
Deterministic Sampling and Range Counting in Geometric
Data Streams

Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T. Goodrich
School of Information and Computer Science,

University of California, Irvine, CA 92697-3425, USA

{bagchi,amic,eppstein,goodrich}@ics.uci.edu

ABSTRACT
We present memory-efficient deterministic algorithms for construct-
ing ε-nets and ε-approximations of streams of geometric data. Un-
like probabilistic approaches, these deterministic samples provide
guaranteed bounds on their approximation factors. We show how
our deterministic samples can be used to answer approximate on-
line iceberg geometric queries on data streams. We use these tech-
niques to approximate several robust statistics of geometric data
streams, including Tukey depth, simplicial depth, regression depth,
the Thiel-Sen estimator, and the least median of squares. Our al-
gorithms use only a polylogarithmic amount of memory, provided
the desired approximation factors are inverse-polylogarithmic. We
also include a lower bound for non-iceberg geometric queries.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Geometrical problems and computations; G.3 [Proba-
bility and Statistics]: [Robust Regression]

General Terms: Algorithms, Theory

Keywords:

1. Introduction
With the proliferation of streams of packets on the Internet, as well
as data streaming from embedded systems, digital monitors, sensor
networks, and scientific instruments, there is a need for new al-
gorithms that can compute approximations or answer approximate
queries on data streams. The main challenge in these contexts is
that the data volumes are often much larger than the memory size
of a typical computer. Thus, there is a considerable amount of inter-
est in methods that can process data streams using limited memory
(e.g., see recent surveys by Muthukrishnan [30] and Babcock [2]).
The model we choose to work in is the so called Time Series model
in which each time instant reveals a new element of the data stream
“signal.”

A typical approach in data streaming algorithms is to maintain a
random sample of the input data and perform computations on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

sample with the hope that information about the sample can be used
to infer properties of the entire set. Naturally, such inferences come
with an associated probability that they are inaccurate. In this pa-
per, we are interested in deterministically constructing samples of a
data stream that have guaranteed approximation properties for the
original set. Moreover, because of the limited memory restriction
of data streaming applications, we are interested in deterministic
samples that can be constructed using space that is polylogarithmic
in the data stream’s length.

In addition, because much of the streaming data is coming from
sensors and scientific instruments, we are interested in this paper in
studying streaming algorithms for geometric data. Such data could
include multi-dimensional points in the color space of astrophys-
ical data or two-dimensional lines defined by a point-line duality
of a stream of points in the plane. Of particular interest, then, is
data streaming algorithms for constructing ε-nets and ε-approxi-
mations, which are general structures developed in the computa-
tional geometry literature for deterministically sampling geometric
data. Indeed, ε-nets and ε-approximations are developed in a very
general context of bounded-dimensional range spaces, where we
are given a ground set and a polynomial-sized family of ranges on
that set (which constitute the queries or sampling statistics we are
interested in). Hence, results for constructing such deterministic
samples should have a considerable number of applications.

1.1 Related work on Streaming Algorithms
Data streaming problems have engendered a large amount of inter-
est among the algorithms community over the last few years. For a
comprehensive survey of the work done so far and some interesting
directions for the future, the reader is referred to Muthukrishnan’s
work [30]. An earlier survey by Babcock et. al. [2] explores the
issues arising in building data stream systems.

We are not familiar with any previous work for constructing ε-
nets or ε-approximations in streaming models, although these struc-
tures have been extensively studied in full-memory contexts (e.g.,
see the chapter by Matoušek [29]). The closest previous work
is done in the iceberg query [11] framework. Manku and Mot-
wani [25] provide 1+ε approximations for the frequency counts of
items in a data stream that occur more than εN times (which are the
so-called “icebergs”). An alternative approach which requires two
passes but uses less space can be found in [21]. Another set of im-
proved results for determining the top k frequency counts is given
in [9]. Algorithms for computing the quantiles of a data stream
have been given by Greenwald and Khanna [14] guaranteeing a
precision of εN , which is similar to the guarantees that are pro-
vided by ε-approximations, while using O(1

ε
log εN) space. This

limitation of an additive εN error in every quantile is overcome by

Gupta and Zane [15]. The latter’s method provides relative error for
all quantiles but uses O(log2 N/ε3) space and requires knowledge
of an upper bound on the stream size.

Although the area of geometric property testing has generated
interest in algorithms with sublinear time complexity (see e.g. [5]),
the first geometric problem to be studied in the streaming model as
we understand it was that of finding the diameter of a set of points.
Feigenbaum, Kannan and Zhang [12] gave an O(1/ε) space algo-
rithm for computing the diameter of points in two dimensions in
the streaming model and a O(1

ε3/2
· log3 N(log R + log log N +

log(1
ε
))) space algorithm for computing it in the sliding window

model where R is the maximum, over all windows, of the ratio
of the diameter to the distance between the closest two points in
the window. Indyk [18] gave a streaming algorithm which main-
tains a c-approximate diameter of points in d dimensions using
O(dn1/(c2−1)) space taking O(dn1/(c2−1)) time per new point,
for c >

√
2.

Cormode and Muthukrishnan generalized the exponential his-
tograms used on single dimensional data sets in earlier works on
streaming algorithms [8, 22] and defined radial histograms [7],
which allowed them to give a O(1 + ε) approximation to the di-
ameter using O(1/ε) space. They were also able to use these struc-
tures to approximate convex hulls in the sense that no point in the
input stream is more than εD outside the approximate hull, where
D is the diamter of the point set. Constructing an approximate hull
takes them O(q/ε) space. Hershberger and Suri [17] improve this
to give a sampling-based algorithm for approximating the convex
hull of a streaming point set, showing how to maintain an adap-
tive sample of at most 2r points such that the distance between the
hull of their sample and the true convex hull is O(D/r2), where D
is the current diameter of the sample. Some of the other geomet-
ric problems that have been studied in a streaming model include
minimum spanning tree and minimum weight matching [19] and
certain facility location and nearest neighbour kind of queries [7].

