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 The widely used method of least squares for state estimation is revisited.  The commonly used least squares 

philosophy is based on the L2 Hölder norm.  The L1 and L8  norms are considered for applications in power 
engineering.  The effects of outliers in measurements and multicolinearity on state estimation are studied.  
An application in parameter estimation for synchronous generators is given as an example. 

 
 
1. Introduction 

 
Since Schweppe [1] introduced it three decades ago, state estimation for the real-time 

modeling of the electric power system has remained an extremely active and contentious area.  
To date, there have been more than a thousand research and development publications on new 
and improved methods.  More recently, these have promoted dynamic, distributed, and non-WLS 
(Weighted Least Squares) approaches.  State estimation is the process of usage of input data 
(measurements) and possible physical laws to calculate a set of numbers (system states) that sat-
isfy input measurements and laws in some optimal way.  For electric power systems the most 
important basis of all state estimators is the method of least squares.  The method requires a pro-
cess of the form, 

η+= Hxz , 
where z is an m vector of known measurements, H is the m x n process matrix, x is the unknown 
n vector of the true states, Hx is the m vector of the linear function linking measurements to 
states, η is the m vector of random errors, m is the number of measurements, and n is the number 
of states.  The objective is generally to somehow minimize η.  The Hölder norm [2] of any vec-
tor is the so-called Lp norm, 
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The Hölder norms [2] are a subset of norms which are defined as follows: let S be a linear space, 
and let ¦ ⋅¦  be a real-valued function defined on the elements of S such that, 
 i)   ¦ x¦  > 0    unless x = 0 
 ii)  ¦ λx¦  = λ¦ x¦    where λ is a scalar 
 iii) ¦ x + y¦  ≤ ¦ x¦  + ¦ y¦    (triangle inequality). 
Then ¦ ⋅¦  defines a norm on S.   When p = 2, one obtains the familiar least squares solution, 

ηηtJ =  

          0=
∂
∂
x
J

            (1) 

zHx +=ˆ  
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where H+ is the pseudoinverse of H.  In this paper, the case of 2≠p  is considered and alterna-
tive cases will be applied to power engineering estimation problems.  The specific cases of pa-
rameter estimation and measurement noise are discussed. 

Consider an overdetermined static linear system of equations, with more equations than 
unknowns.  This is the most often case, especially in power engineering in which measurements 
are usually plentiful.  Overdetermined systems of linear equations only have a solution when the 
rank(H) is the same as the rank(H,z) which in practice may not be numerically determinable.  
State estimation is the determination of the system state vector x, so that the residual vector r or 
measurement error vector η = z – Hx will be, in a certain sense, small.  It is natural to minimize 
the Euclidean length.  This method of ordinary least squares (OLS) discovered independently by 
Gauss in 1795 and Legendre in 1805, is the only method promoted as a fitting principle in most 
literature.  This method is preferred largely because the determination of the desired parameters 
is mathematically very simple.  When certain assumptions are fulfilled (e.g. the linear model is 
correct, and the errors η in the measurements z are independent and normally distributed), statis-
tical assertions (e.g. about confidence intervals for the parameters) can be made, and the method 
is always the best linear “unbiased” estimator (BLUE) of x (according to the Gauss-Markov 
theorem, the least squares estimate has the minimum variance).  Unfortunately, the mathematical 
elegance that makes OLS so popular depends on a number of fairly restrictive and often unrealis-
tic assumptions.  However, if η is not normally distributed, then the OLS state estimates and in-
ferences can be flawed.  Violation of the normal distribution of the error term can occur when 
there are one or more outliers in the measurements.  An outlier is an observation that is inconsis-
tent with the remainder of the measurements, in other words, if the corresponding error or resid-
ual is large or very large compared with those of the majority of the other observations.  Only 
after having found the fit can one identify which observations are outliers and which are not.  
One would like to state a priori whether there are outliers or not, in order to use an adequate fit-
ting method. 
 
 
2. Outliers in Measurements 

 
Outlier detection methods could be direct and indirect.  Many of the direct procedures in 

the literature are based on either sequential deletion (backward search) of outlying observations 
or sequential addition (forward search) of clean observations.  In a backward search, the entire 
set of observations is initially considered and the outliers are sequentially removed by a criterion 
such as the largest absolute value of some transformed residual.  The forward search works simi-
larly.  A small subset of the data is selected as the initial clean basis and clean observations are 
sequentially added to this basis.  Methods using a forward search generally outperform backward 
search methods.  Indirect methods for outlier detection are based on examination of the final 
weights (between 0 and 1) that the robust estimator assigns each observation.  Residuals provide 
the most reliable signal to detect outliers.  The cutoff values to declare an observation to be an 
outlier from the residual value may be computed by Monte Carlo simulation because the distri-
bution of robust estimator residuals is not known. 

