
 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 1 of 1 

BUILDING RESPONSIVE AND SCALABLE WEB APPLICATIONS 

 
Connie U. Smith, Ph.D. 

Performance Engineering 
Services 
PO Box 2640 

Santa Fe, NM 87504 
(505) 988-3811 

cusmith@perfeng.com 

Lloyd G. Williams, Ph.D. 
Software Engineering Research 

264 Ridgeview Lane 
Boulder, CO 80302 

(303) 938-9847 
boulderlgw@aol.com 

 
 

Abstract 

Responsiveness and scalability are important quality-of-service attributes for 
Web applications. Web sites that are slow, either because of poor responsiveness or 
lack of scalability, can produce customer dissatisfaction, loss of revenue and/or 
productivity, and potentially more serious consequences. To avoid these problems, it is 
important to know whether users will be able to access information in a timely fashion, 
whether the hardware will be able to handle the load, and whether the system will scale 
to meet projected demand before the system is deployed. 

This paper describes how to apply the techniques of Software Performance 
Engineering (SPE) to Web applications. We focus on using the SPE models to provide 
decision support during the software architectural design phase because the decisions 
made at that time have the largest effect on performance and scalability. A case study 
illustrates the application of these techniques to a typical Web application. 

 

1.0 Introduction 

Responsiveness is an essential quality-of- 
service attribute of Web applications. If your site is 
slow in responding to user requests, your customers 
will go elsewhere. Scalability is equally important for 
these applications. A Web site can experience rapid 
increases in traffic in response to advertising, 
corporate announcements, or added functions. There 
are numerous stories of web performance failures, 
such as the Victoria’s Secret fashion show, the on-line 
brokerage failure to provide service on heavy trading 
days, and the EBay performance problems. These 
performance failures result in: customer dissatisfaction 
(the perception of poor performance will remain long 
after you have corrected the problem); lost revenue 
and/or productivity; and potentially more serious 
consequences, such as lawsuits. 

Many organizations worry about making 
headlines such as those above if their Web application 
fails to provide adequate responsiveness and 
scalability. Organizations that don’t worry about 
responsiveness and scalability often end up making 
those headlines. To avoid these problems, it is 
important that you be able to answer the following 
questions before you deploy your Web application: 

• Will your users be able to access information in a 
timely fashion? 

• Are your hardware and software capable of 
supporting your projected load? 

• Will your system scale up to meet projected 
future demand? 

The techniques of Software Performance 
Engineering (SPE) allow you to answer these 
questions and manage the performance of your 
evolving Web applications [SMIT90a; SMIT01]. With 
SPE you can: 

• Improve responsiveness with quantitative 
techniques that predict and manage software 
performance and scalability. 

• Select the right software and technical 
architecture by predicting the performance of 
middleware and server software options. 

Software architectural decisions are the most 
important ones you will make when designing your 
Web application. It is vital to assess the impact of 
these decisions on responsiveness and scalability 
early in the development process, when it is easy to 
make changes. If you wait until the application has 
been completed and rely on performance testing only, 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 2 of 2 

performance problems are more likely to appear and 
correcting them will be difficult and expensive, at best. 
Worse, achieving your performance objectives may be 
impossible. 

This paper describes how to apply the SPE 
modeling techniques to Web applications and 
illustrates their use with a case study. We assume that 
the reader is familiar with the basics of SPE and the 
modeling approach. This background information is 
covered in [SMIT90a; SMIT97]. The paper describes 
how to model the software architecture to evaluate 
alternatives. It does not address other important issues 
such as how to project the customer demand for Web 
Applications. Other authors provide good guidance for 
those issues [GUNT00; MENA98; MENA00]. 

2.0 Performance Characteristics of 
Web Applications 

A Web application is similar to a traditional 
client/server application that runs on a Web site. A 
Web site allows users to access and view documents 
using a browser running on the client computer. The 
simplest possible Web site consists of a Web server 
running on a server machine along with some 
documents in HyperText Markup Language (HTML) 
format. The browser sends a document request to the 
Web server. The Web server then locates the 
document in the server’s file system and sends it to 

the browser.  

