
Local Search Scheduling Algorithms for
Maximal Throughput in Packet Switches

Kevin Ross and Nicholas Bambos
Department of Management Science and Engineering

and Department of Electrical Engineering
Stanford University

Stanford, CA 94305-4026
Email: kross, bambos @stanford.edu

Abstract— We consider the (generalized) packet switch
scheduling problem, where the switch service configuration has
to be dynamically chosen based on observed queue backlogs,
so as to maximize the throughput. A class of recently developed
‘projective’ scheduling algorithms, which substantially generalize
the well-known maximum weight matching (MWM) algorithms
for crossbar switches, are explored from the perspective of
complexity. The typically huge number of possible switch config-
urations that the scheduler has to consider in each timeslot has
been previously observed to lead to an impractical computational
requirement.

We introduce a new class of projective schedules based on
‘local search’ concepts. In particular, rather than searching the
entire (typically huge) set of available service configurations to
find the best one, the new scalable scheduling algorithms search
‘locally’ over a small neighborhood of service configurations
to find a ‘better’ one in each time slot. We show that local
projective scheduling algorithms can provide dramatic reduction
in complexity without causing any loss of throughput (although
they may observe higher delay). We explore the nature and
structure of such schedules, which show a much higher promise
for practical implementation than their global versions.

I. INTRODUCTION

We consider a generalized packet switch as a processing
system having several queues, where Xq(t) is the backlog
(number of cells) in queue q at time slot t. In each time slot, the
system can be set to a single service configuration S, chosen
form the set S of all feasible ones. When the system is set
to S in a time slot, Sq cells are removed from queue q in
that slot. The objective is to dynamically choose and schedule
the service configurations in consecutive time slots, so as to
maximize the system throughput.

The most recognized example of this model is the crossbar
packet switch. In this special case, each queue stores packets
waiting to be sent between a particular input and output port
pair. A packet arriving to the input port is stored in this
virtual output queue until the switch is configured to connect
it to its output port. Since each port can establish exactly one
connection in each timeslot, the set of available configurations
corresponds to the matchings of input and output pairs.

It has been known [12] that throughput maximization for
this generalized switch system is achieved by a broad family
of (global) projective schedules, which choose a service vector

S ∈ S that maximizes over the whole S the inner product

〈S,BX〉 =
∑

p

∑
q

SpBpqXq (I.1)

(projection of S on BX , hence, projective schedules), when
the backlog vector is X , for any fixed matrix B = {Bpq}
which is positive-definite, symmetric, and has negative or zero
off-diagonal elements. These schedules substantially general-
ize the Maximum Weight Matching (MWM) algorithms [7],
[10], [8], where B is simply the identity matrix. However,
projective scheduling algorithms may be very computationally
intensive and potentially impractical in some switching appli-
cation scenarios, because the set S may have a huge number
of elements S to calculate the inner product at.

In this paper, we introduce a substantial extension of pro-
jective schedules based on ‘local search’ ideas. Rather than
searching the entire set of available service configurations
S to find the one of maximal projection on BX , the new
scalable algorithms search over a much smaller ‘local subset’
of service configurations. This provides a large reduction in
operational overhead, but these simple local schedules still
achieve 100% of the throughput. What is actually traded for
reduced complexity and overhead is a potentially increased
delay.

In section II we describe the model, and in section II-B
the standard projective schedules. In section III we introduce
local projective schedules and prove that they also support
maximum throughput. In section IV we explore how these
policies apply to crossbar switch scheduling and explore their
performance through simulation. We conclude with section V,
and provide the technical proofs in appendices.

II. THE SWITCHING MODEL

Consider a queueing system comprised of Q queues, in-
dexed by q ∈ Q = {1, 2, ..., Q}. Time is slotted t ∈
{1, 2, 3, ...}. Let Aq(t) be the (integer) number of cells arriving
to queue q in timeslot t. We assume that arrivals to each queue
q in a single timeslot are bounded above by some maximum
burst ceiling Aq . Arriving cells are buffered immediately in
their respective queues, and served in a first-in-first-out (FIFO)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

manner1 within each queue. Several consecutive cells may
comprise a packet, but it is assumed that packets can be served
preemptively2 on a cell-by-cell basis. For each q ∈ Q we
assume that

lim
t→∞

∑t
s=0 Aq(s)

t
= ρq ∈ (0,∞) (II.1)

that is, the long-term average arrival load to each queue is well-
defined, positive and finite. We make no further restriction
on the traffic traces. In particular, we do not assume any
particular statistics that may generate the traffic traces, or even
independence between the individual queues.

The traffic vector during the time slot t is A(t) =
(A1(t), A2(t), ..., Aq(t), ..., AQ(t)) and the long-term average
load vector is ρ = (ρ1, ρ2, ..., ρq, ..., ρQ). We use vector nota-
tion throughout, referring to subscripts only when necessary.

At any time slot, the system may be set to a single service
configuration S, chosen from a finite set of available configu-
rations S. Each configuration S ∈ S is a Q-dimensional vector

S = (S1, S2, ..., Sq, ..., SQ) (II.2)

where Sq is the (integer) number of cells from queue q served
(and removed from that queue) in a time slot, when the
system operates under S. For example, if Q = 3, the service
configuration (3, 0, 4) refers to serving 3 cells from queue 1,
0 cells from queue 2, and 4 cells from queue 3 in a time
slot when this configuration is used. Since configurations are
defined by vectors we use the terms ‘service configuration’
and ‘service vector’ interchangeably.

In a standard crossbar packet switch, each input port may
be connected to at most one output port to enable packet
transfer in a time slot. An input-output port connectivity
pattern can be represented by a service vector of 0’s and 1’s.
For example, a 2-by-2 crossbar switch has four virtual output
queues, buffering packets based on the arrival-destination port
pairs (1, 1), (1, 2), (2, 1) and (2, 2). Respectively, the two main
service configuration vectors of the switch are (1, 0, 0, 1) and
(0, 1, 1, 0). This is illustrated in Figure 1.

The key design and operational concern under consideration
is the dynamic scheduling of service configurations S ∈ S ,
so as to maximize the system throughput. The backlog state
X(t) of the system is the Q-dimensional vector of cells in the
individual queues

X(t) = (X1(t), X2(t), ..., Xq(t), ..., XQ(t)) (II.3)

where Xq(t) is total number of cells waiting in queue q ∈ Q
at time t. The service state S(t) of the queueing system at
time t > 0 is the service vector

S(t) = (S1(t), S2(t), ..., Sq(t), ..., SQ(t)) (II.4)

chosen from S by the scheduling algorithm (policy) that the
system operates under. In general, S(t) may depend on the

1Actually, FIFO is not essential in the results that follow; it is merely a
default service discipline.

2This requirement can be relaxed, but for clarity and simplicity of exposition
we keep it here.