If the outliers are successfully identified, they could be left in the analysis or they could 
be removed entirely from the analysis.  Dismissal of these outliers from the analysis could be a 
missed opportunity to characterize the process at certain operating conditions.  A compromise 
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between including and deleting the outliers is to introduce a weighting factor in (1) with low (or 
zero) weights for the measurements corresponding to the outliers. 
 In power engineering, outliers occur as a consequence of high amplitude noise in meas-
urements (e.g., due to induction during large transients), momentary loss of measurement data, 
and noise occurring due to unintended signal paths and measurements.  Unfortunately, many AC 
applications result in recurring measurement errors and “periodic noise.”  Periodic errors are not 
uncommon in power electronic switched applications.  The true outlier does occur in wide area 
measurements in which satellite communications channels are used and a variety of unintended 
signal processing occurs (as an example, in [3], locational data derived from the Global Position-
ing Satellite are described).  
 
 
3. Robust Estimation 

 
Robust estimators have been proposed as alternatives to OLS to downweigh observations 

as a function of “outlyingness” in state estimation.  This can be achieved by choosing a scaling 
factor s and a suitable threshold bound T as in the following objective function, 
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Several robust estimation methods have been proposed: 
• The M-estimator is the most popular [4], M stands for maximum likelihood 
• R-estimator is based on the ranks of the residuals [5] 
• L-estimator is based on linear combination of order statistics [6] 
• Least Median of Squares (LMS) and Least Trimmed Squares (LTS) estimator approaches 
• S-estimator is based on the minimization of a robust M-estimate of the residual scale 
• The Generalized M-estimator (GM) attempts to downweigh the high influence points as well 

as large residual points 
• Multi-stage GM-estimator is using different techniques in different stages so that the desir-

able properties of each technique can be combined 
• MM-estimator is a multistage estimator which combines high breakdown with high asymp-

totic efficiency. 
 
 
4. Multicollinearity 

 
A second condition that potentially impacts the reliability of OLS estimates is multicol-

linearity, which is a near- linear dependency among the states.  Multicollinearity can cause large 
variability in the state estimates, sometimes resulting in estimates that differ from the true values 
by orders of magnitude or have the incorrect sign.  It is common to have states to behave simi-
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larly relative to each other.  In this case, the states have a degree of dependency or multicollin-
earity, which can result in an ill-conditioned matrix HtH, meaning that the matrix inversion rou-
tines in obtaining (HtH)-1 can be very inaccurate.  In general, multicollinearity tends to inflate the 
variance and absolute value of the least squares coefficients.  Alternative estimation techniques 
that have been proposed induce a little bias by augmenting the matrix H, causing increased sta-
bility in the HtH matrix, and resulting in large reduction in the variance of the estimates.  With 
biased estimation methods, such as ridge estimator, the objective function 
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For the case p = 2, this is equivalent to the minimization of 
.

2
2

2
xλη +  

It is often not mentioned that there are many other fitting criteria for discrete linear approxima-
tions that, depending on the particular data, probably give better estimate.  Corresponding nu-
merical methods are available and easily realized, to minimize 
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with reference to x.  In [2], numerous other fitting principles are explained and corresponding 
numerical methods implemented in FORTRAN 77 subroutines are discussed. 

A concrete measurement data set (H,z) can, in principle, be estimated by any one of these 
methods.  In each case, a different state vector x will be obtained.  There are auxiliary means 
available that enable us to evaluate the results of the different methods.  For example, one could 
determine relative class frequencies of the (residuals ri)/(errors ηi) or of the relative (residu-
als)/(errors) with reference to the zi, and compare them for the different methods. 
 In power engineering measurements, multicolinearity is a consequence of unintended de-
pendence between measurements.  As an example, the measurement of frequency at two points –
in a power system for a power system stabilizer (PSS) application may be multicolinear if the 
same reference clock is used for both measurements.  Common mode error in measurements of-
ten results in multicolinearity.  An example is the use of a common sequence ground for several 
voltage measurements.  In this case, the measurements may be multicolinear.  
 
