Extracting Provably Correct Rules
from Artificial Neural Networks

Sebagtian B. Thrun

University of Bonn
Dept. of Computer Science llI
Romerstr. 164, D-5300 Bonn 1, Germany
E-mail: thrun@cs.uni-bonn.de thrun@cmu.edu
Phone: +49-228-550-260 FAX: +49-228-550-382

Abstract

Although connectionist learning procedures have been applied successfully to
a variety of real-world scenarios, artificial neural networks have olieaen
criticized for exhibiting a low degree of comprehensibility. Mechanisms that
automatically compile neural networks into symbolic rules offer a promising
perspective to overcome this practical shortcoming of neural network epres
tations.

This paper describes an approach to neural network rule extraction basgd on
lidity Interval Analysis(VI-Analysis). VI-Analysis is a generic tool for extracting
symbolic knowledge from Backpropagation-style artificial neural networks. It
does this by propagating whole intervals of activations through the network in
both the forward and backward directions. In the context of rule extraction, these
intervals are used to prove or disprove the correctness of conjectured Wies
describe techniques for generating and testing rule hypotheses, and demonstrate
these using some simple classification tasks including the MONK'’s benchmark
problems. Rules extracted by VI-Analysis are provably correct. No assonspt

are made about the topology of the network at hand, as well as the procedure
employed for training the network.

Keywords: machine learning, artificial neural networks, rule extraction, validityrirdke
analysis, symbolic and subsymbolic representations

Extracting Provably Correct Rules from Artificial Neural Networks 2

1 Introduction

In the last few years artificial neural networks have been successfulliedppl problems
of learning and generalization in a variety of real-world scenaridhile it has frequently
been reported that neural network classifiers are able to achieve highlgeatenaaccuracy
across various application domains, the classification concepts of those netnetstially
barely comprehensible to the human users. This is because typical neural negintidns
consist of a large number of interacting non-linear elements, characterizedgeysets of
real-valued parameters that are hard to interpret. Distributethimteepresentations, which
typically emerge during network training, make it even harder to understhatlexactly a
network has learned, and where it will fail to generate the correct answer.

To date, the most common way to characterize the result of neural networknigas
statistical in nature. Supervised training procedures, such as the Backpropadgorithm
[Rumelharkt al., 1984, approximate an unknown target function by iteratively minimizing
the output error based on a finite set of pre-classified training instancesterats/e process
is usually referred to agsupervised) training or learning.? After training, the network is
usually evaluated by measuring its generalization accuracy, whictinsated via a separate
hold-out set, i.e., the network is “tested” using further instances that wereseot during
training. Often, by performing several training runs the variance of the geratiah
rate is estimated as well. Although this statistical method providesanmto foresee future
misclassification rates, it requires that sufficient testing dataigadble and that future queries
are drawn from the same distribution as the hold-out set. If either of these iomsd#g not
fulfilled, generalization rates alone are not appropriate to charactbezserformance of the
network. Hence, in many application domains it is desirable to understandateficdation
function realized by the neural network in more detail.

On the other hand, most rule-based, symbolic learning systems offer the desired highe
degree of comprehensibility due to the sparse nature of symbolic rules. Symbatimtgar
procedures seek to generate small sets of sparse rules that fit the obssniad tata. Such
rules can usually be much better interpreted by humans and are thus easier siantier
Moreover, symbolic rules allow for interfacing with various knowledge-dasetems, such

1See[Sejnowski and Rosenberg, 198BNaibel, 1989, [Pomerleau, 1999[LeCunet al., 1994, [Jabriet
al., 1993, and[Tesauro, 199Pfor few out of many examples.

2The primary focus of this paper will be on Backpropagatitylesnetworks which have learned some
classification task.

Extracting Provably Correct Rules from Artificial Neural Networks 3

as expert systems or intelligent databases. If neural networks are the leareihgd of
choice (e.g., they are found to have the desired generalization propergesiamsms which
compile networks into sets of rules offer a promising perspective to overtioisiebvious
shortcoming of artificial neural networks.

The importance of rule verification and extraction for artificial neural roeks has long been
recognized. There is a variety of techniques available which vary in the typdes, in
the requirements they make on the networks, as well as the training procedureyemnpl
for learning. Since densely interconnected, real-valued networks seem tod&haap
into rules, these requirements often aim at both lowering the degree ofantexction and
discretizing the real-valued parameters of the networks. Consequentlyrespahements
usually limit the methods at hand to rather special network architecturesamitig schemes.
Many networks that have been successfully applied in practice, howeveagtdolfill such
requirements, and for those networks the proposed techniques fail in extractinghgfab
and sufficiently correct rules. Our goal is to design a more general mecharhsch 8
applicable to a broader class of artificial neural networks. Hence, we dlesifellowing list
of properties:

1. No architectural requirements. A general rule identification mechanism is able to
operate with all types of artificial neural networks, including densely interaciede
unstructured, and recurrent networks.

2. Notrainingrequirements. Some of the more powerful extraction algorithms proposed
in the literature rely on special training procedures which facilitheedxtraction of
rules. Such procedures have limited applicability, since they usually canapigtied
to networks which have been trained with other learning methods. We desire an
algorithm that makes no assumption as to the way the network has been constructed
and the weights and biases have been learned.

3. Correctness. Rule extraction mechanisms differ in the degree of correctness of the
extracted rules. Many approaches to rule extraction generate only appreoastdi
the underlying network. In order to describe the function realized by a neural network
accurately, itis desirable that the extracted rules describe the netwalrk@s correctly
as possible.

4. High expressivepower. The language of rules (syntax) characterizes the compactness

Extracting Provably Correct Rules from Artificial Neural Networks 4

of the extracted symbolic knowledge. Powerful languages are generally desirable
since more compact rule sets are often easier to understand.

We are not aware of any rule extraction technique which matches all of the edepyirements.
Most techniques published thus far yield approximately correct rules only, thgynea
specialized training routine, and/or make major restrictive assumptions #imtdapology

of the network at hand. The rule extraction technique described in this paper generate
if-then-type rules that are provably correct, making minimal assumptions gangethe

type of network, and no assumption as to the particular training routine employed. This
technique is based on a generic tool for analyzing dependencies within neural networks,
called Validity Interval Analysis (VI-Analysis or VIAYThrun and Linden, 1990 VI-
Analysis iteratively analyzes the input-output functionality of an artifici@liral network

by propagating sets of intervals through the network. The basic notion of VI-Analysis is
presented in Section 2, followed in Section 3 by a demonstration using tipdesiimolean
function XOR. Subsequently, in Section 4, we will show how VI-Analysis canpsied

to verify rule-like hypotheses. We will then describe several strasetpegenerate such
hypotheses (Section 5), which completes the description of the rule extractoigamsm.
Section 5 also includes empirical evaluations of rule extraction and cegitn using the
XOR problem, as well as the more complex MONK's problems. The paper is concluded by
a brief survey of related approaches (Section 6) and a discussion (Section 7).

2 Validity Interval Analysis

Validity Interval Analysis (VIA or VI-Analysis) is a generic tool for anaiyg
Backpropagation-style artificial neural networks. It allows assertions todde about the
relation of activation values of a network by analyzing its weights and hidgegnalysis

can be applied to arbitrary, trained networks—no requirements are made oeitftgsvand
biases or on the topology of the network at hand. The only assumption we make throughout
this paper is that the non-linear transfer functions of the units in the network are ombmot

and continuou’ as is typically the case in Backpropagation networks.

The basic principle of VI-Analysis is based on so-caNatidity intervals. Such intervals

3See the discussion at the end of this paper for a relaxatithese constraints to piecewise monotonic and
piecewise continuous transfer functions.

Extracting Provably Correct Rules from Artificial Neural Networks 5

constrain the activation pattefria the network at hand. More specifically, a validity interval
of a unit specifies a maximum range for its activation value. Initially, thex ugay assign
arbitrary intervals to all (or a subset of all) units. VI-Analysis thefines these intervals. It
doesthis by iteratively detecting and excluding activation values th&ggically inconsistent
with the weights and the biases of the network. This mechanism, which will beilokdm
turn, is truth-preserving in the sense that each activation pattern whadnsistent with the
initial set of intervals will also be consistent with the refined, smmalét of intervals.

In the context of rule extraction, initial validity intervals will be genedtby a separate
search routine (c.f. Section 5). Starting with an initial set of vafithtervals, there are two
possible outcomes of VI-Analysis:

e The routineconverges. The resulting intervals form a subspace which includes all
activation patterns consistent with the initial intervals.

e A contradiction, i.e. anempty interval, is found. If an empty interval is generated,
meaning that the lower bound of an interval exceeds its upper bound, there will be no
activation pattern whatsoever which can satisfy the constraints irdgnséhe initial
validity intervals. Consequently, the initial intervals aneonsistent with the weights
and biases of the network. This case will play an important role in rule eidreahd
verification.

