
Integral Distances in Point SetsHeiko HarborthDiskrete Mathematik, Technische Universit�at BraunschweigPockelsstra�e 14, D{38106 Braunschweig1. IntroductionFirst results on geometrical objects with integral sides go back to the time of thePythagoreans. Many nonmathematicians like masons or bricklayers use a pythagoreantriangle (3; 4; 5) to check an angle whether it is a right one, that is, whether the twopoints on both legs being 60 and 80 units away from the vertex have a distance of 100units. More general, Heron triangles were studied, that are triangles where all sidesand the area are integers.Also negative results are known. So the diagonal of an integer sided square cannotbe rational. It may be mentioned that for �nite sets of distances multiplication withan appropriate factor proves the rational and integral cases to be equivalent. As asecond example the side length x of a cube with a volume which is twice the volumeof an integer sided cube cannot be rational (x3 = 2a3).Of course, there are many still open problems. Do Heron triangles exist withintegral medians? Does a perfect box exist, that is, a cuboid with integral sides,face diagonals, and body diagonals? Do there exist points in the plane with integraldistances to the four vertex points of an integral sided square?Here it will be reported on some results and problems on integral distances whichare of the last decades. For historical results on diophantine equations and on geomet-rical problems the references [4, 5, 7, 20, 21] can be used. Di�erent applications areimaginable in radio astronomy (ware lengths), chemistry (molecules), physics (energyquantums), robotics, architecture, and other �elds.2. Pairwise integral distancesDo n points in Rd exist which have pairwise integral distances? In other words,can the complete graph Kn be geometrically realized with integral straight line edges?The answer is in the a�rmative. This may be deduced from one of the following twoconstructions of in�nite circular point sets with pairwise rational distances.At �rst consider an angle � of a pythagorean triangle. Then cos� and sin�are rational and the points P1; P2; : : : on the unit circle for angles �; 2�; 3�; : : : havepairwise rational distances (see Figure 1). It also can be proved that no period occursand that this set of points is dense on the unit circle.
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6 Figure 2.The second construction starts with an integral triangle, say (1,2,2). On its cir-cumcircle this triangle is used to �nd points P4; P5; : : : on the circle as indicated inFigure 2. Because of Ptolemy's theorem, where for a circular quadrangle the sumof the products of opposite pairs of sides equals the product of the diagonals, alladditional distances easily are seen to be rational.For higher dimensions add to a circular integral point set with radius r an integral(d � 2){dimensional tetrahedron of side length a such that a and r are legs of apythagorean triangle.What about the smallest examples of n points with integral distances, that is,where the largest distance, the diameter D(d; n), is a minimum? In the plane thevalues D(2; n) = 1; 4; 7; 8; 17;21;29 are known for 3 � n � 9 (see Figure 3 and [12]).
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1199 Figure 3.In general, it holds D(2; n) � nc log logn for a constant c [14, 9]. If three points are notallowed to be collinear then the minimumdistances D1(2; n) = 1; 4; 8; 8; 33; 56; 56 areknown for 3 � n � 9 (see Figure 4) andD1(2; n) = 15 is conjectured for n = 10; 11; 12.
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Figure 4.For d = 3 the values D(3; n) = 1; 3; 4; 8; 13; 17; 17 for 4 � n � 10 are known. Theexample for n = 5 in Figure 5 is a double pyramid. It may be asked whether thissimple pyramid with height 1, edge lengths 2, and basis lengths 3 already was knownto the Pythagoreans?
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4Figure 6.For small numbers af points the unit tetrahedron or simplex proves D(d; d+1) = 1.Are d+ 2 points in Rd possible such that only distances 1 and 2 occur? The answeris in the negative since D(d; d+ 2) � 3 was proved in [13]. Two tetrahedra with sidelengths 3 and 4 where corresponding vertices have distance 2 (see Figure 6 for d = 3)prove D(d; n) � 4 for n � 2d and D(d; 2d) = 4 is known. Then for d+ 2 points onlyD(d; d + 2) = 3 or 4 is in question. Up to d = 10 only for d = 3; 6; 8 the value 3 isattained for D(d; d+2). It is unknown whether there exist further dimensions d withD(d; d+ 2) = 3.It is an open problem of Ulam [24] whether other dense sets of points in the planewith pairwise rational distances do exist besides circular lines. In this context a nice



result of Anning and Erd�os [2] can be mentioned: In�nitely many points with pairwiseintegral distances are necessarily on a straight line. This leads to the question for theexistence of n points, no d+1 in a hyperplane, no d+2 on a d{sphere, and all distancesbeing integers.
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131 Figure 7.For d = 2 integral point sets, no three in line, no four on a circle, are known forn = 4; 5; 6 with minimum diameters D2(2; n) = 8; 73; 174 (see Figure 7 for n = 6 and[12, 19]). For d = 3 only D2(3; 5) = 3 and D2(3; 6) = 16 are known (see Figure 8 forn = 6).
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13Figure 8.This chapter may be �nished with the result of Almering [1] that a dense set ofpoints exists in the plane which have integral distances to the vertices of a given