1 – 1 1 0

1 – 2 0 1

2 – 1 0 1

2 – 2 1 0

Fig. 1. The crossbar packet switch. The upper row shows the schematic of
a standard 2-by-2 packet switch and the two input-output port connectivity
configurations it can be set at. The lower row shows the four input-output
virtual queues of the 2-by-2 switch and the two service vectors corresponding
to the two connectivity configurations above. In general an N -by-N switch has
N input and N output ports, with N2 queues and N ! matching configurations.

observed history of the backlog and service states of the
system.

If in time slot t the scheduling algorithm uses the service
configuration S(t) ∈ S, the number of cells departing from
queue q is given by

Dq(t) = min{Xq(t), Sq(t)} (II.5)

By convention, service is committed (and cell removals regis-
tered) at the beginning of each time slot, while cell arrivals are
registered at the end. The backlog state of the system evolves
according to the equation

X(t + 1) = X(t) + A(t) − D(t) (II.6)

or

X(t + 1) = X(0) +
t∑

z=1

A(z) −
t∑

z=1

D(z) (II.7)

where each term is a Q-dimensional integer vector. The
objective in these systems is to select S(t) (and hence D(t)),
without any knowledge of future arrivals, in a way that ensures
that all packets are served and no backlog queue is growing
uncontrollably.

A. Stability and Throughput

We utilize the concept of rate stability in our throughput
analysis of the system. In particular, we seek algorithms which
ensure that the long-term cell departure rate from each queue
is equal to the long-term arrival rate. Such algorithms must
satisfy

lim
T→∞

∑T
t=1 Dq(t)

T
= lim

T→∞

∑T
t=1 Aq(t)

T
= ρq (II.8)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

ρ2

S1

S3

ρ1

S2

S4
S5

R

Fig. 2. The stability region. The set of allowable arrival rate vectors ρ
is called the stability region R. For any ρ in the region R above, there is
a convex combination of service configurations which would apply a total
service rate to each queue which is at least the arrival rate to that queue. For
ρ outside there is no such combination.

for each q ∈ Q, that is, there is cell flow conservation through
the system. A scheduling algorithm which ensures II.8 is
referred to as rate stable. It can be easily seen from II.7 and
II.8 that

lim
t→∞

X(t)
t

= 0 (II.9)

is equivalent to rate stability.
The stability region R of the switching system described

above is the set of all load vectors ρ for which rate stability
(II.8) is maintained under at least one feasible scheduling
algorithm. The stability region can be expressed [1], [2] as

R = {ρ ∈ �Q
+ : ρ ≤

∑
S∈S

φSS, for some

φS ≥ 0 with
∑
S∈S

φS ≤ 1} (II.10)

Intuitively speaking, a load vector ρ is in the stability region
R if it is dominated (covered) by a convex combination of the
service vectors S ∈ S. This is illustrated in figure 2.

Indeed, if one knows ρ in advance, using each S for a
fraction φS of time (in a TDM fashion) will ensure that
equation II.8 is satisfied. On the contrary, if ρ /∈ R it is
impossible to maintain rate stability and flow conservation in
all queues no matter what feasible schedule we use; hence, at
least one queue will suffer an outflow deficit compared to the
cell inflow.

An equivalent [12], [14] polar characterization of II.10 is
given by

R = {ρ ∈ �Q
+ : 〈ρ, v〉 ≤ max

S∈S
〈S, v〉

for all v ∈ �Q} (II.11)

The intuition behind II.11 is that by shifting around the
direction vector v we can ‘scope out’ the stability region,
where ρ’s projection on any v is smaller than that of some
service vector S ∈ S .

We are primarily interested in dynamic scheduling algo-
rithms which maintain rate-stability and provide flow conser-
vation (II.8) for all ρ ∈ R, responding only to backlog and
automatically adapting to ρ without any prior knowledge of it.

B. Projective Scheduling Algorithms

We consider a family of scheduling algorithms, which are
called projective because they select the service vector S∗ ∈ S
of maximal projection on BX , when the backlog state is X ,
as follows.

Definition 2.1: (Projective Schedule) Given an arbitrarily
fixed Q by Q matrix B, the projective schedule is defined as
selecting a service vector from the set

S∗(X) = {S∗ ∈ S : 〈S∗,BX〉 = max
S∈S

〈S,BX〉} (II.12)

when the backlog vector is X . This is simply the set of all
service vectors of maximal projection onto the vector BX . If
there is more than one such vector, any one can be arbitrarily
selected. Note that, in a time slot t where the backlog is X(t),
the service vector S(t) ∈ S∗(X(t)) selected by the projective
schedule (determined by B) is such that

〈S(t),BX(t)〉 = max
S∈S

〈S,BX(t)〉 , (II.13)

or
S(t) = argmaxS∈S 〈S,BX(t)〉 (II.14)

maximizing the projection of S(t) on BX(t).
The natural question is under what conditions this schedul-

ing algorithm achieves maximal throughput. This is resolved
by the following result.

Theorem 2.1 (Stabilizing Matrices): If the Q by Q matrix
B is
(a) positive-definite, and
(b) symmetric, and has
(c) negative or zero off-diagonal elements,

then the projective schedule II.14 induced by B maintains rate-
stability of the switch for every ρ ∈ R and, hence, maximizes
its throughput.
Proof: The proof of this specific result is given in [12], [14].
The much more general proof of Theorem 3.2 presented later
covers it also.

The above family of projective schedules of maximal
throughput is very large. Indeed, it is as large as that of
matrices B that have the three required properties (a), (b),
(c) identified above. The Q2 elements of B can actually be
chosen or manipulated [14] to provide differentiated quality
of service (QoS, delay, jitter, etc.) to the various queues and
induce desirable load-balancing effects across them. In every
case, as long as the above three properties hold, the system
is guaranteed to have maximal throughput. With the focus
of this work on developing localized versions, we move the
discussion of the selection of matrix B to [14] and future
work.

It is interesting to note that in the very special case where
• B is the identity matrix I (obviously satisfying the above

three properties) and

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

• the set S is comprised of the specific service vectors (with
0,1 elements) of a standard (crossbar) switch

the induced projective schedule simply reduces to the well-
known maximum weight matching (MWM) algorithm [7].
Indeed, observe that when B = I and each service vector
S ∈ S has only 0 or 1 elements, the resulting inner product
〈S, X〉 =

∑
q SqXq reduces to the standard weighted (by the

queue backlogs) matching, and the chosen S maximizes it over
S.

C. Complexity of Projective Schedules

Consider now the steps that a projective scheduling algo-
rithm with fixed B = {Bpq} takes at the beginning of every
single time slot t during system operation:

1) Observe the current backlog X(t).
2) Compute the projection

〈S,BX(t)〉 =
∑
pq

SpBpqXq(t) (II.15)

for every single S in S, and choose an S∗ that maxi-
mizes it over S.