Most web environments are far more complex 
than that, employing dynamic content rather than static 
HTML, extensive application (business) logic, and a 
variety of security techniques, as illustrated in Figure 
1. A request submitted from a client’s browser is 
transmitted via the Internet, through a firewall to the 
web server for security processing, or via an intranet. 
From there, it goes to the Web server then to the 
appropriate Web application. The Web application may 
interact with another firewall, database servers, a 
mainframe, external Web sites, etc. A Web application 
may also use middleware packages such as CORBA 
or MQSeries to connect the various components of the 
application. The Web application interprets user input, 
queries and/or updates stored business data, and 
returns information to the user that is dependent on 
these interactions. From a performance perspective, 
the early software architecture issues focus on 
communication among components. As Clements 
observes [CLEM96]: 

“Performance is largely a function of the 
frequency and nature of inter-component 
communication, in addition to the performance 
characteristics of the components themselves, 
and hence can be predicted by studying the 
architecture of a system.”  

For the software architecture we will focus on 
decisions about the amount of data sent over the 

Figure 1. Web Environments 

 

LAN

Internet Ethernet

PC

Mac

Laptop computer

Mainframe

Disk array

Disk array

Firewall

Data
base

Web Server

Database Server Application Server

Data

Firewall

Data
base

Legacy
Applications
and Databases

Web
Infrastructure



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 3 of 3 

external and internal networks and among processes; 
the number of interactions required to retrieve the data 
and to accomplish the end-to-end business tasks; and 
how to integrate legacy applications – whether to 
modify the legacy application to provide a new, 
customized Application Program Interface (API) or use 
an Adapter that calls existing APIs and reformats data 
as needed [GAMM95].  

The technical architecture choices focus on 
the hardware and support software platforms. We 
must decide the number and size of processors that 
we need, and determine which processors the various 
processing steps should execute on (for example, do 
we need separate web server(s) and application 
server(s), and database server(s) or can some 
functions be consolidated). We must also select 
among middleware packages, and determine how to 
best configure the environment for redundancy and 
recovery. There are many other such choices that 
need to be evaluated. 

Web applications have a myriad of 
implementation options that affect the software 
architecture, such as:  

• Whether the application will execute on the 
server and which technology is most appropriate 
[e.g., Common Gateway Interface (CGI) 
processes, Active Server Pages (ASP), Java (or 
other language) servlets, or server API 
applications] 

• Whether some of the application will execute on 
the client and which technology is most 
appropriate (e.g., scripts, applets, etc.) 

• Whether component libraries should be used 
(e.g., Enterprise Java Beans (EJB), ActiveX 
Controls, etc.) 

• How to access databases (e.g., Remote SQL, 
stored procedures, middleware products, etc.) 

These choices affect performance as well as 
other quality of service attributes, such as availability 
or security. In some cases, there are trade-offs to be 
made between quality attributes. For example, putting 
the application on a different machine than the Web 
server may improve availability (failures in the 
application will not interfere with the operation of the 
Web server) but degrade performance (by increasing 
overhead for communication across machines). If 
these trade-offs are identified early, an architecture 
that addresses these trade-offs can be selected. If not, 
it may not be possible to meet some (or all) quality 
objectives. This paper focuses on using SPE 
techniques to construct and evaluate performance 
models of various architectural alternatives early in 
development. The goal is to select a combination that 
will meet performance objectives.  

3.0 SPE Models for Web 
Applications 

The SPE techniques for Web applications are 
similar to those that we have used for distributed 
systems [SMIT99b; SMIT98d; SMIT98c]. Web 
applications use different implementation technologies 
than other distributed systems, but implementation 
details do not affect the SPE models during the early 
life cycle stages.  The following paragraphs give a 
high-level overview of the modeling and evaluation 
steps; Section 4 illustrates them with a case study. 

