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Abstract 

BioLingua is an interactive, web-based programming environment that enables biologists to 

analyze biological systems by combining knowledge and data through direct end-user 

programming.  BioLingua embeds a mature symbolic programming language in a frame-based 

knowledge environment, integrating genomic and pathway knowledge about a class of similar 

organisms. The BioLingua language provides interfaces to numerous state-of-the-art 

bioinformatic tools, making these available as an integrated package through the novel use of 

web-based programmability and an integrated Wiki-based community code and data store.  The 

pilot instantiation of BioLingua, which has been developed in collaboration with several 

cyanobacteriologists, integrates knowledge about a subset of cyanobacteria with the Gene 

Ontology, KEGG, and BioCyc knowledge bases.  We introduce the BioLingua concept, 

architecture, and language, and give several examples of its use in complex analyses.  Extensive 

documentation is available online at http://nostoc.stanford.edu/Docs/index.html. 

 

The Goal: Giving biologists hands-on capability in computational biology 

In the past forty years, molecular biology has come to permeate every biological discipline. A 

similar revolution is in progress with regard to the massive amount of information becoming 

available through genomic sequencing and microarray experiments. While biologists were 

relatively quick to adopt the tools of molecular biology, the same is not true of the tools of 

bioinformatics, resulting in a growing distance between biologists and the data from which new 

insights must be drawn.  

Although some bioinformatic tools, such as Blast, have gained popularity among 

biologists, combining tools and data often requires hours of painstaking database search and 

knowledge manipulation.  In many cases biologists resort to programmers to conduct 
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computational analyses on their behalf.  Thus, the world of computational biology is accessible 

to biologists primarily through programmers. Whereas in the laboratory biologists can adjust 

their work dynamically, turning partial results over in their hands and modifying their tools to 

address problems and new subgoals, this flexibility is significantly reduced when programmers 

mediate between biologists and biological data.  

BioLingua seeks to give biologists hands-on capability in computational biology by 

enabling them to work directly with large data sets in a familiar language, while implementation 

details are hidden so that programmers are needed less often.  The BioLingua programming 

environment hides the many complexities required to implement complex knowledge-based 

computations by providing a wide range of databases and analytical tools, integrated with one 

another, and accessible through a common, simple programming language.  In the BioLingua 

world, biologists become programmers in much the same way as molecular biologists have 

become enzymologists: few have isolated or characterized enzymes themselves, but they are 

adept at combining enzymes in novel ways. Similarly, users of BioLingua, regardless of their 

background, may combine the tools of computational biology, forming them in ways that are 

unique to the requirements of their tasks.   

BioLingua embodies a number of guiding principles: 

 1. All required data and knowledge is accessible through a common framework. This includes 

genomic, metabolic, and experimental data, as well as relevant higher-level knowledge, such as 

the Gene Ontology (GO), and representations of metabolic pathways;   

2. The system implements an efficient general purpose programming language that is augmented 

with biology-specific functionality, and transparent access to a rich set of basic bioinformatic 

tools and advanced statistical tools (e.g., R, ClustalW, MEME, the NCBI suite, etc.);  

3. The environment is highly interactive, allowing experimentation and immediate reporting of 

results, as well as permitting long-term computations when necessary;   

4. State-of-the-art systems-biology tools, such as those that assist in pathway modeling and 

causal interaction discovery, are smoothly integrated into the framework; and  
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5. The environment provides tools for collaboration among biologists regarding protocols (i.e., 

programs), as well as a means of announcing results and models within the community, thus 

enabling biologists to build upon one another's developments and discoveries. 

Implementation: The Multi-Cyanobacterial BioLingua Listener (MCBL) 

A BioLingua instance is a server running BioLingua loaded with knowledge for a particular 

community of biologists working on similar organisms. Our pilot BioLingua instance, the 

CIW/NASA Multi-Cyano BioLingua Listener (MCBL), tries to achieve the principles described 

above, and accomplishes them to varying degrees. This live web service is hosted at The 

Carnegie Institution of Washington, and has been publicly accessible since June of 2003. The 

MCBL integrates knowledge and data about a number of cyanobacteria. Several biologists are 

using this BioLingua instance for tasks as broad in range as bacterial genomics, causal model 

discovery, and dynamic analysis of biological concepts from literature. (Not all of these are 

working in the cyanobacterial domain.)  In the remainder of this paper we briefly describe some 

of the principal novel aspects of the MCBL.  The interested reader can review its online 

documentation for much more detail (http://nostoc.stanford.edu/Docs/index.html), and a demo 

account is available to anyone associated with a working biological laboratory. 