3) Apply the chosen S∗ in the current time slot.

The problem is that the set S may have a huge number of
service combinations S and, hence, the second step may be
very computationally intensive and practically infeasible to
perform in real time. This is indeed the case in many practical
applications. For example, an N -by-N crossbar switch has
Q = N2 input-output queues, but the number of service
combinations grows factorially in N .

In view of this level of prohibitive complexity, the ques-
tion arises whether there exist lower complexity projective
scheduling algorithms which (1) do achieve maximal system
throughput but (2) do not search the whole (potentially huge)
set S to select a service combination in each time slot, but a
much smaller subset or some specially chosen neighborhood.

III. LOCAL PROJECTIVE SCHEDULING ALGORITHMS

Fortunately, the above complexity problem can be often
overcome using a natural ‘local search’ idea explained in
this section. This leads to a new family of ‘local’ projective
schedules, which is much larger than the one identified in
the previous section. Every local schedule is of much lower
complexity than its global version, yet it is shown here to
also maximize the throughput. The tradeoff is between lower
complexity and potentially higher average delay (congestion),
yet the key property of maximal throughput remains intact.

First, we introduce a geometric cone representation of the
projective schedules of the previous section. This reveals a
topological (graph) structure that can be imposed on the set
of service configurations S and introduces a natural concept
of locality and neighborhood between the service vectors S.
This allows the definition of the new class of local projective
schedules, every element of which is then proven to be
throughput optimal.

A. Cone Geometry of Projective Schedules

It turns out that projective schedules can be naturally
represented in an intuitive geometric way, using a specially
defined cone structure, as follows. For each service vector
S ∈ S, let CS be the set of backlog vectors X for which S is
chosen under the projective schedule, given the fixed matrix
B; that is,

CS = {X ∈ Z
Q
0+ : 〈S,BX〉 = max

S′∈S
〈S′,BX〉} (III.1)

This is simply the set of backlog vectors X , on which S has
the maximal projection amongst all other service vectors in S.

Observe now that the projective schedule can now be
geometrically defined as follows:

when X ∈ CS , use the service vector S (III.2)

The set CS is a geometric cone because 〈S,BX〉 ≤ 〈S′,BX〉
implies that 〈S,BαX〉 ≤ 〈S′,BαX〉 for any positive scalar
α ∈ �+ and S, S′ ∈ S. Note that the cones {CS , S ∈ S}
form a partition of the backlog space. Figure 3 shows the
cone structure in a simple example of a two-queue system
with three service configurations. In general, some cones may
actually be degenerate and several cones may share common
boundaries.

This cone structure is discussed in more depth [14], espe-
cially noting the effect of the matrix B on the boundaries of
the cones. Since this work is focussed on the development
of local projective algorithms, we use for examples the case
where B is the identity matrix.

It is also useful (in the following proofs) to consider the
cone C(X) of all backlog vectors that use the same service
vector as X under the projective schedule (for a fixed B).
That is, if S is a service vector of maximal projection on X
amongst all others in S, then it is also of maximal projection
on every other backlog vector X ′ ∈ C(X). Specifically,

C(X) = {X ′ ∈ Z
Q
0+ : S∗(X ′) ⊆ S∗(X)} (III.3)

Note that, if X is in the interior of the non-degenerate cone
CS , then S∗(X) = {S}, so the only service vector that can
be used by the projective schedule is S. However, if X is
one the boundary of several adjacent cones, for example, X ∈
CS1

⋂ CS2
⋂ CS3 , then S∗(X) = {S1, S2, S3} has multiple

vectors and any of these can be used. That is why we have to
use set inclusion in III.3.

B. Local Projective Schedules

Here we discuss how the cone geometry of section III-A
leads to intuition in developing local projective schedules. In
particular, we show that the scheduler need only consider a
small subset of the available configurations at each timeslot.
This property leads from the observation that the backlog
X will usually only jump to a nearby service cone. This is
illustrated in Figure 4 for a simple two-queue example, and
discussed in more detail below.

Suppose that at (the beginning of) time slot t, the backlog
vector is X(t) = X . We see from the evolution of the system

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

X2

S3

S2

S1

X1

X2

C3

C2

C1

X1

Fig. 3. The cone geometry of the projective schedule for a system of two
queues (Q = 2) and three service vectors S1 = (4, 0), S2 = (3, 2), S3 =
(0, 3). Note that S1 serves queue 1 only, S3 queue 2 only, and S2 serves
both in a somewhat balanced manner. The top graph shows the service
configurations available. The bottom graph shows the corresponding cones CS

when the diagonal matrix B = [1, 0; 0, 1] is used; it would be different for a
different B. For example, if the backlog X(t) is within the cone C1 = CS1

at time t then the projective schedule selects service configuration S(t) = S1

at that time.

C1

C2

C3C4

X1

X2

X

∆∆∆∆(X)

Fig. 4. The intuition behind local projective schedules demonstrated
on a simple example of two queues and four service cones. The
rectangle is the backlog displacement box defined in equation III.4.
When the backlog is small the displacement box intersects many
service cones and their service vectors have to all be considered to
find the optimum. When the backlog is large, the box can at most
intersect neighboring cones and only their service configuration need
be considered.

in equation II.6 and the bounded arrivals and departures in a
single timeslot that X(t + 1) must be within some bounded
distance from X . In particular, if we let S̄q = max{Sq, S ∈ S}
be the maximum number of cells that can be served in a single
time slot from queue each q ∈ Q then we see that

X(t + 1) ∈ ∆(X) =
{
Y : X − S̄ ≤ Y ≤ X + Ā

}
(III.4)

where ∆(X) is the maximum displacement ‘box’ of the
backlog state X(t + 1) in the next time slot. Note that the
position of the displacement box ∆(X) depends on X , but its
size does not. Extending the discussion in Figure 4, observe
now the following:

1) When the backlog size |X| is small, the displacement
box ∆(X) within which X(t+1) must lie may intersect
many (or even all) service cones.

2) As |X| gets larger, the displacement box ∆(X) (which
does not grow in size) intersects fewer and fewer cones.
Eventually, for large enough X it will intersect at most
the neighboring cones of CS , when X ∈ CS .

The second observation is the critical one, given that we are
primarily concerned with system stability, which is inherently
a ‘large load/backlog asymptotic’ property. It reveals that the
projective scheduler need only compute 〈So,BX(t + 1)〉 for
the small number of So ∈ S for which CSo is adjacent to CS ,
in order to identify the service vector S(t+1) that maximizes
it over all S. This reduces complexity significantly and we
formalize this idea below.