1.2 Our Results
In this paper, we present memory-efficient deterministic algorithms
for constructing ε-nets and ε-approximations of streams of geomet-
ric data. Our algorithms use a polylogarithmic amount of memory,
provided ε is at least inverse-polylogarithmic. As mentioned above,
ε-nets and ε-approximations are of interest in their own right and
have many applications in computational geometry. We show how
our deterministic samples can be used to answer online iceberg ge-
ometric queries on data streams, such as in multi-dimensional ice-
berg range searching. Because the information typically of interest
from data streams is statistical, we focus in this paper primarily
on the use of ε-nets and ε-approximations to compute approxima-
tions to several robust statistics of geometric data streams, includ-
ing Tukey depth, simplicial depth, regression depth, the Thiel-Sen
estimator, and the least median of squares. Thus, we additionally
give polylogarithmic-space data streaming algorithms for comput-
ing approximations to these statistics. We also include a lower
bound for non-iceberg range queries in data streams.

2. Preliminaries on ε-Nets and ε-Approxima-
tions

We recap certain aspects of ε-Nets and ε-approximations [37, 29]
which are part of a general framework for modelling a number of
interesting problems in computational geometry and derandomiz-
ing divide-and-conquer type algorithms.

A range space is a set system, i.e., a pair Σ = (X,R), where
X is a set and R is a set of subsets of X . We call the elements of
R the ranges of Σ, as R is typically defined in terms of some well
structured geometry. If Y is a subset of X , we denote by R|Y the
set system induced by R on Y , i.e., {R ∩ Y |R ∈ R}1.

We say a subset Y ⊆ X is shattered if every possible subset
of Y is induced by R, i.e., if R|Y = 2Y . The VC-dimension
of Σ is the maximum size of a shattered subset of X . If there
are shattered subsets of any size, then the VC-dimension is infi-
nite. A related and simpler notion is the scaffold dimension [13]
of Σ. It is based on the notion of the shatter function πR(m),
which we define as the maximum possible number of sets in a
subsystem of Σ induced by an m-sized subset of X . In other
words, it is the sup{|R|Y | : Y ⊆ X, |Y | = m}. We now de-
fine the scaffold dimension of (X,R) as the infimum of all num-
bers d such that πR(m) is O(md). It turns out that the shat-
ter function of a set system of VC-dimension d′ is bounded by�

m
0 � +

�
m
1 � + · · · +

�
m
d′ � = Θ(md′

) [34, 37]. Thus the scaffold
dimension is always at most the VC-dimension. Conversely, if the
scaffold dimension is bounded by a constant, the VC-dimension
too is bounded by a constant. There are, however, many natural ge-
ometric set systems of scaffold dimension strictly smaller than the
VC-dimension; for instance, the scaffold dimension of a set system
defined by halfplanes in the plane is 2, while the VC-dimension is
3. In the rest of the paper, we will always refer to the scaffold di-
mension of a set system. In addition, we consider only those set
systems whose scaffold dimensions are bounded by a constant.

We are now ready to define ε-nets and ε-approximations. A sub-
set S ⊆ X is an ε-net for (X,R) provided that S∩R 6= ∅ for every
R ∈ R with |R|/|X| > ε. A subset A ⊆ X is an ε-approximation
for (X,R) provided that���� |A ∩ R|

|A| − |X ∩ R|
|X|

���� ≤ ε (1)

for every set R ∈ R. Note that every ε-approximation is automat-
ically an ε-net, but the converse need not be true. A remarkable
property about set systems of scaffold dimension d is that, for any
ε ∈ [0, 1), they admit an ε-approximation whose size depends only
on d and ε, not on the size of X . The first basic result in this vein
is the following lemma.

LEMMA 2.1. For any set system (X,R), with a finite X , and
a scaffold dimension at most d, where d ≥ 1, there exists, for any
ε ∈ [0, 1], an ε-net of size at most C1ε

−1 lg(ε−1), and an ε-approx-
imation of size at most C2ε

−2 lg(ε−1). Here C1, C2 depend on
only d.

Note that, in general, the lg(ε−1) factor cannot be removed from
the bound.

Matoušek [28] gave a deterministic algorithm for efficiently com-
puting small sized ε-approximations (and thereby, ε-nets) for set
systems with constant-bounded scaffold dimensions. Such an al-
gorithm needs that the set system to be given in a form more “com-
pact” than simply the listing of the elements in each set. For this
we assume the existence of a subsystem oracle, i.e. an algorithm
(depending on the specific geometric application) that, given any
subset Y ⊆ X , lists all sets of R|Y . We say that the subsystem or-
acle is of dimension at most d if it lists all sets in time O(|Y |d+1).
This corresponds to the scaffold dimension; the maximum number
of sets in R|Y is πR(|Y |), and the “+1” in the exponent accounts
for the fact that each output set is given by a list of size up to |Y |.
Matoušek’s result is summarized by the following lemma.
1Note that although many sets of R may intersect Y in the same subset,
this intersection appears only once in R|Y .

LEMMA 2.2. Let (X,R) be a set system with a subsystem or-
acle of dimension d, where d is a constant. Given any ε ∈ [0, 1),
we can compute an ε-approximation of size O(ε−2 lg(ε−1)) and an
ε-net of size O(ε−1 lg(ε−1)) in time O(|X|ε−2d lgd(ε−1)).