In the remainder of this section we will describe the VI-Analysis algorithive start by
reviewing the forward propagation rule of the Backpropagation algorithm and introduce bas
notation. The description of VI-Analysis on a simple example, namely a netwalikirey

the boolean function AND, is followed by a general description of the refinemenéguoe

in VI-Analysis.

2.1 Notation

The following rules of activation propagation for artificial neural networky e found in
the literature on the Backpropagation training algorithm, see[Rigmelhartet al., 1984.
Activation values are denoted hy;, where: refers to the index of the unit in the network.

4By activation pattern we mean a vector of activations generated by the standaveafdrpropagation
equations given below.

Extracting Provably Correct Rules from Artificial Neural Networks 6

If unit « happens to be an input unit, its activation value will simply be the external input
value. If not, letP(:) denote the set of units that are connected tournihe activation; is
computed in two steps:

nel; = Y wya+0;
keP(i)
;. = oi(net;)

Here the auxiliary variablect; is callednet-input of unit 7, andw,, andé; are real-valued
parameters calledeights and biases (thresholds). These parameters are adapted during
Backpropagation learnindRumelhartet al., 1984 in order to fit a set of training examples.
o; denotes the transfer function (squashing function), which usually is given by

. 1
with 0;1(:1;2') = —1In (— — 1)

Ty

oi(net;)

1 e—nets
Since VI-Analysis applies to arbitrary trained networks and does not demaine fumodi-
fication of the weights and biases of the network, we will omit the procedure fonatstig
weights and biases that originally gave Backpropagation its name. Rather, videcatatic
network topologies and static values for the weights and biases, i.e., weeaaseimetwork
has already been trained successfully. Validity intervals for antinazaluesz; are denoted
by [a;; b;]. If necessary, validity intervals are projected into the net-input spheeunitz,
where they will be denoted by; b’].

2.2 A Simple Example

Before we explain the procedure of interval refinement in it most general fetnusl give
some intuitive examples which serve as demonstrations of the main aspedté\n&lsis.
Consider the network shown in Figure 1a. This network approximates the boolean function
AND and might be the result of Backpropagation learning. Let us assume we aretetere

in the classification achieved by the network when there is some smalyakied noise
added to the input values. In other words, we would like to characterize the nelsgsif the
learned classification.

We will now give four examples of VI-analyzing this network, demonstrating theomaj
processing steps and the different cases in VI-Analysis:

1. Forward phase: VI-Analysis consists of two alternating phases, a forward and a
backward phase. In the forward phase, interval constraints on the actispiame

Figure 1: VI-Analysis, forward phase: (a) A simple artificial neural network that realizes the lezoi
function AND. (b) The initial intervals are chosen to bee [0;0.2] andz, € [0.8; 1]. The output activation is
unconstrained. (c) Taking the weights and bias of the nétwio account, forward propagation of the input
intervals leads to a maximum range for the net-inpet; € [—2.8;—1.2]. (d) This interval is mapped by
the sigmoid transfer function to the final output validityaerval: 3 € [0.05732;023147. The result of the
analysis readsif #; < 0.2 and 2, > 0.8 then 23 € [0.05732; 02314 (and thuse3 < 0.5).

are propagated forward through the network, similar to the forward propagation of
activations in a Backpropagation network. In VI-Analysis, whole activatnervals

are propagated instead of values. To see how this is done, consider Figure 1b-d. In
Figure 1b two initial intervals for the activation values of the input unitsspecified.

The inputz; is constrained to be ifuy; b1) = [0; 0.2], and the input:; is in [ay; by] =

[0.8; 1]. Since the network s trained to realize AND, we expect the output to beesmall
than 05 for all input vectors that match these interval constraints.

The following procedure is employed to propagate interval bounds through the net-
work. The minimum net-inputets is governed byis = a; - wag + az - wap + 03 =
0-44+08-4—-6= —-28. Likewise, the maximum value fotets is b, = —1.2,
leading to the validity intervala; b5 = [—2.8;—1.2] for net;. Since we assume
that all transfer functions are continuous, input intervals of the transfer function
respond directly to output intervals. The validity interya4; b3] for x3 is obtained

by applying the transfer function tlig; b5] yielding o([a5; b5]) = [o(a}); o(b)] =
[0(—2.8);0(—1.2)] = [0.05732;02314 = [as; b3]. Thus, the output activations have

to be injas; b3] = [0.05732;02314. This completes the forward phase.

It should be noted that the result of this simple analysis can already be inestpret
as arule:If x; < 0.2 and z, > 0.8 then 23 € [0.05732;02314. This rule implies
the weaker ruldf x; < 0.2 and x, > 0.8 then 23 < 0.5, which proves the correct
generalization of the learned AND function within the initial input intervals

Figure 2: VI-Analysiswith open intervals: (a) Analogous situation as in the previous figure, but ondef t
input units is unconstrained. (b) Activations are bounded®1]. (c)-(d) VI-Analysis leads to the ruletf
z1 < 0.2then z3 € [0.002472; 02314.

2. Forward phase with unconstrained input values: Figure 2 demonstrates the same
forward phase, but one of the input activations is unconstrained. We assume that
activation values are bounded, without loss of generalityoby]. This is trivially true
for non-input units, since the range ®fis (0; 1). VI-Analysis can now be applied in
the same manner, leading [i@s; b3] = [0.002472; 02314 and the rule:If 27 < 0.2
then x5 € [0.002472; 02314, as shown in Figure 2.

3. Backward phase: VI-Analysis also allows interval constraints to be propagdueszk-
wards through the network In Figure 3a two initial intervals are specified, one on the
input activationz, > 0.8 and one on the output activatiop > 0.8. Since the network
realizes the boolean function AND, it follows intuitively that the inpytshould be
> 0.5.

Figure 3b-d illustrates the forward propagation phase, as described abovehaiote
Figure 3d only the upper bourtg of the output interval is modified—the initial lower
boundas = 0.8 is tighter than the propagated lower bourd (a}) = 0=1(—2.8) =
0.05732. Figure 3e-fillustrate the backward phase: First, the output infesyas] is
projected into the validity intervak; b5) for nets. This is done via the inverse transfer
function: +=1([0.8;0.8807) = [»~1(0.8); »~1(0.8807)] = [1.386;2. Notice in our
example the backward step increases the lower bounddar Second, the validity
interval [a1; b1] is constrained to values theill lead to a valid net-input value net;
within [a%; b5]. Consider for example the lower bourg = 1.386 for the net-input

SThis process it not to be confused with the backward propagatf gradients in the Backpropagation
training algorithm.

Figure 3: VI-Analysis, backward phase: (a) Initial intervals constrain both an input activatiordaan output
activation. (b)-(d) Intervals are propagated forward. Thg validity interval onzs is projected back taets
via the inverse sigmoid. In particularg > 0.8 impliesnets > 1.386. (f) A simple calculation shows that for
all activation valuesr; < 0.8465= (1.386— 3 + w3, - 1.0)w3;" it is impossible to find an activation value
zp € [0.8;1] such thatnetz > 1.386. Thereforex; > 0.8465. The resulting rule readsf «, > 0.8 and
z3 > 0.8then z; > 0.8465

netz = wairy + wary + 03, Simple arithmetic shows that, = 7ce=w2re—fs gnd

w31

thusa; = ming, = vzl _ 1386-41+6 _ (,8465. Henceforth, 8465 is a

lower bound on the activ;ltion af;. This procedure illustrates the backward phase
in VI-Analysis: Activations are constrained by the fact that tiheyst ensure that all
successors : may receive a net-input within their validity interval [a; 6], given that all
other units £ connected to these successors contribute appropriate activation values

within their intervals [ay; b]. Activation ranges excluded by this step cannot occur.

Notice that the monotonicity of the transfer function ensures that the projections of
intervals are again intervals. Although the backward phase in VI-Analgsiksl
considerably more complex than the forward phase, both phases are strongly, relate
as they are realized by the same mechanism in the general VIA algorithenpedsn

the next section.

Figure4: VI-Analysisand inconsistencies: (a) As inthe previousfigure, there are two initial intenadsigned

to an input unit and an output unit. Since high output recuiveth inputs to be high, this set of intervals is
inconsistent with the AND function. (b)-(d) VI-Analysisgerates an empty output interval. More specifically,
x3 > 0.8 violateszz = o(nets) < o(—1.2) = 0.2314. The empty interval proves the inconsistency of the
initial constraints.

