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Summary. The goals of the paper are as follows: i) review some qualitative proper-
ties of oil and gas prices in the last 15 years; ii) propose some mathematical elements
towards a definition of mean reversion that would not be reduced to the form of the
drift in a stochastic differential equation; iii) conduct econometric tests in order to
conclude whether mean reversion still exists in the energy commodity price behav-
ior. Regarding the third point, a clear “break” in the properties of oil and natural
gas prices and volatility can be exhibited in the period 2000-2001.
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1 Introduction

Energy commodity prices have been rising at an unprecedented pace over
the last five years. As depicted in Figure 1, an investment of $100 made in
January 2002 in the global Dow Jones-AIG Commodity Index had more than
doubled by July 2006, whereas Figure 2 indicates that an investment of $100
in the Dow Jones-AIG Energy sub-index had turned into $500 in July 2005.
Among the numerous explanations for this phenomenon, we may identify the
severe tensions on oil and their implications for other fossil fuels that may be
substitutes. The increase of oil prices is driven by demand growth, particularly
in Asia where Chinese consumption rose by 900,000 barrels per day, mostly
accounted for by imports.

At the world level, the issue of “peak oil” – the date at which half of the
reserves existing at the beginning of time are (will be) consumed – is the
subject of intense debates. Matthew Simmons asks in his book, Twilight in
the Desert, whether there is a significant amount of oil left in the soil of Saudi
Arabia. The concern of depleting reserves in the context of an exhaustive
commodity such as oil is certainly present on market participants’ minds, and
in turn, on the trajectory depicted in Figure 2.
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Fig. 1. Dow Jones-AIG Total Return Index over the period Jan 2002–July 2006.

Fig. 2. Dow Jones-AIG Energy Sub-Index over the period Jan 2000–July 2005.
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Fig. 3. Goldman Sachs Commodity Index Total Return and Dow Jones-AIG Com-
modity Index total return over the period Feb 1991–Dec 1999.

The financial literature on commodity price modeling started with the pi-
oneering paper by Gibson and Schwartz [7]. In the spirit of the Black-Scholes-
Merton [2] formula, they use a geometric Brownian motion for oil spot prices.
Given the behavior of commodity prices during the 1990s depicted in Fig-
ure 3 by the two major commodity indexes, [10] introduces a mean-reverting
drift in the stochastic differential equation driving oil price dynamics; [14], [4],
[12] keep this mean-reversion representation for oil, electricity and bituminous
coal.

The goal of this paper is to revisit the modelling of oil and natural gas
prices in the light of the trajectories observed in the recent past (see Figure
2), as well as the definition of mean reversion from a general mathematical
perspective. Note that this issue matters also for key quantities in finance such
as stochastic volatility. Fouque, Papanicolaou and Sircar [5] are interested in
the property of clustering exhibited by the volatility of asset prices. Their
view is that volatility is ‘bursty’ in nature, and burstiness is closely related
to mean reversion, since a bursty process is returning to its mean (at a speed
that depends on the length of the burst period).
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2 Some Elements on Mean Reversion in Diffusion from a
Mathematical Perspective

The long-term behavior of continuous time Markov processes has been the
subject of much attention, starting with the work of Has’minskii [8]. Accord-
ingly, the long-term evolution of the price of an exhaustible commodity, such
as oil or copper, is a topic of major concern in finance, given the world geopo-
litical and economic consequences of this issue. In what follows, (Xt) will
essentially have the economic interpretation of a log-price. We start with a
process (Xt) defined as solution of a stochastic differential equation

dXt = b (Xt) dt + σ (Xt) dWt,

where (Wt) is a standard Brownian motion on a probability space (Ω,F ,P)
describing the randomness of the economy. We know from Itô that if b and
σ are Lipschitz, there exists a unique solution to the equation. If only b is
Lipschitz and σ Holder of coefficient 1

2 , we still have existence and uniqueness
of the solution. In both cases, the process (Xt) will be Markov and the drift
b (Xt) will contain the representation of the trend perceived at date t for future
spot prices.