We shall use the algorithm above as a sub-routine for our streaming
algorithm for ε-approximations (see Section 4). It is based on two
observations that we state below. They correspond to two basic op-
erations of our algorithm, the merge step and the reduce step. Many
algorithms for computing ε-approximations (certainly the one Ma-
toušek gave, and the one we shall give) start by partitioning X into
small pieces, and then alternate between the two steps until they get
the desired approximation.

OBSERVATION 2.3 (MERGE STEP). Let X1, . . . , Xm ⊆ X
be disjoint subsets of equal cardinality and let Ai be an ε-approxi-
mation of cardinality b for (Xi,R|Xi), i = 1, . . . , m. Then A1 ∪
. . .∪Am is an ε-approximation for the subsystem induced by R on
Xi ∪ . . . ∪ Xm.

OBSERVATION 2.4 (REDUCE STEP). Let A be an ε-approxi-
mation for (X,R) and let A′ be a δ-approximation for (A,R|A).
Then A′ is an (ε + δ)-approximation for (X,R).

Lemma 2.2 can be extended to a weighted case, as in the follow-
ing result by Matoušek [28].

LEMMA 2.5. Let X be a finite set equipped by a probabilistic
measure µ (given by a table) and let Σ = (X,R) be a range space
satisfying the assumptions of Lemma 2.2. Then an ε-approximation
for Σ with respect to the measure µ can be computed with the same
asymptotic efficiency in the running time and size of the ε-approxi-
mation in the case of uniform measure in Lemma 2.2.

When X is associated with a probabilistic measure µ, an ε-approx-
imation of (X,R) is a multi-set A such that���� |A ∩ R|

|A| − µ(X ∩ R)

µ(X)

���� ≤ ε

for every R ∈ R. Though we call µ a probabilistic measure, we
allow µ(X) to take values other than 1; e.g., µ(X) can be |X|.

3. Additional Extensions for Weighted Sets
While the extension described above is useful in our context, we
nevertheless need some further generalizations, which will be use-
ful in the data streaming model. In particular, we need to generalize
Observations 2.3 and 2.4 for the weighted case. This allows us to
merge ε-approximations of different sizes and for sets of different
cardinalities. To the best of our knowledge, this is the first time
such an observation is being made. Note that in the un-weighted
case, for an ε-approximation A for (X,R), each element in A “rep-
resents” |X|/|A| elements in X . This is easy to see if we write
Requirement 1 in the following form���� |A ∩ R| |X|

|A| − |X ∩ R|
���� ≤ ε|X|

Now, instead of having an element p in the ε-approximation A rep-
resent the same number of elements in X , we can assign it a weight
γ(p) equal to the number of elements in X that it represents. In this
generalized scenario, a subset A ⊆ X , is a weighted ε-approxima-
tion for (X,R) if � p∈A γ(p) = |X|, and for every R ∈ R,�����

�
p∈A∩R

γ(p) − |X ∩ R|
����� ≤ ε|X|

We are now ready to state observations related to weighted merg-
ing and weighted reducing — in a form that will be of use in the
streaming algorithm.

OBSERVATION 3.1 (WEIGHTED MERGE STEP). Let
X1, . . . , Xm ⊆ X be disjoint subsets (of cardinalities not nec-
essarily the same) and let Ai be a weighted ε-approximation of
(Xi,R|Xi), i = 1, . . . , m. Then A1 ∪ . . . ∪ Am is a weighted ε-
approximation for the subsystem induced by R on Xi ∪ . . . ∪Xm,
where the weights on the points remain as they were.

OBSERVATION 3.2 (WEIGHTED REDUCE STEP). Let A be a
weighted ε-approximation for (X,R) and let A′ be a δ-approxima-
tion for (A,R|A), where the weights on A are used as the proba-
bilistic measure to compute A′. Then A′ is an (ε + δ)-approxima-
tion for (X,R).

In the above observation, the probability of a set Y is defined as
µ(Y) = � p∈Y γ(p), where γ(p) is the weight of point p. Also
recall Lemma 2.5 which talks about computing an ε-approximation
for a set equipped with a probabilistic measure.

4. Computing ε-Approximations in Geomet-
ric Streams

Let x1, . . . , xn, . . . be a stream of geometric objects in the time se-
ries model. Let X be the set of all the objects in the stream that
have arrived till now. Let R be a set of ranges defined on X , and
Σ = (X,R) be the current range space. In addition, let d, where d
is a constant, be the scaffold dimension of Σ. In this section we de-
scribe our algorithm that computes an ε-approximation of (X,R)
that is small in size, and, provided ε is at least inverse polylogarith-
mic, takes polylogarithmic space and processing time per object.

The main result of this paper is the following:

THEOREM 4.1. Given an algorithm for computing an ε-approx-
imation of an n-point range space (equipped with a probabilistic
measure) of size σ(ε) in time T (n, ε) and taking space S(n, ε), we
can compute an ε-approximation for a stream of objects, of which
n have been seen, such that:

1. The size of the approximation is O(σ(ε));

2. The processing time per object is O(lg n·T (s, O(ε/ lgc n))+
T (lg n · s, ε/2));

3. The space taken is O(lg n · s + S(s, O(ε/ lgc n)) + S(lg n ·
s, ε/2));

where s = σ(O(ε/ lgc n)), and c > 1 is a constant.

The algorithm given by Matoušek [28] (see Lemmata 2.2 and 2.5)
has σ(ε) = O(ε−2 lg(ε−1)), T (n, ε) = O(n(ε−2 lg(ε−1))d), and,
we claim, S(n, ε) = O(n +

√
n · (ε−2 lg(ε−1))d). Thus, in effect,

we have the following result.

