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1. Introduction

First results on geometrical objects with integral sides go back to the time of the
Pythagoreans. Many nonmathematicians like masons or bricklayers use a pythagorean
triangle (3,4,5) to check an angle whether it is a right one, that is, whether the two
points on both legs being 60 and 80 units away from the vertex have a distance of 100
units. More general, Heron triangles were studied, that are triangles where all sides
and the area are integers.

Also negative results are known. So the diagonal of an integer sided square cannot
be rational. It may be mentioned that for finite sets of distances multiplication with
an appropriate factor proves the rational and integral cases to be equivalent. As a
second example the side length x of a cube with a volume which is twice the volume
of an integer sided cube cannot be rational (2% = 2a3).

Of course, there are many still open problems. Do Heron triangles exist with
integral medians? Does a perfect box exist, that is, a cuboid with integral sides,
face diagonals, and body diagonals? Do there exist points in the plane with integral
distances to the four vertex points of an integral sided square?

Here it will be reported on some results and problems on integral distances which
are of the last decades. For historical results on diophantine equations and on geomet-
rical problems the references [4, 5, 7, 20, 21] can be used. Different applications are
imaginable in radio astronomy (ware lengths), chemistry (molecules), physics (energy
quantums), robotics, architecture, and other fields.

2. Pairwise integral distances

Do n points in R? exist which have pairwise integral distances? In other words,
can the complete graph K, be geometrically realized with integral straight line edges?
The answer is in the affirmative. This may be deduced from one of the following two
constructions of infinite circular point sets with pairwise rational distances.

At first consider an angle « of a pythagorean triangle. Then cosa and sina
are rational and the points Pi, Ps, ... on the unit circle for angles «, 2a, 3x, . . . have
pairwise rational distances (see Figure 1). It also can be proved that no period occurs
and that this set of points is dense on the unit circle.



Figure 1.

The second construction starts with an integral triangle, say (1,2,2). On its cir-
cumcircle this triangle 1s used to find points Py, Ps, ... on the circle as indicated in
Figure 2. Because of Ptolemy’s theorem, where for a circular quadrangle the sum
of the products of opposite pairs of sides equals the product of the diagonals, all
additional distances easily are seen to be rational.

For higher dimensions add to a circular integral point set with radius » an integral
(d — 2)-dimensional tetrahedron of side length a such that a and r are legs of a
pythagorean triangle.

What about the smallest examples of n points with integral distances, that is,
where the largest distance, the diameter D(d, n), is a minimum? In the plane the
values D(2,n) = 1,4,7,8,17,21,29 are known for 3 < n <9 (see Figure 3 and [12]).
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Figure 3.

In general, it holds D(2,n) < n°'°8198" for a constant ¢ [14, 9]. If three points are not
allowed to be collinear then the minimum distances D1(2,n) = 1,4, 8,8, 33,56, 56 are
known for 3 < n < 9 (see Figure 4) and D;(2, n) = 15 is conjectured for n = 10,11, 12.



Figure 4.

For d = 3 the values D(3,n) = 1,3,4,8,13,17,17 for 4 < n < 10 are known. The
example for n = 5 in Figure 5 is a double pyramid. It may be asked whether this
simple pyramid with height 1, edge lengths 2, and basis lengths 3 already was known
to the Pythagoreans?
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Figure 5. Figure 6.

For small numbers af points the unit tetrahedron or simplex proves D(d, d+1) = 1.
Are d + 2 points in R? possible such that only distances 1 and 2 occur? The answer
is in the negative since D(d,d 4+ 2) > 3 was proved in [13]. Two tetrahedra with side
lengths 3 and 4 where corresponding vertices have distance 2 (see Figure 6 for d = 3)
prove D(d,n) < 4 for n < 2d and D(d,2d) = 4 is known. Then for d + 2 points only
D(d,d+2) = 3 or 4 is in question. Up to d = 10 only for d = 3,6, 8 the value 3 is
attained for D(d, d + 2). Tt is unknown whether there exist further dimensions d with
D(d,d+2) =3.

It is an open problem of Ulam [24] whether other dense sets of points in the plane
with pairwise rational distances do exist besides circular lines. In this context a nice



result of Anning and Erdos [2] can be mentioned: Infinitely many points with pairwise
integral distances are necessarily on a straight line. This leads to the question for the
existence of n points, no d+1 in a hyperplane, no d+2 on a d—sphere, and all distances
being integers.

Figure 7.

For d = 2 integral point sets, no three in line, no four on a circle, are known for
n =4,5,6 with minimum diameters Dy(2,n) = 8,73,174 (see Figure 7 for n = 6 and
[12, 19]). For d = 3 only D4(3,5) = 3 and D2(3,6) = 16 are known (see Figure 8 for
n = 6).

Figure 8.

This chapter may be finished with the result of Almering [1] that a dense set of
points exists in the plane which have integral distances to the vertices of a given



integral triangle, and with the open question of Besicovitch [3] whether every plane
n—gon for n > 5 can be approximated by a rational n—gon.