We first map the concept of adjacent cones to neighboring
service vectors in S, introducing a notion of locality and
neighborhood in S. Adjacent cones correspond to service
cones with a common boundary. One way to view cone CS is
as the intersection of all backlog X half-spaces 〈S,BX〉 ≥
〈S′,BX〉 for all S′ 	= S and fixed S. The idea is to
consider S and S′ neighbors, if their cones CS and CS′ are
adjacent, sharing a unique non-degenerate boundary between
them. Note that this construction does not include trivial
neighboring cones which ‘touch’ at zero or along a hyper-
plane corresponding to zero backlogs. More formally,

Definition 3.1: (Neighboring Service Configurations) Two
distinct service vectors S and S′ in S are neighbors if there
exists a backlog Y ≥ 0 for which

〈S′,BY 〉 = 〈S,BY 〉 > 〈So,BY 〉 (III.5)

for all So ∈ S with So 	= S, S′. Define N (S) to be the set of
neighbors of the service vector S ∈ S. To attend to the non-
typical case where multiple service vectors maximize the inner
product - and are not neighbors according to baseline definition
III.5 - we augment the set N (S) inductively as follows. If
there exists a backlog Z ≥ 0 and a service configuration S�

for which

〈S�,BZ〉 > 〈S,BZ〉 > 〈S′,BZ〉 (III.6)

for all neighbors S′ ∈ N (S) then S� is added to N (S). These
supplementary neighbors are defined iteratively and ensure that

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

the boundaries of the cone CS are completely represented by
the neighbors N (S).

We can now define a local projective schedule such that,
given that the service vector S(t − 1) was used in the t − 1
time slot, the schedule will select S(t) from the neighbor set
N (S(t − 1)) (as opposed to the whole huge S) in the next
time slot, computed as follows.

Definition 3.2: (Local Projective Schedule) The local
schedule is defined inductively, given a fixed matrix B and
an arbitrary initial service vector S(0). Let S(t − 1) ∈ S be
the service vector used in time slot t−1 and X(t) the backlog
vector at the beginning of time slot t, after service and arrivals
in the previous time slot. Then, the local projective schedule
selects a service vector S(t) ∈ N (S(t − 1)) to use in time
slot t, such that

〈S(t),BX(t)〉 = max
S∈N (S(t−1))

〈S,BX(t)〉 , (III.7)

that is,

S(t) = argmaxS∈N (S(t−1)) 〈S,BX(t)〉 (III.8)

This is similar to II.13 and II.14, except for the critical dif-
ference that only currently neighboring (local) service vectors
in N (S(t − 1)) are considered in each step, as opposed to
all available in S, which generally reduces the computational
complexity substantially.

Of course, the question that immediately arises is whether
local projective schedules are rate stable for all loads ρ ∈
R and maximize throughput, or the reduction in complexity
comes at a price of reduced throughput. It turns out that the
throughput is not compromised at all, although the average
delay may increase.

Theorem 3.1: (Stable Local Projective Schedules) If the Q
by Q matrix B is (a) positive-definite, and (b) symmetric,
and has (c) negative or zero off-diagonal elements, then the
local projective schedule III.8 induced by B maintains rate-
stability of the switch for every ρ ∈ R and, hence, maximizes
its throughput.
Proof: The proof is covered by that of the following extended
Theorem 3.2.

We proceed to explore below an interesting graph-theoretic
angle of local projective schedules, which reveals some im-
portant intuition about their nature and structure.

C. Local Search in Service Graphs - Drift Dynamics

It turns out that the dynamics of local projective schedules
can be viewed as a walk on a specially structured graph with
nodes corresponding to the service vectors. This walk is akin
to ‘gradient descent’ dynamics, as explained below.

Consider the following service graph representation of the
set S. Each service vector S ∈ S forms a distinct node of
the service graph; any two nodes S and S′ are joined by an
edge iff S, S′ are neighbors according to Definition 3.1. The
local projective schedule is then represented as a walk on this
graph, as follows:

• Suppose the scheduler was on node S during the previous
time slot (using service vector S) and (after cell arrivals
and service throughout the slot) the backlog is X ′ at the
beginning of the current time slot.

• The scheduler then computes 〈S′,BX ′〉 on the neighbor-
ing nodes S′ ∈ N (S) of node S on the service graph, and
moves to the node where this inner product is maximized,
picking the corresponding service vector to use in the
current time slot.

The neighbors S′ of S could be stored in a lookup table or a
graph data structure. An example of a service graph is shown
in Figure 5.

Let us now compare the global vs. the local projective
schedules (given some fixed B) and see how the latter drifts on
the service graph being ‘pulled’ towards the former. Suppose
the system was at node S in the previous time slot and at
the beginning of the current one the backlog is X ′. Now,
the local scheduler scans the neighbors N (S) and picks
S′ = argmaxSo∈N (S) 〈So,BX ′〉 to move to. However, the
global scheduler would scan the whole S and would pick
S∗ = argmaxSo∈S 〈So,BX ′〉. It is possible that S′ is grossly
suboptimal and very different from S∗ being several tiers away
from the latter on the service graph. This could easily happen
if the backlog is small and a burst of arrivals pushes it to a
cone which is well beyond the neighboring cones of the one
that contained the original backlog.

The lemma below reveals why the service choices of the
local scheduler are always ‘pulled’ towards those of the global
one and evolve towards the latter.

Lemma 3.1: (Local Drift towards Global Optimum) If the
backlog is X and a globally sub-optimal service configuration
S /∈ S∗(X) is used (i.e one that does not maximize the inner
product 〈S,BX〉 over S), then there exists a neighbor S′ of
S for which 〈S′,BX〉 > 〈S,BX〉.
Proof: If X is such that 〈S,BX〉 > 〈S′,BX〉 for all neighbors
S′ ∈ N (S), then 〈S,BX〉 > 〈So,BX〉 for all So ∈ S due to
the definition of supplemental neighbors in equation III.6. But
this would contradict the assertion that 〈S∗,BX〉 > 〈S,BX〉
for S∗ ∈ S∗(X).

Therefore, we can have no local maxima; there is only one
service configuration that is better than all of its neighbors,
the true optimal S∗ ∈ S∗(X). Hence, in every time slot,
if the current service is not optimal, it will always improve
under the local scheduler. In other words, the local projective
schedule ‘pushes’ the service toward the best configuration.
The following corollary is now seen to be valid.