The first step in the SPE process is to select a 
set of performance scenarios that represent the 
important web-application interactions. These are 
usually the most frequent interactions; they also 
include the important functions that must perform well 
if the application is to meet its business objectives. 
Next, we create an end-to-end performance scenario 
that represents (at a high level) the processing steps in 
each of the performance scenarios. We use extended 
UML sequence diagrams to represent the system 
interactions. (An example appears in Figure 4, and the 
notation is explained in [SMIT98c]). 

After representing the overall flow, we identify 
processing steps that have the greatest impact on 
performance and add details for them. For example, a 
database query, particularly on a remote computer, 
usually has a far greater impact on response time and 
scalability than firewall processing. We also include 
specific details for processing steps that correspond to 
the software architecture alternatives we are 
evaluating. That is, if we want to compare the 
performance of two alternatives, such as client vs. 
server processing for form validation, we must 
represent the processing steps required for form 
validation in the model. Next we convert the sequence 
diagrams into a software execution model, add 
performance specifications, and solve the software 
execution model to determine the end-to-end response 
time (without contention delays). The software 
execution model  often identifies problems with Web 
applications, particularly when they need to transfer 
large amounts of data over relatively slow 
communication lines. After selecting a software 
architecture alternative that meets performance 
objectives, we use the system execution model to 
evaluate technical architecture alternatives and 
software scalability and capacity requirements. 

The web execution environment is typically 
complex. At the architectural level of design, we will 
use deliberately simple models of software processing 
that are easily constructed and solved to provide 
feedback on whether the proposed software is likely to 
meet performance goals.  Thus our approach is to first 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 4 of 4 

create the software execution models that show 
the interactions among processes and estimate 
the delay to receive results from remote 
processes.  Later in development, more realistic 
models use advanced system execution model 
solutions to solve for the delays to interact with 
distributed processes.  The advanced models were 
described in an earlier paper [SMIT98d]; they are 
not covered here. 

The motivation for using these simpler, 
approximate models early in development is 
illustrated in Figure 2. The diagram shows N 
Clients connected to a Web Server via a Network 
(either an intranet or the Internet). Each client is 
modeled with a system model such as the one at 
the top of the diagram.  User requests are 
processed on the Client’s CPU and Disk. At some 
point in the processing, the Client makes a request 
of a Server.  It is transmitted via the Network 
(simplified to a single queue in the center section 
of this figure), and then it is sent to the Server.  
The server model near the bottom of the diagram 
is also a simple system model with a CPU and 
Disk.The request is processed on the Server’s 
CPU and Disk(s), sent via a LAN (simplified to a single 
queue), processed on the Mainframe CPU and 
Disk(s), returned to the Server, processed on the CPU 
and disk(s), then returned to the Network.  When it 
exits the network it returns to the Client making the 
request.    

This picture is a greatly over-simplified view of 
a particular interaction. The resulting simulation model 
is still complex, however; it contains a large number of 
queue-servers and workloads when all clients are 
included (there may be thousands of client CPUs and 
Disks). Because of this, the solution time is very long 
and it is difficult to compare many alternatives.  Early 
in development, we are not interested in the intricacies 
of this interaction, but rather with the feasibility and 
desirability of various architecture and design 
alternatives.  Thus, to keep the models at this stage 
simple so we can study as many alternatives as 
possible, we will construct separate system models for 
the clients, servers and mainframe -- and estimate the 
delays on each for external system interactions. This 
approximation technique is illustrated in the next 
section. 

4.0 Case Study: Nachtfliegen.com 

Nachtfliegen airlines plans a major expansion to their 
modest web site to: 

• Expand company information, add navigation and 
tabs 

• Add promotions and deals to attract customers 
and encourage purchases 

• Add functions for flight inquiry, plan an itinerary, 
and ticket purchase 

• Support the frequent flyer club, Vielenreisen, by 
allowing members to customize their interactions 
and purchase tickets with frequent flyer miles as 
well as a credit card. 

