report ICS Report 8805, Institute for Cognitive Science,

University of California, San Diego, CA, 1988.

[Wneket al., 1990] J. Wnek, J. Sarma, A. Wahab, and R. Michalski. Comparison learning

paradigms via diagrammatic visualization: A case study in single concept learning using

symbolic, neural net and genetic algorithm methods. Technical report, George Mason

University, Computer Science Department, 1990.