Corollary 3.1: If under the local projective schedule (given
a fixed B) the backlog X(t) enters cone CS (where the global
schedule uses the optimal service vector S) at some time slot
to and stays drifting in the same cone, it will eventually select
S at most M time slots after entering the cone (where M is
the number of available configurations in S); after using S
for the first time it will keep selecting it while in the cone.
The pull to S may be much faster, as the worst case of M
steps implies a neighborhood structure of only a single pair
of neighbors to each cone.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

C1

C2

C3C4

X1

X2

P

X3

X4

S1

S4

S5S6

S7

S2

S3

S4

S5S6

S7

S2

S3

S1

Fig. 5. (Graph Representation of Local Search) The local search method can
be represented in graph form. The three figures above illustrate this. The first
figure illustrates the division of the backlog space into cones as in figure 3. The
second figure illustrates a cross section of this cone structure as projected onto
a plane (such as P in the first graph, but in multiple dimensions). In general
backlog cones may have a boundary in up to Q − 1 dimensional space. In
the third figure, the same cones as the second figure are considered. Each
node corresponds to a service configuration and configurations are joined by
an edge if they are neighbors. Each timeslot the previous configuration and
its neighbors are considered. In this figure, if S1 is used in timeslot (t − 1),
then S1, S2, S3, S5 and S7 would be considered in timeslot t.

D. K-Delayed Projective Schedules

The property of local projective schedules described in
Corollary 3.1 is a special case of the more general property
defined below, under which we prove the stability of an even
larger family of relaxed projective schedules, extending even
the local one discussed before.

Definition 3.3: (K-Delayed Projective Schedules) A pro-
jective schedule (given fixed B) is defined to be K-Delayed
if, whenever the system backlog X(t) enters the cone C(Y)
(for any fixed backlog Y) and stays there drifting for more
than K slots, it will use S∗ ∈ S∗(Y) from the Kth time slot
on, while in this cone.

It turns out that all K-delayed projective schedules (no
matter what the integer K is) maximize the system throughput,
under the following conditions.

Theorem 3.2: (Stable K-Delayed Projective Schedules) If
the Q by Q matrix B is (a) positive-definite, (b) symmetric,
and (c) has negative or zero off-diagonal elements, then any
induced (by this matrix) K-delayed projective schedule (for
any fixed K) is rate stable for any ρ ∈ R and, hence,
maximizes the throughput.
Proof: The proof can be found in Appendix A.

The local projective schedule is clearly K-Delayed for K =
M by corollary 3.1. This is only one of many scheduling
algorithms which satisfy definition 3.3. The following are
extensions or related algorithms which are also K-delayed
projective schedules.

A. Instead of searching only immediate neighbors of the
previous configuration, consider all nodes within r tiers.
For example, 2nd tier neighbors are separated by two
edges in the graph representation of figure 5.

B. Search neighbors until one is found which improves
the previous 〈S(t − 1),BX〉, rather than continuing to
check neighbors until the optimal one is found.

C. Consider just one (or generally l) service
configuration in each time slot, and use
arg max

{
〈S(t − 1),BX〉 , < Ŝ,BX >

}
in such

a way that Ŝ considers every configuration within
some bounded number of time slots. For example,
Ŝ = Sm,m = t(mod M) + 1 for an ordering
{Sm}M

m=1 of the service configurations.
The algorithms above are all K-delayed projective sched-

ules for some finite integer K and, therefore maximize
throughput as per Theorem 3.2. Scheme A is of higher
complexity and may lead to lower average delay since the
value of K will be lower, but this comes at the cost of greater
computation. Scheme B is more efficient than standard local
projective schedules since it is not required to search the
entire neighborhood at each time, while scheme C is extremely
simple to implement, since it checks only two configurations
at each timeslot.

There is an intuitive relationship between the integer K and
the performance of a switch. Since a high value of K indicates
a longer lag before using the uptimal S, we can expect this
to lead to a greater average buffer and delay for each queue.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

This can be observed in the example application to the crossbar
switch in figure 7 in the next section.

IV. APPLICATION TO CROSSBAR SWITCHES

Let us now consider how the algorithms described in
Section III apply to the special, yet important, case of packet
scheduling in crossbar packet switches. As was pointed out
earlier (and has been explored in various other works), the
set of service configurations available in an N -by-N crossbar
packet switch corresponds to the set of matchings of size N .

We defined a neighbor relationship previously as a pair
of service configurations for which there is a backlog X
with inner product 〈S,BX〉 maximized by only the two
configurations. Now, we will consider the simpler case of
B = I, the identity matrix, which corresponds to the special
case of the maximum weight matching algorithm. It turns
out that two matchings can be considered neighbors if the
input-output ports can be loaded in such a way that the two
matchings both serve equal maximum aggregate load.

It can be easily seen that there is a large number of
neighbors for any particular configuration. Consider how one
may check if two matchings are neighbors. For an arbitrary
pair of matching configurations, if one cell is waiting in each
of the queues served by S1 and S2 (including any queues in
common), and no cells are waiting in any queue not served
by these two configurations, then clearly S1 and S2 will
maximize the inner product 〈S,X〉. The question remains as
to when there is an X for which this maximization is unique.

We state here a constructive definition of neighbors, and
then prove that these are in fact neighbors as defined earlier.

Consider an arbitrary pair of service configurations S1 and
S2 in a switch. These can each be represented as a matching
[7] (hence the name maximum weight matching). Now:

1) Overlay the matchings associated with S1 and S2 on a
single graph G.

2) Remove any single edges from G which correspond to
common edges from both S1 and S2.

The following proposition reveals when two matchings are
neighbors.

Proposition 4.1: If the two steps above lead to a graph G
which is connected then S1 and S2 are neighbors. Otherwise
they are not.
Proof: A constructive proof is given in Appendix B.

Consider the example shown in Figure 6. This shows
three matchings (configurations) of which the inner pairs are
neighbors, but the outer pair are not.

In Figure 7 we plot the backlog trace under four different
stable algorithms. The same arrival trace is used in each
case. It can be seen that the local projective schedule is very
close to the true global projective schedule (which in this
case is equivalent to MWM). The ’first improved neighbor’
algorithm is next best with the ’compare one configuration’
also performing well. This progression of algorithms illustrates
the tradeoff between complexity and quality of service. A
lot less effort in computation, such as the ’compare one

(a) (b) (c)
Fig. 6. (Neighbors in a 4-by-4 packet switch) . The above figure depicts 3
configurations in a 4-by-4 crossbar switch. Configuration pairs (a, b) and
(b, c) are neighbors but (a) and (c) are not neighbors. They cannot be
neighbors since, if the maximum matching were found with (a) and (c), then
the matching for (b) would be at least as large, contradicting the definition
of neighbors.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

Timeslot

A
ve

ra
ge

 b
ac

kl
og

 o
ve

r
al

l q
ue

ue
s

Projective
Local Projective
Local First Improvement
Single Check

Fig. 7. (Backlog Traces for a 4-by-4 switch) . The same arrival sequence
was applied to a 4-by-4 crossbar packet switch under four different algo-
rithms. Arrivals were generated randomly from a poisson distribution at
each timeslot with the arrival rate 99% of switch capacity. It can be seen
that the local projective schedule performs almost as well as the global
projective schedule with B = I. To reduce complexity even further, two other
algorithms are illustrated. The local first-improvement scheduling algorithm
checks the neighboring configurations until it finds an improvement on the
previous configuration. The single check algorithm compares the previous
configuration with one other configuration at each timeslot, cycling through
all configurations over time. This progression of performance of the four
algorithms illustrates the tradeoff between complexity and quality of service.
The lower complexity algorithms lead to greater expected buffer and delay.

configuration’ algorithm leads to an increase in buffer size and
delay, but ultimately does not compromise the throughput.