The MCBL has several conceptual layers:  

The Base Knowledge Layer represents biological component concepts, such as organism, 

genome, gene, protein, scaffold, etc., and their relationships.  It internalizes and integrates major 

data and knowledge bases, such as that found in Kegg (Ogata, et al. 1999), the Gene Ontology 

(Gene Ontology Consortium, 2000), and BioCyc (Karp, 2001). These are locally loaded for 

efficient query service, and integrated with one another for convenient cross-database reference. 

This knowledge is captured in a knowledge-representation substrate, called a "frame system", 

which is described in more detail below and online.  

The Computed Concepts Layer represents complex concepts built up from component 

concepts. Here we find concepts such as subsystem, protein complex, pathway, signal 

transduction pathway, etc., along with functional concepts such as enzymatic reactions. These 

are complex, sometimes tentative, usually context-sensitive interpretations of the primitive 

biological concepts rather than fixed biological facts (Shrager, 2003). Usually these are 

calculated by BioLingua programs which can perform arbitrary computations on the knowledge 
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base (including the underlying sequence data) to produce complex entities such as intergenic 

sequences, set of orthologous proteins, and so on. Users may add their own programs to this 

layer, thereby creating new complex concepts.  For example, a user may wish to add binding 

sites for a specific protein by matching the genome with a regular expression, a Markov model, 

or a position-specific scoring matrix. 

The Programming Layer enables biologists to access and manipulate the knowledge and 

data in the previous layers. The BioLingua programming language, described in more detail 

below and online, is a derivative of Common Lisp, expanded to permit flexible integration of the 

various facilities inside and outside of the BioLingua environment.  

The Task-Specific Interface Layer provides specific interactive graphical interfaces that 

drive BioLingua programs, making these available for public use. Users can easily dynamically 

create web-accessible interfaces to any function in the system (including their own newly 

programmed functions) which can be used by other users who do not have to be logged in to the 

BioLingua server. 

Finally, the Collaboration Layer enables users to store their code and results, document 

their work, organize user groups, and conduct individual and collaborative activities. This layer 

is based upon Wiki Technology (http://c2.com/cgi/wiki?WikiWikiWeb).  

The BioLingua system integrates many common bioinformatics tools, including ClustalW, Blast, 

MEME, the microarray and statistical tools from the R statistical package (http://www.r-

project.org/), and others. These tools can be called directly from BioLingua, allowing them to be 

integrated into complex programs and dataflows. BioLingua also incorporates a “crossblast” 

table with the complete protein-by-protein Blast (above a certain e-value threshold) of all 

available genomes, and provides tools for analyzing the graph implied by this blast table. Finally, 

BioLingua includes a set of experimental causal modeling and discovery tools developed in one 

of our laboratories (derivatives of Shrager, Langley, and Pohorille, 2002; Bay, et al. 2002).  

The MCBL currently integrates knowledge for Anabaena PCC 7120, Anabaena 

variabilis ATCC 29413, Nostoc punctiforme, Prochlorococcus marinus SS120, Synechocystis 

PCC 6803, and Trichodesmium erythraeum. Several more cyanobacterial sequences will soon be 

added to the database. There are currently about 260,000 concepts, i.e., frames, in the fully 

loaded knowledge base.  The crossblast table contains about 1.4 Million entries at an e-value 
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threshold of 1.0e-3.  Concepts and tools in the layers described above are added by users and 

developers based on the requirements of specific tasks.    

Given this rich set of tools and knowledge, it is important to understand how much work 

is involved in adding new knowledge or tools to the system. The maintenance process is 

described in detail in the online documentation (http://nostoc.stanford.edu/Docs). Here we 

describe it only briefly. Adding new genomes in the standard (NCBI XML) format is trivial.  If 

they are annotated, then integration into the knowledge base is usually automatic, otherwise 

many tools are provided to support semi-automatic heuristic annotation of un-annotated ORFs. 