integral triangle, and with the open question of Besicovitch [3] whether every planen{gon for n � 5 can be approximated by a rational n{gon.3. Unit distancesMany distance problems only ask for one distance which then may be the unit.For the maximum number f(n) of equal distances among n points in the plane it isonly known c1n1+ c2log log n < f(n) < c3n 43 . Extremal examples for 6 � n � 11 are givenin Figure 9.
Figure 9.The maximum numbers M1(n) and M2(n) of the largest and second largest dis-tances among n points in the plane are known to be M1(n) = n and M2(n) = b3n2 c.For the maximum numbers m1(n) and m2(n) of the smallest and second smallestdistances among n points in the plane m1(n) = b3n � p12n� 3c and m2(n) � 24n7are known. References are given in [21].In k{regular sets in the plane each of n points has distance one to exactly k otherof the n points. If p(k) denotes the minimumnumber of points of such a k{regular setthen a projection of the k{dimensional unit cube proves p(k) � 2k. For k = 1; 2; 3; 4; 5the values p(k) = 2; 3; 6; 9; 18 are known (see Figure 10 for k=4) [8].



Figure 10. Figure 11.If k{regular point sets of n points in the plane are considered where only one oftwo intersecting distances one are allowed then the minimum number p1(k) of pointsdoes not exist for n � 5, and p1(1) = 2, p1(2) = 3, p1(3) = 8 are known [12]. Theremaining case p1(4) � 52 remains open (Figure 11).In general, one can ask for the dimension of a graph G, that is, the smallestdimension such that a realization of G with unit distances for the edges of G ispossible.4. Di�erent integral distancesEvery graph can be represented by points for vertices such that adjacent verticeshave integer distances since corresponding edges of an integral representation of thecomplete graph Kn can be deleted. It is, however, an open problem of Maeharawhether only for edges of a graph integral distances can occur and all other distancesare irrational. In the following four special problems are mentioned.If only odd distances are considered then the maximum number of points withpairwise odd distances is d + 2 if d + 2 � 0 (mod 16) [6]. Four points can have atmost �ve odd distances. In [23] it is proved that n points can determine at mostn33 + r(r�3)6 odd distances, where r = 1; 2; 3 for n � r (mod 5).Fibonacci triangles have Fibonacci numbers Fi as side lengths and an integral area.Only one Fibonacci triangle (5,5,8) is known so far [11, 16]. Because of Fn = Fn�1+Fn�2 only equalateral triangles are possible. Triangles (Fn; Fn�1; Fn�1) are impossiblefor n � 7 and (Fn�k; Fn; Fn) are impossible for n � 5. Do further Fibonacci trianglesexist?Two sequences of integral pentagons are de�ned by the use of Fibonacci numbersFi (see Figures 12 and 13). Moreover, all segments of the diagonals are rational,



a

b

c

dFigure 12.a = Fn�1(2F 2n � F 2n�1), b = F 3n,c = Fn(F 2n � F 2n�1),d = Fn�1F 2n.
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dFigure 13. a = F 3n, b = Fn+1F 2n ,c = Fn(F 2n+1 � F 2n),d = Fn+1(F 2n+1 � 2F 2n).however, only for n = 5 in Figure 13 the areas of the pentagon and its central pentagonboth are rational [18].Combinatorial perfect boxes are constructed in [22], that are three opposite pairsof integral plane quadrilaterals which form a body with sides, face diagonals and bodydiagonals of integer length. The plane net of the smallest example in [22] is shown in
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13 Figure 14.Figure 14. That no smaller examples (with distances � 17) occur is proved in [17].It remains unknown whether in�nitely many combinatorial perfect boxes do exist?5. Platonic solid graphsPlanar graphs can be drawn in the plane without intersections of its edges. Byresults of Steinitz, Wagner or F�ary [25] this also is possible with straight line segments



for all edges. Moreover, it is conjectured that the straight line segments can bechosen of integer lengths [15]. Although a general proof is missing for special graphsG the smallest diameter D(G), that is, the smallest largest distance, of an integralrepresentation of G can be asked for.For the �ve platonic solid graphs, tetrahedron (T ), cube (C), octahedron (O),dodecahedron (D), and icosahedron (I) these minimum diameters are D(T ) = 17,D(C) = 2, D(O) = 13, D(D) = 2, and D(I) = 159 (see [10] and Figures 15 to 19).
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39Figure 19.If intersections of the edges are allowed in plane integral straight line representa-tions then the minimum diameters Dx(G) are Dx(T ) = 4, Dx(C) = 1, Dx(O) = 7,Dx(D) = 1, and Dx(I) = 8 (see [15] Figures 20 to 24).
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Figure 24.Many other graphs wait for their integral realizations in the plane or in higherdimensions. Another problem arises if the number of di�erent integral distances isrestricted. The tetrahedron, for example, can be planar realized with only threedi�erent distances as in Figure 25.
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