COROLLARY 4.2. There is an algorithm for computing ε-app-
roximations for a stream of objects, of which n have been seen, with
an associated set of ranges, such that the size of the approximation
is O(ε−2 lg(ε−1)), the processing time per object is O(lg n ·sd+1),
and the space taken is O(lg n · s + sd+1/2), where s = O(ε−2 ·
lg2c n(lg lg n + lg(ε−1))), and c > 1 is a constant.

A0,1A0,1

time

Current Output

Current item

Past stream item

Weighted merge

Merge and reduce

Available set

Maximal set

Figure 1. Schematic: Computing an ε-approximation of a data stream

We now describe our streaming algorithm. It simulates the divide-
and-conquer approach of the static algorithm in a bottom up fash-
ion. Interestingly, we do not need to know the value of n in ad-
vance.

We begin by imposing a hierarchy of groupings onto the stream:
define canonical sets Sj,k as {xi|j2k ≤ i < (j + 1)2k} for
j, k ≥ 0. Canonical sets are inter-related through a natural tree
hierarchy. The children of set Sj,k, k ≥ 1, are the canonical sets
S2j,k−1 and S2j+1,k−1. We say that a canonical set Sj,k becomes
available when the last element in it, i.e., x(j+1)2k−1, arrives. A
maximal canonical set is one that is available but whose parent is
not yet available. Observe that when xn arrives, there are at most
lg n maximal canonical sets. Also, the union of all the maximal
canonical sets is the set X of all elements that have arrived till now.

We use the following building blocks.

• ε-approx(): An algorithm for deterministically computing ε-
approximation of small size (see Lemma 2.2),

• weighted ε-approx(): An algorithm for computing deter-
ministically ε-approximations of weighted items of small size
(see Lemma 2.5).

Note that we cannot afford to use ε-approx() on an input that is
larger than logarithmic, as otherwise we will not remain within our
space and time bounds.

Our algorithm, we call it ε-stream approx(), follows the ba-
sic merge and reduce technique [29] for constructing ε-approx-
imations. To follow this technique we need to use a sequence
w1, . . . , wu, . . . with the property that W � � ∞

u=1 wu = O(1).
Here we shall use wi = i−c, for some c > 1.

At a high level the algorithm is as follows (see Figure 1): At
every stage, the algorithm stores a δ-approximation for all available
maximal canonical sets, where δ varies with the set, but is always
at most ε/2. Let Aj,k be such an approximation for Sj,k. This δ-
approximation is constructed through merging the approximations
A2j,k−1 and A2j+1,k−1 which were earlier computed for Sj,k’s
two children. (Note that algorithm ε-approx(), on two different
input sets of the same cardinality, and with the same ε, results in
approximations that have the same size. Thus, by induction, we
can see that A2j,k−1 and A2j+1,k−1 have the same cardinality, and
by Observation 2.3 can be merged.)

The ε-approximation of the set X at any point, the stream output,
is determined by weighted merging. Each element p ∈ Aj,k is

assigned a weight γ(p) = |Sj,k|/|Aj,k| for this purpose. As it
happens, once a weight is assigned to an object, we don’t ever need
to change it.

We are now ready to formally specify ε-stream approx(). Fig-
ure 2 contains the specification. Assume that Aj,0 is the element
itself in the singleton set Sj,0.

ε-stream approx()
When the next element xn in the stream arrives

For each canonical set Sj,k that becomes available,
taken in the order of increasing k, where k ≥ 1

/* Combine approximations of its children
for the parent */

B ← A2j,k−1 ∪ A2j+1,k−1.
/* Reduce the size of the approximation */
Aj,k ← (ε/2 ·wk/W)-approximation of B

using ε-approx().
/* Assign weights to elements */
For all p ∈ Aj,k: γ(p)← |Sj,k|/|Aj,k|.

/* Combine approximations of maximal canonical sets
for the stream */

A′ ← � Sj,k is available Aj,k .

Each element in A′ retains its weight from its orginal Aj,k .
/* Reduce the size of the approximation */
A← (ε/2)-approximation of A′ using weighted ε-approx().
Output A.

Figure 2. Algorithm for computing an ε-approximation of a geometric
stream.

The correctness of algorithm ε-stream approx(), and the anal-
ysis of time and space complexity are discussed in the following
proof.

PROOF OF THEOREM 4.1. Observations 2.3 and 2.4 imply that
Ai,j is a δ-approximation for Sj,k , where

δ ≤
k�

u=1

ε

2
· wu

W
<

ε

2
.

Together with Observation 3.1, this implies that A′ is a weighted
(ε/2)-approximation for the set X of elements in the stream. By
Observation 3.2, it now follows that A is an ε-approximation of
(X,R). The size of A is O(σ(ε/2)).

The data structure needs to store just the ‘Aj,k’s; all other sets
are intermediate results that can be discarded. Denote the size of
largest such set, i.e., Aj,lg n, by s, which is O(σ(ε/ lgc n)); recall

that the size is determined by just the last reduction step. The size
of the data structure is, therefore, O(lg n · s).

Consider the space and time requirements for calls to ε-approx()
(there can be at most lg n such calls per object) and weighted ε-
approx() (1 per object). Note that s is an upper bound for the
size of the input to ε-approx(), and s lg n an upper bound for the
size of the input to weighted ε-approx(). Thus, for the calls to ε-
approx(), the time required is O(lg n · T (s,O(ε/ lgc n)), and the
space required is S(s, O(ε/ lgc n)). For the call to weighted ε-
approx(), the time required is T (lg n · s, ε/2)), and the space re-
quired is S(lg n · s, ε/2)).

