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Abstract

This work studies the connection between various properties of a graph, and its spectrum - the
eigenvalues of its adjacency matrix. Of particular interest in this work are properties related to the
clustering problem.

In most of the work we are interested in d-regular graphs. Let A\; > ... > ), be the eigenvalues
of such a graph. It is easy to see that A\; = d. Denote A\(G) = max{\y, |A,|}.

The first property we discuss is the so called “jumbleness” of a graph. A d-regular graph on n
vertices is (n, d, «)-jumbled (Definition 2.2.1) if for every two subsets of vertices, S and T,

|e(S,T) = dIS||T|/n| < av/|S]T],

where e(S,T) = |{(i,j) € E : i € S, j € T}|. Itiswell known that o < A(G). We show that
“jumbleness” is almost the same as A\(G). Namely, if G is (n, d, a)-jumbled then

a < A(G) < O(a(log(d/a) + 1)),

and that the second inequality can not, in general, be improved.

The result follows from a general relation between the “discrepancy” of a matrix (Definition 2.1.1),
and its spectral radius. In chapter 3 we use this result to give a new, nearly optimal, construction
of expander graphs. Namely, we construct d-regular graphs with A\(G) = O(+/dlog® d).

The main tool in this construction is an iterative use of the 2-lift operation. A graph G is said to
be a 2-lift of G is there’s a 2 : 1 covering map from G to G. Such lifts correspond to a signing of
the edges of G - a symmetric matrix obtained from the adjacency matrix of A by replacing some
of the 1 entries with —1. It turns out that the spectrum of G is simply the union of that of @, and
that of the signing. This characterization implies that to construct expanders, it is enough to find
a signing with a small spectral radius. We show that a signing with spectral radius O(+/dlog® d)
always exits. Under a natural assumption on the structure of a graph (that it is sparse in the sense
of Definition 3.3.1) it can also be found efficiently.

In chapter 4 we study regular graphs where the degree is linear, yet the second eigenvalue is
bounded. One example of such graphs is K, ,, the complete bipartite graph with n vertices on
each side. We show that this is essentially the only possible example when the degree is at most
n/2. Namely, n/2-regular graphs with bounded second eigenvalue are close to K, /5,2, and for
every 0 < 4 < % and ¢, there are only finitely many dn-regular graphs with A, < c.

Our interest in graphs with bounded second eigenvalue and linear degree stems from our study of
sphericity of graphs. A graph has sphericity k, if its vertices can be embedded in R* so that the
distance between the images of two vertices is < 1 iff they are adjacent. This is a special case of
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what we call monotone maps of metric spaces. An embedding from one metric space into another
is called a monotone map if it preserves the order of the pairwise distances between points.

In chapter 5 we give lower and upper bounds on the minimal dimension of normed spaces into
which every metric space has a monotone map. We also discuss known results about the sphericity
of graphs, and give a lower bound for it in terms of its second eigenvalue. This bound is linear for
graphs with bounded second eigenvalue and linear degree.

Our study of monotone maps has to do with understanding the clustering problem. Informally, in
this problem the input is a graph with distances on the edges, and the objective is to partition the
vertices into subsets, “clusters”, such that the distances between vertices within the same cluster
are small, and those between two vertices in different clusters are big.

It seems that in any plausible formulation of the problem, it is NP-hard. Yet good heuristics exist,
especially when the metric space is a low dimensional normed space, and in particular Euclidean.
Thus, it is natural to ask when is it possible to find an embedding into such a space, that preserves
the relation between distances.

In the same vein, it is interesting to identify non-trivial instances of this problem for which the
solution can be found efficiently. We study this question in chapter 6. Specifically, we say that
an instance is stable if small perturbations of the distances do not change the structure of the
optimal clustering. Our case in point is the MaxCut problem, in which the objective is to partition
a weighted graph into two clusters. We show that if the input is very stable, then a greedy algorithm
finds the optimal partition. We then suggest a spectral algorithm, and show sufficient conditions
under which it finds the optimal solution.

Finally, in chapter 7 we extend Hoffman’s bound on the chromatic number of a graph to other graph
parameters. Namely, we show that it holds for the vector chromatic number, a graph parameter
introduced by Karger, Motwani and Sudan, and that a slight variation of it holds for the v-covering
numbers suggested by Amit, Linial and MatouSek. In addition, we define a new graph parameter,
so called the A-clustering number. This is the least number £ such that the graph can be partitioned
into & subsets Sy, ..., Sk, where the spectral radius of G[S;] is at most A for each i. We show that
this number is bounded from below by 4==.
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Chapter 1

| ntroduction

1.1 Discrepancy vs. Spectra

A major effort in modern graph theory focuses on studying the connection between the eigenvalues
of the adjacency matrix of a graph, the graph’s spectrum, and its combinatorial properties. At first
glance it might be surprising that such connections exist at all. The ongoing research in this field
unravels more and more of them.