Given a process (Xt), we are in finance particularly interested in the pos-
sible existence of a distribution for X0 such that, for any positive t, Xt has
the same distribution. This distribution, if it exists, may be viewed as an
equilibrium state for the process. We now recall the definition of an invari-
ant probability measure for a Markov process (Xt)t≥0, whose semi-group is
denoted (Pt)t≥0 and satisfies the property that, for any bounded measurable
function, Ptf (x) = E [f (Xt)].

Definition 1. (i) A measure µ is said to be invariant for the process (Xt) if
and only if ∫

µ (dx)Ptf (x) =
∫

µ (dx) f (x) ,

for any bounded function f . (ii) µ is invariant for (Xt) if and only if µPt = µ.
Equivalently, the law of (Xt+u)u≥0 is independent of t if we start at date 0
with the measure µ.

Proposition 1. The existence of an invariant measure implies that the pro-
cess (Xt) is stationary. If (Xt) admits a limit law independent of its initial
state, then this limit law is an invariant measure.

Proof. The first part of the proposition is nothing but one of the two forms
of the definition above. Now suppose E [f (Xt)] →t→∞

∫
µ (dy) f (y), for any

bounded function f . Then

EX [f (Xt+s)] = EX [PSf (Xt)] →t→∞

∫
µ (dy) f (y) .

Hence, µPS = µ, and µ is invariant. ut
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Proposition 2. 1. The Ornstein-Uhlenbeck process admits a finite invariant
measure, and this measure is Gaussian.

2. The Cox-Ingersoll-Ross (or square-root) process also has a finite invariant
measure.

3. The arithmetic Brownian motion (like all Lévy processes) admits the
Lebesgue measure as an invariant measure, hence, not finite.

4. A (squared) Bessel process exhibits the same property, namely an infinite
invariant measure.

Proof. 1. For φ : R→ R in C2, consider the Smoluchowski equation

dXt = φ′ (Xt) dt + dWt,

where Wt is a standard Brownian motion. Then the measure µ (dx) =
e2φ(x)dx is invariant for the process (Xt). If we consider now an Ornstein-
Uhlenbeck process (with a standard deviation equal to 1 for implicity),
then dXt = (a− bXt) dt+dWt, a, b > 0, φ′ (x) = a−bx, φ (x) = c+ax−
bx2

2 , and µ (dx) = e−bx2+2ax+cdx is an invariant measure (normalized to
1 through c), and we recognize the Gaussian density. In the general case
of an Ornstein Uhlenbeck process reverting to the mean m, and with a
standard deviation equal to σ, the invariant measure will be N (

m,σ2
)
.

2. We recall the definition of the squared-root (or CIR) process introduced
in finance by Cox, Ingersoll, and Ross [3]:

dXt = (δ − bXt) dt + σ
√

XtdWt.

We remember that a CIR process is the square of the norm of a δ-
dimensional Ornstein-Uhlenbeck process, where δ is the drift of the CIR
process at 0. The semi-group of a CIR process is the radial projection of
the semi-group of an Ornstein Uhlenbeck. If we note v, the image of µ by
the radial projection
∫

v (dr)φ (r)=
∫

µ (dx)Pt (φ |·|) (x)=
∫

µ (dx) Ptφ (|x|)=
∫

v (dr)Ptφ (r) .

Hence v, image of µ by the norm application, is invariant for Pt.
3. Consider a Levy process (Lt) and Pt its semi-group. Then

Pt (x, f) = E0 [f (x + Lt)] ,
∫

dxPt (x, f) =Fubini E0

[∫
f (x + Lt) dx

]
=

∫
f (y) dy.