5. Applications: Robust Statistics
ε-Nets and ε-approximations have a number of applications in com-
putational geometry, and even other areas like learning theory —
see, e.g., [27]. Many of the problems in these have streaming ver-
sions. One basic application is range counting. In this, we are given
a set S of n points in � d , and a family R (the ranges) of subsets
of � d . Each query consists of a range R ∈ R and asks for the
number of points in it. Typical range families are axes-orthogonal
ranges, spherical ranges (proximity queries), and simplical ranges.
The corresponding range spaces for these all have a bounded scaf-
fold dimension. In the streaming version, the point set S comes as
a continuous stream, interspersed with queries. It is easy to see how
our algorithm would work here: use ε-stream approx() to main-
tain an ε-approximation A of the current (S,R). When queried
with range R ∈ R, output |A ∩ R| · n/|A|. This is within an
additive εn of the true value; this is akin to the iceberg queries
mentioned earlier.

The above technique has implications in a lot of specific applica-
tions. To get a flavor of this, we delve deeper into the specific area
of robust statistic in the next few paragraphs.

Robust statistics concerns the study of statistical estimators that
can tolerate high numbers of outliers, while maintaining an accu-
racy of estimation that depends only on the remaining uncorrupted
data points. In contrast, ordinary least squares estimators, while
trivial to compute even in the streaming model, can be forced to
produce estimates that are arbitrarily far from the correct model
even in the presence of a single outlier. The number of outliers that
an estimator can tolerate while preserving its accuracy is called its
breakdown point; in general, methods with high breakdown points
are preferred but other criteria are also important including statisti-
cal efficiency (number of samples needed to achieve a given accu-
racy) and computational efficiency (amount of time it takes to com-
pute a given estimate from a set of samples). Many robust statistical
methods also have the advantage of being non-parametric, not re-
quiring the statistician to produce a prior probability distribution or
other arbitrary parameters before producing a fit. The paradigmatic
example of a robust statistic is the median of one-dimensional data,
which, unlike the mean, is robust with a breakdown point of 1

2
.

Much research on streaming algorithms has gone into methods for
maintaining approximate medians or more general quantiles [14],
and we would like to find similar methods for higher dimensional
statistics.

Two of the critical problems studied in robust statistics are loca-
tion (finding a central point in a cloud of data points) and regres-
sion (fitting the data to a model in which a dependent variable or
variables is a linear function of the independent variables). Many
methods in this area are based on various concepts of depth, which
measures the quality of fit of an estimate. It is natural to seek the
estimate maximizing the depth, but it is also of importance to be

able to compute depths of non-optimal estimates, in order to form
depth contours that produce a center-outward ordering of the data.

For many of these robust statistical methods, a computationally
efficient streaming approximation to the depth measure can be ob-
tained from an ε-approximation of the sample data. The deepest fit
can be approximated by a deepest fit to the ε-approximation, and
this approximate fit often has similar breakdown point properties
to the non-approximate fit on which it is based. We describe below
several of the methods to which this technique applies:

5.1 Tukey Depth
This quantity [10] measures the quality of fit of a center, as the min-
imum proportion of sample points among all halfspaces that con-
tain the center. The Tukey depth of a point can be computed in time
O(nd log n), where n denotes the number of sample points [33].
The Tukey median is the point of maximum depth. It is known that
any Tukey median has depth at least 1/(d + 1), and the break-
down point of the Tukey median as an estimate of location is also
1/(d + 1). There are known static algorithms for finding Tukey
medians, or other points of high depth, in two or three dimen-
sions [20, 23, 26], but in higher dimensions only inefficient linear-
programming based exact solutions are known and it is necessary
to resort to more efficient approximation algorithms [6].

The Tukey depth is based on counting points in halfspaces. Hence
it can be approximated effectively using ε-approximations for half-
space ranges [6]: the depth of a point within an ε-approximation of
a sample is within an additive error of ε of its depth in the original
sample data. In particular, the Tukey median of an ε-approximation
has depth within ε of that of the true Tukey median. The breakdown
point of this approximate Tukey median is 1/(d + 1)− ε. Thus, by
using our streaming ε-approximation algorithm, we can efficiently
maintain not only an approximate Tukey median of the data set, but
also a space-efficient data structure from which we can compute ac-
curate approximations of the Tukey depth of any point.

5.2 Simplicial Depth
This is another measure of quality of fit for location, introduced by
Liu [24]. The simplicial depth of a fit point is defined to be the
proportion of simplices, among all the

�
n

d+1 � simplices formed by
convex hulls of (d + 1)-tuples of sample points, that contain the
fit point. Equivalently, it is the probability that a randomly chosen
(d + 1)-tuple contains the fit point in its convex hull. As we now
argue, for points in the plane, the simplicial depth in a sample set
is accurately approximated by the simplicial depth of an ε-approx-
imation for wedge ranges (that is, ranges formed by intersecting
two halfplanes). Therefore, as for Tukey depth, we can answer
approximate depth queries and maintain an approximate deepest
point in a space-efficient manner for streaming data.