One such connection is an equivalence between the spectral gap in a regular graph and its edge
expansion. Letd = A; > A\, > ... > ), be the eigenvalues of a d-regular graph G (we shall only
discuss regular graphs here). The spectral gap of G, A(G), is A\; — max{\y, |\,|}. Let S C V bea
set of vertices. Denote by E'5 the set of edges with exactly one end point in .S. The edge expansion
of S'is |Eg|/|S|. The edge expansion of G, h(G), is the minimal edge expansion over all subsets
S with |S| < |V|/2. Graphs with a big spectral gap, or a big edge expansion, are very useful in
computer science (cf. [48]). In fact, it is well known (cf. [9]) that the two properties are equivalent
after a fashion:

w(@) > A (L.1)
ANG) > h(;)Q. (1.2)

Spectra allows us to compare how similar a given d-regular graph is to a random d-regular graph.
For disjoint S, T C V the discrepancy between them is:

|e(S,T) — d|S|[T|/n]
VST
where e(.S,T') is the number of edges with one end point in .S and one in 7. Note that d|S||T’|/n is

the expected number of edges in a random d-regular graph. The discrepancy of a graph, A(G), is
the maximal discrepancy over all such pairs. A well known property of d regular graphs (cf. [9])
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12 CHAPTER 1. INTRODUCTION

where the first inequality is sometimes called The Expander Mixing Lemma.
In Chapter 2 we show that A(G) also gives an upper bound on d — A(G), which is surprisingly
tight in comparison with estimates derived from edge expansion. Namely:

d— \G) = O(A(G)(log(d/A(G)) +1)). (1.3)

The proof relies on a more general result, connecting the spectral radius of a matrix with a similar
notion of discrepancy.

It known that inequality 1.2 is actually tight, in the sense that there are graphs for which the ratio
between the sides is a small constant. Similarly, we prove that inequality 1.3 is tight up to a
constant factor.

Turning our viewpoint, inequality 1.3 says that if A(G) is small, then there are S, 7 C V with a
large discrepancy - either a lot of edges, or very few. In fact, from the proof it follows that if the
least eigenvalue is close to —d then the former holds, and if the second largest eigenvalue is close
to d then the latter. Furthermore, such S and 7" can be found efficiently. We therefore speculate
that this lemma might prove useful in clustering algorithms, as identifying such subsets is a natural
problem.

1.2 Constructing expander graphs from 2 lifts

Constructing large regular graphs with a large spectral gap is not an easy task. The first to do so
was Margulis, in [51]. In a celebrated result, Margulis and Lubotzky, Phillips and Sarnak [49, 52]
construct arbitrarily large d-regular (for d a prime power plus one), with A\(G) > d — 2/d — 1. A
matching upper bound, known as the Alon-Boppana bound, shows that this is optimal (cf. [57]).
Such optimal construction were called Ramanujan graphs by Lubotzky, Phillips and Sarnak, as
their construction is based on deep results concerning certain number-theoretic conjectures by
Ramanujan.

In Chapter 3 we suggest a construction that is nearly optimal, and uses only elementary algebra.
The building block of the construction is the 2-lift operation on graphs.

A signing of a graph G = (V, E) is a function s : E — {—1,1}. A signing defines a graph G,
called a 2-lift of G’ with vertex set V(G) x {—1,1}. The vertices (u,x) and (v, y) are adjacent
iff (u,v) € E(G), and z -y = s(u,v). The corresponding signed adjacency matrix A¢ s is a
symmetric {—1, 0, 1}-matrix, with (Ag,s)u, = s(u,v) if (u,v) € E, and 0 otherwise.

It is an easy fact that the spectrum of G is simply the union of that of G and that of Ag,s. Consider
the following scheme for constructing Ramanujan graphs. Start with Gy = K., the complete
graph on d+ 1 vertices or any other small d-regular Ramanujan graph. (Note that small Ramanujan
graphs are easy to come by.) Consider the following conjecture:
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Conjecture. Every Ramanujan d-regular graph G has a signing s with spectral radius p(A¢ ) <

2¢v/d — 1.

Assuming this to be true, define successively G; as a 2-lift of G;_1, obtained from a signing s of
G,_1 that satisfies the conjecture. These G; constitute an infinite family of d-regular Ramanujan
graphs.

In fact, we make the even more daring:

Conjecture. Every d-regular graph G has a signing s with spectral radius p(Ag ) < 2v/d — 1.

We note that by the Alon-Boppana bound, the conjecture can not, in general, be improved. In
Chapter 3 we establish a somewhat weaker result:

Theorem. (3.3.1) Every graph G of maximal degree d has a signing s with spectral radius p(A¢ s) =

O(+v/d -log® d).

Moreover, we show how to find such a signing efficiently. The proof of the theorem relies on the
intimate connection between discrepancy and eigenvalues, mentioned in the previous section.