Consequently, the Lebesque measure is invariant for the process (Lt).
4. We use the well-known relationship between a Bessel process and the

norm of Brownian motion and also obtain an infinite invariant measure
for Bessel processes. ut
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Having covered the fundamental types of Markovian diffusions used in
finance, we are led to propose the following definition.

Definition 2. Given a Markov diffusion (Xt), we say that the process (Xt)
exhibits mean reversion if and only if it admits a finite invariant measure.

Remarks.

1. The definition does not necessarily involve the drift of a stochastic differ-
ential equation satisfied by (Xt), as also suggested in [11].

2. It allows inclusion of high-dimensional non-Markovian processes driving
energy commodity prices or volatility levels.

3. Following [13], we can define the set

TP ={probability measure µ such that µPt = µ ∀t ≥ 0}.
Then the set TP is convex and closed for the tight convergence topology
(through Feller’s property) and possibly empty. If TP is not the empty set
and compact (for the tight convergence topology), there is at least one
extremal probability µ∗ in TP . Then the process (Xt) is ergodic for this
measure µ∗: for any set A ∈ FX

∞ that is invariant by the time translators
(θt)t≥0, then Pµ∗ (A) = 0 or 1, where we classically denote FX

∞ the natural
filtration of the process (Xt). The time-translation operator θt is defined
on the space Ω by (θt (X))s = Xt+s. It follows by Birkhoff’s theorem that,
for any function F ∈ L1 (Pµ∗),

1
t

∫ t

0

F (Xs) ds → EPµ∗ [F (X)] Pµ∗ − a.s.

when t → ∞. The interpretation of this result is the following: the long-
run time average of a bounded function of the ergodic process (Xt) is
close to its statistical average with respect to its invariant distribution.
This property is crucial in finance, as the former quantity is the only one
we can hope to compute using an historical database of the process (Xt).

3 An Econometric Approach to Mean Reversion in
Energy Commodity Prices

We recall the classical steps in testing mean reversion in a series of prices
(Xt). The objective is to check whether in the representation

Xt+1 = ρXt + εt,

the coefficient ρ is significantly different from 1. The H0 hypothesis is the
existence of a unit root (i.e., ρ = 1). A p-value smaller than 0.05 allows one to
reject theH0 hypothesis with a confidence level higher than 0.95, in which case
the process is of the mean-reverting type. Otherwise, a unit root is uncovered,
and the process is of the “random walk” type. The higher the p-value, the
more the random walk model is validated.
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3.1 Mean-Reversion Tests

They are fundamentally of two types:

(i) The Augmented Dickey-Fuller (ADF) consists in estimating the regression
coefficient of p (t) on p (t− 1). If this coefficient is significantly below 1, it
means that the process is mean reverting; if it is close to 1, the process is
a random walk.

(ii) The Phillips-Perron test consists in searching for a unit root in the equation
linking Xt and Xt+1. Again, a high p-value reinforces the hypothesis of a
unit root.

3.2 Statistical Properties Observed on Oil and Natural Gas Prices

For crude oil,

• a mean-reversion pattern prevails over the period 1994-2000;
• it changes into a random walk (arithmetic Brownian motion) as of 2000;

whereas for natural gas,

• there is a mean-reversion pattern until 1999;
• since 2000, a change into a random walk occurs, but with a lag compared

to oil prices;
• during both periods, seasonality of gas prices tends to blur the signals.

For US natural gas prices over the period January 1994–October 2004,
spot prices are proxied by the New York Mercantile Exchange (NYMEX)
one-month futures contract. Over the entire period Jan 1994–Oct 2004, the
ADF p-value is 0.712 and the Phillips Perron p-value is 0.1402, whereas over
the period Jan 1999–Oct 2004, the ADF p-value is 0.3567 and the Phillips
Perron p-value is 0.3899. Taking instead log-prices, the numbers become

Jan 94 - Oct 04 Jan 99 - Oct 04
ADF p-value = 0.0863 ADF p-value = 0.4452
Phillips Perron p-value = 0.0888 Phillips Perron p-value = 0.4498

Over the last five years of the period, the arithmetic Brownian motion as-
sumption clearly prevails and mean reversion seems to have receded.