 
5. LP Estimation 

 
Consider the features and facts regarding discrete linear Lp approximation where, for a 

given linear system of equations 
η+= Hxz , 

the length zHxr −=  of the residual vector r in the Lp norm ¦ r¦ p is minimized.  This problem 
is written in the form 

p
zHxmin − , x ∈ Rn 

In order to state that x̂  is a solution of above equation, 

pp
zHxminzxH −=−ˆ , x ∈ Rn 
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For H∈ R m x n, it is generally assumed that m > n (the number of measurements is greater than 
the number of states), and that the rank of H is n and not less than n, and almost always that 

0≠
p

r , i. e., 0≠r .  The vector z is to be approximated in the Lp norm by an element Hx of the 

subspace 
U = { y ∈ Rm: y = Hx, x ∈ Rn} 

is spanned by the columns of H.   As U is finite dimensional and Rm is normed by ¦ ⋅¦ p, there 
always exists, according to a general theorem in approximation theory, an element y∈ U, mini-
mizing ¦ y - z¦ p , so that y is a best approximation [7].  The set of best approximations is convex, 
since for two such elements y1, y2 ∈ Rm  with 

pypp
zyminzyzy −=−=− 21 , 

and for 0 ≤ λ ≤ 1,  

pppp
zyzyzyzyy −=−−+−≤−−+ 12121 )1()1( λλλλ  

Since the Lp norm is strictly convex for 1 < p < 8,  y is unique [8].  One has to consider that this 
does not necessarily imply the uniqueness of a solution x for the problem; there can be more than 
one element x with y = Hx.  It is possible to isolate x with minimal Euclidean length.  If rank(H) 
= n, i.e. rank(H) is maximal, then x is unique along with y.  Even for rank(H) = n the solution y, 
and thus x too, does not have to be unique when p = 1 and when p = 8.  In these cases the set of 
all solutions x is convex. 

For p = 1, the method of the least sum of absolute deviations is used.  In this case, it is 
known that outliers (large errors) in the measurements z have much less effect on the state vector 
x than for p = 2 [9].  Ironically, the first robust estimator pre-dates OLS by nearly a half century.  
The L1 or least absolute deviations (LAD) estimator (introduced by Boscovich in 1757) is par-
ticularly well suited for those heavy-tailed distributions (e.g. double exponential) that can gener-
ate outliers.  It is known that in the method of least absolute deviations (p = 1) the outliers or bad 
data in the measurements z have much less effect on the state vector x than for p = 2 (OLS).  This 
method recommended LAD as one of the robust estimators applied to the electric power system.  
According to [10], this application is encountered on issues with existence of leverage points, 
which makes unwanted bad data to be selected as good data.  Leverage points are measurements 
that have significant influence on state estimation, regardless of the relatively low weights they 
have in a LAD objective function. Although various methods to identify leverage points and to 
reduce their effect on state estimation have been suggested in the literature, this still is an active 
research area. 

Consider the problem with p  > 2.  The solution of the problem 
minprpzHxxpS →=−=)(  

is unique for rank(H) = n and 1 < p < 8.  Assume that x is a solution if and only if the gradient of 
S vanishes, i.e. ∇S = 0 [8].  With  

∑
=

=
m

i

p
irxS

1
)(  

     
i

r
pm

i irijhpjxS
2

1
/

−
∑
=

=∂∂ ,          

and thus using the notation 
2

)(),,...,1()(
−

====
p

irxivivmvvdiagxVV , 



 7 

gives 
.)( VztHVHxtHpVrtpHS −==∇  

For the case of p > 2, the system of equations is no longer linear in the components of x, and 
Newton’s method is applied, 

)()()1( txtxtx ∆+=+ . 
to the nonlinear system of equations 0)( =∇= SxF , where  

)(1)]('[ xFxFx −−=∆ , and x
FxF ∂

∂=)('  
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If VHtH  is positive definite (which is guaranteed when rank(H) = n and ri  ≠  0, i = 1,…,m) then 
the Newton correction ∆x gives a direction of descent for S(x).  This is because the Taylor series 
gives [8] 

         )2()()( βββ Ο+∆∇+=∆+ xtSprxxS  

  )2(1)(
1

)( β
β

OVrtHVHtHVHtr
p
p

xS +−
−

−=  

                          < S(x) 
for ∇S ≠ 0 and adequately small values of β .  Thus, one can use the damped Newton’s method, 
i.e. )()()1( ttt xxx ∆+=+ β , where β , starting with β  = 1, will occasionally be reduced in order to 
decrease S.  Empirically, it turns out that for p > 2 and for the L2 solution as starting value, each 
iteration was managed with β  = 1, whereas for 1 < p < 2, β  = p - 1 < 1 must be used if the 
method is at all applicable in this case (because of the requirement that ri ≠ 0). 