4. Inconsistencies. Finally, we will demonstrate how VI-Analysis can detect inconsis-
tencies in the initial set of intervals. Figure 4 shows a situation in iwtwo intervals
[a1; b1] = [0; 0.2] and[as; b3] = [0.8; 1] are specified, very similar to the situation shown
in Figure 3. Now, however, the initial setting is inconsistent with ANDgdagse low
input z; implies low outputr;. Consequently, the forward propagation phase shown
in Figure 4b-d, which is analogous to that in Figure 2, yields an empty set for the
output values:s. This is because the intersection of the interVadsbs] = [0.8; 1] and
o([ak, b5]) = o([—6;—1.2]) = [0.00247;02314 is (). The logical conclusion of the
occurrence of an empty set is the inconsistency of the initial intervals giece is no
activation pattern for this network which would satisfy all initial intal constraints.

This completes the description of the AND example. Although the example is sithple,
main ideas of VI-Analysis have been demonstrated , namely:

e Constraints are specified by initial intervals on the activation pattefiese inter-
vals can be specified by the user. In the case of rule extraction, they araigeher
automatically by some search mechanism.

e Constraints are propagated in both directions through the network by refining iisterval
All refinements made during this process preserve the consistent activadioa and
can be proven to be correct (VIA is truth-preserving).

Figure5: Weight layer: The set of unitsin layeP are connected to the unitin lay&r Each unitj (j € PUS)

is assigned a validity intervéd; ; b;]. By projecting the validity intervals for afl € S, intervals[a;; b;] for the
net-inputsnet; are created. These, plus the validity intervals for all sihie P, form first-order constraints
on a linear set of equations given by the weights and biast#eedayer at hand. Linear programming is now
employed to refine interval bounds.

¢ VI-Analysis converges to a refined set of intervals and might or might not detect
inconsistencies in the initial intervals.

In the next section we will describe the general VIA algorithm for arbitratyvoeks. This

algorithm takes hidden units into account, and the notion of intervals is extendedatitre

of linear constraints on activations. The reader will notice, however thigaprinciples are
the same as those described above.

2.3 TheGeneral VIA Algorithm

Assume without loss of generality that the network is layered and fully connéeteceen

two adjacent layers. This assumption simplifies the description of VI-Arsalyd-Analysis

can easily be applied to arbitrary non-layered, partially connected net@vohiitectures, as

well as recurrent networks not examined here. Consider a single weight layer, tingraec
layer of preceding units, denoted By to a layer of succeeding units, denotedhySuch a
scenario is depicted in Figure 5. As we will see, the problem of refining iat&aunds can

be attacked by techniques of linear programming, such as the Simplex algoritheméss
there are intervalg:;, b;] € [0, 1]? assigned to each unit iR andS. The canonical interval

[0,1] corresponds to the state of maximum ignorance about the activation of a unit, and

Extracting Provably Correct Rules from Artificial Neural Networks 12

hence is the default value if no more specific interval is known. In order to mag&arl
programming techniques applicable, the non-linearities due to the transfer fuattiors
in & must be eliminated. As in the AND example, this is done by projedting;] back
to the corresponding net-input intervéds; b/] = o=([a,; b;]) € £2.6 The resulting validity
intervals in? andS form a set of linear constraints on the activation valueBin

VkeP: T > ap
rp <by
VieS: net; = Z wirTE +0; > a;

keP
net; = > wigar +0; < b
keP
Notice that all these constraints are linear in the activation valye3hus, linear program-

ming can be applied to refine lower and upper bounds for validity intervals individusdl
in the AND example, constraints are propagated in two phases:

1. Forward phase: In order to refine the bounds; and b; of a unit: € S, linear
programming is applied to derive new bounds, denoted,; ndb;:

a; = o(a) with @ = minnet; = min>_ wiay +0;
keP

by = a(@;) with o = maxnet; = maxy _ wiry. + 0;
keP

If @; > a;, a tighter lower bound is found and is updated by. Likewise,b; is
updated byb; if b; < b;.

2. Backward phase: In the backward phase the boundsandé; of all unitsk € P are
refined again using linear programming.
&k = min Tk
,Z;k = MmaXzyg
As in the forward phasey,. is updated by, if @, > a5, andb, is updated b)@k if

be < b,. Note that the update rule in both phases ensures that intervals are changed
monotonically. This implies the convergence of VI-Analysis.

SHeret denotes the set of real numbers extended-by.

Extracting Provably Correct Rules from Artificial Neural Networks 13

In our experiments, we used the Simplex algorithm. Although this algorithm is known t
take worst-case exponential time in the number of variables (i.e. units yeg Jave did not
yet observe this algorithm to be slow in practice. It should be noted that theseneaie
complex algorithms for linear programming which are worst-case polyndid@imarkar,
1984.7

Thus far, we have described the refinement procedure for the units connected toea singl
weight layer. VI-Analysis iteratively refines all intervals in thewetk. As in the initial

AND example, both the forward and the backward procedure are iterated for &dlioni

the network, either until an empty interval is generated (i.e., an incemnsigtis found), or

until convergence is observed, using one of the standard convergence criteniafiriygy

the intervals of all units, constraints are propagated in both directions kraingh multiple
hidden layers. If several weight layers are involved, however, validtgrval analysis may

fail in identifying all inconsistent activation values. This is becausgheaeight layer is
refined independently of other weights in the network. More specifically, when cbtigni

unit intervals connected to a single weight layer, the activations of the pregadits: € P

are considered to be independent. This worst-case analysis clearly negjeatselecies on

the activations irP which may arise from preceding weights and activations beyond the scope
of the linear analysis, resulting in an overly careful refinement of vgliditervals. If such
dependencies are considered, plain linear programming techniques are no longebbgpplica
In our initial experiments described in this paper, however, we found VI-Amalgsbe
powerful enough to successfully analyze all networks we applied it to.

3 Experimental Resultsfor the XOR Problem

In an initial experiment we applied VI-Analysis to a neural network whicls wained to
approximate the boolean function XOR. The network, including its weights and biases, i
depicted in Figure 6. It was trained using the standard Backpropagation algoRtvenruns

of VI-Analysis with different initial conditions were performed to evak#ite classification

of the network and to demonstrate VI-Analysis. Figure 7 displays the resultsh s
summarizes a single experiment, and each diagram shows the refinemerditf wrakrvals
over time. Each of the five columns corresponds to a particular unit in the network.

’In an earlier papeiThrun and Linden, 1990ve proposed a more straightforward algorithm which works
much faster by sacrificing some solutions to the intervahesfient problem.

=

(@ (b) to-node
from-node || 3 (hidden) 4(hidden)5(output)

1(input) | -4.60248 4.74295
2 (input) || -3.19378 2.90011
bias 2.74108 -1.49695
3 (hidden) -4.57199
4 (hidden) 4.64925
bias 2.10176

Figure 6: Learned XOR: (a) Network topology and (b) weights and biases.

. Inthe first experiment one input activation was constrained to be smalg thieilother
input activation had to be large. The resulting output interval indicates theaforr
classification of the network in this interval. It should be noted that a tigipeer
bound on the output activation is found by this analysis as well.

Same experiment as above, but in this case both inputs are constrained % be lo
Consequently, VI-Analysis results in a low output interval.

In this experiment the output activation was constrained, replacing one of the input
activation constraints. It can be seen that the output constraint is propagekedibds
through the network, resulting in a small input interval for the initially uncomsée

input unit. This result proves the correct generalization within the initalstraints.

Same situation, but this time the output is constrained to be small. The oétuil
experiment differs from the previous result in that VI-Analysis does not condtnain
second input to be larger than 0.5, which is what one would expect. Indeed, closer
examination of the network at hand demonstrates that such a rule would be incorrect,
since there exist low input values for the second input unit which satisfy alinit
constraints.

In the last experiments we imposed contradicting initial intervals on thigaéion
values of the network. VI-Analysis thus generates an empty interval, whicbaited
the inconsistency of the initial intervals. Contradictions play a crucial moléhe
general rule verification mechanism described in the next section.