There are two types of users: Customers and 
Frequent Flyers. The most important performance 
scenarios are: PlanItinerary and PurchaseTickets. The 
performance of these scenarios is important if the web 
site is to meet the marketing goals to generate new 
revenue. If the performance is poor, users will not use 
the web site, and Nachtfliegen will not realize the 
increased revenues. Other scenarios are also 
important, but they will not be addressed in the initial 
analysis. 

A Customer will first request the 
Nactfliegen.com home page. From there they may 
check flight status, view travel promotions, register for 
a Vielenreisen account, etc. (by clicking on a link in the 
navigation area, or selecting the appropriate tab). A 
Frequent Flyer will first login, receive a customized 
version of the home page, then select their next action 
– in this case planItinerary.  

Figure 2. “Simple” Distributed System Model. 

Client CPU Client Disk

Server CPU Server Disk(s)

Mainframe CPU Mainframe Disk(s)

LAN

INet

n

n

n



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 5 of 5 

4.1 Plan Itinerary Scenario 

We will first consider the scenario that is 
expected to be the most important (if the new web site 
is to be successful): a Frequent Flyer logs-in, plans an 
itinerary, and purchases the ticket. We have a 
performance objective for the login step of 8 seconds. 
We do not yet have a performance objective for the 
end-to-end response time to plan an itinerary and 
purchase the ticket. (We will see later how this lack of 
an objective impedes 

the performance improvement process). The 
sequence of actions for the planItinerary scenario, 
shown in Figure 4, is: 

• The Frequent Flyer logs-in and the customized 
home page is displayed. The sequence diagram 
shows this step as a reference (a rounded 
rectangle symbol), details are in the login 
sequence diagram (described later). 

• The user requests the flight-planning page 
(another reference). 

• Next is an outer loop that will be repeated until a 
user finds an acceptable set of flights, fares, and 
(when appropriate) seats. Within the outer loop is 
another loop while the Frequent Flyer first 

explores flights available. (Note the loop symbol 
and the reference to findFlights). 

• After selecting a set of flights, the Frequent Flyer 
requests the fare (getFares reference).   

• Next is a loop that may execute 0 times if the 
flight-fare combination is unacceptable, otherwise 
it executes up to once per segment for the 
Frequent Flyer to select a seat. At this point, the 
Frequent Flyer may return to the findFlights page 
if the flight-fare-seat combination is undesirable, 
or proceed to the next step if all is well. 

• Finally the Frequent Flyer purchases the itinerary, 
stores it for future reference, or abandons it. 

This scenario does not represent the firewall. 
If it were included, each message between the 
browser and the web server, and between the web 
server and the mainframe would pass through a 
firewall. We chose to omit it from these models 
because performance problems with firewall 
processors are typically corrected with larger 
processors – the firewall does not directly affect the 
application design. If it is a design issue, it can be 
included in the models. Otherwise we include the 
additional processing time required for firewall 
processing, but do not model it explicitly. 

Figure 4. Sequence Diagram for PlanItinerary 

{location = PC}

b : Browser

{location = Server}

s : WebServer

{location = Server}

l : DotComDBMS

{location = Mainframe}

r : ResDBMS

login

loop *[itinerarySelected]

getFares

loop *[until candidateFliightsSelected]

findFlights

alt [choice]

purchaseItinerary

storeItinerary

loop *[numSegments]

selectSeat

abandonItinerary

getFlightPlanningPage



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 6 of 6 

4.2 Login 

Frequent Flyers first login. Their account 
profile is used to create a customized version of the 
home page with promotions geared to their special 
interests. Figure 5 shows the sequence diagram for an 
error-free login. This diagram corresponds to the login 
reference in Figure 4. The sequence of actions is: 

• The browser sends a request for the login page 
to the web server. 

• The web server gets the file and returns the login 
page. 

• The user completes the form and sends the 
request to the web server. 

• The web server gets the file and creates a CGI 
process to handle the login.  

• The CGI process first authenticates the user by: 
opening a connection to the mainframe; sending 

a request to the AcctMgmtDBMS; and closing the 
connection. We assume the authentication is OK. 

• The CGI process gets the user’s profile 
information from the DotComDBMS.  