3. Unit distances
Many distance problems only ask for one distance which then may be the unit.
For the maximum number f(n) of equal distances among n points in the plane it is

only known cln1+1°€61§€" < f(n) < csn’3. Extremal examples for 6 < n < 11 are given
in Figure 9.
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Figure 9.

The maximum numbers Mi(n) and Ma(n) of the largest and second largest dis-
tances among n points in the plane are known to be Mi(n) = n and Mz(n) = L%J
For the maximum numbers m;(n) and ma(n) of the smallest and second smallest
distances among n points in the plane mi(n) = [3n — /12n — 3| and ma(n) ~ 247”
are known. References are given in [21].

In k-regular sets in the plane each of n points has distance one to exactly & other
of the n points. If p(k) denotes the minimum number of points of such a k-regular set
then a projection of the k—dimensional unit cube proves p(k) < 2%. For k = 1,2,3,4,5

the values p(k) = 2,3,6,9, 18 are known (see Figure 10 for k=4) [8].



Figure 10. Figure 11.

If k-—regular point sets of n points in the plane are considered where only one of
two intersecting distances one are allowed then the minimum number p; (k) of points
does not exist for n > 5, and pi(1) = 2, p1(2) = 3, p1(3) = 8 are known [12]. The
remaining case p1(4) < 52 remains open (Figure 11).

In general, one can ask for the dimension of a graph G, that is, the smallest
dimension such that a realization of G with unit distances for the edges of G is
possible.

4. Different integral distances

Every graph can be represented by points for vertices such that adjacent vertices
have integer distances since corresponding edges of an integral representation of the
complete graph K, can be deleted. It i1s, however, an open problem of Maechara
whether only for edges of a graph integral distances can occur and all other distances
are irrational. In the following four special problems are mentioned.

If only odd distances are considered then the maximum number of points with
pairwise odd distances is d + 2 if d + 2 = 0 (mod 16) [6]. Four points can have at
most five odd distances. In [23] it is proved that n points can determine at most
%—3 + 7“(7“6—_3) odd distances, where » = 1,2,3 for n = r (mod 5).

Fibonacci triangles have Fibonacci numbers F; as side lengths and an integral area.
Only one Fibonacci triangle (5,5,8) is known so far [11, 16]. Because of F,, = F,,_1 +
F_2 only equalateral triangles are possible. Triangles (F,,, Fl,_1, Fjy—1) are impossible
for n > 7 and (Fy_, Fn, Fy) are impossible for n > 5. Do further Fibonacci triangles
exist?

Two sequences of integral pentagons are defined by the use of Fibonacci numbers
F; (see Figures 12 and 13). Moreover, all segments of the diagonals are rational,



Figure 12.

Fo_1(2F2 — F? Figure 13. a = F2, b= Fp41F2,
@ = Up_1 n

9 n—%);b:Fs; C:F(F2+1—F2)
c=Fo(Fy—F7;_1), n(L ),
d:(Fn_lFﬁ. 1) d:Fn_H(FT%_H_QFT%).

however, only for n = 5 in Figure 13 the areas of the pentagon and its central pentagon
both are rational [18].

Combinatorial perfect boxes are constructed in [22], that are three opposite pairs
of integral plane quadrilaterals which form a body with sides, face diagonals and body
diagonals of integer length. The plane net of the smallest example in [22] is shown in

Figure 14.

Figure 14. That no smaller examples (with distances < 17) occur is proved in [17].
It remains unknown whether infinitely many combinatorial perfect boxes do exist?

5. Platonic solid graphs
Planar graphs can be drawn in the plane without intersections of its edges. By
results of Steinitz, Wagner or Fary [25] this also is possible with straight line segments



for all edges. Moreover, it is conjectured that the straight line segments can be
chosen of integer lengths [15]. Although a general proof is missing for special graphs
(i the smallest diameter D((), that is, the smallest largest distance, of an integral
representation of G can be asked for.

For the five platonic solid graphs, tetrahedron (T), cube (C'), octahedron (O),
dodecahedron (D), and icosahedron (I) these minimum diameters are D(T) = 17,

D(C) =2, D(0) =13, D(D) =2, and D(I) = 159 (see [10] and Figures 15 to 19).
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Figure 18. Figure 19.

If intersections of the edges are allowed in plane integral straight line representa-
tions then the minimum diameters D, (G) are Dy(T) = 4, Dy(C) = 1, D,(0) = 7,
Dy(D) =1, and D,(I) = 8 (see [15] Figures 20 to 24).
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Figure 23.

Figure 24.

Many other graphs wait for their integral realizations in the plane or in higher
dimensions. Another problem arises if the number of different integral distances is
restricted. The tetrahedron, for example, can be planar realized with only three
different distances as in Figure 25.

Figure 25.

Although problems on integral distances in point sets are discussed since centuries
and many applications are imaginable only few results are known. One reason for



this fact could be that difficult systems of diophantine equations are weaved into
geometrical problems.
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