(We recently added a new genome (prochlorococcus) in about an hour, although semi-automatic 

annotation and updating the crossblast table take several hours.)  Interfacing new computational 

tools is usually simple. If the tool produces XML output, parsing and re-integration of the results 

into the knowledge space is generally very easy.  Otherwise, parsing can be somewhat of a 

chore, but as the underlying Lisp language is quite efficient, and provides the usual string 

processing tools (such as regular-expression parsing), this is no more difficult than it would be in 

any language, and significantly easier than in some.  The most difficult process is, as one might 

imagine, integrating new knowledge bases into the knowledge layer, for example, integrating an 

entirely new pathway knowledge base.  The heuristics for threading the new knowledge base 

with the existing knowledge backbone must be initially done by knowledge engineers (e.g., the 

present authors). Once the threading algorithm is in place for a particular knowledge base, re-

importing new versions is usually completely automatic. The knowledge management tools 

provided by Lisp and the frame system are quite rich, so it is usually simple to implement the 

threading between the existing knowledge and a new knowledge base once the knowledge 

engineers have decided how it should be done.  

Availability: The MCBL (http://nostoc.stanford.edu/Docs) is implemented in Franz Common 

Lisp (ACL 6.2, Franz Inc. Berkeley, CA) and runs on a dual Athlon Linux server (Fine Tech, 

San Jose, CA).  It comprises approximately 50,000 lines of Common Lisp code (including 

internal comments) and about 15,000 lines of external documentation.  The system is available 

under an open source public license on SourceForge (http://sourceforge.net/projects/biolingua/). 
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Integrated Knowledge Environment 

The current MCBL combines the complete GO, the basic KEGG ontology, and a set of pathway 

models from BioCyc. Most permanent knowledge in BioLingua is represented in a frame system 

(Minsky, 1975).  Frames are data structures that represent biological concepts or objects. They 

contain named properties (called “slots”) that contain values which may include other frames or 

sets of frames. Some examples of frames from BioLingua include: 

#$synechocycstis6803  The organism synechocystis PCC 6803 

#$s6803.slr1234   The synechocystis gene called slr1234 

#$Go.HexokinaseActivity  The Gene Ontology concept for  

                                                                         the hexokinase reaction (Fig. 4) 

#$Mol.D-Hexose                 The D-Hexose molecule   

#$Go.ReactantIn   A slot containing a set of molecules 

                                                                                        that indicates related reactions 

A variety of special BioLingua forms and functions create, modify, and manage frames. Syntax 

extensions to the programming language permit reference to the slots of a frame to be written as: 

(#^slot #$frame), which accesses the value of the slot #$slot in the frame #$frame.  For 

example, the expression: (#^proteins #$synechocycstis6803) produces the proteins 

of this organism.  A knowledge browser enables users to conveniently explore the network of 

frames, select desired objects and execute computations on them (Fig. 4). 

 Frame systems are a powerful and general way to represent knowledge. A frame 

represents a concept as a computational object, but unlike more standard object-oriented 

programming languages, frames allow slots to be defined and added dynamically during the 

course of a computation.  BioLingua's frame system also allows the definition of slots that 

compute their value on demand, which provides a basic mechanism on which many different 

types of inference mechanisms can be built.  This allows frame systems to implement richer 
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forms of representation and inference than more restricted languages such as OWL, at cost of 

possibly greater computational complexity. 

Knowledge bases integrated into BioLingua are threaded into one another, and are also 

tied to the organism models.  For example, the GO and KEGG knowledge bases are threaded 

together through shared chemistry, and the GO is threaded into the organisms through their 

genes.  As a result, one can implement quite complex analyses very simply, as demonstrated in 

the examples below.  There are numerous interesting complexities involved in accomplishing the 

intercalation of different knowledge bases, such as the GO and KEGG. For example, there are 

subtle differences in the meaning of terms and relations from one knowledge base to another.  

These issues range from the mundane (BioCyc calls water “water”, whereas KEGG calls it 

“H2O”), to very complex representational issues.   

An example of an especially interesting issue arises in the definition of systems of 

reactions and protein complexes such as photosynthesis. Different knowledge bases may choose 

to represent the reactions implemented by protein complexes at different, incompatible, levels of 

abstraction. For example, the Gene Ontology represents photosynthesis in very general terms, 

and its definitions are merely text strings, whereas BioCyc represents photosynthetic reaction 

chemistry in some detail.  This problem is a symptom of a deep problem in biological functional 

representation (Shrager, 2003), and it may have no general solution.  We have approached this 

problem by parsing the Gene Ontology molecular function (i.e., “activity”) definitions into the 

molecular constituents for the left and right sides of each reaction, and adding these back to the 

GO frames. (Details of this are given at http://nostoc.stanford.edu/jeff/jeff/mbcs/go2.html) A 

new knowledge space, called “Mol” is created to contain the molecule objects that result from 

this parse, and then the molecule frames from BioCyc, KEGG, and the thus augmented GO are 

threaded into this new molecular space.  As a result, BioLingua users can conveniently navigate 

this space, and more importantly, BioLingua programs can easily move between them in 

implementation of complex algorithms. 