For West Texas Intermediate (WTI) oil spot prices over the same period
January 1994–October 2004, again spot prices are proxied by NYMEX one-
month futures prices, and the tests are conducted for log-prices.

1994-2004 Jan 1999 - Oct 2004
ADF p-value 0.651 ADF p-value 0.7196
Phillips Perron 0.5048 Phillips Perron 0.5641

The mean-reversion assumption is strongly rejected over the whole period
and even more so over the recent one. Because of absence of seasonality, the
behavior of a random walk is more pronounced in the case of oil log-prices
than in the case of natural gas.
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4 The Economic Literature on Mean Reversion in
Commodity Prices

In [1], the term structure of futures prices is tested over the period January
1982 to December 1991, for which mean reversion is found in the 11 markets
examined, and it is also concluded that the magnitude of mean reversion is
large for agricultural commodities and crude oil, and substantially less for
metals. Rather than examining evidence of ex-post reversion using time series
of asset prices, [1] uses price data from futures contracts with various horizons
to test whether investors expect prices to revert. The “price discovery” element
in forward and futures prices is related to the famous “Rational Expectations
Hypothesis” long tested by economics, for interest rates in particular (cf. [9]),
and stating that forward rates are unbiased predictors of future spot rates. [1]
analyzes the relation between price levels and the slope of the futures term
structure defined by the difference between a long maturity future contract
and the first nearby. Assuming that futures prices are unbiased expectations
(under the real probability measure) of future spot prices, an inverse relation
between prices and this slope constitutes evidence that investors expect mean
reversion in spot prices, as it implies a lower expected future spot when prices
rise. The authors conclude the existence of mean reversion for oil prices over
the period 1982-1999; however, the same computations conducted over the
period 2000-2005 leads to inconclusive results.

Pindyck [12] analyzes 127 years (1870-1996) of data on crude oil and bi-
tuminous coal, obtained from the US Department of Commerce. Using a unit
root test, he shows that prices mean revert to stochastically fluctuating trend
lines that represent long-run total marginal costs but are themselves unob-
servable. He also finds that during the time period of analysis, the random
walk distribution for log-prices, i.e., the geometric Brownian motion for spot
prices, is a much better approximation for coal and gas than oil. As suggested
by Figure 4, the recent period (2000-2006) has been quite different.

One way to reconcile the findings in [12] and the properties we observed
in the recent period described in this paper, is to “mix” mean reversion for
the spot price towards a long-term value of oil prices driven by a geometric
Brownian motion. The following three-state variable model also incorporates
stochastic volatility:

dSt = a (Lt − St)St dt + σt St dW 1
t ,

dyt = α (b− yt) dt + η
√

yt d W 2
t , where yt = σ2

t ,

dLt = µLt dt + ξLt dW 3
t ,

where the Brownian motions are positively correlated. The positive correlation
between W 1and W 2 accounts for the “inverse leverage” effect that prevails for
commodity prices (in contrast to the “leverage effect” observed in the equity
markets), whereas the positive correlation between W 1 and W 3 translates
the fact that news of depleted reserves will generate a rise in both spot and
long-term oil prices.
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Fig. 4. NYMEX Crude Oil Front: month daily prices over the period Jan 2003–Aug
2005.

5 Conclusion

From the methodological standpoint, more work remains to be done in order
to analyze in a unified setting (i) the mathematical properties of existence of
an invariant measure and ergodicity for a stochastic process, and (ii) the mean-
reversion behavior as it is intuitively perceived in the field of finance. From
an economic standpoint, the modeling of oil and natural gas prices should
incorporate the recent perception by market participants of the importance
of reserves uncertainty and exhaustion of these reserves.
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