A. Further switch applications

The examples in this work have focussed on the crossbar
packet switch application. The model itself, however, has much
broader applications.

A switch with speedup available can be represented as vec-
tors with the same queue structure. The service configurations
available, however, include new vectors with elements of 0
and 2 instead of 0 and 1 (in the case where the speedup
available is 2). This is a simple extension to allow the switch to

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

serve two packets in a single timeslot. Because of the change
in service configurations, the stability region expands to the
convex combinations of the new configurations.

Multicast switches can also be described by the model
described in this work. A multicast switch can connect each
input port to multiple output ports, and arriving packets may
be assigned multiple destination ports instead of a single one.
Here we model each input to output set combination as a single
virtual output queue, and the service configurations available
describe the set of queues which can be served concurrently.
In this application both the number of queues and the number
of service configurations can grow exponentially, making the
local projective schedules even more attractive.

Apart from the other switch architectures covered by
the model, the K-delay projective schedules also show the
throughput maximization of a number of useful extensions to
the projective algorithms.

For example, consider using the projective schedule (global
or local) except that one of the following conditions hold:

A. The switch is only able to change service configurations
once every T timeslots instead of every timeslot.

B. The scheduler knows the number of waiting packets
in each queue only approximately, within some finite
bound of the actual backlog levels.

C. Arriving packets must be served consecutively without
being broken into unit length cells. Here the packet
length can be up to some finite bound.

D. The projective schedule solves equation II.13 within
some bound rather than exactly. In this case,

〈S(t),BX(t)〉 ≥ max
S∈S

〈S,BX(t)〉 − E (IV.1)

for some bounded error E.

In each of these cases it can be shown that the schedule is
a K-delay projective schedule (at least in the limit) for some
finite K. These extended algorithms are extremely useful in
practice as they correspond to realistic network and scheduling
restrictions.

V. CONCLUSIONS AND FURTHER RESEARCH

We have shown that a large class of local projective algo-
rithms lead to maximal throughput for the general switching
model described in this paper. The prohibitive computation
required for algorithms in the style of MWM can be reduced
dramatically without any loss in throughput.

We have applied the general results to crossbar packet
switching, as an important application. Simulation demon-
strates a qualitative tradeoff between delay and complexity,
and extended research will quantify this more clearly. Further
work will also examine in depth the effect of the choice of
matrix B and develop related algorithms.

APPENDIX

A. Proof of the Stability Theorem 3.2

In this appendix, we establish the proof regarding stability
and maximal throughput of K-Delayed Projective Schedules,

when the matrix B is positive-definite, symmetric, and has
negative or zero off-diagonal elements. The proof method
extends and covers corresponding ones in [2], [12].

First, note that the backlog ’drifts’ between different cones
as defined in equation III.1. This is illustrated in Figure 8.
Recall that one key assumption in this proof is the K-delay
property of the local schedule. That is, when the backlog enters
a particular cone, the schedule selects the corresponding op-
timal service configuration (according to the global projective
schedule) within a finite fixed time of K time slots and sticks
with it while in this cone. This means that when the backlog
enters a cone, there may be a time period of up to K time
slots where a sub-optimal service vector is used, but after that
the optimal one is picked up.

We consider an arbitrarily fixed arrival trace A(t), t ∈
{1, 2, 3, ...} satisfying equation II.1 with ρ ∈ R, where R
is defined by equation II.10 or equivalently II.11. This infinite
sequence of arrivals could be the result of a deterministic or
probabilistic structure, and is assumed to be fixed.

The objective of this proof is to show that limt→∞
X(t)

t =
0. This is sufficient for rate stability by equation II.9.
Since B is positive-definite it suffices to show that
limt→∞

〈
X(t)

t ,BX(t)
t

〉
= 0.

Arguing by contradiction, let us assume that
lim supt→∞

〈
X(t)

t ,BX(t)
t

〉
> 0 and that this limit is

attained on the increasing, unbounded time sequence {ta}∞a=1

with

lim
a→∞

X(ta)
ta

= η 	= 0 (.1)

and the backlog blows up along3 the vector direction η on
{ta}∞a=1. Given this assumption, we establish a contradiction
by showing there must exist a distinct (but related) time
sequence {sb}∞b=1 which has the property

lim
b→∞

〈
X(sb)

sb
,B

X(sb)
sb

〉
>

lim
a→∞

〈
X(ta)

ta
,B

X(ta)
ta

〉
= 〈η,Bη〉 (.2)

which by definition should be the superior limit. The
existence of the sequence {sb}∞b=1 contradicts the assertion
that the superior limit is attained on {ta}∞a=1. We construct
the series and identify four key properties, then show how
these properties lead to the contradiction.

1) Constructing the sequence {sb}∞b=1: To construct the
sequence {sb}∞b=1, we first construct a sequence {sa}∞a=1

related to {ta}∞a=1. The construction is based on the following
intuition. The series {sa}∞a=1 correspond to times just prior to
either (a) the backlog entering the cone C(η), or (b) a backlog
queue becoming empty. This is made formal below. Let

ra = max{t < ta : X(t) /∈ C(η)} (.3)

3Such a convergent subsequence should exist because 0 ≤ X(t)
t

≤
A(t)

t
→ρ ∈ R which is a compact set.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

C1

C2

C3

C4

ηηηη

Fig. 8. The switch evolves with the backlog drifting within the cones that
segment the backlog space. The contradiction basis of the proof assumes a
limiting backlog direction vector η along which the backlog is linearly in-
creasing over time (on a subsequence of time). This is shown by contradiction
not to be possible, hence, the backlog-over-time ratio is eventually squeezed
to zero and the switch is rate stable.

be the last time before ta that the backlog X(t) is not included
in the cone C(η). This is the last time that X(t) crosses from
outside C(η) to inside, hence, X(t) ∈ C(η) for every t ∈
[ra + 1, ta] and the backlog drifts in C(η) throughout that
interval. By convention ra = 0 if the backlog has always been
in C(η) before ta.

Next we define another related sequence to assure that
backlog queues are never empty in [sb + 1, tb]. Let

qa = max{t < ta : Xq(t) = 0,

for some q with ηq > 0} (.4)

We are now ready to construct sequence {sa}∞a=1. Let

sa = max{ra, qa, (1 − ε3)ta} (.5)

for some ε3 ∈ (0, 1) and for all a > 0. The final term guards
against the case where the backlog eventually remains in the
same cone indefinitely.