The BioLingua Language and Listener Interface 

The BioLingua language is built on top of Common Lisp with a number of biological 

specializations.  We chose Lisp because it is the most efficient language in which to write 

complex symbolic reasoning algorithms, and thus it is becoming increasingly important in 
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computational biology. Lisp is also a very flexible language, with many features that permit 

customization to particular uses or domains. For example, Lisp has a very powerful macro 

capability which allows one to flexibly extend the language's syntax. (See 

http://www.paulgraham.com/avg.html for an explanation of why this is possible and powerful.)    

Users interact with BioLingua through a web-based "Listener", which accepts either 

programs or commands, displays results, and keeps a running history of interactions.   It is a 

naturally interactive language, and this sort of interaction will be familiar to users of Unix-style 

operating-systems and scripting languages.  What is most novel is the use of a live listener on the 

web. Because all BioLingua users are sharing a common workspace on the same server, they can 

share code, results, and interactive state.  This has been useful in complex collaborations such as 

remote user assistance and debugging. More subtle collaboration can be managed through the 

Wiki at the collaboration layer. 

Example Programs and Results 

It is remarkable how a few simple lines of BioLingua code can address biological questions that 

are difficult to approach outside of a general programming language, and biologists have already 

applied this power to make a number of interesting discoveries. For example, the ability of 

BioLingua to identify orthologs across genomes and to extract and manipulate sequences has 

permitted the backward extension of annotated genes within ortholog sets in a systematic effort 

to identify misannotated 5' ends (Elhai, unpublished). The integration of sequence, annotation, 

and convenient sequence search functions led to the identification of the genetic context 

surrounding repeated elements (Costa, Cousins, Elhai, and Lindblad, manuscript in preparation).   

Below are three examples of BioLingua code useful in the solution of biological 

problems. It is important to keep in mind in studying these examples that these can be run live 

online right now by anyone with an MCBL BioLingua account.  Moreover, these few examples 

barely stress the potential of BioLingua and the MCBL, which includes many other tools and 

knowledge-sources such as tools for microarray data analysis and causal model discovery.  Many 

other example programs are given in the online documentation. But the power of this facility is 

not in these particular computations, rather it lies in the flexibility that BioLingua offers 

biologists who can easily implement very complex analyses of their own design.  
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Example 1: Finding the best-matching genes with a particular functional annotation, between 

multiple organisms: Because the frame system integrates both ontological knowledge and 

genomic information, and BioLingua provides convenient access to external tools such as 

ClustalW, we can very easily perform complex, knowledge-based operations, as exemplified in 

Figure 1.  Here we have taken advantage of the fact that the genes of both Anabaena PCC 7120 

and Synechocystis PCC 6803 have been assigned annotations in the Gene Ontology.  In 1A we 

find all those genes annotated as both having kinase activity, and as being involved in glycolysis.  

In 1B we define a new function, score-alignments, which estimates the quality of 

alignments by calculating the fraction of perfect matches (indicated by *’s returned from 

ClustalW)2.  In 1C we iterate that function over every pair of genes returned in 1A, and then, in 

1D, sort the results into best-first order.  

Example 2: Instantiating pathways models: Figure 2A depicts a BioLingua function that renders 

any given BioCyc pathway (bound to the variable: pathway) in terms of any given organism.  

For each reaction in the selected pathway, the program walks through each Gene Ontology frame 

related to that reaction.  If there are genes from the particular organism among those genes, it 

collects these.  This works by virtue of the integration of the BioCyc knowledge backbone with 

the Gene Ontology backbone and with the knowledge base for each individual organism. 

Example 3: Using alignment to check annotations: The final example (Figure 3) is coded in an 

extension of BioLingua – called “BioLingua-Lite” – which provides a simpler syntax, and 

automates many procedures for the user.  This extension was written by one of us (JE) and his 

students using the Lisp macro facility. 