• The CGI process then uses the profile 
information to build the page, and returns the 
outside frame of the page via the firewall to the 
browser. 

• The browser then makes separate requests for 
the portions of the frame (the banner, navigation, 
tabs, account status, and promotions). Each tab 
and each promotion is stored in a gif file thus the 
browser must make a separate request for each 
one.  We use a co-region in the sequence 
diagram to show that the requests may arrive in 
any order and may be requested concurrently. 

The processing details for the other sequence 
diagram references are very similar to these. Their 
details are not shown here. 

Figure 5. Expansion of Login 

{location = PC}

b:Browser

{location = Server}

s: WebServer

{location = Mainframe}

a: AcctMgtDBMS

{location = Server}

d: DotComDBMS

getPage()

loginPage

loginInfo()
getFile()

«create»
{location = Server}

c : CGI

authenticate()

OK

openConnection()

closeConnection()

getProfile()

buildPage()

outsideFrame()
outsideFrame()

Banner

Navigation

Tabs

AccountStatus

Promotions

getFile()

 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 7 of 7 

4.3 Software model 

Figure 6 shows the software execution model 
corresponding to Figure 5. We use the SPE•ED1 
performance engineering tool to create and solve the 
SPE models. You can adapt these techniques to other 
tools. The login reference in the sequence diagram 
becomes an expanded node in the software execution 
model. Similarly getFlightPlanningPage, findFlights 
and other references also become expanded nodes. 
The strategy for the choice node and 
its attached nodes is covered later.  

4.4 Hardware/Software Environment 

The overhead matrix we use for the 
web server is in Figure 7. The software 
resources we will use are: 

• Input - the number of Kbytes in 
the input message 

                                                   

1 SPE•ED is a trademark of Performance 
Engineering Services, L&S Computer 
Technology, Inc. www.perfeng.com. 

• DBAccess - the number of accesses to a 
mainframe database 

• LocalDB - the number of accesses to the 
DotComDBMS 

• Pagesz - the number of Kbytes in the page 
displayed to the user (including script or code that 
is downloaded with the page data) 

• Datasz - the number of Kbytes of data retrieved 
from the mainframe to be displayed with the page 

Figure 6. Login Software Model 

login page

login info

authenticate

getProfile

build and
send frame

complete
Page

Input 1
DBAcces
LocalDB 1
Pagesz 4
Datasz
Input 1
DBAcces
LocalDB 1
Pagesz
Datasz
Input
DBAcces
LocalDB 1
Pagesz
Datasz
Input
DBAcces
LocalDB 1
Pagesz
Datasz
Input
DBAcces
LocalDB
Pagesz 4
Datasz

 

getBanner

get
Navigation

getTabs

get
Promotions

get Account
Status

Input 1
DBAcces
LocalDB 1
Pagesz 8
Datasz
Input 1
DBAcces
LocalDB 1
Pagesz 12*6
Datasz
Input 5
DBAcces
LocalDB 5
Pagesz 5*8
Datasz
Input 3
DBAcces
LocalDB 3
Pagesz 3*20
Datasz
Input 1
DBAcces
LocalDB 1
Pagesz 15
Datasz  

Figure 7. Processing Overhead Matrix 

Devices
Quantity

Service units

Input
DB Acces

LocalDB
Page sz
Data sz

Service time

CPU
6

Sec.

0.002
0.0005

0.01
0.0005
0.0005

1

Disk
3

I/Os

2

0.003

INet
1

Kbtyes

1

1
1

0.14222

Delay
1

Sec.

0.25

1

LAN
1

Msgs

1

1

0.000164
 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 8 of 8 

The web server devices in the matrix include 
the 6 CPUs, 3 Disks, the Internet, INet, (represented 
as the delay time to transmit each Kbytes of the page 
and data across a 56KB communication link), the 
Delay to access the mainframe, and the LAN. 

