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tionProvable se
urity be
omes more and more popular in the 
ryptographi
 
om-munity. As exempli�ed by the NESSIE proje
t [22℄, it is now 
ommon to seeit as an attribute of a 
ryptosystem. Provable se
urity is at the proto
ol level,a harder task may be to evaluate the se
urity of a 
ryptosystem at the imple-mentation level. Rather than 
onsidering a 
ryptosystem as a bla
k-box, we mayassume that some sensitive data 
an leak during the 
ourse of the exe
ution ofa (naively implemented) 
rypto-algorithm. A 
on
rete example is given by theso-
alled side-
hannel analysis [14, 15℄.Side-
hannel analysis is a powerful te
hnique re-dis
overed by P. Ko
her in1996. The prin
iple 
onsists in monitoring some side-
hannel information likethe running time [14℄, the power 
onsumption [15℄, or the ele
tromagneti
 ra-diation [7, 23℄. Next, from the monitored data, the atta
ker tries to dedu
e theinner-workings of the algorithm and thereby to retrieve some se
ret information.When there is a single measurement, the pro
ess is referred to as a simple side-
hannel analysis; and when there are several measurements handled togetherwith statisti
al tools, the pro
ess is referred to as di�erential side-
hannel anal-ysis.This paper is aimed at studying the resistan
e of ellipti
 
urve 
ryptosystemsagainst those two 
lasses of atta
ks. In parti
ular, we survey the various strategiesproposed so far to prevent side-
hannel atta
ks.
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 Curve CryptographyWe start with a brief review of ellipti
 
urve 
ryptography and refer the readerto the many ex
ellent textbooks on the subje
t (e.g., [2℄) for more detail.An ellipti
 
urve presents the mathemati
al stru
ture of an additive group.What makes ellipti
 
urves parti
ularly attra
tive for 
ryptographi
 appli
a-tions [13, 18℄ is that the dis
rete logarithm problem in ellipti
 
urve groupsis harder than in groups previously 
onsidered. As a result, with shorter keylengths, 
omparable levels of se
urity 
an be attained.An ellipti
 
urve over a �eld K is formed by the point O `at in�nity' and theset of points P = (x; y) 2 K �K satisfying a (non-singular) Weierstra� equationE=K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 :The basi
 operation in ellipti
 
urve 
ryptography is the s
alar multipli
ation,that is, given a point P 2 E(K ), one has to 
ompute Q = kP := P +P + � � �+P(k times). The dis
rete logarithm problem 
onsists in �nding the value of k fromthe values of P and Q = kP .3 Simple Side-Channel AnalysisA widely-used method for performing a s
alar multipli
ation is the 
elebrateddouble-and-add method (i.e., the additive analogue of the square-and-multiplyalgorithm). Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  Pfor j = `� 2 downto 0 doR0  2R0if (kj = 1) then R0  R0 + Pendforreturn R0Fig. 1. Double-and-add methodAs given in textbooks, the formul� for doubling a point or for adding two(distin
t) points on a Weierstra� ellipti
 
urve are di�erent. Therefore, a simplepower analysis (i.e., a simple side-
hannel analysis using power 
onsumption asside 
hannel) will produ
e di�erent power tra
es that may reveal the value of kin the double-and-add method, from the distin
tion between the two operations.There are basi
ally three approa
hes to 
ir
umvent the leakage. This 
an bea
hieved by:
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tions [5℄;2. 
onsidering alternative parameterizations [10, 16, 1℄ or unifying the additionformul� [3℄;3. using algorithms that already behave `regularly' [17, 21, 19, 3, 8, 6℄.Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  Pfor j = `� 2 downto 0 doR0  2R0; R1  R0 +Pb kj; R0  Rbendforreturn R0(a) Double-and-add always [5℄
Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  P ; R1  2Pfor j = `� 2 downto 0 dob kjR1�b  R0 +R1; Rb  2Rbendforreturn R0(b) Montgomery ladder [20, 12℄Input: P ; k = (1; k`�2; : : : ; k0)2Output: Q = kPR0  2P ; R1  P ; j  `� 2while (j � 1) dob kj; R0  R0 +Rbkj  0; j  j + b� 1endwhileR1  R0 + P ; b k0; R0  Rbreturn R0(
) Double-and-add with multiplier rewriting [9℄Fig. 2. Regular s
alar multipli
ation algorithmsThe �rst and third approa
hes share the same idea: it 
onsists in ultimatelyhaving an algorithm that behaves 
onsistently and regularly whatever the pro-
essed data. In [5℄, Coron suggests to perform a dummy addition in the double-and-add method when the pro
essed bit is `0' so that ea
h iteration appearsas a doubling followed by an addition (see Fig. 2-a). Another possibility is touse a s
alar multipli
ation method that already behaves regularly, as is the 
asefor the Montgomery ladder [20, 12℄ (see Fig. 2-b). The 
orresponding algorithmfor ellipti
 
urves over binary �elds is detailed in [17℄ and in [21℄ over �elds oflarge 
hara
teristi
. The latter algorithm is however restri
ted to `Montgomery'
urves; see [3, 8, 6℄ for general Weierstra� ellipti
 
urves.The se
ond approa
h for preventing simple side-
hannel analysis is to rewritethe addition formul� so that the same formula 
an be used for doubling or
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 Joyeadding points, indi�erently. This is suggested by Brier and Joye in [3℄ whereuni�ed addition formul� for Weierstra� ellipti
 