Consider the problem of trying to identify the gene encoding the enzyme cyanophycin 

synthetase in the cyanobacterium Trichodesmium erythraeum. In 3A we obtain the set of genes 

from all the loaded organisms which are annotated as "cyanophycin synthetase". There is no 

Trichodesmium erythraeum protein in this list, which is surely an annotation error, as this 

organism is known to possess cyanophycin. We could use one of the proteins on the list to Blast 

Trichodesmium, but which protein?  Are they all really cyanophycin synthetases?  

In 3B we use the experimentally determined partial amino acid sequence of a 

cyanophycin synthetase (Ziegler, et al 1988) to directly search for a true cyanophycin synthetase 

sequence in Anabaena variabilis. In 3C the orthologs of this gene are gathered, producing a set 
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that includes p-Te?4231, a protein of Trichodesmium. However, this protein is annotated as "D-

alanine-D-alanine ligase". In order to assess whether this protein is as similar to the proven 

cyanophycin synthetase as other proteins annotated cyanophycin synthetase, the set of orthologs 

is combined with the previously gathered set of putative cyanophycin synthetase genes.  In 3D 

the complete set is aligned (only a typical portion of the alignment is shown to save space). It is 

evident that there are three families of protein sequences. The Trichodesmium protein, 

p-Te?4231, falls into the family containing the proven cyanophycin synthetase and shows 79% 

identity over the full extent of the protein (not shown). We conclude that the annotation of the 

Trichodesmium p-Te?4231 is incorrect: this protein is indeed a cyanophycin synthase.  

Related Work 

A number of projects aspire to the same goals as BioLingua, and implement some (or 

envision all) of the same underlying mechanisms. For purposes of comparison we roughly divide 

these mechanisms into database and tool integration, and end-user programming, although they 

are usually combined in complex ways in any particular project. 

Database-integration systems such as Kleisli (Davidson, et al. 2001), DiscoveryLink 

(Haas et al 2001), and myGrid (Stevens, et al. 2003) implement integrated queries across a 

variety of data sources that may be distributed across networks, with local caching to improve 

speed.  (See Karasavvas, et al., 2004 for a recent review.)  Unlike these, BioLingua is an end-

user programming language, not just a query language.  BioLingua users can write programs that 

transparently pass the results of one computation on to the next, add to the knowledge base, and 

integrate partial results with computational tools such as Blast and R, enabling a much richer 

range of activity than is afforded by queries alone.  Although it is possible to query knowledge 

bases across the web, BioLingua was conceived to run on a local knowledge base so as to permit 

operations with frequent data lookups to run orders of magnitude more quickly than they would 

over dispersed data.  Therefore BioLingua provides a locally integrated knowledge base around a 

number of related organisms. Finally, BioLingua goes beyond most existing knowledge 

integration systems, which are usually based around XML or OWL (such as myGrid) in that our 

frame system offers more functionality.  For example, one can define computed slots in the 

BioLingua frame system, enabling arbitrary inferences, including default reasoning, which can't 

be easily done in the Description Logic framework used by OWL. 



BioLingua: A Biologist's Computational Workbench - 11 

While a number of biologists are actively using the MCBL in its present form3, one of 

our current efforts seeks to further increase accessibility by including a visual programming 

language as part of the environment.  There are a number of programmable bio-genomic data 

analysis tools that use a visual wiring/dataflow paradigm, such as PipeLine Pilot 

(www.scitegic.com), Gene Spring (www.silicongenetics.com), and QueryConnect (Hudson, et 

al., 2004).  This model originated with SketchPad (Sutherland 1963) and has been 

commercialized by systems like ProGraph (Cox & Pietryzkowsky, 1989) and Labview 

(www.ni.com). Such languages are relatively easy for novices learn, but can lack flexibility and 

the power to manage complexity.  So long as one's algorithms are naturally represented in a pure 

dataflow model, these work well, but when one needs to break from this model, for example, 

where different cycles of iteration interact with one another, the restrictions of this computing 

paradigm can become cumbersome. Because BioLingua is based upon a mature programming 

language, it has no such limitations, but it may be difficult for biologists to learn.  We hope to 

address this problem by implementing a graphic language that translates BioLingua syntax into 

visual affordances based upon Behave! (Travers, 1994). 