We also give examples of families of graphs where we know how to find an s such that p(Ag s) <
2v/d — 1, and show empirically that most randomized algorithms we came up with succeed in
finding such a signing on random graphs. Finally, we discuss group lifts, of which 2-lifts are a
special case, and characterize their spectrum.

1.3 Graphs with bounded second eigenvalue

The Alon-Boppana bound says that the second eigenvalue of a d-regular graph is at least 2v/d — 1—
o(1), where the o(1) goes to 0 as n/d grows (n denotes throughout the number of vertices). For
graphs of linear degree the bound does not give anything. In Chapter 4 we ask: are there such
graphs with bounded second eigenvalue (independent of d and n), and if so, what do they look
like?

The second eigenvalue of K, ,, the complete bipartite graph with n vertices on each side, is 0.
Clearly, it is regular, of linear degree, and the second eigenvalue is bounded. We show that for
linear degree at most n/2, this is essentially the only example: n/2-regular graphs with bounded
second eigenvalue are close to K3 ,/2, and for every 0 < ¢ < % and c, there are only finitely
many dn-regular graphs with \s < c.

By close to K, 5,,,/2 We mean that there is a partition of the vertices (5, [n]\S), such that [ S| = n/2,
the number of edges between S and [n]\S is n?/4 — o(n?) and the number of edges with both end
points in S or both end points in [n]\S is o(n?).

In other words, if the two first eigenvalues of an n/2-regular graph are similar to those of K, /5 /2,
the graph itself is similar to K, /2 ,/2. If the spectrum is even more similar, namely the second
smallest eigenvalue is also bounded, a stronger of notion can be proved. Rather than o(n?), the
difference between the graph and K, /5 /2 is O(n*/?) edges.
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1.4 Monotone maps, sphericity, and inverting the KL-divergence

The problem of clustering arises is many scientific disciplines. The input is a set of points, with a
measure of similarity or distance between them. The objective is to find a structure within these
points. Clustering is one possible way to define this structure. A clustering of the points is their
partition into subsets, or clusters, such that close points are within the same cluster, and remote
points are in different clusters.

Simple algorithms for doing so rely only on the order of the distances. For example, one version
of the neighbor-joining algorithm is as follows. It starts with each point as a cluster to itself,
and proceeds by merging the two closest clusters until some terminating criteria is reached (e.g.,
number of clusters). The distance between two clusters is taken as the minimum over all pairs of
points, one from each cluster.

The clustering problem tends to be easier when the points reside in a low dimensional Euclidean
space. One approach towards clustering is therefore to try and embed the points into such a space,
without losing too much of the structure of the original distances. In particular, if we only care
about the order of the distances, this embedding is what we call a monotone map - it preserves the
order of the distances between points.

In Chapter 5 we give lower and upper bounds on the dimension of Euclidean space into which
monotone maps exist. Specifically, we show that » — 1 dimensions are enough to embed any
metric space on n points, and that “almost all” metric spaces do require linear dimension. We also
give bounds for other normed spaces.

Looking for a specific example for which linear dimension is required, we discuss metrics arising
from graphs and sphericity of graphs. An embedding of the vertices of a graph in Euclidean space
f 'V — R™is called a spherical embedding if ||f(u) — f(v)|| < 1iff (u,v) € E. Itis easy
to see that any properly scaled monotone map of a graph metric is a spherical embedding of the
underlying graph. The sphericity of a graph G, Sph(G), is the minimal dimension into which it
can be embedded this way. Reiterman, Rodl and Sinajova ([61]) show that the sphericity of K, ,,
is n. In particular, this gives an example of a metric for which any monotone map requires linear
dimension.

We give a lower bound on the sphericity of a graph in terms of its second eigenvalue. Namely, that
for 0 < § < 3, for any n-vertex dn-regular graph G, with bounded diameter, Sph(G) = Q)
Unfortunately, this turns out to be too weak to derive new graphs with linear sphericity, by the
results of Chapter 4.

We also discuss the related notion of the margin of an embedding, and the sphericity of quasi-
random graphs. We show that although the sphericity of a graph in G(n, %) is linear, there are
families of quasi-random graphs with sub-linear sphericity.

Finally, we consider a related problem of soft clustering. In this variation, rather than partitioning
the points into clusters, the objective is to assign to each point a distribution over the clusters.
As before, nearby points should have similar distributions, and faraway points should have little
correlation. Let f be some distance measure on distributions. Given a metric space on n points
with distance function d, the soft clustering problem is to find Dy, ..., D, such that f(D;, D;) =
d(i, 7). A natural question is - for what metric spaces do such distributions exist? At the end of
Chapter 5 we show that when f is the KL-divergence between distributions, there is a solution to
the soft clustering problem for any metric space.
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1.5 Efficient algorithms for stable problem instances

Many computational problems that arise in practice are particular instances of NP-hard problems.
We have seen one such example - the clustering problem. As mentioned before, essentially any
concrete formulation of the problem is known to be NP-hard. Should this deter us from trying to
solve it?

