
Ellipti Curves and Side-Channel Analysis[Published in ST Journal of System Researh 4(1):283{306, 2003.℄Mar JoyeGemplus Card International, Card Seurity GroupPar d'Ativit�es de G�emenos, B.P. 100, 13881 G�emenos Cedex, Franemar.joye�gemplus.om � http://www.geoities.om/MarJoye/http://www.gemplus.om/smart/Abstrat. Naive implementations of rypto-algorithms are suseptibleto side-hannel analysis. This paper surveys the known methods for pre-venting side-hannel analysis in ellipti urve ryptosystems.Keywords. Ellipti urve ryptography (ECC), side-hannel analysis, tim-ing attaks, simple power analysis (SPA), di�erential power analysis (DPA).1 IntrodutionProvable seurity beomes more and more popular in the ryptographi om-munity. As exempli�ed by the NESSIE projet [22℄, it is now ommon to seeit as an attribute of a ryptosystem. Provable seurity is at the protool level,a harder task may be to evaluate the seurity of a ryptosystem at the imple-mentation level. Rather than onsidering a ryptosystem as a blak-box, we mayassume that some sensitive data an leak during the ourse of the exeution ofa (naively implemented) rypto-algorithm. A onrete example is given by theso-alled side-hannel analysis [14, 15℄.Side-hannel analysis is a powerful tehnique re-disovered by P. Koher in1996. The priniple onsists in monitoring some side-hannel information likethe running time [14℄, the power onsumption [15℄, or the eletromagneti ra-diation [7, 23℄. Next, from the monitored data, the attaker tries to dedue theinner-workings of the algorithm and thereby to retrieve some seret information.When there is a single measurement, the proess is referred to as a simple side-hannel analysis; and when there are several measurements handled togetherwith statistial tools, the proess is referred to as di�erential side-hannel anal-ysis.This paper is aimed at studying the resistane of ellipti urve ryptosystemsagainst those two lasses of attaks. In partiular, we survey the various strategiesproposed so far to prevent side-hannel attaks.



2 Mar Joye2 Ellipti Curve CryptographyWe start with a brief review of ellipti urve ryptography and refer the readerto the many exellent textbooks on the subjet (e.g., [2℄) for more detail.An ellipti urve presents the mathematial struture of an additive group.What makes ellipti urves partiularly attrative for ryptographi applia-tions [13, 18℄ is that the disrete logarithm problem in ellipti urve groupsis harder than in groups previously onsidered. As a result, with shorter keylengths, omparable levels of seurity an be attained.An ellipti urve over a �eld K is formed by the point O `at in�nity' and theset of points P = (x; y) 2 K �K satisfying a (non-singular) Weierstra� equationE=K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 :The basi operation in ellipti urve ryptography is the salar multipliation,that is, given a point P 2 E(K ), one has to ompute Q = kP := P +P + � � �+P(k times). The disrete logarithm problem onsists in �nding the value of k fromthe values of P and Q = kP .3 Simple Side-Channel AnalysisA widely-used method for performing a salar multipliation is the elebrateddouble-and-add method (i.e., the additive analogue of the square-and-multiplyalgorithm). Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  Pfor j = `� 2 downto 0 doR0  2R0if (kj = 1) then R0  R0 + Pendforreturn R0Fig. 1. Double-and-add methodAs given in textbooks, the formul� for doubling a point or for adding two(distint) points on a Weierstra� ellipti urve are di�erent. Therefore, a simplepower analysis (i.e., a simple side-hannel analysis using power onsumption asside hannel) will produe di�erent power traes that may reveal the value of kin the double-and-add method, from the distintion between the two operations.There are basially three approahes to irumvent the leakage. This an beahieved by:



Ellipti Curves and Side-Channel Analysis 31. inserting dummy instrutions [5℄;2. onsidering alternative parameterizations [10, 16, 1℄ or unifying the additionformul� [3℄;3. using algorithms that already behave `regularly' [17, 21, 19, 3, 8, 6℄.Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  Pfor j = `� 2 downto 0 doR0  2R0; R1  R0 +Pb kj; R0  Rbendforreturn R0(a) Double-and-add always [5℄
Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  P ; R1  2Pfor j = `� 2 downto 0 dob kjR1�b  R0 +R1; Rb  2Rbendforreturn R0(b) Montgomery ladder [20, 12℄Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  2P ; R1  P ; j  `� 2while (j � 1) dob kj; R0  R0 +Rbkj  0; j  j + b� 1endwhileR1  R0 + P ; b k0; R0  Rbreturn R0() Double-and-add with multiplier rewriting [9℄Fig. 2. Regular salar multipliation algorithmsThe �rst and third approahes share the same idea: it onsists in ultimatelyhaving an algorithm that behaves onsistently and regularly whatever the pro-essed data. In [5℄, Coron suggests to perform a dummy addition in the double-and-add method when the proessed bit is `0' so that eah iteration appearsas a doubling followed by an addition (see Fig. 2-a). Another possibility is touse a salar multipliation method that already behaves regularly, as is the asefor the Montgomery ladder [20, 12℄ (see Fig. 2-b). The orresponding algorithmfor ellipti urves over binary �elds is detailed in [17℄ and in [21℄ over �elds oflarge harateristi. The latter algorithm is however restrited to `Montgomery'urves; see [3, 8, 6℄ for general Weierstra� ellipti urves.The seond approah for preventing simple side-hannel analysis is to rewritethe addition formul� so that the same formula an be used for doubling or