Let δ be a value to be determined later and imagine the follow-
ing process for measuring approximately the simplicial depth of
a fit point: first, let L be a set of 1/δ lines through the fit point,
partitioning the plane into 2/δ wedges having the fit point as a
common apex, with at most a δ fraction of the sample points in
any wedge. Let e1 be the proportion of triangles, determined by
three input points, that are not all on one side of one of a line in L.
Then e1 is an overestimate of the simplicial depth, but the amount
by which it overestimates the depth is O(δ): the only triangles in-
correctly included in the estimate are ones that have two points in
opposite wedges, there are O(δ2n3) such triangles per pair of op-
posite wedges, and O(1/δ) such pairs. Next, let e2 be the propor-
tion of triangles, determined by three points in an ε-approximation

of the sample, that are not all on one side of a line in L. For the
same reasons as before, e2 is within O(δ) of the simplicial depth
for the ε-approximation. Further, e1 and e2 are within O(ε/δ) of
each other:

e1 = 1 −
�

i

�
wi
3 � +

�
wi
2 � (hi − wi) + wi

�
hi−wi

2 ��
n
3 � ,

where wi is the number of sample points in the ith wedge and hi

is the number of sample points in the halfplane containing the ith
wedge on its counterclockwise boundary. Each term in the sum
is approximated within O(ε) by the corresponding term where wi

and hi are replaced by numbers of points in the ε-approximation,
and there are O(1/δ) terms, so the total difference between e1 and
e2 is O(ε/δ). Putting together the errors in going from the original
simplicial depth to e1 to e2 to the simplicial depth of the approx-
imation, and setting δ =

√
ε, we see that the ε-approximation ap-

proximates the simplicial depth to within O(
√

ε).
As far as we are aware, this deterministic ε-approximation based

method for approximating simplicial depth is novel even for static,
non-streaming data, although it is trivial to approximate simplicial
depth randomly in the static case by sampling triangles. It seems
likely that similar deterministic and streaming approximation guar-
antees, with worse dependence on ε, can be shown to hold also in
higher dimensions.

5.3 Regression Depth
This statistic was introduced by Rousseeuw and Hubert [31] as a
measure of the quality of fit of a regression hyperplane. It is de-
fined as being the minimum proportion of sample points that can be
removed to turn the fit plane into a nonfit, that is, a hyperplane com-
binatorially equivalent to a vertical hyperplane. Amenta et al. [1]
showed that, like Tukey depth, for regression depth a fit always ex-
ists with depth at least 1/(d + 1), and the breakdown point of the
maximum-depth fit is 1/(d + 1). Their proof technique shows that
the regression depth of a query hyperplane can be measured by per-
forming a certain projective transformation of the space containing
the sample points, and measuring the Tukey depth of a certain point
in the transformed space. Due to the transformation, a halfspace in
the transformed space may correspond to a double wedge (symmet-
ric difference of two halfspaces) in the original space. Therefore,
the same ε-approximation technique used for Tukey depth, but with
double wedge ranges, also applies to regression depth, and lets us
compute depths and maintain an approximate deepest fit with high
breakdown point for streaming data. Bern and Eppstein [3] gen-
eralized regression depth to the context of multivariate regression,
in which the sample data have more than one dependent variable;
in their definition, the depth of a fit is the minimum proportion of
sample data contained in any double wedge, one boundary of which
contains the fit and the other of which is parallel to the dependent
coordinate axes; this is again well approximated by ε-approxima-
tions for double wedge ranges.

5.4 The Thiel-Sen Estimator
This estimator [35, 36] is a method for two-dimensional linear re-
gression, in which one first finds the median among all

�
n
2 � slopes

determined by the lines through pairs of sample points, and then
selects a regression line having that median slope and bisecting the
sample set. It has a breakdown point of 1 −

�
1/2 ≈ 0.293. This

has long been a testbed for geometric optimization algorithms, and
several O(n log n) time static algorithms for it are known, among
them one based on using ε-cuttings in a prune-and-search tech-
nique [4]. However these algorithms seem to require repeatedly

scanning the data in a way that is unavailable to a streaming algo-
rithm. Instead, we apply an approximation technique very similar
to that for simplicial depth, above.

To begin with, suppose that we are given a query slope s, and
must determine the approximate position of s within the sorted se-
quence of slopes, normalized by dividing the position by

�
n
2 � . This

can be solved exactly by a reduction to computing the number of
inversions in a permutation, but we are interested in approxima-
tions that can be computed by a streaming algorithm that does not
know s in advance. To do this, let δ be a parameter to be deter-
mined later, and imagine subdividing the sample points into a grid
by O(1/δ) lines that are vertical and parallel to s, in such a way
that at most a δ proportion of the points lie in the slab between any
two adjacent parallel grid lines. Let e1 be an estimate of the posi-
tion of s, formed by summing up the normalized number of pairs
of points that form a line with lower slope than s and that are in a
pair of grid cells that are separated both by a vertical line of the grid
and by a line parallel to s from the grid. Then e1 is within O(δ)
of the true position of s since the only lines through a given point
that are omitted from the count are the ones where the other point
determining the line is in one of the two slabs containing s, and e1

can be expressed as a sum with O(δ−2) terms, each term being a
product of the number of points in two parallelograms. Let e2 be a
similar normalized sum, with the number of sample points in each
parallelogram replaced by the number of points of an ε-approxima-
tion for parallelogram ranges, and let e3 be the normalized position
of s within the set of lines determined by pairs of points from the ε-
approximation. Then e1 differs from e2 by O(εδ−2) and e2 differs
from e3 by O(δ + εδ−1). Therefore, the overall error caused by
using e3 as our approximation to the position of s is O(δ + εδ−2).
Setting δ = ε1/3 makes this total error equal O(ε1/3).

To compute an approximate Thiel-Sen estimator, we use the same
ε-approximation for parallelograms. We compute the median slope
among pairs of points from the approximation, and then find a line
with that median slope bisecting the approximation. The resulting
line has slope with a normalized position within O(ε1/3) of the me-
dian slope, partitions the sample points within ε of exact bisection,
and has a breakdown point of 1 −

�
1/2 − O(ε1/3).