Since the problem is NP-hard, we believe that for any algorithm there exist problem instances for
which it will not produce the correct solution in polynomial time. However, do such instances
actually arise in practice? Are they actually interesting to solve?

In Chapter 6 we focus on the Max-Cut problem, the case of the clustering problem when two
clusters are sought. Let G be a graph on n vertices, W a weight function on its edges and (S, [n]\S)
the maximal cut in it. Fix v > 1. Let W’ be a weight function on the edges of G, such that for
every edge e, W(e) < W'(e) < - Wi(e). We say that (G, W) is -stable if for all such W,
(S, [n]\S) is also the maximal cut in (G, W'). Thinking of W' as a noisy version of W, stability
means that the solution is resilient to noise.

We also study a related property, which we call distinctness. Roughly, it measures how much the
weight of a cut decreases as a function of its distance from the maximal one.

We ask the following questions: Is there some value of stability v, for which Max-Cut can be
solved efficiently? If so, how small can v, be taken? How well do known approximation algorithms
and heuristics perform, as a function of stability? What about distinctness?

We show a greedy algorithm that finds the maximal cut when the input is v/ Dn-stable, where D is
the maximal degree in the graph. This algorithm is generalized at the end of the chapter to other
problems.

We show a spectral algorithm that finds the maximal cut for instances where the least eigenvector
of the weighted adjacency matrix is balanced. Namely, let  be an eigenvector corresponding to the
least eigenvalue of W, if the input is nr:ﬁi’:jf‘zv—ioo;z_f:j-stable, then partitioning the vertices according
to the signs of the elements in u gives the maximal cut.

For regular unweighted graphs we define:

Defintion. (6.2.3) Let C' C FE be the set of edges of a cut in a d-regular graph G,and 7" C V. The
relative net contribution of 7" to the cut is:
po(T) = Hee (T xT)NC} —|ee (T xT)n(E\O)}|
¢ dmin{|T|,n — |T|} '

Let C* C FE be the set of edges in a maximal cut of G. We say that it is p-distinct, if forall T C V,
pc-(T) > p.

We show:

Theorem. (6.2.1) Let C* C FE be the set of edges in a maximal cut of d-regular graph G. Assume
that this cut is p - distinct, and, furthermore, that for all v € V, pc- ({v}) > a. If

2
P
—>1

a+10

then the maximal cut can be found efficiently.
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Finally, we survey results from computer simulations on random graphs, testing the stability re-
quired for various algorithms to find the maximal cut.

1.6 Extensions of Hoffman’s bound

The chromatic number of a graph G, x, is the minimal & such that G can be partitioned into &
independent sets. In the context of clustering, thinking of edges as denoting two points which are
far apart, we are looking for a partition into as few clusters as possible, such that all points within
a cluster a close to each other.

One of the first non-trivial lower bounds on the chromatic number is that of Hoffman [39]: let A,
and ), be the largest and least eigenvalues of G, then x(G) > 1 — A1/ A,.

Karger, Motwani and Sudan [44] define a quadratic programming relaxation of the chromatic num-
ber, x,, called the vector chromatic number. They show that x > x,. Amit, Linial and Matou3ek
[12] define a set of graph parameters, so called -covering numbers, and show that (under some
assumptions) they take values in [,/x, x]. In chapter 7 we extend Hoffman’s bound to the vector
chromatic number, and to ¢-covering numbers. Specifically, we show that x,(G) > 1 — A\ /A,
(Theorem 7.1.2). The bound for t-covering numbers is somewhat involved and requires some
further definitions (see Theorem 7.1.3).

We also suggest a new relaxation of the chromatic number. Rather than requiring that all subsets
in the partition be independent, we ask that they have spectral radius at most A\. We call the min-
imal k£ for which there exists a partition into &£ such clusters the A-clustering number of a graph.
In particular, the 0-clustering number in exactly x. We show that this parameter is at least %
(Theorem 7.1.4).



Chapter 2

Discrepancy vs. Eigenvalues

2.1 Discrepancy vs. spectral radius

2.1.1 Introduction

In this chapter we are interested in understanding the relation between the discrepancy of a real
symmetric matrix, which we shall define shortly, and its spectral radius. Recall that the spec-
tral radius of such a matrix is the largest absolute value of its eigenvalue. By the Rayleigh-Ritz
characterization, if A be a n x n real symmetric matrix, then its spectral radius is

rAx T Ay
p(A) = max —— = max ————.
zeR" [[z][3 zyeR™ ||z]|2lyll2
Definition 2.1.1. Let A be an x n real symmetric matrix, and S, 7" € [n]. Define the discrepancy
between S and 7T':
. ZieS,jeT Ai,j

Bor(d) == o

Define the discrepancy of A as:

A(A) = max Agr(4)= ma zdy

3 X el o sl 15
S, TC[n] zye{o,1} ||x|2||y|l2

Intuitively, we think of the entries of A as being random variables with expectation 0, and measure
how much the sum of the entries in the sub-matrix defined by S and 7" deviate from the expected
value of 0. The normalization by +/|S||T’| should be thought of as measuring this quantity in units
proportional to standard deviation. The discrepancy of a matrix is the largest deviation among all
pairs of subsets.