 Consider the damped Newton’s method for β  = p - 1, x(t+1) = (HTVH)-1 HTVz  with           
V = V(x(t)) i.e., y = x(t+1)  can be obtained by solving the weighted L2 problem 

¦ WHy - Wz¦ 2 → min 
where W = diag(w1,…,wm), and wi = iv  = )(xvi = wi(x) (again assume ri ≠ 0).  But, for p > 2 
one can also interpret the damped Newton’s method as the solution of the above equation.  In-
deed, for β  = 1,  

).)((
1
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Thus Newton’s method is: 
i)          Set  t = 0, x (0)  = 0, w(0)  = I 
ii)         In the t-th iteration find y as the solution of   

minx¦ W(t)Hx – W(t)z¦ 2   
iii)        Alternatively put 
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iv) Unless the iteration has converged, set t = t + 1 and go to step ii. 
 

 State estimation literature is beginning to admit that p = 2 is not the only choice but 
merely one of many alternatives.  The cases p = 1, 8 are treated comprehensively, as are values 
of p lying in between and not equal to 2.  But, how does one choose among possible values of p 
in order to get the best fit for the linear model chosen?  In typical studies concerning this matter, 
the data H, z, and the state vector x are constructed such that the errors η or residuals r = Hx-z 
obey a certain distribution.  Empirical results then indicate for which values of p the particular 
distributions and corresponding states x were retrieved [11]. 
 

 
6. Applications in Power Engineering 

 
It is desired to compare the Lp solution for the three most common values of p, namely 1, 

2 and 8.  It is of foremost importance to evaluate the three solutions based on the accuracy of the 
results and on the computation time required by each method.   Both the accuracy and the com-
putation time are certainly dependent on a number of factors such as the example itself and the 
level of measurement noise.  Nevertheless, some general conclusions can be drawn.   

For the purposes of this paper, a state estimation example has been selected.  Authors in 
[12] describe a method to identify synchronous machine parameters from on- line measurements.  
This is achieved by obtaining measurements of the voltage and current values at the machine 
terminals and using the forward difference formula to calculate the current derivative values.  
These values are used in the developed model and the unknown parameters are estimated.  For 
simplicity, the theory and the procedure behind this approach will not be repeated in this paper.  
The developed model is of the form, 

ILIRV &⋅−⋅−= , 
where V, I and I& are vectors of length 5, while R and L are 5x5 matrices.  References [12-15] 
discuss the model and formulation in detail.  Figure 1 shows the synchronous machine model 
which is 
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       (2)            

In (2) the voltage is expressed in terms of both currents and flux linkages.  This is not de-
sirable and therefore one of the two variables has to be replaced.  The mathematical model can 
be derived as, 
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Equation (3) effectively is a formulation of the state variable equations in a form suitable for 
state estimation.  Equation (3) is easily rearranged in the form BuAxx +=&  provided that the  
above equations are linear.  
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Figure 1. Schematic diagram of a synchronous machine 

  
Two sets of measurements are used for the purposes of this example, resulting in a sys-

tem of ten equations.  The measurements are obtained from the simulation of the developed 
model, and therefore the values of all parameters are known exactly.  This is of great importance, 
since the estimated parameters can be compared to their exact values.  For illustration purposes it 
is desired to estimate three parameters, namely the stator phase resistance r, the equivalent field 
winding resistance rF and the equivalent quadrature axis reactance Lq.  Moreover, two cases will 
be studied.  In the first case, a small amount of noise was added to the measurements.  This noise 
was added to only one of the voltage measurements and the signal-to-noise ratio (S/N) is in the 
order of 7000.  Essentially, the measurement sets are noise free.  In the second case a more sig-
nificant amount of noise is added.  The S/N is in the order of 10 to 100, and the noise is added 
primarily to the voltage measurements.  For both noise-free and noise-contaminated cases, the 
example eventually reduces into a matrix equation of the form, 

zxH =⋅ , 
where H is 10 x 3, x is 3 x 1 and z is 10 x 1. 