Many bioinformatic engineers currently rely upon the Bio* languages (BioPython, 

BioJava, etc.).  Paradoxically, while the Bio* languages are good for the things programmers 

need to do for biologists (integration, reformatting, and interfacing), these are not the activities 

that biologists want to spend their time doing.  Biologists want all of those tasks done for them to 

begin with, and to just get on with their analyses. This is why BioLingua provides an integrated 

environment. Once such integration has been done, these Bio* languages lose much of their 

utility. Darwin (Gonnet, et al. 2000, http://cbrg.inf.ethz.ch/) offers more richness in bioinformatic 

computations than the Bio* languages, but contrasts with BioLingua in a number of ways.  

Darwin is a new interpreted language, whereas BioLingua is based upon a mature compiled 

language, Lisp, which can be easily used interpretively as well. Therefore, BioLingua offers both 

more efficiency and more expressive power than Darwin, for example in terms of macros and 

syntax extensions. Although not strictly a string-processing language, Darwin is focused largely 

on sequence analysis, whereas BioLingua was designed from the outset as a knowledge 

processing system.  Also, Darwin runs locally and must be downloaded to a user's machine, 

whereas BioLingua is available to anyone who can access the World Wide Web. 
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Finally, BioLingua's integrated, web-based environment offers much greater immediate 

access to the relevant knowledge than any of these languages.  What biologists need is neither a 

string processing language, nor a general purpose language that the user has to manually connect 

to their knowledge sources. What they need instead is a knowledge processing language 

embedded in an integrated knowledge base already loaded with all the relevant knowledge and 

data.   

Conclusion 

Biologists are swimming in data and knowledge, but making efficient use of it can be a 

struggle.  Even if the appropriate data and knowledge exist in a database accessible via a defined 

API, it is often a significant engineering effort to implement a new computation; data must be 

retrieved and reformatted and external tools must be interfaced, each in its own unique way.  

Before any science can be done, a programmer will often spend a huge amount of time pulling 

together the data and tools, finally putting together an intricate one-time-only program to do an 

intricate one-time-only calculation. Even then, with two people having to interact, one a 

programmer and one a biologist, there is great potential for error or confusion, for a problem to 

be overlooked, and for misunderstanding of the specification or misinterpretation of the results. 

The goal of BioLingua is no less than that of returning biological computation into the 

hands of biologists themselves -- to enable biologists to directly manipulate biological 

knowledge and data in an interactive computational environment, much as they can now directly 

manipulate biological molecules in the laboratory. This is important for computational biology 

because biology is a living science. Biologists are constantly devising new questions that could 

fruitfully be addressed by computations over data and knowledge which are not easily (or at all) 

available via web/database interfaces. In reducing the need for expert programmers to help 

biologists do their work, BioLingua and projects like it begin to put computational biology 

directly into the hands of biologists. 
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Notes 
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2. Counting pairwise identities in Clustal-generated alignments is not a good way in general to 

rank genes by similarity.  We use it here merely to exemplify some of the BioLingua facilities. 

3. One of the authors (Jeff Elhai) is a biologist. Moreover, he has trained 

several students (graduate, undergraduate, and high school) in BioLingua.  Indeed, most of the 

20 or-so active users of the MCBL are biologists.  Of course, these biologists are acting, in 

effect, as programmers. We claim that BioLingua can be effectively used by biologist-

programmers, thereby making non-biologist programmers less crucial.  The fact that a number of 

biologists are making effective use of the system provides at least an existence proof to back up 

this claim. 
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Figure 1: 

A 
>> (setf gk-genes  
        (intersection (#^go.related-genes #$go.glycolysis) 
                      (#^go.related-genes #$go.kinaseactivity))) 
 
:: (#$S6803.sll1196 #$S6803.sll1275 #$S6803.slr0394 #$S6803.sll0593 
    #$S6803.sll0587 #$S6803.sll0745 #$A7120.alr2973 #$A7120.all4131 
    #$A7120.all7335) 
  

B 
>> (defun score-alignment (genes) 
     (let ((c (#^consensus (align genes)))) 
       (* 100.0 (/ (count #\* c) (length c))))) 

C 
>> (setf gk-scores  
        (loop for pair in (cross-subsets gk-genes) 
              collect (list pair (score-alignment pair)))) 
:: (((#$S6803.sll1196 #$S6803.sll1275) 29.248554) 
   ((#$S6803.sll1196 #$S6803.slr0394) 40.41096) 
   ((#$S6803.sll1196 #$S6803.sll0593) 42.201836) 
   ((#$S6803.sll1196 #$S6803.sll0587) 33.789627) 
   ((#$S6803.sll1196 #$S6803.sll0745) 53.900707) 
   ((#$S6803.sll1196 #$A7120.alr2973) 39.262062) 
   ((#$S6803.sll1196 #$A7120.all4131) 38.71795) 
   ((#$S6803.sll1196 #$A7120.all7335) 64.72832) 
[...36 lines of output in total...] 
 