Clearly A(A) < p(A). But can the gap between the two values by arbitrarily large? A related
result appears in the work of Kahn and Szemeredi [32]. In their work on the second eigenvalue
of a random d-regular graph they observe that if E ¢ S”~! in an e-net on the n — 1 dimensional
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18 CHAPTER 2. DISCREPANCY VS. EIGENVALUES

sphere, then a bound on max, ,cg Ay yields a bound on p(A). However, discrepancy has to do
with points in {0, 1}" - certainly not an e-net.

Nonetheless, assuming a bound on the /; norm of the rows of A, leads to a surprisingly tight bound
on its spectral radius, in terms of its discrepancy.

2.1.2 Themain lemma

The key lemma for the results we describe in this chapter, and in chapter 3 is the following:

Lemma 2.1.1. Let A be an n x n real symmetric matrix such that the /; norm of each row in A is
at most d. Assume that for any two vectors, u, v € {0, 1}", with supp(u) N supp(v) = 0:

luAv|

[lull]]o]]

and that all diagonal entries of A are, in absolute value, O(«a(log(d/«) + 1)). Then the spectral
radius of A is O(a(log(d/a) +1)).
Note that o < A(A), as we define it as the maximal discrepancy among pairs of disjoint subsets.

Proof: For simplicity, let us first assume that all diagonal entries of A are zeros. Note that our
assumptions imply that for any » € {0,1}",

For any uy, us € {0,1}" such S(u1) N S(ug) = O we have that
|urAuz| < offuy|[[uz]|- (2.1)

Let u € {0,1}", and denote k = |S(u)|. Set K = (k’;Q). Summing up inequality (2.1) over all
subsets of S(u) of size k£/2, we have that:

Z uA(u —uy) < Kak/2.
u1:S(u1)CS(u),|S(u1)|=k/2

k—2
k/2—1

Foreachi # j € S(u), a;; is added up (
entries are zero):

) times in the sum on the LHS, hence (since diagonal

k—2
Au < Kak/2
(k/2_1>u u< Kak/2,

or.
vAu < o2k.

Next, it follows that for any u, v € {—1,0,1}", such that S(u) = S(v), or S(u) N S(v) = O:

luAv|
[lull[[]]

< 4a.
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Fix u,v € {—1,0,1}". Denote v = u* —u~ and v = v — v~, where u*,u~,v", v~ € {0,1}",
and S(ut)NSu™)=Sw@wH)N(v") =0.

lwAv| = |(ut —u At —v )|

< 2a([[u" ||| + [0~ + [[u~ [ + [l o7

< dor/[[wt[[2] [0 [[2 + [fut|2[Jo= |2 + [Ju[[P]Jo*]]? + [Ju~[2[]o- ]2
= dor/([[ut[[? + [lu [P ([Jo* |2 + [[o~[[2) = 4 ful|[|v]].

The first inequality follows from our assumption on vectors in {0, 1}", and the second from the [,
to [y norm ratio.

Fix z € R™. We need to show that % = O(alog(d/a)). By losing only a multiplicative factor
of 2, we may assume that the absolute value of every non-zero entry in x is a negative powers of 2:
Clearly we may assume that ||z||, < 3. To bound the effect of rounding the coordinates, denote
z; = £(1+6;)2% with 0 < §; < 1 and ¢; < —1, an integer. Now round z to a vector z' by
choosing the value of z to be sign(z;) - 2%*+* with probability §; and sign(z;) - 2% with probability
1 — é;. The expectation of z} is x;. As the coordinates of ' are chosen independently, and the
diagonal entries of A are 0’s, the expectation of z’ Az’ is z Az. Thus, there’s a rounding, z’, of z,

such that [z Az| < |2’ Az'|. Clearly ||2'||* < 2||z||?, so edz| o glalda]

IR IEdIR

Denote S; = {j : z; = £27'}, s; = |S;|. Denote by k the maximal index i such that s; > 0.
Denote by ! the sign vector of x restricted to S;, that is, the vector whose j’th coordinate is the
sign of z; if j € S;, and zero otherwise. By our assumptions, forall 1 < i < j <k:

7' Az’ | < .y /5:5;. (2.2)
Also, since the /; norm of each row is at most d, forall 1 < i < k:

Z [2'Az?| < ds;. (2.3)