Lemma 1.1: For {sa}∞a=1 and {ta}∞a=1 as constructed
above, we have

lim inf
a→∞

ta − sa

ta
= ε > 0 (.6)

We prove lemma 1.1 below, and given this result we select
increasing, unbounded subsequences {sb}∞b=1 and {tb}∞b=1 of
{sa}∞a=1 and {ta}∞a=1 on which the limit is equal to the inferior
limit.

Thus we have established sequences for which

I. limb→∞ tb−sb

tb
= ε ∈ (0, 1) and4 sb < tb for all b.

II. X(t) ∈ C(η) for all t ∈ [sb + 1, tb] and each b. This
implies that the backlog X(t) drifts within the cone
surrounding η throughout the time interval [sb + 1, tb].

III. For each queue q such that ηq > 0, we have Xq(t) > 0
for all t ∈ [sb + 1, tb]. There is no idle service to those
queues in that time period.

4This implies that limb→∞
sb
tb

= 1 − ε.

IV. For each t ∈ [sb + K, t] we have S(t) ∈ S∗(η). The
service configuration is the globally optimal projective
configuration from time5 sb + K until tb for some
bounded K. This is related to the fact that the actual
scheduler is K-delayed.

Properties II, III and IV follow directly from the definition
of the series and the K-delay projective scheduler. It remains
to prove lemma 1.1 which implies property I.
Proof: (of lemma 1.1): It suffices to show that the property is
satisfied for the series {ra}∞a=1 and {qa}∞a=1. We first make
the argument for {ra}∞a=1.

Arguing by contradiction, suppose that there exists an
increasing unbounded subsequence {tc}∞c=1 of {ta}∞a=1 such
that limc→∞ tc−rc

tc
= 0. Arrival bounds imply that X(tc) −

X(rc) ≤ (tc − rc)A. Dividing through by rc and rear-
ranging the algebra, we see that limc→∞

X(tc)−X(rc)
rc

= 0.

Since limc→∞
X(tc)

tc
= η, this implies limc→∞

X(rc)
rc

= η.
But according to this definition of rc the backlog X(rc)
must be outside C(η), so limc→∞

X(rc)
rc

could not converge
to η. This establishes the necessary contradiction, showing
lim infa→∞ ta−ra

ta
= ε1 > 0.

For the series {qa}∞a=1 we consider the total arrivals be-
tween time qa and ta and the property that the backlog satisfies
X(ta)

ta
→η. We see that Xq ≤ (ta − qa)Aq . It follows that

lima→∞ ta−qa

ta
Aq ≥ ηq and hence lim infa→∞ ta−qa

ta
= ε2 >

0.
The third term in equation .5 clearly satisfies the property.

Since {sa}∞a=1 is defined as the termwise maximum of three
sequences, all of which satisfy equation .6, the lemma is
proved.

2) Establishing the Contradiction: Here we establish how
the properties of the constructed sequences lead to the afore-
mentioned contradiction.

Lemma 1.2: If a sequence {sb}∞b=1 and a subsequence
{tb}∞b=1 of {ta}∞a=1 satisfy the properties I to IV above then
the superior limit is not attained on the sequence {ta}∞a=1 as
initially assumed. This establishes the required contradiction.

Proof: Consider the change in backlog from time sb to time
tb, that is,

X(tb) − X(sb) =
tb−1∑

sb

(A(t) − D(t)) =

sb+K−1∑
sb

(A(t) − D(t)) +
tb−1∑
sb+K

(A(t) − D(t)) (.7)

Note that the first summation in the previous line is bounded
and will be easily dealt with. The second is the interesting
one. Note that, by property III, if Sq(t) − Dq(t) > 0 for any
q and sb < t < tb, then ηq = 0. Hence we see that [Bη]q ≤ 0
for all such q, due to the non-positive off-diagonal elements of
B, so Dq[Bη]q ≥ Sq[Bη]q for all q. Now projecting equation

5Note that from property I we eventually have tb > sb + K.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

.7 onto Bη, we have

〈X(tb) − X(sb),Bη〉 ≤
sb+K−1∑

sb

〈A(t) − D(t),Bη〉+

tb∑
sb+K

〈A(t),Bη〉−

〈S∗,Bη〉 (tb − sb − K) (.8)

where S∗ ∈ S∗(η). The last term follows from properties II
and IV, since the globally optimal service configuration S∗ is
used from from time sb + K until tb. Finally, observe that

lim
b→∞

∑tb−1
sb+K A(t)
tb − sb

=

lim
b→∞

∑tb−1
sb+K A(t)

tb − sb − K − 1
.
tb − sb − K − 1

tb − sb
=

ρ × 1 = ρ (.9)

from property I6. Dividing equation .8 by (tb−sb) and letting
b→∞, we have

lim
b→∞

〈
X(tb) − X(sb)

tb − sb
,Bη

〉
≤

〈ρ,Bη〉 − 〈S∗,Bη〉 = −γ(η) ≤ 0 (.10)

from the equivalent definition II.11 of the stability region,
setting v = Bη.

Now, since {tb}∞b=1 is a subsequence of {ta}∞a=1 we have
limb→∞

X(tb)
tb

= η. Using property I and (.10) we get the
following inequality

lim
b→∞

〈
X(sb)

sb
,Bη

〉
=

lim
b→∞

{〈
X(sb) − X(tb)

sb
,Bη

〉
+

〈
X(tb)

sb
,Bη

〉}
=

lim
b→∞

{
sb − tb

sb

〈
X(tb) − X(sb)

tb − sb
,Bη

〉
+

tb
sb

〈
X(tb)

tb
,Bη

〉}
≥

ε

1 − ε
γ(η) +

1
1 − ε

〈η,Bη〉 > 〈η,Bη〉 (.11)

The last inequality is due to the facts that ε ∈ (0, 1) and
γ(η) ≥ 0. Now, by successive thinnings of the components
of the backlog vector, we can obtain an increasing unbounded
subsequence {sc}∞c=1 of {sb}∞b=1 such that

lim
c→∞

X(sc)
sc

= ψ (.12)

6For sequences {sc}∞c=1 and {tc}∞c=1 satisfying property I, we have

lim
c→∞

∑tc
sc

A(t)

tc − sc
= lim

c→∞

∑tc
0 A(t)

tc
lim

c→∞
tc

tc − sc
−

lim
c→∞

∑sc
0 A(t)

sc
lim

c→∞
sc

tc − sc
= ρ

1

ε
− ρ(

1

ε
− 1) = ρ.

and from equation (.11)

〈ψ,Bη〉 > 〈η,Bη〉 (.13)

But B is positive-definite and symmetric, so equation .13
implies that 〈ψ,Bψ〉 > 〈η,Bη〉 or

lim
c→∞

〈
X(sc)

sc
,B

X(sc)
sc

〉
= 〈ψ,Bψ〉

> 〈η,Bη〉 = lim supt→∞

〈
X(t)

t
,B

X(t)
t

〉
(.14)

giving a contradiction to the definition of η. This completes
the proof of Lemma 1.2.