8correct in the sense of a to real-valued input extended XOR

Extracting Provably Correct Rules from Artificial Neural Networks 15

(@

1
.8
.6
2D

. 8 p—

unit 1 (input)

unit 2 (input)

unit 3 (hidden)

. 8 p——

unit 4 (hidden)

unit 5 (output)

N

1 2 3 4

unit 1 (input)

1 2 3 4

unit 2 (input)

l/
1 2 3 4

unit 3 (hidden)

1 2 3

unit 4 (hidden)

1 2 3 4

unit 5 (output)

1 2 3 4

unit 1 (input)

unit 2 (input)

I—
1 2 3 4

unit 3 (hidden)

N\

|

1 2 3

unit 4 (hidden)

unit 5 (output)

1 2 3 4

unit 1 (input)

1 2 3 4

unit 2 (input)

unit 3 (hidden)

. s p——

1 2 3

unit 4 (hidden)

unit 5 (output)

1 2 3 4

unit 1 (input)

.8p—

unit 2 (input)

1 2 3 4

unit 3 (hidden)
11—

1 2 3

unit 4 (hidden)

e

IS

unit 5 (output)

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

4

Figure 7: VI-Analysison XOR: Each row summarizes one experiment. The gray area inditatedevel-

opment of validity intervals over the iterations of VI-refiment for each of the 5 units (columns) in the XOR
network. Dots indicate the initial setting of the intervala) Forward propagation: If one input is low and the
other is high, the output will be high. (b) Similar situatifor two low inputs. (c) Backward propagation of
constraints: If one input is high and the output is cons#dito be high as well, the other input can be shown
to be low. (d) Similar situation, but with low output. In thiase there are low inputs for input unit # 2 that will
cause low output, even though input #1 is high. This reswdmahstrates the generalization of the originally
discrete XOR problem in the input space. (e) Contradicti®ath input are forced to be high, but the output
is forced to be low. After 1 iteration VI-Analysis detects@ntradiction (arrow), since the lower bound of the

output unit exceeds the upper bound. This proves that thalimitervals are inconsistent.

Extracting Provably Correct Rules from Artificial Neural Networks 16

4 Rule Verification

VI-Analysis can be applied to verify the correctness of hypotheses on the neatlassifica-
tion. Generally speaking, rule hypotheses are represented by a set of validitialaton (a
subset of) the input units of the trained network, as well as a target output class.tAdws
correspond to rules of the type:

If input € some hypercube 7 then classis C'.

If input € some hypercube 7 then classisnot C'.

for some target clas§'. HereZ abbreviates the antecedent hyperctibe [q;, b;]™ of the
rule to be verified.

In this section we will demonstrate how VI-Analysis can be used to provescangs like
these. For simplicity, assume the output of the network is cddedlly, i.e., there are:
classes, and each output upif; = 1,...,c¢) corresponds to one of these classes. Input
patterns are classified by propagating activations through the network and thgme@ppl
the winner-take-all rule to the output activations. In other words, the input ssifled as
belongingtoclas¢’; (j = 1,...,¢) if and only if

Vi'Eg x < o

Rules are verified by contradictions. More specifically,Jdét;[x; < z’] denote the truth
value of running validity interval analysis when the (linear) output constrairt =’ is added
to the initial interval constraint§ = [a;, b;]™. If viaz[z; < 2'] = false, a contradiction
has occurred during VI-Analysis. Hence the initial input intervals are inctagisvith the
conjecturer; < z%, and thuse; > z%. If viaz[z; < z!] = true VI-Analysis converged
without contradiction, and nothing can be said about the relation; agind ' under the
constraints imposed by the initial intervals

The operatoriaz[-] can be applied to rule verification. Assume the target classs
represented by unjtfor somej = 1,...,¢. Then the rule

If input € some hypercube 7 = [a;, b;]™ then classis C;.

is provably correct if

Vi'=1...,cwith j'#j: wviar[z; <2i] = false

Extracting Provably Correct Rules from Artificial Neural Networks 17

This is to say, VI-Analysis rejects for all £ j the hypothesis that the output of upitvill
be smaller than the output of uit Consequently, output unjtwill always take the largest
activation value among all output units. Note that proving this rule requireg iterations
of the complete VI-Analysis procedure.

Negated rules can be proven via a single VI-Analysis. The rule
If input € some hypercube 7 = [a;, b;]™ then classis not C;.

can be verified by showing that
viaglrr S xj e < xjy ., tio1 S @y, w41 S a0 < ay] = false

If VI-Analysis finds the desired contradiction, then for each input pattern wite input
intervals there exist somg # j with =;; > z;. Thus, the input is never in clags, which
proves the conjectured rule.

Notice that VI-Analysis can also be applied to networks with a single output uad us
to distinguish two classes only. In this case, positive rules can beegehfi showing that
viaz[zouput < 0.5] = false, and negative rules can be verifiedby7[0.5 < zoupu] = false.

To summarize, VI-Analysis provides a powerful tool for verifying the comest of con-
jectured rules. It does this by (a) inverting the rule and (b) detecting Ibgosaradictions.

A contradiction is a proof that the opposite of the rule never holds true, which impkes t
correctness of the original rule. VI-Analysis is truth-preserving. Hence proafsi®kind
are correct and not only approximations. It may happen, however, that VI-Anadysi# |
able to prove the correctness of the rule at hand. In general, there are tsomseahy
VI-Analysis may fail to do so: Either the rule does not correctly describe ldmesification

of the network (and hence is wrong), or VI-Analysis is just not able to detect a cocttoan.

As stated in the previous section, VI-Analysis is not guaranteed to find coritcadiclue to
the independent optimization of different weight layers. Not finding a contradictionafoes
course not imply that the opposite holds true.

5 RuleExtraction Strategies

The previous section describes how to apply VI-Analysis to verify the coresstof con-
jectured rules. In order textract rules, mechanisms have to be invoked that systematically

Extracting Provably Correct Rules from Artificial Neural Networks 18

generate hypotheses which are subsequently verified by VI-Analysis. We wiltlasaribe
search heuristics that allow for systematically generating anahtesiies in order to find (a)
the most general and (b) the most relevant rules. We will describe both dgteahnique
for finite (discrete) domains and one for real-valued domains. These heupigticsmeans
establish the uniquely best technique for generating rules—depending on the clkassifica
domain and potential background knowledge, rule extraction strategies may vaing alif-
ferent application domains. In our experiments, however, they turned out to be apfgopr
for extracting reasonably general rules.

5.1 Discrete Rulesand Graph Search

If the domain of the networks inite?, i.e., if there are finitely many instances that exhaus-
tively characterize the target function, there is a simple but expensategy to extract rules
from arbitrary trained networks: Classify all input instances and apply bodégebra to
simplify the logical expression resulting from the network queries (e.g. Imgtoaming this
expression into a set of expressions in disjunct normal form, one for each ettasses).
Common examples for finite input domains are classification tasks over birsdnyderectors.
While this straightforward rule extraction technique will always generaetaf rules that
correctly describes the function represented by the network, the processraj tssth input
pattern in the domain of the network is expensive and usually computationallgtadtia for
larger domains.

In finite domains VI-Analysis can be applied to cut whole regions in the searde dpa
evaluating more general rules. To see this, consider the space of possibleThiespace
can be described bydirected acyclic graphs (DAGSs) in which nodes correspond to rules,
which are ordered from the most general to the most specific. The root of such dgnash
the most general rule and is of the tygerything isin class C'. The leaves correspond to a
single instance in the input space of the network. Figure 8 shows such a rule sesgbh gr
Each rule in the graph spans a subtree of more specific rules which logicatiwfiobm this
rule. VI-Analysis is now applied in breadth-first manner: As soon as VI-Ansijy®ves the
correctness of a general rule, the whole subgraph spanned by the corresponding rule node
belongs to the same class and needs no further investigation. The breadtlafaistssheme
may decrease the number of tests significantly. This reduction of the seace) Bpavever,

%In the literature on machine learning, finite domains aremfeferred to adiscrete domains. We will use
these terms interchangeably.

Figure 8: Examplerule-DAG: A rule graph for rules over three boolean attribujesy», andys is shown. The
graph is ordered from most general (left) to most specifightii rules. Rule hypotheses (nodes) are generated
and tested breadth-first. Once VI-Analysis succeeds inpgaw disproving the class membership for a general
rule, the whole subtree spanned by this rule is removed frensearch list.

comes at the expense of running VI-Analysis instead of single forward propagatiass, as
required for the pure classification of an instance.

5.2 Results Obtained for the MONK'’s Problems

We applied DAG breadth-first search to the MONK'’s problems. The three M®plidblems
constitute a set of benchmark problems for inductive machine learning algofiffimsn et

al., 1991. They are discrete classification problems defined in an artificial “fabmnain,
in which robots are described by six different attributes, adopted fivmeket al., 199Q:

x1: head_shape € round,square,oct agon
x2: body _shape € round,square,oct agon
zz:issmling € yes,no

z4: hol di ng € sword,bal | oon,fl ag

rs.) acket color € red,yellow green,blue
re: has_tie € yes,no

The target concepts of the problems are:

e Problem M:
(head_shape = body_shape)or (j acket col or = red)
Figure 9 shows the resulting classification and the weights and biases oditiedtr
network.

Extracting Provably Correct Rules from Artificial Neural Networks 20

e Problem M:
Exactly two of the six attributeshavetheir first value.
Figure 10 shows the resulting classification and the weights and biases cditirezitr
network.

e Problem Maj:
(acket col or = greenandhol ding = sword)
or (j acket col or = not bl ue andbody shape = not octagon)
Figure 11 shows the resulting classification and the weights and biases cditrezitr
network. Note that in this problem the training set contained noisy training irsganc
which accounts for the failure of Backpropagation to achieve 100% classification
accuracy. The most successful networkNbg was trained with a weight decay term.