In the center of the matrix we see that: 

• Each (Kbytes of) Input requires approximately 2 
ms. of CPU processing and 1 INet delay 

• Each DBAccess requires .5 ms. of CPU 
processing, .025 secs. Delay, and 1 LAN 
message 

• Each LocalDB requires 10 ms. of CPU 
processing and 2 I/Os to the Disk device 

• Each (Kbytes of) Pagesz requires .5 ms. of CPU 
processing and 1 INet delay 

• Each (Kbytes of) Datasz requires .5 ms. of CPU 
processing, 1 INet delay, and 1 LAN message. 

The next step is to use this software resource 
template to specify the resource requirements for each 
step in the software execution model. 

4.5 Resource Requirements 

The resource requirements for the steps in 
login are shown in Figure 6. For example, the login 
page takes 1KB of Input, 1 LocalDB access and 
returns a Pagesz of 4KB; and getNavigation takes 1KB 
of Input, 1 LocalDB and returns 12 navigation (URL) 
choices each represented by 6KB of data (a small 
graphic in gif format). None of these steps does 
a remote DBAcess thus all Datasz specifications 
are also 0.  

Earlier we noticed that the steps required 
to retrieve a page, process it and send it to the 
browser are repetitious. We elected not to 
expand each of the nodes, but instead to 
estimate the total resource requirements for the 
page and specify the total for each page. So, for 
example, we did not expand purchaseItinerary, 
storeItinerary, or abandonItinerary. That is, 
rather than expanding the steps for storeItinerary 
as we did for login, we calculate the total input, 
DB Accesses, LocalDB, Pagesz, and DataSz for 
storeItinerary.  

4.6 Software Model Results 

The software model results (with no 
contention) are in Figure 8. The key results are:  

• The time to process the login and display 
the customized home page is 31 seconds. 
Note this is the time to deliver the pages 

and data to the browser; it excludes the time for 
the browser to render the page. 

• The end-to-end time for planItinerary is 311 
seconds. 

• Of the total time for planItinerary: 1.4 secs is CPU 
time, .14 secs is Disk time, 302 secs is INet to 
transmit the pages and data, 7.5 secs is Delay to 
access the Mainframe, and .1 secs is LAN. 

We know that 31 seconds for login exceeds 
the 8-second performance objective. We didn’t have a 
performance objective for the end-to-end response 
time so we are not sure if 311 seconds is acceptable. 
This will be a discussion point when the results are 
presented.  

By viewing the resource demand results for 
each step (not shown)  we find that the primary 
problem with the login is that it takes 31 seconds to 
transmit the pages and data (total for INet), and 
getNavigation takes the most time followed by 
getPromotions. 

4.7 Performance Improvements 

This paper focuses on how to create and 
evaluate SPE models early in the life cycle rather than 
on performance improvements or performance tuning. 
Some excellent papers have been presented that 
describe how to improve the performance of Web 
applications [CRAI99; HANS99; LYNC99]. While we 
do not specifically consider strategies for improving 
performance, we will consider how to model and 

Figure 8. planItinerary Software Model Results 

< 2.000
< 4.000
< 6.000
< 8.000
>= 8.000

Resource Usage

1.3599  CPU
0.1308  Disk
301.5349  INet
7.4500  Delay
0.0843  LAN

Time, no contention: 310.5598

31.0870

8.7714

268.5843

0.0000

1.8054

0.3052

0.0064

login

getFlight
Planning

Page

untilFound

findFlights

choice

purchase
Itinerary

store
Itinerary

abandon
Itinerary

 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 9 of 9 

evaluate some alternatives. Some possible 
improvements to this application include: 

• Minimize the processing for this scenario by 
reducing the size and number of messages sent 
to the browser. The following improvements help 
us do that. 

• These pages are designed using frames, thus 
each of the pages requires the browser to make 
multiple requests to the WebServer to retrieve 
each portion of the frame. A different strategy 
(using tables) would reduce the number of 
requests to the WebServer.  

• Most of the time the user wants to plan an 
itinerary rather than view repetitive information on 
a home page (especially if it takes forever to 
display) then have to select 
getFlightPlanningPage (and wait again). Thus we 
can improve locality by letting the user choose on 
the login page which page they want to see first. 
We can accommodate marketing’s agenda by 
placing the promotions on each page rather than 
on the home page. 

