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Abstract. Naive implementations of crypto-algorithms are susceptible
to side-channel analysis. This paper surveys the known methods for pre-
venting side-channel analysis in elliptic curve cryptosystems.
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1 Introduction

Provable security becomes more and more popular in the cryptographic com-
munity. As exemplified by the NESSIE project [22], it is now common to see
it as an attribute of a cryptosystem. Provable security is at the protocol level,
a harder task may be to evaluate the security of a cryptosystem at the imple-
mentation level. Rather than considering a cryptosystem as a black-box, we may
assume that some sensitive data can leak during the course of the execution of
a (naively implemented) crypto-algorithm. A concrete example is given by the
so-called side-channel analysis [14,15].

Side-channel analysis is a powerful technique re-discovered by P. Kocher in
1996. The principle consists in monitoring some side-channel information like
the running time [14], the power consumption [15], or the electromagnetic ra-
diation [7,23]. Next, from the monitored data, the attacker tries to deduce the
inner-workings of the algorithm and thereby to retrieve some secret information.
When there is a single measurement, the process is referred to as a simple side-
channel analysis; and when there are several measurements handled together
with statistical tools, the process is referred to as differential side-channel anal-
ysis.

This paper is aimed at studying the resistance of elliptic curve cryptosystems
against those two classes of attacks. In particular, we survey the various strategies
proposed so far to prevent side-channel attacks.
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2 Elliptic Curve Cryptography

We start with a brief review of elliptic curve cryptography and refer the reader
to the many excellent textbooks on the subject (e.g., [2]) for more detail.

An elliptic curve presents the mathematical structure of an additive group.
What makes elliptic curves particularly attractive for cryptographic applica-
tions [13,18] is that the discrete logarithm problem in elliptic curve groups
is harder than in groups previously considered. As a result, with shorter key
lengths, comparable levels of security can be attained.

An elliptic curve over a field K is formed by the point O ‘at infinity’ and the
set of points P = (z,y) € Kx K satisfying a (non-singular) Weierstrafl equation

B y® + arzy + asy = 2° + axx® + asz + ag .

The basic operation in elliptic curve cryptography is the scalar multiplication,
that is, given a point P € E(K), one has to compute Q = kP := P+ P+---+ P
(k times). The discrete logarithm problem consists in finding the value of k from
the values of P and Q = kP.

3 Simple Side-Channel Analysis

A widely-used method for performing a scalar multiplication is the celebrated
double-and-add method (i.e., the additive analogue of the square-and-multiply
algorithm).

Input: P k= (1,ki—2,...,ko)2
Output: Q@ = kP

R(] «~— P
for j =¢—2 downto 0 do

R(] — 2R0

if (k7 = ].) then Rg < Ro+ P
endfor

return Rg

Fig. 1. Double-and-add method

As given in textbooks, the formula for doubling a point or for adding two
(distinct) points on a Weierstraf} elliptic curve are different. Therefore, a simple
power analysis (i.e., a simple side-channel analysis using power consumption as
side channel) will produce different power traces that may reveal the value of k
in the double-and-add method, from the distinction between the two operations.
There are basically three approaches to circumvent the leakage. This can be
achieved by:
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1. inserting dummy instructions [5];

2. considering alternative parameterizations [10, 16, 1] or unifying the addition
formulae [3];

3. using algorithms that already behave ‘regularly’ [17,21,19, 3,8, 6].

Input: P,k=(1,ki—a,...,ko)2 Input: P,k=(1,ki—a,...,ko)2
Qutput: Q =kP Qutput: @ = kP
Ry« P Ro < P; Ry < 2P
for j =¢—2 downto 0 do for j =/¢—2 downto 0 do

Ro + 2Ro; R1 <+ Rog+ P b(—kj

b<kj; Ro< Rp Ri_p— Ro+ R1; Ry + 2Ry
endfor endfor
return Rg return Ro

(a) Double-and-add always [5] (b) Montgomery ladder [20, 12]

Input: P k= (1,ki—2,...,ko)2
Output: Q = kP
Ro+2P; R1+ P; j«< (-2
while (5 > 1) do
b(—kj; Ry «+— Ro + Ry
kj+0; j«j+b-1
endwhile
Rl(—RU+P; b(—kn; RQ(—Rb

return Rg

(c) Double-and-add with multiplier rewriting [9]

Fig. 2. Regular scalar multiplication algorithms

The first and third approaches share the same idea: it consists in ultimately
having an algorithm that behaves consistently and regularly whatever the pro-
cessed data. In [5], Coron suggests to perform a dummy addition in the double-
and-add method when the processed bit is ‘0’ so that each iteration appears
as a doubling followed by an addition (see Fig.2-a). Another possibility is to
use a scalar multiplication method that already behaves regularly, as is the case
for the Montgomery ladder [20,12] (see Fig.2-b). The corresponding algorithm
for elliptic curves over binary fields is detailed in [17] and in [21] over fields of
large characteristic. The latter algorithm is however restricted to ‘Montgomery’
curves; see [3, 8, 6] for general Weierstraf} elliptic curves.