In Chapter 9 of the MONK’s Report, Backpropagation solutions to the MONK's problems
are presented (c.f. Figures 9, 10, and 11). The networks solving these problems had 17
input units, each corresponding to one of the 17 input feature values, and one hidden layer
with 2 or 3 hidden units. Although the classification rate achieved by the Backgpatpa
algorithm compares favorably to other approaches presented in this study, igmeargaed

that Backpropagation is limited in that it does not allow for a precise int&apoa of the
results, unlike symbolic learning techniques such as decision trees. Henappled VI-
Analysis and breadth-first rule extraction to these networks. Note that theserke were

not trained with the intention of easing their analysis—rather they repreddrdcasolutions

to the MONK's classification problems.

The following observation turned out to be essential for increasing the rufecaéion power

of VI-Analysis in the context of the MONK'’s problems: The input coding of all networks
was local, i.e., to each feature value we assigned a separate unitwaéscbet to 1, if the
corresponding feature was present, and O otherwise. Since different values arfidtiee
same feature are mutually exclusive, exactly one (out of 2 to 4, depending on ticallpart
feature) input unit may be on, while all other units belonging to this feature must be off.
A slightly weaker form of this constraint can be easily expressed in the langfdogear
programming: For each of the six features we constrained the input activatidnthstithe
sum of all activation values was exactly 1. This results in six new ligeastraints on the
input patterns, one for each of the six features describing the instances. Tuisenal
constraints were simply appended to the standard interval constfaitttss surprising that

Extracting Provably Correct Rules from Artificial Neural Networks

21

holding
sword | flag | balloon
jacketcolor
‘ red |yellow | green | blue | red |vyellow | green | blue | red | yellow | green | blue ‘
‘ hastie ‘
y [n |y |n |y |n |y |n |y [n |y |n |y [n]y [n]y [n]y [n]y [n]y |n

rou

rou

rou

rou

rou

rou

squ

squ

squ

squ

squ

squ

oct

oct

oct

oct

oct

oct

head
shape

| # | # | # | # | # | # | # | # | # | # | #|#|#|# | # # | #H | # | #|#H | H#|# y rou
| # | # | # | # | # | # | # | # | # | # | #|#|#|# | # # | #H | # | #|#H | H#|# n rou
| # # | # # y squ
| # # | # # n squ
| # # | # # y oct
| # # | # # n oct
| # # | # # y rou
| # # | # # n rou
| # | # | # | # | # | # | # | # | # | # | #|#|#|#|# # | #H | # | #|#H | H#|# y squ
| # | # | # | # | # | # | # | # | # | # | #|#|#|# | # # | #H | # | #|#H | H#|# n squ
| # # | # # y oct
| # # | # # n oct
| # # | # # y rou
| # # | # # n rou
| # # | # # y squ
| # # | # # n squ
| # | # | # | # | # | # | # | # | # | # | #|#|#|# | # # | #H | # | #|#H | H#|# y oct
| # | # | # | # | # | # | # | # | # | # | #|#|#|# | # # | #H | # | #|#H | H#|# n oct
is body
smiling shape
MONK's problem MONKq : weights and biases
[Il to-node |
[__from-node [| hidden1 hidden2 hidden3 | output |

input.1 (headshape round) -6.503145 0.618412 -1.660409

input.2 (headshape square) 1.210703 1.939613 2.972592

input.3 (headshape octagon) 5.356444 -3.597301 -1.266992

input-4 (body.shape round) -6.692434 2.129635 -2.032243

input.5 (body.shape square) 6.457639 0.864312 4.260765

input.6 (body.shape octagon) 0.225053 -2.428098 -1.839603

input.7 (is_smiling yes) 0.096995 0.131133 0.053480

input.8 (is_smiling no) -0.011828 0.135277 0.107302

input.9 (holding sword) -0.076848 0.459903 -0.008364

input.10 (holding balloon) -0.016940 0.151738 0.148955

input11 (holding flag) -0.087298 0.196521 0.023554

input.12 (jacketcolor red) 5.735210 4.337359 -0.865479

input.13 (jacketcolor yellow) -2.257168 -1.410376 0.494681

input.14 (jacketcolor green) -2.232257 -1.109825 0.382717

input.15 (jacketcolor blue) -1.710642 -1.452455 0.479513

input16 (hastie yes) -0.109696 0.434166 0.276487

input.17 (hastie no) -0.111667 0.131797 0.310714

bias 0.486541 0.142383 0.525371

hidden1 9.249339

hidden2 8.639715

hidden3 -9.419991

bias -3.670920

Figure 9: MONK'’s problem MONK;: The network learned and generalized successfully.

Extracting Provably Correct Rules from Artificial Neural Networks

22

holding
sword | flag | balloon
jacketcolor
red |yellow | green | blue | red |vyellow | green | blue | red | yellow | green | blue
hastie

‘vIHIVInIVInlvIHIVInlvIHIVInIVIHIVIHIVIHIVIHIVIH‘

y rou
n rou
y squ
| # # # # | # # # n squ
y oct
| # # # # | # # # n oct
y rou
| # # # # | # # # n rou
| # # # # | # # # y squ
| # # # # # n squ
| # # # # | # # # y oct
| # # # # # n oct
y rou
| # # # # | # # # n rou
| # # # # | # # # y squ
| # # # # # n squ
| # # # # | # # # y oct
| # # # # # n oct
is body
smiling shape

rou

rou

rou

rou

rou

rou

squ

squ

squ

squ

squ

squ

oct

oct

oct

oct

oct

oct

head
shape

MONK's problem MONKy: weights and biases

[Il to-node
[__from-node [| hidden1 hidden2 | output |
input.1 (headshape round) -4.230213 3.637149

input.2 (headshape square) 1.400753 -2.077242
input.3 (headshape octagon) 1.479862 -2.492254
input-4 (body.shape round) -4.363966 3.835199
input.5 (body shape square) 1.154510 -2.347489
input.6 (body.shape octagon) 1.542958 -2.227530

input.7 (is_smiling yes) -3.396133 2.984736
input.8 (is_smiling no) 1.868955 -2.994535
input.9 (holding sword) -4.041057 4.239548
input.10 (holding balloon) 1.293933 -2.195403
input.11 (holding flag) 1.160514 -2.272035
input.12 (jacketcolor red) -4.462360 4.451742

input-13 (jacketcolor yellow) 0.749287 -1.869545
input.14 (jacketcolor green) 0.640353 -1.727654

input-15 (jacketcolor blue) 1.116349 -1.332642

input.16 (hastie yes) -3.773187 3.290757

input. 17 (hastie no) 1.786105 -3.296139

bias -1.075762 -0.274980

hidden1 -11.038625
hidden2 -9.448544
bias 5.031395

Figure 10: MONK's problem MONK3: The network learned and generalized successfully.

Extracting Provably Correct Rules from Artificial Neural Networks

23

holding
sword | flag | balloon
jacketcolor
red |vyellow | green | blue | red |yellow | green | blue | red | yellow | green | blue
‘ hastie ‘
y In |y In |y [n |y |n]y [n]y |n]y |n [y |n]y |n [y [n]y |n |y |n
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # y rou rou
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n rou rou
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # y squ rou
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n squ rou
y oct rou
n oct rou
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # y rou squ
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n rou squ
|l # | # |8 |# # |l # | # |8 #|# #l#|#|la|#|# y squ squ
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n squ squ
y oct squ
n oct squ
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # y rou oct
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n rou oct
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # y squ oct
| # | # | # # # # | # | # | #|#|# # | # | # | # | # | # n squ oct
y oct oct
n oct oct
is body head
smiling shape shape
MONK'’s problem MONKg: weights and biases
[T to-node
[from-node [hidden1 hidden2 | output |
input.1 (headshape round) -0.029477 -0.008986
input.2 (headshape square) -0.376094 -0.364778
input.3 (headshape octagon) -0.051924 -0.028672
input-4 (body. shape round) 0.991798 0.991750
input.5 (body. shape square) 1.031170 1.027708
input.6 (body.shape octagon) || -1.284263 -1.279808
input.7 (is.smiling yes) -0.303940 -0.314212
input.8 (is.smiling no) -0.216766 -0.221040
input.9 (holding sword) -0.064305 -0.052110
input.10 (holding balloon) -0.257165 -0.243988
input.11 (holding flag) -0.131509 -0.122790
input.12 (jacketcolor red) 1.001415 1.004192
input-13 (jacketcolor yellow) 0.898066 0.896869
input.14 (jacketcolor green) 0.670929 0.673218
input.15 (jacketcolor blue) -1.280272 -1.272798
input.16 (hastie yes) -0.354472 -0.355268
input.17 (hastie no) 0.040973 0.037927
bias -0.319686 -0.343492
hidden1 1.762523
hidden2 1.759077
bias -1.501492

Figure 11: MONK’sproblem MONK3: Due to noise in the training set, the network had a small enrdre
classification, indicated by the boxes in the classificati@gram.