• The primary way to reduce the problem with the 
login is the size of the pages and data. For 
example, we could use simple text-base URLs in 
the Navigation section, and change the 
promotions to use simpler gifs with catchy 
phrases, etc.  

We can evaluate the performance improvement of 

these and other alternatives by revising the software 
execution model to represent each alternative and 
solving the model. Some will have a larger benefit 
than others, and the relative benefit of each depends 
on the order you apply them. A refactored solution 
that includes a combination of improvements reduces 
the time for the login and display of the 
flightPlanningPage to 3.6 seconds. 

4.8 System Execution Model 

The system execution model results for the 
refactored design for 720 users per hour are in Figure 
9. The end-to-end time is still approximately 274 
seconds, and thus the elapsed time for the individual 
steps is similar to the values for the no-contention 
solution. The reason for this is that the utilization of the 
shared devices, the CPU, Disks, and LAN, is below 
4%. Thus, at this point in the project the primary 
problem is the amount of data sent across the Internet. 

Following the SPE process, the next step is to 
add performance scenarios based on additional use 
cases, and look for problems due to contention among 
multiple scenarios. We also add processing details, 
such as a limit on the number of CGI processes that 
can be active, constraints on the connections to the 
mainframe, synchronization among processes, the 
number of threads for each process, etc. 

Figure 9. System Model Results 

 
< 2.000

< 4.000

< 6.000

< 8.000

>= 8.000

Resource Usage

1.1493  CPU

0.0651  Disk

265.5532  INet

7.4500  Delay

0.0857  LAN

Residence Time:  274.3033

3.5617

268.6230

0.0000

1.8062

0.3058

0.0066

login

until Found

findFlights

alt

purchase
Itinerary

store
Itinerary

abandon
Itinerary



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 10 of 10 

This model approximates the performance of 
the system by focusing on the scenario that executes 
on the WebServer and estimating delays for inter-
actions with other systems such as the Mainframe. 
This allows us to quickly build and solve both the 
software and system models for the WebServer. Later, 
we could create a separate performance scenario for 
each process on each of the other processors in the 
system (mainframe, database servers, etc.); specify 
resource requirements for their processing; and 
estimate the delay to interact with each of the other 
scenarios in the model.  The model solutions are 
iterative - the solution of each independent 
performance scenario quantifies its processing time, 
which serves as the delay for system interactions in 
the subsequent model.  Still later, we can connect 
each of the scenarios with an advanced system model 
to evaluate synchronization and communication 
among systems and compute the delay directly. These 
techniques were covered in [SMIT98d; SMIT98c]. 

4.9 Sensitivity and Scalability Analysis 

To study sensitivity, we use various values for 
resource requirements and processing overhead to 
evaluate whether or not results change significantly. 
Given the low device utilization in this model the pri-
mary sensitivity is the amount of data sent via the INet, 
and the delay for accessing the mainframe. You could 
also determine a bound for the maximum size for a 
page and its included graphics that will enable you to 
meet the 8-second performance objective.  

Scalability is not an issue for this initial version 
of the model. Scalability will be more important once 
the additional system execution model details (from 
the previous section) are added to the model. To 
evaluate scalability, gradually increase the arrival rate 
of performance scenarios and look for the knee of the 
scalability curve. 

5.0 Summary and Conclusions 

This paper has described the application of 
SPE techniques to early life cycle modeling of 
performance for Web applications. Early life cycle 
performance modeling is important to support 
architectural decisions for Web applications because 
these decisions have the greatest impact on 
responsiveness and scalability.  

To obtain timely feedback from the SPE 
models, it is important to be able to construct and 
solve them quickly and easily. To do this, we employ 
an approximation technique that provides the most 
important information while keeping the models 
themselves simple. We first focus on the Web 
application processor and create a separate software 

model for each key user task  (performance scenario). 
We use the overhead matrix to specify the overhead 
for messages sent over the Internet and over LANs 
and WANS, and the overhead for database accesses. 
Processing overhead for interactions with other 
processors is estimated and included as delays in the 
overhead matrix. Then we specify the number of 
messages, database accesses and external system 
interactions for each processing step in the scenarios. 
This solution provides an estimate of the end-to-end 
response time to deliver the pages and data to the 
browser. The system execution model estimates the 
scalability of the Web application processor by 
studying how it performs under different loading 
conditions. 