The second approach for preventing simple side-channel analysis is to rewrite
the addition formulae so that the same formula can be used for doubling or
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adding points, indifferently. This is suggested by Brier and Joye in [3] where
unified addition formulse for Weierstra$} elliptic curves are presented. In [16],
Liardet and Smart propose to represent elliptic curves as the intersection of
two quadric surfaces. Contrary to the Weierstrafl parameterization, the classical
addition formula on this parameterization is already valid for doubling or adding
points [4]. However, for efficiency reasons, only elliptic curves with three points
of order 2 (and thus whose order is multiple of 4) give rise to fast arithmetic.
Consequently, for real-life applications, the technique is not available for general
elliptic curves (see also [1] for several improvements). For elliptic curves whose
order is a multiple of 3, one can use the Hessian parameterization. A trick for
evaluating a doubling in terms of a general addition on a Hessian elliptic curve
is described by Joye and Quisquater [10].

We note, however, that the double-and-add algorithm depicted in Fig. 1 can-
not be used as is with unified addition formula. This algorithm is not regular
because of the if-then instruction; a simple side-channel analysis may reveal
sensitive data (although the analysis is at a smaller scale). One has to use a regu-
lar variant of the double-and-add algorithm. We quote one such variant from [9]
(see Fig.2-c).

4 Differential Side-Channel Analysis

Even if an algorithm is protected against side-channel analysis, it may succumb
to the more sophisticated differential analysis [5]. Practically, we note however
that very few elliptic curve cryptosystems are susceptible to such attacks as, usu-
ally, the input point is imposed by the system and the multiplier is an ephemeral
parameter, varying at each execution.

Assume that the double-and-add method is implemented with one of the
regular variants given in Fig.2. Let k¥ = (ks_1,...,ko)2 be the binary expan-
sion of multiplier k. Suppose that an attacker already knows the highest bits,
k¢—1,...,kjs1, of k. Then, he guesses that the next bit k; is equal to ‘1’. He
randomly chooses several points Py, ..., Py and computes Q, = (Zf;]l k2P,
for 1 < r < t. Using a boolean selection function g, he prepares two sets: the
first set, Sirue, contains the points P, such that ¢(Q,) = true and the second
set, Stalse, contains those such that g(Q,) = false (a candidate for the selec-
tion function may, for example, be the value of a given bit in the representation
of Q). Let C(r) denote the side-channel information associated to the compu-
tation of kP, by the cryptographic device (e.g., the power consumption). If the
guess k; = 1 is incorrect then the difference

(C(r)) 1<r<t — (C(r)) 1<r<t

Pp. €EStrue Pp €Stalse

will be ~ 0 as the two sets appear as two random (i.e., uncorrelated) sets;
otherwise the guess is correct. Once k; is known, the remaining bits, k;_1, ..., ko,
are recovered recursively, in the same way.

In order to thwart the above differential side-channel analysis, one has to
randomize the inputs of the crypto-algorithm so that the attacker is no longer
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able to prepare two sets of points with a selection function. Several methods are
available, we list some of them:

1. randomizing the base-point P:

— by point blinding [5]: compute @ = kP as Q = k(P + R) — kR for a
random point R;

— with randomized projective coordinates [5]: in projective coordinates,
(X:Y :Z)and (rX :rY :rZ) with r # 0 represent the same point. So
for a random r, if P = (zg,y0), Q is computed as Q = k(rxq : ryo : 1);

— with randomized elliptic curve isomorphisms [11]: if ¢ denotes a random
isomorphism between E(K) and E’'(K), then one computes Q as Q =

o~ (k(e(P)):

— with randomized field isomorphisms [11]: if ¢ is a random isomorphism
between K and K', then Q can be computed as above. We refer the
reader to the original paper ([11]) for a concrete realization over binary
fields K;

2. randomizing the multiplier k:

— by multiplier blinding [5]: if n = ord g (P) denotes the order of P € E(K),
then @ is computed as @ = (k + rn)P for a random r. Alternatively,
one can replace n by the order of the elliptic curve, #FE(K);

— by randomized multiplier recoding [11]: this technique applies to Koblitz
curves over GF(2™). Let 7 : (z,y) = (2%,y?) represent the Frobenius
endomorphism. Considering k£ as an element of Z[r] C End(E), one
chooses a random p € Z][7], evaluates the 7-NAF expansion of x :=
kmod p(t™ — 1), k = Y, k;2" with k; € {~1,0,1}, and computes Q as
Q = Zz Kj Tl(P).

All these techniques are of independent interest and can of course be com-
bined to better fulfill the needs of a particular application. Moreover, it is easy
to derive variants thereof; the idea being to randomize the execution of the
crypto-algorithm.

5 Conclusions

Side-channel analysis is now well understood by implementors and efficient coun-
termeasures are known. This paper surveyed various ways for protecting elliptic
curve cryptosystems against both simple and differential side-channel analysis.
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