Extracting Provably Correct Rules from Artificial Neural Networks 24

headshape bodghape issmiling holding jacketolor hastie class

round red M1

square red M1

octagon red M1

round red M1

round round M1

square red M1

square square M1

octagon red M1

octagon octagon M1
round square yellow notM,
round square green notM1
round square blue notM1
round octagon yellow notM,
round octagon green notM
round octagon blue notM1
square round yellow notM,
square round green notM
square round blue notM1
square octagon yellow notM,
square octagon green notM
square octagon blue notM,
octagon round yellow notM,
octagon round green notM
octagon round blue notM1
octagon square yellow notM,
octagon square green notM
octagon square blue notM,

Figure 12: Rules extracted from the network trained on the MONK’s fxeabM ;.

without these additional input constraints VI-Analysis was unable to find reasomnddxeat
all.

The results of VI-Analysis for each of the three MONK's problems, respelgtiare sum-
marized here.

e Mj: (c.f. Figure 9) The most general rules found by VI-Analysis are shown in Figure
12. As can be seen from this figure, VI-Analysis found a number of general rules for
the target concept. It failed, however, in detecting the most general rulsbj@od-or
example, the attributbody shape may only take on the valugsound, squar e,
or oct agon, and thus the first three rules depicted in Figure 12 can be combined
yielding

if j acket _col or isred thenM;.

Extracting Provably Correct Rules from Artificial Neural Networks 25

headshape bodghape issmiling holding jacketolor hastie class
round red M3
round yellow M3
round green M3
square red M3
square yellow M3
square green M3
blue notMs
octagon notM3

Figure 13: Rules extracted from the network trained on the MONK’s fxeabM 3.

This rule also covers the fourth, sixth and eighth rules listed. Further llogjioglifi-
cation leads to the desired classification:

(head_shape =body _shape) or (j acket col or =red)

Mjs: (c.f. Figure 11). The rules generated by VI-Analysis for g problem are
listed in Figure 13. Here VI-Analysis succeeded in extracting the most glemges.
The two negative rules depicted in this Figure suffice to describe the fadasisin
completely.

M,: (c.f. Figure 10) As might be seen from the concept description of the problem
M, this problem is not representable in a compact set of hypercube-type rules at all.
Consequently, VI-Analysis can only find a set of highly cluttered, specific rilas t

are hard to interpret by human observers. In order to prove the correctndsés of
efficiently, we extended the expressive power of the rule language in VI-Asalysi
arbitrary linear constraints on the input activations of the network at hand. lcee

of M, we Vl-analyzed the three simple linear constraints:

— The sum of all first feature valuesis < 1.
— The sum of all first feature valuesis 2.
— The sum of all first feature valuesis > 3.
Note that these rules are of the typeof-n. VI-Analysis successfully verified all three

conjectured rules. Thus, it was analytically shown that the network hasdeédhe
correct classification.

The VI-Analysis ofM, demonstrates the true expressive power of the VI-Analysis.
The rule language consists of all sets of linear constraints on the input and the output

Extracting Provably Correct Rules from Artificial Neural Networks 26

activations, rather than hypercubes only. It should be noted, however, that no saadomat
search was involved in analyziiy,, as the tested hypotheses were generated manually.
Although mechanisms which search the space of all linear hypotheses in the ingut spac
(or whole sets thereof) can easily be designed, it seems questionable asttentimist

can be done efficiently. Such mechanisms are beyond the scope of this paper.

5.3 GrowingRules

We will now draw out attention to real-valued domains. While at least inqggpie finite
domains allow for exhaustively testing all input patterns, real-valued de@ae infinite and
exhaustive search techniques cannot be applied. Therefore, one needs other techniques to
form and verify rules.

In this section we will describe an approach to rule extraction that ischasen iteratively
growing training instances. Assume a data pointis given which is clasbkifitee network as
belonging to some clags. Obviously, VI-Analysis will easily prove the correctness of this
classification, simply by constraining the input intervals to exactly thig data point. This

is because VI-Analysis degrades to the standard forward propagation of iactivalues if
each input interval contains a single point only, and the “proof” in this case isltrivi

Starting with this point, the input intervals can be iteratively extendeddoe general rules

by adding small random values to the bounds of the input intervals. Each time one of the
input intervals is enlarged by some random amount, VI-Analysis is applied tty viethis

more general rule is still provably correct. If VI-Analysis succeeds/)dnger input interval

is maintained, otherwise it will be set to its previous values. This itexgrowing procedure
allows the gradual approximation of more general rules, based on a single input patiein

acts as a seed. If the network transfer functions are continuous, the almagt-Qeg., with
probability 1) existence and VIA-provability of small non-point rules can be shdwiour

case we applied the technique of growing intervals to the XOR problem, and ehiapge
intervals completely randomly. Therefore, for each starting point theghinbe a whole set

of resulting rules, depending on the order in which the input intervals are modifigdreFi

14 summarizes the result for the XOR example. Figure 14a displays the output of the XOR
network over the two-dimensional hypercube spanned by the input units, and Figure 14b-d
displays some rules found by random rule growing starting with the starting pdin®s,

(0;1), (0;0), (1;1), and(.5;.5).

Extracting Provably Correct Rules from Artificial Neural Networks 27

(@) (b)

o
®
)
==iniN |
i

0.4 =] A

0.4

hN

Figure 14: Rulesfor XOR: (a) shows the function generated by the network. The véuditd the horizontal
axis measure the two input variables, and the gray-scalsumesithe network output (whitel, black=0). (b)
Rules found from growing the two patter(, 0) and(1, 1). For these hypercubes the output of the network
will always be greater than.B. (c) Same for the starting point8, 1) and(1, 0) and (d)(0.5, 0.5). Here the
output is provably smaller than®

Extracting Provably Correct Rules from Artificial Neural Networks 28

Growing training data results iregitimate preconditions that ensure the same classification
as the classification obtained by the training instance at hand. Hence theagegtdimage
generalizes the training instance in the input space. It is worth mentioniny lt#fetalysis
bears some resemblance to symbolic explanation-based learning technique$@E&bng
and Mooney, 198 [Mitchell et al., 1986. In symbolic EBL,weakest preconditions are
extracted by observing and analyzing a chain of symbolic rule inferences. Thesesve
preconditions generalize single training instances in the feature space. bliicgal neural
networks, symbolic rules facilitate the extraction of such preimages, Hegeare easy to
invert. Growing legitimate preimages by means of VI-Analysis can thus &sed as the
neural network counterpart to weakest preconditions in symbolic EBL.

6 Reated Work

Several researchers have proposed a variety of mechanisms to extescfrouh artificial
neural networks, which have been constructed from training data. Unlike the deehni
proposed in this paper, most of the approaches seek to assign semantic conckets to t
individual hidden and output units of a network. Often they translate each hidden unit into a
separate rule. For example, Towell and Shalfigwell, 1991, [Towell and Shavlik, 1992
describe a method which analyzes the weights and biases of a neural network itoorder
translate the network step-by-step into a set of rules with equivalentisteuc In order

to do so, the weights and biases of the network are truncated and discretmdtngein
approximately correct rules. These rules correspond directly to the links atsliarthe
network. Consequently, the technique benefits if the networks at hand are only sparsely
connected. In their approach, initial domain knowledge is employed for pre-stmngtine
networks. Similar methods have been proposed bjFeL11989, and Mahoney and Mooney
[Mahoney and Mooney, 1993Mahoney and Mooney, 1992Tresp and HollatfTresp and
Hollatz, 1993 and Giles and OmlifiGiles and Omlin, 199lescribe rule extraction methods

for a restrictive class of network architectures with specific tranfinctions. Tresp and
Hollatz’s method is restricted to single-layer networks with Gausaaivation functions. In

the case ofGiles and Omlin, 1993 the networks are higher-order recurrent networks which
are trained to approximate finite state automata.

In all the approaches listed above certain assumptions are made about theetaswell
as the sparseness of the networks, in order to make the task of rule extractiageahle.

Extracting Provably Correct Rules from Artificial Neural Networks 29

VI-Analysis differs from these approaches, since it analyses the networklasl@instead of
translating the network layer-by-layer. Moreover, the rules found by VI-Ansyre provably
correct, making VI-Analysis a promising candidate for larger networks witipialhidden
layers.