The case study illustrated the use of the 
approximation technique, the types of information that 
the model solutions provide, and how to evaluate the 
types of performance improvements that can be made 
to Web applications at the architectural phase of 
development. Once the appropriate Web application 
architecture is selected, additional models add more 
processing details and other processors to refine the 
performance predictions. 

The technique produces approximate results 
useful for making architecture tradeoff decisions. It is 
appropriate to add modeling details for more precise 
performance predictions as the software development 
proceeds. We have successfully used the approximate 
techniques on numerous case studies, identified and 
corrected performance problems before systems were 
deployed. It is important to include these techniques 
during the development of new systems. This will 
become easier if developers learn how to apply these 
simple techniques themselves. We are addressing this 
problem with a new book primarily targeted to software 
developers [SMIT01]. You can improve the situation by 
making software developers aware of the techniques 
and working with them to create and solve the 
software architecture performance models.  

6.0 References 

[CLEM96] P.C. Clements and L.M. Northrup, 
"Software Architecture: An Executive 
Overview,"  No.CMU/SIE-96-TR-003, Software 
Engineering Institute, Carnegie Mellon 
University,February 1996. 

[CRAI99] Pat Crain and Craig Hanson, "Web 
Application Tuning," CMG, Reno, 1999. 

[GAMM95] E. Gamma, et al., Design Patterns: 
Elements of Reusable Object-Oriented 
Software, Reading, MA, Addison-Wesley, 
1995. 



 

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc. 
Appears in Proceedings Computer Measurement Group Conference, Dec. 2000 

Page 11 of 11 

[GUNT00] Neil Gunther, "E-Ticket Capacity Planning: 
Riding the E-Commerce Growth Curve," Proc. 
Computer Measurement Group, Orlando, 
2000. 

[HANS99] Craig Hanson, Pat Crain, and Steve 
Wigginton, "User and Computer Performance 
Optimization," CMG, Reno, 1999. 

[LYNC99] Jaqueline A. Lynch, "Designing High 
Performance Web Pages," Proc. Computer 
Measurement Group, Reno, 1999. 

[MENA98] Daniel A. Menascé and Virgilio A.F. 
Almeida, Capacity Planning for Web 
Performance: metrics, models and methods, 
Prentice Hall, 1998. 

[MENA00] Daniel A. Menascé and Virgilio A.F. 
Almeida, Scaling for E-Business: 
Technologies, Models, Performance, and 
Capacity Planning, Prentice Hall, 2000. 

[SMIT90a] Connie U. Smith, Performance Engineering 
of Software Systems, Reading, MA, Addison-
Wesley, 1990. 

[SMIT99b] Connie U. Smith, "SPE Models for Multi-tier 
Client/Server Interactions with MQSeries," 
Proc. Computer Measurement Group, Reno, 
1999. 

[SMIT97] Connie U. Smith and Lloyd G. Williams, 
"Performance Engineering of Object-Oriented 
Systems," Proc. Computer Measurement 
Group, Orlando FL, 1997. 

[SMIT98d] Connie U. Smith and Lloyd G. Williams, 
"Performance Engineering Models of CORBA-
based Distributed Object Systems," Proc. 
Computer Measurement Group, Anaheim, 
1998. 

[SMIT98c] Connie U. Smith and Lloyd G. Williams, 
"Performance Models of Distributed System 
Architectures," Proc. Computer Measurement 
Group, Anaheim, 1998. 

[SMIT01] Connie U. Smith and Lloyd G. Williams, 
Performance Strategies: A Practical Guide to 
Creating Responsive, Scalable Software, 
Addison-Wesley, to appear 2001. 