5.5 Least Median of Squares (LMS)
These methods [32] in robust statistics seek a fit that minimizes
the median residual value separating the fit from the sample points.
This is not a depth-based criterion, but it leads to fits which are
highly robust against outliers. For location problems, the least me-
dian of squares fit is the center of the minimum radius sphere that
contains at least half of the sample data [16]. It has a breakdown
point of 1

2
: if fewer than half the sample data points are outliers,

then the sphere defining the LMS fit has smaller radius than the
circumsphere of the non-outliers, and it contains at least one non-
outlier, so its center must be an accurate fit. Clearly, this is the
best breakdown point possible for any location method. The natu-
ral type of ε-approximation to use for this problem is one with balls
as its ranges. If we form the LMS fit of such an ε-approximation,
the result may not be robust. Instead, we approximate the LMS fit
by finding the center of the minimum radius sphere that contains at
least a 1

2
+ ε proportion of the points in the ε-approximation. Such

a sphere must therefore contain at least half of the sample data,
and has a radius at least as small as the smallest sphere containing
at least a 1

2
+ 2ε fraction of the sample data. It is robust with a

breakdown point of 1
2
− 2ε.

The same LMS approach can also be applied to regression prob-
lems. The least median of squares regression hyperplane can be

defined as the central hyperplane in a slab bounded by two parallel
hyperplanes, with minimum vertical separation between them, that
contains at least half of the sample data; again this is robust with a
breakdown point of 1

2
. As above, we can use an ε-approximation,

with slab ranges, and find the slab with minimum vertical separa-
tion containing a 1

2
+ ε fraction of the ε-approximation points, to

produce an approximate LMS fit with breakdown point 1
2
− 2ε.

6. A Lower Bound on Range Counting
We provide a simple lower bound on the space required to count
approximately the number of items in a range that is not necessarily
an iceberg. When we say that an algorithm f -approximates the
range counting problem we mean that if a given range contains l
points, the algorithm gives us an answer which lies between l/f
and l · f .

The bound is stated in terms of two-sided ranges: a point (x, y)
is said to belong to the two sided range located at (p, q) if x ≥ p
and y ≥ q.

THEOREM 6.1. Any f -approximate algorithm to the two-sided
range counting problem must use space Ω(n/f2).

We begin by assuming there is an algorithm A which gives an
f approximation to the two-sided range counting problem for a
stream of points in two dimensions. Further we assume that this
algorithm uses space o(n/f2).

Now consider a set of n points which are grouped in n/f 2 equally
sized groups, we call them Gi, where 1 ≤ i ≤ n/f2, in the fol-
lowing way (Figure 3):

ε

ε

i i

G (close up)i

Gi

(x , y)

0 1 2 n

n−1

n

2

1

n−1

Figure 3. Input sequence for the lower bound on approximate range
counting

• Each point in Gi has the same x coordinate, we call it xi.
For simplicity of presentation assume that all xi values are
integers. Additionally, we require xi > xi−1.

• All the points in Gi have y coordinates closely clustered at
a given value, we call it yi. Here too we assume that all yi

values are integers. Formally, for every pj ∈ Gi, we say that
0 ≤ y(pj) − yi < 1/2.

• Every point pj ∈ Gi has y-coordinate strictly smaller than
the y-coordinates of all the points in Gi−1.

• Each group i has an additional point qi = (xi + ε, yi + ε),
for some ε < 1/2, associated with it.

Note that this family of input sequences has the property that a
two-sided query made at (xi, yi) should return a count of f2+1 and
one made at (xi+

ε
2
, yi+

ε
2
) should return a count of 1. This radical

change in the counts will not occur between two such queries at
any point which is not actually (xi, yi) for some value of i. As
an extension to this simple observation, we note that since all the
xis and yis are chosen out of the integers 1, 2, . . . n, it is possible
to extract the exact values of all the xi with O(n log n

f2) queries by
using binary search.

Let us see if the algorithm A can be the query mechanism which
we can deploy to this end. Since A is an f approximation, it should
return a value of at most f at (xi + ε

2
, yi + ε

2
) and a value between

f + 1/f and f3 + f at (xi, yi). This means that A can indeed act
as the oracle which identifies the locations of the groups in our set.

Hence, using A as a subroutine we can extract θ(n/f 2) infor-
mation about the input set. This contradicts the assumption that A
uses space o(n/f2).

Seen in the context of streaming algorithms, Theorem 6.1 im-
plies that is not possible to approximate the range counting problem
in polylogarithmic space. One of the implications of this, among
others, is that it is not possible to count inversions in lists [15] in
the sliding window model.

Acknowledgments. We would like to thank David Mount for help-
ful discussions of robust statistics in the context of the topics of this
paper, and S. Muthukrishnan for helpful discussions on geometric
streaming algorithms in general.

References
[1] N. Amenta, M. W. Bern, D. Eppstein, and S.-H. Teng. Re-

gression depth and center points. Discrete & Computational
Geometry, 23(3):305–323, 2000. arxiv:cs.CG/9809037.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems. In Proc. of the
22nd Annual ACM Symp. on Principles of Databases Systems,
2002. dbpubs.stanford.edu:8090/pub/2002-19.

[3] M. W. Bern and D. Eppstein. Multivariate regression depth.
Discrete & Computational Geometry, 28(1):1–17, July 2002.
arxiv:cs.CG/9912013.

[4] H. Brönnimann and B. Chazelle. Optimal slope selection via
cuttings. Computational Geometry: Theory and Applications,
10:23–39, 1998.

[5] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric al-
gorithms. In Proc. of the 35th Annual ACM Symp. on Theory
of Computing, pages 531–540, 2003.

[6] K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and
S.-H. Teng. Approximating center points with iterated Radon
points. Intl. Journal of Computational Geometry & Applica-
tions, 6(3):357–377, 1996.