J

We wish to bound:

|z Ax| < Zf,jﬂ |27 Az |27 (H9)
|][* ~ >0 272 '

(2.4)

Denote v = log(d/a), ¢; = s;27% and Q = Y, ¢;. Add up inequalities (2.2) and (2.3) as follows.
For i = j multiply inequality (2.2) by 2=%. When i < j < i 4+ v multiply it by 2-Ct)+1 Multiply
inequality (2.3) by 2=(***7)_ (We ignore inequalities (2.2) when j > i + 7.)
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We get that:

ZQ 2% ' At +Z Z 9~ () +1 48 Agd| —1—22 (2i47) Z 2" Az? |

1 1<j<ity

<ZQ%+Z Z 2a\/q,—q]+22 d - q;

1 i<j<i+y

<O‘ZQZ+O‘Z Z (¢ + qj) +2"dz Qi

1 1<g<i+y

< (27d+270) Y g = (a + alog(d/a)Q

Note that the denominator in (2.4) is @), so to prove the lemma it’s enough to show that the numer-
ator,

D 2t Agd | 4 Z 272 Aa'l, (2.5)
1<J
is bounded by
ZQ %2 Azt | + Z Z 9~ (i) +1 28 Agd| 4 22 (2i+7) Z |z Axd). (2.6)
1 1<j<itry

Indeed, let us compare the coefficients of the terms |z* Az7| in both expressions (Since |z' Az’| =
|27 Az?|, it’s enough to consider i < 7). For i = j this coefficient is 272 in (2.5), and 2~% 42~ (+7)
in (2.6). Fori < j <i4r,itis2-0+)+1in (2.5), and in (2.6) it is 2~ +)+1 4 9~ (2i+y) 4 o= (25+7),
For j > i 4 1, in (2.5) the coefficient is again 2~ (+9)+1 In (2.6) it is:

9= (2i+7) 4 9=(2+7) 5 9—(2i+7) > 9—(i+5)+1

It remains to show that the lemma holds when the diagonal entries of A are not zeros, but O(«/(log(d/a)+
1)) in absolute value. Denote B = A — D, with D the matrix having the entries of A on the di-
agonal, and zero elsewhere. We have that for any two vectors, u,v € {0,1}", with supp(u) N
supp(v) = 0:
luAv|
[ulll[ol] ~

For such vectors, uBv = uAv, so by applying the lemma to B, we get that its spectral radius is
O(a(log(d/a) + 1)). By the assumption on the diagonal entries of A, the spectral radius of D is
O(a(log(d/a) + 1)) as well. The spectral radius of B is at most the sum of these bounds - also
O(a(log(d/a)+1)). 1

2.1.3 Tightness

Lemma 2.1.1 is tight up to constant factors. To see this, consider the n-dimensional vector x
whose 7’th entry is 1/+/i. Let A be the outer product of z with itself, that is, the matrix whose
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(i,7)'thentryis 1//7 - j. Clearly z is an eigenvector of A corresponding to the eigenvalue ||z||? =
©(log(n)). Also, the sum of each row in A is O(y/n). To prove that the lemma is essentially tight,
we need to show that mamu,ve{o,l}nW’m is constant. Indeed, fix k,1 € [n]. Letu,v € {0,1}"
be such that ||u|| = k and ||v|| = [. As the entries of A are decreasing along the rows and the
columns, uAv is maximized for such vectors when their support is the first £ and [ coordinates.
For these optimal vectors, uAv = ©(vk - 1). Thus,

uAv
woetonm—ZY — 9(1).
a0l Ty ~ O

This example was independently discovered by Bollobas and Nikiforov [14] who prove a result in
the same vein as Lemma 2.1.1 (they do not assume a bound on the /; norm of the rows, and hence
get a bound of O(«logn), rather than O(«(log(d/a) + 1))).

In the applications of the lemma in this work, the matrices will actually have all row sums equal.
Thus, one might hope that under this stronger assumption, a better bound on the spectral radius
might be given. Although this hope is not proscribed by the example above, it would nonetheless
be in vain. This is shown by the more elaborate example, given in section 2.2.3.

2.1.4 Finding the proof: L P-duality

As the reader might have guessed, the proof for Lemma 2.1.1 was discovered by formulating the
problem as a linear program. Define A; ; = |z*Az7|. Our assumptions translate to:

V1 S ) Sj S k: |Ai7]“ S Q.\/5;5,

J

We want to deduce an upper bound on |zAz|. In other words, we are asking, under these con-
straints, how big

|z Az| B szzl A ;270D
l=[> = 2227%s

can be.
The dual program is to minimize:
(07 Zigj biyj, /5iSj + de C;S;
227 %si

under the constraints:
vl S i <j S k: bi,j +c + Cj Z 2_(i+j)+1
Vi<i<k, biji+c>2""
VI<i<j<k, by>0
Vi<i<k, ¢=>0
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The following choice of b’s and ¢’s satisfies the constraints, and gives the desired bound. These
indeed appear in the proof above:

Vi<i<j<kj<i+ry, b =2t
Vi<i<j<kj>i+7vy, b,;=0
V1 <i<k, by =27%
V1<i<k, ¢; = 278t

2.2 A converse to the Expander Mixing Lemma

A useful property of expander graphs is the so-called Expander Mixing Lemma. Roughly, this
lemma states that the number of edges between two subsets of vertices in an expander graph is
what is expected in a random graph, up to an additive error that depends on the second eigenvalue.
In this section we conclude from Lemma 2.1.1 a converse to it.