urves are presented. In [16℄,Liardet and Smart propose to represent ellipti
 
urves as the interse
tion oftwo quadri
 surfa
es. Contrary to the Weierstra� parameterization, the 
lassi
aladdition formula on this parameterization is already valid for doubling or addingpoints [4℄. However, for eÆ
ien
y reasons, only ellipti
 
urves with three pointsof order 2 (and thus whose order is multiple of 4) give rise to fast arithmeti
.Consequently, for real-life appli
ations, the te
hnique is not available for generalellipti
 
urves (see also [1℄ for several improvements). For ellipti
 
urves whoseorder is a multiple of 3, one 
an use the Hessian parameterization. A tri
k forevaluating a doubling in terms of a general addition on a Hessian ellipti
 
urveis des
ribed by Joye and Quisquater [10℄.We note, however, that the double-and-add algorithm depi
ted in Fig. 1 
an-not be used as is with uni�ed addition formul�. This algorithm is not regularbe
ause of the if-then instru
tion; a simple side-
hannel analysis may revealsensitive data (although the analysis is at a smaller s
ale). One has to use a regu-lar variant of the double-and-add algorithm. We quote one su
h variant from [9℄(see Fig. 2-
).4 Di�erential Side-Channel AnalysisEven if an algorithm is prote
ted against side-
hannel analysis, it may su

umbto the more sophisti
ated di�erential analysis [5℄. Pra
ti
ally, we note howeverthat very few ellipti
 
urve 
ryptosystems are sus
eptible to su
h atta
ks as, usu-ally, the input point is imposed by the system and the multiplier is an ephemeralparameter, varying at ea
h exe
ution.Assume that the double-and-add method is implemented with one of theregular variants given in Fig. 2. Let k = (k`�1; : : : ; k0)2 be the binary expan-sion of multiplier k. Suppose that an atta
ker already knows the highest bits,k`�1; : : : ; kj+1, of k. Then, he guesses that the next bit kj is equal to `1'. Herandomly 
hooses several points P1; : : : ;Pt and 
omputes Qr = (P`�1i=j ki2i)Prfor 1 � r � t. Using a boolean sele
tion fun
tion g, he prepares two sets: the�rst set, Strue, 
ontains the points Pr su
h that g(Qr) = true and the se
ondset, Sfalse, 
ontains those su
h that g(Qr) = false (a 
andidate for the sele
-tion fun
tion may, for example, be the value of a given bit in the representationof Qr). Let C(r) denote the side-
hannel information asso
iated to the 
ompu-tation of kPr by the 
ryptographi
 devi
e (e.g., the power 
onsumption). If theguess kj = 1 is in
orre
t then the di�eren
ehC(r)i 1�r�tPr2Strue � hC(r)i 1�r�tPr2Sfalsewill be � 0 as the two sets appear as two random (i.e., un
orrelated) sets;otherwise the guess is 
orre
t. On
e kj is known, the remaining bits, kj�1; : : : ; k0,are re
overed re
ursively, in the same way.In order to thwart the above di�erential side-
hannel analysis, one has torandomize the inputs of the 
rypto-algorithm so that the atta
ker is no longer



Ellipti
 Curves and Side-Channel Analysis 5able to prepare two sets of points with a sele
tion fun
tion. Several methods areavailable, we list some of them:1. randomizing the base-point P :{ by point blinding [5℄: 
ompute Q = kP as Q = k(P +R) � kR for arandom point R;{ with randomized proje
tive 
oordinates [5℄: in proje
tive 
oordinates,(X : Y : Z) and (rX : rY : rZ) with r 6= 0 represent the same point. Sofor a random r, if P = (x0; y0), Q is 
omputed as Q = k(rx0 : ry0 : r);{ with randomized ellipti
 
urve isomorphisms [11℄: if � denotes a randomisomorphism between E(K ) and E0(K ), then one 
omputes Q as Q =��1�k��(P )��;{ with randomized �eld isomorphisms [11℄: if � is a random isomorphismbetween K and K 0 , then Q 
an be 
omputed as above. We refer thereader to the original paper ([11℄) for a 
on
rete realization over binary�elds K ;2. randomizing the multiplier k:{ by multiplier blinding [5℄: if n = ordE(P ) denotes the order of P 2 E(K ),then Q is 
omputed as Q = (k + r n)P for a random r. Alternatively,one 
an repla
e n by the order of the ellipti
 
urve, #E(K );{ by randomized multiplier re
oding [11℄: this te
hnique applies to Koblitz
urves over GF (2m). Let � : (x; y) 7! (x2; y2) represent the Frobeniusendomorphism. Considering k as an element of Z[� ℄ � End(E), one
hooses a random � 2 Z[� ℄, evaluates the � -NAF expansion of � :=k mod �(�m � 1), � =Pi �i2i with �i 2 f�1; 0; 1g, and 
omputes Q asQ =Pi �i � i(P ).All these te
hniques are of independent interest and 
an of 
ourse be 
om-bined to better ful�ll the needs of a parti
ular appli
ation. Moreover, it is easyto derive variants thereof; the idea being to randomize the exe
ution of the
rypto-algorithm.5 Con
lusionsSide-
hannel analysis is now well understood by implementors and eÆ
ient 
oun-termeasures are known. This paper surveyed various ways for prote
ting ellipti

urve 
ryptosystems against both simple and di�erential side-
hannel analysis.Referen
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