For the p = 1 case, it is desired to minimize the sum of the absolute deviations of all ten 
equations.  Let the deviation for each equation be denoted by ri.  Since ri is either positive, nega-
tive or zero, it can be declared that  

ri = ri
+ - r-

i, 
where r+

i  =  0,  -r-
i  = 0 and 0=× −+

ii rr .  The problem is solved using linear programming.  Af-
ter adding the artificial variables, Ai, for each equation, the problem becomes, 
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This formulation is readily solved by setting up a tableau according to the simplex method.  
There are ten initial basis variables (the artificial variables Ai), and 26 state variables in the ob-
jective function.   

For the p = 2 case, it is desired to minimize the sum of the squares of the deviations of 
each row in the matrix equation.  Such minimization is achieved by obtaining the pseudoinverse 
of matrix H, 

zHx ⋅+=ˆ , 
where  

tHHtHH ⋅−⋅=+ 1)(  
For the p = 8  case, it is desired to minimize the maximum of the absolute deviations ri.  

Let the objective function be denoted by s.  Therefore, 
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where e is a vector of ones, with number of rows equal to the number of rows of H.   
 Since the constraints are inequality constraints, it is necessary to add both a surplus and 

an artificial variable to each equation, in order to solve this problem as a linear programming 
problem.  Therefore, the linear programming problem becomes, 
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where X and A are vectors that incorporate the surplus and artificial variables respectively.  The 
initial basis variables in the tableau are the artificial variables Ai, while the total number of vari-
ables in the objective function is 44. 

The results for all three cases for both low noise data and high noise data are depicted in 
Tables 2 and 4 respectively.  The residuals for p = 1, 2 and 8 are computed for each set of esti-
mated parameters and are also depicted in Tables 2 and 4.  It is noted that as expected, the re-
siduals on the diagonal are less than or equal to the other residuals in their columns.  For exam-
ple, for the p = 2 case, it is expected that the least squares residual is smaller than or equal to the 
least squares residuals of the p = 1 and p = 8 cases.  
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Tables 3 and 5 show the percent errors of the estimated parameters relative to the exact 
values of those parameters.  An “average” error for each case is also computed to give a better 
idea of the accuracy of the estimation for each case.  The exact values of the parameters to be 
estimated are shown in Table 1. 
 

Table 1 
Exact values of synchronous generator parameters to be estimated 

r  (? ) rF  (? ) Lq  (H) 
4.6 x10-3 9.722 x10-4 1.72 

 
 

Table 2 
Estimated machine parameters and residuals for the low noise case 

 r  (? ) rF  (? ) Lq  (H) R1 R2 R8  
p = 1 4.566857x10-3 9.73697x10-4 1.719874 2x10-4 2x10-4 2x10-4 
p = 2 4.566857x10-3 9.73697x10-4 1.719988 2x10-4 1.41x10-4 1x10-4 
p = 8  4.566857x10-3 9.73697x10-4 1.719988 2x10-4 1.41x10-4 1x10-4 

 
 

Table 3 
Percent errors of estimated machine parameters for the low noise case 

 r  (? ) rF  (? ) Lq  (H) “average” 
p = 1 -0.72 0.154 -0.00735 0.2938 
p = 2 -0.72 0.154 -0.00071 0.2916 
p = 8  -0.72 0.154 -0.00071 0.2916 

 
 

Table 4 
Estimated machine parameters and residuals for the high noise case 

 r  (? ) rF  (? ) Lq  (H) R1 R2 R8  
p = 1 5.4811x10-3 -228.26x10-4 1.6712 0.2948 0.1369 0.091 
p = 2 7.7669x10-3 9.1284x10-4 1.7277 0.2948 0.1103 0.059 
p = 8  -57.38x10-3 0 1.5753 0.4048 0.1380 0.059 

 
 

Table 5 
Percent errors of estimated machine parameters for the high noise case 

 r  (? ) rF  (? ) Lq  (H) “average” 
p = 1 19.16 -2448 -2.84 823.3 
p = 2 68.85 -6.11 0.45 25.14 
p = 8  -1347 100 -8.41 485.1 

 
In the low noise case, it is observed that the solutions to the problem are almost identical 

when using any of the norms under study.  Nevertheless, p = 2 and p = 8 give greater accuracy 
of estimation in one parameter, and a smaller residual, thus causing them to be the favored solu-
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tions.  The comparison is mainly based on the percent errors of each parameter and not on the 
resulting residual, since it is always true that [2],  

12 xx ≤ , 

1xx ≤∞ , 

2xx ≤∞ . 
This is readily verified by inspection of Tables 2 and 4, where in a given row the residuals RI are 
lower as i increases. 