Other rule extraction mechanisms rely on special training procedure thapplied during
network training. For example, McMillafMcMillan, 1994, [McMillan et al., 1997 de-
scribes a system in which the task of rule extraction is simplified by inmgagigularization
constraints on the network during training. Once the network is trained in this mateie
pendencies are sparse, and the mapping to a set of rules is straightforwamhn8l seural
network training scheme is described by Craven and Shi@li&ven and Shavlik, 1993In

their rule extraction algorithm, a weight regularization term is appliedndutriaining which
aims at grouping weight values into discrete classes. Discrete weigilitata the extraction

of certain types of symbolic rules (namely-of-n rules) from trained networks. Note that
the weight regularization term replaces the need for initial knowledge pastes in[Towell,
1991 and[Towell and Shavlik, 199R In both of these extraction schemes the effectiveness
of the rule extraction mechanism, as well as the degree of correctness oftetextrules,
relies crucially on the particular training procedure invoked. VI-Analysifeds from these
approaches in that it does not make any assumptions regarding the training procechae for t
network at hand. Rule extraction based on VI-Analysis is thus applicable to almnoatier
class of networks.

VI-Analysis bears close resemblance to sensitivity analysis. Unlikefathe above ap-
proaches which translate networks unit-by-unit, sensitivity analysis charaséhe network
output by systematic variations in the input patterns and examining the changes it-the ne
work classification (in some cases including the changes in its deriggtiliike VI-Analysis,
sensitivity analysis analyses the network as a whole. An approach to ruletextrbased on
sensitivity analysis has been proposed by Goh and Weof) and Wong, 1993 Sensitivity
analysis, however, yields only approximately correct rdfes.

It should be noted that some of the rule extraction mechanisms listed above hdeenot
designed with the same objectives as the method proposed in this paper. For examgle
researchers have argued that rule-enforcing constraints on the training pecaslwell

101t seems feasible, although not necessarily computatipmattable, that further analysis of the magnitude
of the weights and biases of the network (or alternativeby tigher-order input-output derivatives) can be
employed to generate provably correct rules based upoitiségsanalysis.

Extracting Provably Correct Rules from Artificial Neural Networks 30

as certain structure on the network topology, might significantly improve the ajeragron
rate, given that the target concept can be easily described by rules. Siraze mterested in
rule extraction from arbitrary networks we make no assumption about the traironggure
at hand. Thus, VI-Analysis is also applicable to those more structured netwiorttsed,
we expect the resulting rule sets to be even better if rule-enforcing rezatian terms are
already applied during training.

7 Discussion

In this paper we have proposed a generic technique for extracting provably carext r
from arbitrary pre-trained artificial neural networks. The rule ext@ttnechanism relies

on VI-Analysis, which is a tool for analyzing trained neural networks. VI-Analyerifies

the correctness of conjectured rules by searching inconsistencies. It daag phopagating

and refining rule-knowledge (validity intervals) through the network in both fodvwand
backward direction. We have demonstrated how VI-Analysis can be employed a®&ylo
proving-engine for the verification of symbolic rules. Two systematic rulecbeschemes,
one for discrete domains and one for real-valued domains, are proposed and empirical
evaluated on the XOR and the MONK’s problems.

In the beginning of this paper we outlined four desired properties for a general rudeotr
mechanism. VI-Analysis fulfills most of these demands:

1. Noarchitectural requirements. Rule extraction using VI-Analysis does not make any
architectural commitments whatsoever regarding the network to be analymbbd,
by analyzing the network as a whole rather than compiling networks unit-by-unit,
rules can be extracted from densely interconnected networks with arb#saryalued
weights and biases. Thisincludes recurrent networks not describetthaiies current
form VI-Analysis relies exclusively on the assumption that all transfiections are
monotonic and continuous, as it the case in Backpropagation networks. As described
below, VI-Analysis can be extended to piecewise monotonic transfer functidwmsh w
includes for example Radial-Basis functidhdoody and Darken, 1989

2. No training requirements. Since VI-Analysis analyses trained networks, the rule

Hsee for exampl@Jordan, 1986 [EIman, 1988 and[Williams and Zipser, 198dor literature on recurrent
networks).

Extracting Provably Correct Rules from Artificial Neural Networks 31

extraction mechanism described in this paper does not require any specalgrai
procedure. Consequently, VI-Analysis is applicable to a variety of networks. For
example, many neural network applications that have proven to be succegsadtice
have not been trained to facilitate the extraction of rules. Examples incloelech
recognitionfWaibel, 1989, speech synthesfSejnowski and Rosenberg, 1986obot
navigation[Pomerleau, 19499 handwritten digit recognitiofLeCun et al., 199,
medical diagnosticJabriet al., 1994, and game playingTesauro, 199 Unlike

rule extraction mechanisms which require a special training routine, VIyAisais
generally applicable to a broad variety of artificial neural networks, inolgidhose
listed above.

3. Correctness. The extracted rules are provably correct, i.e. rule extraction based on
VI-Analysis generates rules that correctly describe the target networkcdrhectness
of rules is a direct implication of the truth-preservation property of VI-Amsé.

4. Expressivepower. Formally, the expressive power of the rule language of VI-Analysis
is the set of linear constraints on the activation patterns for the input and the output
layer. We have demonstrated that this language is sufficient for expressing hypercube
constraints. It furthermore allows the representatiomobf-n rules. In fact, the
language of linear constraints includes most types of rules studies in the context of
artificial neural networks. It excludes, however, various rule types of raileses] in
symbolic Al. To give a simple example, the rul¢éhe output is always smaller than
theinput” can not be verified by VI-Analysis, since linear constraints may not applied
across several layers. VI-Analysis also excludes higher-order'fules studied for
example by Giles and OmlifGiles and Omlin, 1998 If such rules are to be verified,
non-linear optimization techniques must replace the Simplex algorithm. We conclude
that we have partially met our goal of a powerful rule language. More general rule
languages are clearly desirable.

There are several limitations and open questions that warrant futureglesear
e While VI-Analysis is truth-preserving, it might fail to prove the correcsmescorrect

rules. This is because each weight layer is evaluated separately,timegtiEpenden-
cies that arise across multiple weight layers. By evaluating weight Issearately,

2rules with products of variables

Extracting Provably Correct Rules from Artificial Neural Networks 32

techniques of linear programming become applicable. On the other hand, VI-Analysis
might be too careful when refining intervals. It might miss existing contremtist
Non-linear optimization techniques which optimize the network as a whole are grospe
tive candidates for overcoming this limitation. Since non-linear optinozatisually
suffers from local minima, itis generally unclear whether the resultingsralould still
correctly describe the underlying network. Sacrificing the correctness goatvieow
might be appropriate if the resulting rule verification algorithms turns out to beisupe

to VI-Analysis.

e So far, the space of strategies for generating rule conjectures has not yetubgen f
explored. In this paper we described two basic approaches, one for discrete and one
for real-valued domains. The latter mechanism, for example, used a randosh sea
strategy to grow antecedents of a rule. There are a wide variety of moceeeffi
strategies to grow input intervals in real-values domains. For example ooihe start
with identifying irrelevant features by removing whole input interval constea If
the total volume of the rule is to be maximized, parallel search techniquesasuch
Genetic AlgorithmgHolland, 1984, [Goldberg, 198DPbecome applicable. At a first
glance, the genetic string could encode the current setting of validity inseewad the
performance measure to be maximized may be the volume covered by thegal&ter
or a similar function.

As Tom Dietterich [personal communication] pointed out, symbolic learning algo-
rithms such as decision tree learnif@uinlan, 1986 may be used to generate rule
hypotheses as well. Symbolic learning procedures directly generate sets ofhidbs
approximate the set of training instances. Once such rules have been genbmsted, t
are promising candidates for an artificial neural network trained on the datae

¢ Rule verification based on VI-Analysis is complex, if the network at handgelaThis
is because VI-Analysis refines the validity intervals iterativelizgjich involves many
complete runs of the Simplex algorithm. In this paper we did not address computational
efficiency at all. While for the simple cases we analyzed thus far, Viismmwas
consistently found to terminate quickly, we suspect that VI-Analysis might thellgw
slow when applied to networks two or more orders of magnitude larger. Research on
speeding up VI-Analysis and other faster rule provers will then be warranted.

e One of the major strengths of the approach described in this paper is also one of

Extracting Provably Correct Rules from Artificial Neural Networks 33

its weaknesses, namely the correctness of rules. While non-correct rudetextr
mechanisms are less likely to scale to large networks with many hidgens|athe
correctness of the extracted rules may lead to very specific rules.r@lgrspeaking,

if the function learned by the neural network is complex and highly cluttered, any
correct rule extraction mechanism will be forced to generate a large deigbly
specific rules. In such cases it might be more desirable to invoke mechanlsois
trade off correctness versus generality and produce overly general rulesud¢ton
mechanisms it is desirable that the human user has explicit control overaities aff.

e Two important assumption of VI-Analysis in its current form are the monotonicity
and the continuity of the transfer functions in the network. These assumptions can be
relaxed to piecewise monotonic and piecewise continuous transfer functioringsul
in assigning whole sets of intervals to each unit. Algorithms for evaluatmj a
propagating sets of intervals—rather than single intervals—are straiglatfdyjut
they come at the price of increased computational complexity. It remains teobens
whether such algorithms will be efficiently applicable in practice.