4 Mar Joyeadding points, indi�erently. This is suggested by Brier and Joye in [3℄ whereuni�ed addition formul� for Weierstra� ellipti urves are presented. In [16℄,Liardet and Smart propose to represent ellipti urves as the intersetion oftwo quadri surfaes. Contrary to the Weierstra� parameterization, the lassialaddition formula on this parameterization is already valid for doubling or addingpoints [4℄. However, for eÆieny reasons, only ellipti urves with three pointsof order 2 (and thus whose order is multiple of 4) give rise to fast arithmeti.Consequently, for real-life appliations, the tehnique is not available for generalellipti urves (see also [1℄ for several improvements). For ellipti urves whoseorder is a multiple of 3, one an use the Hessian parameterization. A trik forevaluating a doubling in terms of a general addition on a Hessian ellipti urveis desribed by Joye and Quisquater [10℄.We note, however, that the double-and-add algorithm depited in Fig. 1 an-not be used as is with uni�ed addition formul�. This algorithm is not regularbeause of the if-then instrution; a simple side-hannel analysis may revealsensitive data (although the analysis is at a smaller sale). One has to use a regu-lar variant of the double-and-add algorithm. We quote one suh variant from [9℄(see Fig. 2-).4 Di�erential Side-Channel AnalysisEven if an algorithm is proteted against side-hannel analysis, it may suumbto the more sophistiated di�erential analysis [5℄. Pratially, we note howeverthat very few ellipti urve ryptosystems are suseptible to suh attaks as, usu-ally, the input point is imposed by the system and the multiplier is an ephemeralparameter, varying at eah exeution.Assume that the double-and-add method is implemented with one of theregular variants given in Fig. 2. Let k = (k`�1; : : : ; k0)2 be the binary expan-sion of multiplier k. Suppose that an attaker already knows the highest bits,k`�1; : : : ; kj+1, of k. Then, he guesses that the next bit kj is equal to `1'. Herandomly hooses several points P1; : : : ;Pt and omputes Qr = (P`�1i=j ki2i)Prfor 1 � r � t. Using a boolean seletion funtion g, he prepares two sets: the�rst set, Strue, ontains the points Pr suh that g(Qr) = true and the seondset, Sfalse, ontains those suh that g(Qr) = false (a andidate for the sele-tion funtion may, for example, be the value of a given bit in the representationof Qr). Let C(r) denote the side-hannel information assoiated to the ompu-tation of kPr by the ryptographi devie (e.g., the power onsumption). If theguess kj = 1 is inorret then the di�erenehC(r)i 1�r�tPr2Strue � hC(r)i 1�r�tPr2Sfalsewill be � 0 as the two sets appear as two random (i.e., unorrelated) sets;otherwise the guess is orret. One kj is known, the remaining bits, kj�1; : : : ; k0,are reovered reursively, in the same way.In order to thwart the above di�erential side-hannel analysis, one has torandomize the inputs of the rypto-algorithm so that the attaker is no longer



Ellipti Curves and Side-Channel Analysis 5able to prepare two sets of points with a seletion funtion. Several methods areavailable, we list some of them:1. randomizing the base-point P :{ by point blinding [5℄: ompute Q = kP as Q = k(P +R) � kR for arandom point R;{ with randomized projetive oordinates [5℄: in projetive oordinates,(X : Y : Z) and (rX : rY : rZ) with r 6= 0 represent the same point. Sofor a random r, if P = (x0; y0), Q is omputed as Q = k(rx0 : ry0 : r);{ with randomized ellipti urve isomorphisms [11℄: if � denotes a randomisomorphism between E(K ) and E0(K ), then one omputes Q as Q =��1�k��(P )��;{ with randomized �eld isomorphisms [11℄: if � is a random isomorphismbetween K and K 0 , then Q an be omputed as above. We refer thereader to the original paper ([11℄) for a onrete realization over binary�elds K ;2. randomizing the multiplier k:{ by multiplier blinding [5℄: if n = ordE(P ) denotes the order of P 2 E(K ),then Q is omputed as Q = (k + r n)P for a random r. Alternatively,one an replae n by the order of the ellipti urve, #E(K );{ by randomized multiplier reoding [11℄: this tehnique applies to Koblitzurves over GF (2m). Let � : (x; y) 7! (x2; y2) represent the Frobeniusendomorphism. Considering k as an element of Z[� ℄ � End(E), onehooses a random � 2 Z[� ℄, evaluates the � -NAF expansion of � :=k mod �(�m � 1), � =Pi �i2i with �i 2 f�1; 0; 1g, and omputes Q asQ =Pi �i � i(P ).All these tehniques are of independent interest and an of ourse be om-bined to better ful�ll the needs of a partiular appliation. Moreover, it is easyto derive variants thereof; the idea being to randomize the exeution of therypto-algorithm.5 ConlusionsSide-hannel analysis is now well understood by implementors and eÆient oun-termeasures are known. This paper surveyed various ways for proteting elliptiurve ryptosystems against both simple and di�erential side-hannel analysis.Referenes1. Olivier Billet and Mar Joye. The Jaobi model of an ellipti urve and side-hannelanalysis. Cryptology ePrint Arhive, Report 2002/125, IACR, August 2002. Avail-able at URL http://eprint.iar.org/2002/125/.2. Ian Blake, Gadiel Seroussi, and Nigel Smart. Ellipti urves in ryptography, vol-ume 265 of London Mathematial Soiety Leture Note Series. Cambridge Univer-sity Press, 1999.
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