D 
>> (sort gk-scores '> :key 'second) 
 
:: (((#$S6803.slr0394 #$A7120.all4131) 70.01718) 
    ((#$S6803.sll1196 #$A7120.all7335) 64.72832) 
    ((#$S6803.sll0593 #$A7120.alr2973) 57.945736) 
[...36 lines of output in total...] 
  
Figure 1. Finding the best aligned kinase genes in glycolysis (as annotated at this time) 
between Synechocystis PCC 6803 and Anabaena PCC 7120.  Commands are preceded by 
‘>>’,  responses appear after ‘::’. Each may include several lines. Long outputs are abbreviated. 
Underlines represent links to the frame browser (as Fig. 4). (A) The built-in intersection 
function is used to find genes (in the currently loaded organisms: S6803 and A7120) annotated 
both as having kinase activity, and as being involved in glycolysis. The result is saved in the 
variable gk-genes.  (B) We define score-alignment, which returns the percentage of 
perfect matches (*’s) in the alignment of any two genes. Align is a built-in function that calls 
ClustalW.  (C) Align every pair of genes among those the gk-genes, returning the pair and their 
score. These are saved in gk-scores. (Cross-subsets is a built-in function that returns the 
non-redundant 2-way subsets of a set.) (D) The built-in sort function is used to sort the 
alignments in gk-scores into best-first order. 
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 Figure 2: 

A 
>> (defun instantiate-pathway (pathway) 
     (loop for reaction in (ensure-list (#^reaction-list pathway)) 
           as enzymes = (loop for ez-reaction in  
                              (ensure-list (#^enzymatic-reaction reaction)) 
                             collect (#^enzyme ez-reaction)) 
           append (loop for enzyme in enzymes 
                        collect (#^gene enzyme)))) 
 
>> (instantiate-pathway #$Phoslipsyn-Pwy)  
 
:: (#$S6803.slr1369 #$S6803.sll1522 #$S6803.slr0054) 
 

B 
>> (loop for pathway in (#^allsubclasses #$pathways) 
          collect (list pathway  
                        (instantiate-pathway pathway))) 
::  
... 
(#$Trna-Charging-Pwy 
  (#$S6803.slr0220 #$S6803.slr1560 #$S6803.slr0357 #$S6803.slr1550 
   #$S6803.slr0649 #$S6803.sll0454 #$S6803.sll1553 #$S6803.sll1425 
   #$S6803.slr1703 #$S6803.sll0078 #$S6803.slr1884 #$S6803.ssr1720 
   #$S6803.slr1031 #$S6803.slr1720 #$S6803.sll0495 #$S6803.sll0362 
   #$S6803.slr0557 #$S6803.sll1074 #$S6803.sll1362 #$S6803.sll0179 
   #$S6803.slr0958 #$S6803.sll0502)) 
... 
(#$Aro-Pwy 
  (#$S6803.slr2130 #$S6803.slr1559 #$S6803.sll1669 #$S6803.slr0444 
   #$S6803.sll1747)) 
... 

[Returns 145 instantiated pathways] 

 

Figure 2. Interactive BioLingua session instantiating pathway models in cyanobacteria.  

Notation is as in Fig. 1.  (A) The function instantiate-pathway collects the genes associated with 

each enzymatic reaction (defined by BioCyc) in a given pathway.  Results are the three genes 

known to be associated (in this particular load of the knowledge base) with Synechocystis 

PCC 6803. The ensure-list function is needed to canonicalize the argument because BioCyc 

allows this slot to have either a list or singleton value. (B) Here instantiate-pathway, just defined, 

is called repeatedly with each known pathway (defined by BioCyc).  This results in 228 

instantiated pathways.  (Only two selected results are shown.) 
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Figure 3: 

A 
>> (ASSIGN cph-annotated (GENES-DESCRIBED-BY "cyanophycin synth")) 
 
:: (#$A29413.Av?2455 #$A29413.Av?2424 #$A29413.Av?3038 
    #$A7120.alr0573 #$A7120.alr1779 #$A7120.all3879 
    #$Npun.NpR1819 #$Npun.NpR2361 #$Npun.NpR5823 #$S6803.slr2002) 