¢ VI-Analysis is a generic tool for analyzing dependencies in artificial neuralonks.
As such it can be applied to problems other than rule extraction. In this paper, for
example, we exclusively focussed on constraining input and output activations. VI-
Analysis allows hidden activations to be constrained as well. This might Haluse
for figuring out the role of hidden unit activations in the computation, in order to
assign semantic meaning to hidden units. Satinder Singh [personal communication]
has pointed out that validity intervals can also be assigned to weights aresbias
characterizing the dependence of the network’s output on the weights and biases of the
network.

These directions are currently completely unexplored, since our primary inhtares
VI-Analysis has been the automated extraction of preimages and rules.

Acknowledgment

| wish to thank Tom Dietterich, Clayton McMillan, and Tom Mitchell for theivaluable
feedback that has influenced this research. | thank Clayton McMillan for hisnemns on
an earlier draft of this paper. | also thank Armin Cremers for his steagpat during the

Extracting Provably Correct Rules from Artificial Neural Networks 34

course of this research. The “Deutsche Formschungsgemeinschaft” has in partesdiipsrt
work by a travel grant.

References

[Craven and Shavlik, 1993Mark W. Craven and Jude W. Shavlik. Learning symbolic rules
using artificial neural networks. In Paul E. Utgoff, editBrpceedings of the Tenth Inter-
national Conference on Machine Learning, San Mateo, CA, 1993. Morgan Kaufmann. to
appear.

[DeJong and Mooney, 1986erald DeJong and Raymond Mooney. Explanation-based
learning: An alternative viewMachine Learning, 1(2):145-176, 1986.

[Elman, 1988 Jeffrey L. ElIman. Finding structure in time. Technical Report CRL Tednic
Report 8801, Center for Research in Language, University of California, SsgoP1988.

[Fu, 1989 Li-Min Fu. Integration of neural heuristics into knowledge-based inference.
Connection Science, 1(3):325-339, 1989.

[Giles and Omlin, 1998 C. Lee Giles and Christian W. Omlin. Rule refinement with recur-
rent neural networks. IProceedings of the IEEE International Conference on Neural
Network, pages 801-806, San Francisco, CA, March 1993. IEEE Neural Network Council.

[Goh and Wong, 1993T. G. Goh and Francis Wong. Semantic extraction using neural net-
work modelling ans sensitivity analysis. To be found in the neurprose archive (avogym
ftp from archive.cis.ohio-state.edu:pub/neuroprose/thgoh.sense.ps.Z), 1993.

[Goldberg, 198p David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[Holland, 1984 John H. Holland. Genetic algorithms and adaptation.Ploceedings of
I11-Defined Systems, England, 1984.

[Jabriet al., 1994 M. Jabri, S. Pickard, P. Leong, Z. Chi, B. Flower, and Y. Xie. ANN based
classification for heart defibrillators. In J. E. Moody, S. J. Hanson, and Bppmann,
editors, Advancesin Neural Information Processing Systems4, pages 637—644, San Mateo,
CA, 1992. Morgan Kaufmann.

Extracting Provably Correct Rules from Artificial Neural Networks 35

[Jordan, 198F Michael I. Jordan. Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science, Univers@abifor-
nia, 1986.

[Karmarkar, 1981 N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373—-395, 1984.

[LeCunet al., 1994 Y.LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1:541-551, 1990.

[Mahoney and Mooney, 1992]. Jeffrey Mahoney and Raymond J. Mooney. Combining
symbolic and neural learning to revise probabilistic theoriePriceedings of the 1992
Machine Learning Workshop on Integrated Learning in Real Domains, Aberdeen Scotland,
July 1992.

[Mahoney and Mooney, 1993). Jeffrey Mahoney and Raymond J. Mooney. Combining
neural and symbolic learning to revise probabilistic rule bases. In J. E. Moody, S
Hanson, and R. P. Lippmann, editofslvancesin Neural Information Processing Systems
5, San Mateo, CA, 1993. Morgan Kaufmann. (to appear).

[McMillan et al., 1994 Clayton McMillan, Michael C. Mozer, and Paul Smolensky. Rule
induction through integrated symbolic and subsymbolic processing. In J. E. Moody, S. J.
Hanson, and R. P. Lippmann, editofslvancesin Neural Information Processing Systems
4, pages 969-976, San Mateo, CA, 1992. Morgan Kaufmann.

[McMillan, 19924 Clayton McMillan. Rule Induction in a Neural Network through In-
tegrated Symbolic and Subsymbolic Processing. PhD thesis, University of Colorado,
Department of Computer Science, Boulder, 1992.

[Mitchell et al., 1984 Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli.
Explanation-based generalization: A unifying viewlachine Learning, 1(1):47-80,
1986.

[Moody and Darken, 1989John Moody and Chris Darken. Fast learning in networks of
locally-tuned processing unitdleural Computation, 1:281—-294, 1989.

Extracting Provably Correct Rules from Artificial Neural Networks 36

[Pomerleau, 1999D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neural
network. Technical Report CMU-CS-89-107, Computer Science Dept. Carnegie Mellon
University, Pittsburgh PA, 1989.

[Quinlan, 198% J. Ross Quinlan. Induction of decision trebtachine Learning, 1:81-106,
1986.

[Rumelharet al., 1984 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning internal representations by error propagation. In D. E. Rumelhart dnd J.
McClelland, editorsParallel Distributed Processing. Vol. | + II. MIT Press, 1986.

[Sejnowski and Rosenberg, 198%. J. Sejnowski and C. R. Rosenberg. Nettalk: A parallel
network that learns to read aloud. Technical Report JHU/EECS-86/01, John Hopkins
University, 1986.

[Tesauro, 1990 Gerald J. Tesauro. Practical issues in temporal difference leaviahine
Learning Journal, 8, 1992.

[Thrun and Linden, 1990S. Thrun and A. Linden. Inversion in time. Rroceedings of the
EURAS P Workshop on Neural Networks, Sesimbra, Portugal, Feb 1990. EURASIP.

[Thrunet al., 1991 Sebastian B. Thrun, Jerzy Bala, Eric Bloedorn, Ivan Bratko, Bojan
Cestnik, John Cheng, Kenneth De Jong, Saso Dzeroski, Douglas Fisher, Scott ErFahim
Rainer Hamann, Kenneth Kaufman, Stefan Keller, Igor Kononenko, Juergen Kreuziger,
Ryszard S. Michalski, Tom Mitchell, Peter Pachowicz, Yoram Reiclelifdafaie, Walter
Van de Welde, Walter Wenzel, Janusz Wnek, and Jianping Zhang. The MONK's problems
- a performance comparison of different learning algorithms. Technical Repigt-CS-
91-197, Carnegie Mellon University, Pittsburgh, PA, December 1991.

[Towell and Shavlik, 199R Geoffrey Towell and Jude W. Shavlik. Interpretation of artificial
neural networks: Mapping knowledge-based neural networks into rules. In J. E. Moody,
S. J. Hanson, and R. P. Lippmann, edit@gdyances in Neural Information Processing
Systems 4, pages 977-984, San Mateo, CA, 1992. Morgan Kaufmann.

[Towell, 1991 Geoffrey Towell. Symbolic Knowledge and Neural Networks. Insertion,
Refinement and Extraction. PhD thesis, University of Wisconsin—Madison, 1991.

Extracting Provably Correct Rules from Artificial Neural Networks 37

[Tresp and Hollatz, 1993Volker Tresp and Jiirgen Hollatz. Network structuring and training
using rule-based knowledge. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems 5, San Mateo, CA, 1993. Morgan
Kaufmann. (to appear).

[Waibel, 1989 A.H. Waibel. Modular construction of time-delay neural networks for speech
recognition.Neural Computation, 1:39—-46, 1989.

[Williams and Zipser, 1989R. J. Williams and D. Zipser. A learning algorithm for contin-
ually running fully recurrent neural networksleural Computation, 1(2):270-280, 1989.
also appeared as: Technical Report ICS Report 8805, Institute for Cognitivec8cie
University of California, San Diego, CA, 1988.

[Wneket al., 1990 J. Wnek, J. Sarma, A. Wahab, and R. Michalski. Comparison learning
paradigms via diagrammatic visualization: A case study in single conceptrigarsing
symbolic, neural net and genetic algorithm methods. Technical report, George Mason
University, Computer Science Department, 1990.