2.2.1 Introduction and defi nitions

An d-regular graph is called a A-expander, if all its eigenvalues but the first are in [—\, A]. Such
graphs are interesting when d is fixed, A < d, and the number of vertices in the graph tends to
infinity. Applications of such graphs in computer science and discrete mathematics are many, see
for example [48] for a survey.

A d-regular graph on n vertices is an (n, d, c¢)-edge expander if every set of vertices, W, of size at
most n/2, has at least ¢|I¥| edges emanating from it.

The two notions are closely related. An (n, d, \)-expander is also an (n, d, %)-edge expander
(cf. [9]). Conversely, an (n,d, c)-edge expander is also an (n,d, d — 2§—Z)-expander1. Though the
two notions of expansion are qualitatively equivalent, they are far from being quantitatively the
same. While algebraic expansion yields good bounds on edge expansion, the reverse implications
are very weak. It is also known that this is not just a failure of the proofs - indeed this estimate
is nearly tight [2]. Is there, we ask, another combinatorial property that is equivalent to spectral
gaps? We next answer this question.

A third notion of expansion is what we call here, following the terminology of Thomason in [66],
jumbleness.

Definition 2.2.1. For two subsets of vertices, S and T, denote

e(S,T)={(i,j):i€ S, j€T, (i,j) € E}|.

1A related result, showing that vertex expansion implies spectral gap appearsin [3]. The implication from edge
expansionis easier, and the proof we are aware of is also dueto Noga Alon.
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A d-regular graph G on n vertices is (n, d, a)-jumbled, if for every two subsets of vertices, S and
T,

e(S,T) = d|S||T|/n| < av/[S||T.

An (n,d, \)-expander is (n,d, \)-jumbled. This is a fairly easy observation, known as the Ex-
pander Mixing Lemma. To see this Let G be an (n, d, \)-expander, and let A be its adjacency
matrix. Consider the matrix B = A — gJ, where J is the all ones matrix. Observe that J is a
rank 1 matrix, and that the non-zero eigenvalue is d, which corresponds to the all ones eigenvector.
Hence, the eigenvectors of B are the same as those of A, and they correspond to the same eigen-
values, with the exception of the all ones vector, which corresponds to 0. In other words, as A is
an (n,d, \)-expander, p(B) = \.

By the Rayleigh-Ritz characterization of the spectral radius, we have that

)= |z By z(A =20y e(S,T) = d|S||T|/n]
= max ———— > — " 77 — max )
zyeR” [|z]l2||y]l2 — wyefony  ||z]|2||y]l2 S,TCln] VISIIT|

An (n,d, \)-jumbled graph is an (n, d, 452)-edge expander. Again, this follows easily from the

definition. Consider a subset of vertices S, |S| < %. As the graph is (n, d, A)-jumbled, we have

that |e(S, S) — d|S|*/n| < A[S|. Hence, <505) > 424,

As mentioned above, edge expansion implies spectral expansion, but in a weak way. As this
brings us a full circle between these three notions, we can also deduce that edge expansion implies
jumbleness, and that jumbleness implies spectral expansion. However, we are constrained by

the weakest link in this chain. Namely, the implications are that an (n, d, c)-edge expander is
(n,d,d— %)-jumbled, and that an (n, d, a)-jumbled graph is an (n, d, d — %)-expander. The

example in [2] shows that the first implication, though weak, is essentially the best we can hope
for. However, in the next subsection we show that we can do much better than the latter.

2.2.2 TheLemmaMixing Expander
The following lemma states the promised converse to the Expander Mixing Lemma:

Lemma 2.2.1. Let G be a d-regular graph on n vertices. Suppose that for any S, 7 C V (G), with
SNT =1

S||T|d
(s, 1)~ 210 < o [T

Then all but the largest eigenvalue of G are bounded, in absolute value, by O(«a(1 + log(d/«))).