In the high noise case the L2 norm is clearly the best minimization norm for this particular 
example.  The percent errors in the estimation of some of the parameters in the p = 1 and p = 8  
cases are unacceptable, and therefore it seems that these cases are particularly sensitive for these 
noisy data.  On the other hand, the method of least squares seems to be able to reduce the effect 
of the excessive noise in the measurements.  Another important consideration in the selection of 
the minimization method is the computation time.  Since this problem consists of only ten equa-
tions, the computation time for all three cases will be measured in microseconds and therefore, 
no computational burden will be imposed no matter which norm is selected.  However, for larger 
problems, in general p = 2 is the fastest minimization method.  To ascertain the computation 
time, one should consider the accuracy of the solution required and the conditioning of the H ma-
trix. 

For the L2 norm minimization, the most popular techniques are the Cholesky factoriza-
tion, the QR factorization and the Singular Value Decomposition (SVD).  The SVD is the most 
accurate method but it is also the slowest.  For the L1 and L8  norm minimization, the two most 
widely used approaches are the linear programming based approaches and the iteratively re-
weighted least squares method (IRLS).  For this case, the linear programming approaches are the 
fastest, since they can be done in a single pass through the data, while the IRLS method requires 
a certain number of iterations.  As a conclusion, the selection of the minimization method de-
pends on the problem, the accuracy required and the computation time that can be allotted.    
 
 
7. Conclusions 

 
The 2-norm minimization (or method of least squares) has been the most favored mini-

mization method in power systems.  Nevertheless, it is possible to find state estimation solutions 
using as a basis other minimization norms such as the p = 1 and p = 8  norms.  It is possible that 
these techniques offer more accurate solutions depending on the application.  Different minimi-
zation norms such as p = 3,4,… are also possible but are rejected due to their excessive computa-
tional burden. 

The residuals for each row of the matrix equation under study are often an indication of 
the presence of outliers in the measurements.  Therefore, weighting techniques can be employed 
to remove or downweigh the effect of outliers in the estimation of the required parameters.  The 
selection of the Lp method is a critical factor in the effect of the outliers in the estimation process.  
Multicollinearity is also a condition that impacts the reliability of OLS estimates. In this case it is 
possible that the states behave similarly relative to each other.  The resulting HtH matrix will 
therefore be ill-conditioned and the estimated states will be inaccurate. It is possible to employ 
different minimization techniques, such that some bias will be induced by augmenting the matrix 
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H, thus causing increased stability in the HtH matrix, and resulting in large reduction in the vari-
ance of the estimates.  

The three main methods of minimization explored in this paper are p = 1, p = 2 and         
p = 8.  For the 2-norm minimization, the most popular technique is the SVD since it is the most 
accurate.  Its computational time is greater than other available methods such as the Cholesky 
factorization and the QR factorization but the accuracy of the method is a decisive factor in its 
wide use.  For the 1 and infinite norm minimization, the most widely used approach is the linear 
programming approach.  In general, the p = 2 minimization requires the least computation time. 

A power system state estimation example was presented.  Three parameters were esti-
mated using the three aforementioned norms and the results were compared.  The state estima-
tion problem was solved using both low noise and high noise measurements.  In the low noise 
case, it is observed that the solution to the problem is almost identical when using any of the 
norms under study.  Nevertheless, p = 2 and p = 8 seem to give greater accuracy of estimation in 
one parameter, and a smaller residual, thus causing them to be the favored solutions.  In the high 
noise case the L2 norm is clearly the best minimization norm since it reduces the effect of the 
noise in the measurements.   

Alternatives to the L2 minimization have been proposed in this paper.  The selection of 
the minimization method depends on the application, and the level of noise in the measurements.  
The power engineer is urged to attempt different estimation methods and compare the respective 
solutions for their accuracy, before reaching a definite conclusion for the particular estimation 
process.  Different Lp methods may hold the key to a better estimation of the required parame-
ters.  
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