Lemma 1.2, together with the construction in the previous
section, completes the proof of Theorem 3.2.

B. Proof of Proposition 4.1

Here we prove the proposition concerning the neighborhood
structure of the crossbar switch in two steps, as follows:

1) If the remaining graph G is connected then we construct
a backlog vector X for which 〈S,X〉 is uniquely maxi-
mized at S1 and S2. Then by definition S1 and S2 are
neighbors.

2) If G is not connected then we construct a third configura-
tion S3 which gives the same inner product

〈
S1, X

〉
=〈

S2, X
〉

=
〈
S3, X

〉
for any backlog X . Then, by

definition, S1 and S2 are not neighbors.

Notice first that G is a graph of degree two. Each node has
one connection from each matching. Further, each connected
subset of G is a connected bipartite graph of degree two,
hence has a unique Hamiltonian cycle. Within any connected
bipartite graph of degree two one can choose exactly two
matchings by following the Hamiltonian cycle and choosing
odd or even edges.

Since each queue corresponds to a pair of ports, we replace
the queue subscript q with the corresponding (i, j) pair of
input and output ports.

First, we deal with the connected case. Let X be the backlog
vector where one cell is waiting in each queue served by S1

or S2.

Xij =
{

1 if S1
ij = 1 or S2

ij = 1
0 otherwise

(.15)

Clearly
〈
S1, X

〉
=

〈
S2, X

〉
= N . We consider any other S3

with
〈
S3, X

〉
= N (the upper bound by construction) and

show that this must be equal to either S1 or S2. Note that
S3 must be constructed entirely of connections also in S1 or
S2. If it any connection is different,

〈
S1, X

〉
< N since one

port is not serving any cell. This means that for every input
port in S3 it must be connected to its corresponding output
port from either S1 or S2. Hence to construct S3 we must
first include the common elements of S1 and S2. Secondly,
must choose a matching from the remaining edges represented
in G. Since G is a connected bipartite graph of degree two,
there are only two matchings which can be chosen. These
must correspond exactly to S1 and S2 and hence S3 is not
a different configuration. Therefore we have constructed a

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

backlog X for which 〈S, X〉 is uniquely maximized by S1

and S2.
Next, we prove that if G is not connected then we can

construct such an S3 with
〈
S3, X

〉
=

〈
S1, X

〉
=

〈
S2, X

〉
for

any backlog vector X . Consider an arbitrary backlog vector
X for which the inner product is maximized by both S1 and
S2. First include the common edges in S3. That is, S3

ij = 1
if S1

ij = S2
ij = 1.

Since G is not connected and each node is of degree two,
it can be separated into two disjoint graphs G1 and G2 each
of which is also a graph of degree two. Let S3 be constructed
from the edges of G1 associated with S1 and the edges of
G2 associated with S2. Clearly S3 is different from S1 and
S2 since otherwise S1 and S2 must be equivalent. Further, the
inner product

〈
S3, X

〉
must be equal to

〈
S1, X

〉
and

〈
S2, X

〉
since otherwise we have two cases:

1) If
〈
S3, X

〉
>

〈
S1, X

〉
then this contradicts the assertion

that S1 and S2 maximize the inner product.
2) If

〈
S3, X

〉
<

〈
S1, X

〉
then consider S4 which chooses

the common edges plus the edges of G1 associated with
S2 and the edges of G2 associated with S1. Now since
the edges in S3 and S4 exactly correspond to those in
S1 and S2 we have

〈
S3, X

〉
+

〈
S4, X

〉
=

〈
S1, X

〉
+〈

S2, X
〉

hence we must have
〈
S4, X

〉
>

〈
S1, X

〉
, again

contradicting the assertion that S1 and S2 maximize the
inner product.

Hence we can construct S3 which is different from S1 and
S2 but has at the same inner product value. Therefore S1 and
S2 cannot be neighbors.

REFERENCES

[1] Armony, M. and Bambos, N. (1999) Queueing networks with interacting
service resources. Proceedings of 1999 Allerton Conference, Urbana, IL,

pp. 42-51, 1999.
[2] Armony, M. and Bambos, N. (2001) Queueing dynamics and maximal

throughput scheduling in switched processing systems. TR NetLab-
2001-09/01, Engineering Library, Stanford University, 2001. To appear
in Queueing Systems in 2003.

[3] Baccelli, F. and Bremaud, P. (1994) Elements of Queueing Theory,
Springer-Verlag, 1994.

[4] Bambos, N. and Walrand, J. (1993) Scheduling and stability aspects
of a general class of parallel processing systems. Advances in Applied
Probability, 25:176-202, 1993.

[5] Kumar, P.R. and Meyn, S.P. (1995) Stability of queueing networks
and scheduling policies, IEEE Transactions on Automatic Control,
40(2):251-260, 1995.

[6] Keslassy, I. and McKeown, N. (2001) Analysis of scheduling algorithms
that provide 100% throughput in input-queued switches. Computer
Systems Lab Report, Stanford University, 2001.

[7] McKeown, N., Mekkittikul, A., Anantharam, V., Walrand, J. (1999)
Achieving 100% throughput in an input-queued switch. IEEE Trans-
actions on Communications, 47(8):1260-1267, 1999.

[8] Stolyar, A. (2001) MaxWeight scheduling in a generalized switch: state
space collapse and equivalent workload minimization under complete
resource pooling. Preprint, 2001.

[9] Tassiulas, L. and Ephremides, A. (1992) Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Transactions on Automatic
Control, 37(12):1936-1948, 1992.

[10] Tassiulas, L. (1998) Linear complexity algorithms for maximum
throughput in radio networks and input queued switches, IEEE INFO-
COM’98, pp. 533-539, 1998.

[11] Tassiulas, L. and Bhattacharya, P. P. (1999) Allocation of interdependent
resources for maximal throughput. Stochastic Models, 16(1).

[12] Ross, K. and Bambos,N. (2002) Projective Cone Schedules in Queueing
Structures; Geometry of Packet Scheduling in Commnunication Network
Switches, Proceedings of the 2002 Allerton Conference on Communi-
cation, Control and Computing. Monticello, Illinois.

[13] Young, D. Iterative Solution of Large Linear Systems, Academic Press:
1971

[14] Ross, K. and Bambos, N. (2002) Projective Processing Schedules in
Queueing Structures; Applications to Packet Scheduling in Communi-
cation Network Switches, Technical Report SU NETLAB-2002-05/01,
Engineering Library, Stanford University.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

	INFOCOM 2004
	Return to Previous View