[7] G. Cormode and S. Muthukrishnan. Radial Histograms for
Spatial Streams. Technical Report 2003-11, DIMACS, 2003.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintain-
ing Stream Statistics over Sliding Windows. In Proc. of the
13th Annual ACM-SIAM Symp. on Discrete Algorithms, pages
635–644, 2002.

[9] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency
estimation of internet packet streams with limited space. In
Proc. of the 10th Annual European Symp. on Algorithms (ESA
2002), pages 348–360, 2002.

[10] D. L. Donoho. Breakdown properties of multivariate location
estimators. PhD thesis, Harvard University, 1982.

[11] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and
J. D. Ullman. Computing iceberg queries efficiently. In Proc.
of the 1998 Intl. Conf. on Very Large Data Bases, pages 299–
310, 1998.

[12] J. Feigenbaum, S. Kannan, and J. Zhang. Computing Diame-
ter in the Streaming and Sliding-Window Models. Technical
Report YALEU/DCS/TR-1245, Yale University, 2002.

[13] M. T. Goodrich and E. A. Ramos. Bounded-independence
derandomization of geometric partitioning with applications
to parallel fixed-dimensional linear programming. Discrete
Comput. Geom., 18:397–420, 1997.

[14] M. Greenwald and S. Khanna. Space-efficient online compu-
tation of quantile summaries. In Proc. of the 2001 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 58–66, 2001.

[15] A. Gupta and F. X. Zane. Counting inversions in lists. In Proc.
of the 14th Annual ACM-SIAM Symp. on Discrete Algorithms,
pages 253–254, 2003.

[16] S. Har-Peled and S. Mazumdar. Fast algorithms for comput-
ing the smallest k-enclosing disc. In Proc. of the 11th Annual
European Symp. on Algorithms, Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[17] J. Hershberger and S. Suri. Convex hulls and related problems
in data streams. In Proc. of the ACM/DIMACS Workshop on
Management and Processing of Data Streams, 2003. Avail-
able online at http://www.research.att.com/conf/mpds2003/.

[18] P. Indyk. Better algorithms for high-dimensional proximity
problems via asymmetric embeddings. In Proc. of the 14th
Annual ACM-SIAM Symp. on Discrete Algorithms, pages
539–545, 2003.

[19] P. Indyk. Stream-based geometric algorithms. In Proc.
of the ACM/DIMACS Workshop on Management and
Processing of Data Streams, 2003. Available online at
http://www.research.att.com/conf/mpds2003/.

[20] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint
of a finite planar set of points in linear time. In Proc. of the
9th Annual ACM Symp. on Computational Geometry, pages
83–90, 1993.

[21] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags.
ACM Transactions on Database Systems, 28(1):51–55, March
2003.

[22] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest
neighbour aggregates over data streams. In Proc. of the 2002
Intl. Conf. on Very Large Data Bases, pages 814–825, 2002.

[23] S. Langerman and W. Steiger. Optimization in arrangements.
In H. Alt and M. Habib, editors, Proc. 20th Intl. Symp. Theo-
retical Aspects of Computer Science, number 2607 in Lecture
Notes in Computer Science, pages 50–61. Springer-Verlag,
2003.

[24] R. Y. Liu. On a notion of data depth based on random sim-
plices. Annals of Statistics, 18:405–414, 1990.

[25] G. S. Manku and R. Motwani. Approximate Frequency
Counts over Data Streams. In Proc. of the 2002 Intl. Conf.
on Very Large Data Bases, pages 346–357, 2002.

[26] J. Matoušek. Computing the center of planar point sets. In
J. E. Goodman, R. Pollack, and W. Steiger, editors, Discrete
and Computational Geometry: Papers from the DIMACS Spe-
cial Year, number 6 in DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, pages 221–230. AMS,
1991.

[27] J. Matoušek. Epsilon-nets and computational geometry. In
J. Pach, editor, New Trends in Discrete and Computational
Geometry, volume 10 of Algorithms and Combinatorics,
pages 69–89. Springer-Verlag, Heidelberg, 1993.

[28] J. Matoušek. Approximations and optimal geometric divide-
and-conquer. J. Comput. Syst. Sci., 50:203–208, 1995.

[29] J. Matoušek. Derandomization in computational geometry. In
J.-R. Sack and J. Urrutia, editors, Handbook of Computa-
tional Geometry, pages 559–595. Elsevier Science Publishers
B.V. North-Holland, Amsterdam, 2000.

[30] S. Muthukrishnan. Data Streams: Algorithms and Applica-
tions. Invited talk at SODA 2003. Available on request by
email to muthu@research.att.com.

[31] P. J. Rousseeuw and M. Hubert. Regression depth. Journal of
the American Statistical Association, 94(446):388–402, 1999.

[32] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Out-
lier Detection. John Wiley & Sons, 1987.

[33] P. J. Rousseeuw and A. Struyf. Computing location depth and
regression depth in higher dimensions. Statistics and Comput-
ing, 8:193–203, 1998.

[34] N. Sauer. On the density of families of sets. J. Combin. Theory
Ser. A, 13:145–147, 1972.

[35] P. K. Sen. Estimates of the regression coefficient based on
Kendall’s tau. Journal of the American Statistical Associa-
tion, 63:1379–1389, 1968.

[36] H. Thiel. A rank-invariant method of linear and polynomial
regression analysis, part 3. Proc. of Koninalijke Nederlandse
Akademie van Weinenschatpen A, 53:1397–1412, 1950.

[37] V. N. Vapnik and A. Y. Chervonenkis. On the uniform conver-
gence of relative frequencies of events to their probabilities.
Theory Probab. Appl., 16:264–280, 1971.