 
B 
>> (LOOP FOR protein IN (PROTEINS-OF Avar) 
         AS sequence = (SEQUENCE-OF protein) 
         WHEN (SUCCESSFUL (SEARCH "RILKIQTL" sequence)) 
         COLLECT protein) 
 
:: (#$a29413.p-Av?3038) 
 
C 
>> (ASSIGN cph-orthologs (ALL-ORTHOLOGS-OF p-Av?3038)) 
 
:: (#$Tery.p-Te?4231 #$A29413.p-Av?3038 #$A7120.p-All3879 #$Npun.p-NpR5823 
    #$S6803.p-Slr2002) 
 
>> (DESCRIPTION-OF p-Te?4231) 
 
:: "COG1181: D-alanine-D-alanine ligase and related ATP-grasp enzymes 
   [Trichodesmium erythraeum" 
 
>> (ADD-TO-SET cph-orthologs (PROTEINS-NAMED cph-annotated)) 
 
:: (#$Tery.p-Te?4231 #$A29413.p-Av?3038 #$A7120.p-All3879 #$Npun.p-NpR5823 
    #$S6803.p-Slr2002 #$A29413.p-Av?2455 #$A29413.p-Av?2424 
    #$A7120.p-Alr0573 #$A7120.p-Alr1779 #$Npun.p-NpR1819 #$Npun.p-NpR2361) 
 
 
D 
>> (ALIGNMENT-OF cph-orthologs) 
 
Output abbreviated: 
#$A29413.p-Av?2455   102 AKLIGFPVII KPINLSQGKL VTKIHNKTEY YQVAKKILRA NAG------L   
 #$A7120.p-Alr1779   102 AKLIGFPVII KPINLSQGKL VTKVHNKTEY YQVAKKIFRA NAG------L   
  #$Npun.p-NpR2361   104 AKELGFPVIV KPINLSQGIF VTKVHNKQEY YQIAKKILQK VSG------F   
#$A29413.p-Av?3038   251 EYVGGYPIVI KPLDGNHGRG ITIDIRSWEE AEAAYEAARQ VSR-----SI   
 #$A7120.p-All3879   251 EYVGGYPIVI KPLDGNHGRG ITIDIRSWEE AEAAYEAARQ VSR-----SI   
  #$Npun.p-NpR5823   251 EYVGGYPIVV KPLDGNHGRG ITIDIRTWEE AEAAYEAARQ VSR-----SI   
  #$Tery.p-Te?4231   251 EYVGGYPIVI KPLDGNHGRG ITIDVKNWQE AEEAYDLARK ASKTK---TV   
 #$S6803.p-Slr2002   251 NDVGGYPVVI KPLDGNHGRG ITINVRHWEE AIAAYDLAAE ESKSR---SI   
#$A29413.p-Av?2424   247 AKDIGYPVAV KPVVGHKGIG VTADIKDVDE LEVAYDRALE AIPENEPARI   
 #$A7120.p-Alr0573   247 AKDIGYPVAV KPVVGHKGIG VTADVKDVDE LEVAYDRALE AIPENEPARI   
  #$Npun.p-NpR1819   247 AREIGYPVAV KPVVGHKGIG VTADVQDSKE LESAYNRALA AIPEDQVTRI   
         consensus   251     *:*: : **:   :*   :*   .  .     * .              .   
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Figure 3:  Application of BioLingua-Lite to check and find an unannotated protein. Notation is as 

in Figs. 1 and 2. See text for details. (A) Defining a set, cph-annotated, consisting of 

cyanobacterial genes with annotation of "cyanophycin synthetase". (B) Determination of protein 

corresponding to experimentally proven cyanophycin synthetase from Anabaena variabilis. (C) 

Defining a set, cph-orthologs, consisting of orthologs of the proven protein. After 

examining the annotation of one of the genes, this set and cph-annotated are then combined.  

(D) Portion of alignment of candidate cyanophycin synthetases from different cyanobacteria. The 

sequence of the experimentally proven cyanophycin synthetase (p-Av?3038) and its orthologs 

are highlighted. 
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Figure 4: 

 

 
LEGEND 

 

Figure 4.  A page from the BioLingua Frame Browser, depicting some of the slots and 

values in the Gene Ontology frame representing hexokinase activity. 

 