Note 2.2.1. In particular, this means that for a d-regular graph G, A\(G) is a log d approximation
of the “jumbleness” parameter of the graph.
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Proof: Let A be the adjacency matrix of G. Denote B = A — gJ, where J is the all ones n x n
matrix. Clearly B is symmetric, and the sum of the absolute value of the entries in each row is
at most 2d. The first eigenvalue of A is d. The other eigenvalues of A are also eigenvalues of B.
Thus, for the corollary to follow from Lemma 2.1.1 it suffices to show that for any two vectors,
u,v € {0,1}™
luBv| = |[u—Jv — uAv| < al|u||||v]]-
n
This is exactly the hypothesis for the sets S(u) and S(v). 1

Note 2.2.2. For a bipartite d-regular graph G = (L, R; E)) on n vertices, ifforany S C R, T C L,
withSNT =0

S||T|d
(s, 1)~ 210 < o /T

Then all but the largest eigenvalue of G are bounded, in absolute value, by O(«(1 + log(d/«))).
The proof is essentially identical to the one above, taking B = A—d/nC, instead of B = A—d/n.J,
where C; ; is 0 if ¢, j are on the same side, and 2 otherwise.

2.2.3 Tightness

Lemma 2.2.1 is actually tight, up to a constant multiplicative factor:

Theorem 2.2.1. For any large enough d, and 7v/d < a < d, there exist infinitely many (d, a)-
jumbled graphs with second eigenvalue Q(a(log(d/a) + 1)).

It will be useful to extend Definition 2.2.1 to unbalanced bipartite graphs:

Definition 2.2.2. A bipartite graph G = (U,V, E) is (c, d, o)-jumbled, if the vertices in U have
degree ¢, those in V' have degree d, and for every two subsets of vertices, A C U and B C V,

le(A, B) — d|A||B|/|U[| < a/[A]|B].
We note that such bipartite graphs exit:
Lemma 2.2.2. For ¢|d and a = 2+/d, there exist (c, d, )-jumbled graphs.
Proof: Let G' = (U’, V', E') be a c-regular Ramanujan bipartite graph, such that |U’| = [V'| = n.
Let G = (U,V, E) be a bipartite graph obtained from G’ by partitioning V' into subsets of size
d/c, and merging each subset into a vertex, keeping all edges (so this is a multi-graph) .
Let ACc Uand B C V. Let A’ = A, and B’ the largest set whose merger gives B. Clearly
e(A,B) = e(A',B'), |B'| = d/c|B|. As G' is Ramanujan, by the expander mixing lemma
le(A, B') — c|A'[|B']/n| < 2¢/c|A'||B],
or:
le(A, B) — d|A||B|/|U[| < 2v/d|A||B].
|

We shall need the following inequality, that can be easily proven by induction:



2.2. A CONVERSE TO THE EXPANDER MIXING LEMMA 25

Lemma2.2.3. Fori=0,...,t let a; be numbers in [0, 2% - N], for some N > 0. Then
) a2’ <3N a:

Proof: (Theorem 2.2.1) Fix d, and vid < A < d. Sett = log(24), 7 =3, 4= & < A. Let

N be some large number and n = 7N (this will be the number of vertices). For¢,j =0, ..., t set

dij = 42% + A2 wheni,j < tori=j =t andd;; = 2% — A2/~% otherwise. Note that in

this case 42% — A20~" > 29(A29 — A27%) > 0. Set oy ; = 24/min{d, ;, d;;}.

Let |V;| be subsets of size 4°N, and G a graph on vertices V' = U!_,V; (hence, |V| = n). For

0 < i,j < tconstructa (d;;, d; ;, i ;)-jumbled graph between V; and V; (or (d;;, i;)-jumbled if

i=17).

The theorem follows from the following two lemmata.

Lemma 2.2.4. G is (d, 7A)-jumbled.

Proof: It is not hard to verify that G is indeed d regular. Take A, B C V, and denote their size by

a and b. Denote A, = ANV, B; = BNV, and their size by a; and b;. We want to show that:
le(A, B) — dab/n| < TAVab.

For simplicity we show that e(A, B) < dab/n + 7A+/ab. A similar argument bounds the number
of edges from below. From the construction, |e(A;, B;) — d; j|Ail|B;|/|V;]| < i j+/|Ail|B;|, or:

e(Ai, Bj) < dijaib; /(4 N) + aijv/aib;.
Summing up over,j =0, ...,t we get:

e(A, B) S Z di,jaibj/(4jN) + (7% Z Q5 54/ aibj
S d/n Z aibj + A/N Z aibj2’(i+j) + Z QG i/ U:ibj-

>~ azb; = ab, so it remains to bound the error term. As a;, b; € [0, N - 2%], by Lemma 2.2.3:
A/NZ aZbJQ_(H']) == A/N(Z GZQ_Z)(Z bZQ_Z)
< A/NGBNY a)(y/3N S b) = 3AVab,
s0 it remains to show that 3" ; j1/asb; < 4Av/ab. It’s enough to show that:
d . p
24/ —a;b;22max{i,j} 24/ A2li~ia;b; < 4AV ab.
Sy e, £ 2 /A27la, < 4AVaD
Indeed, as 4, j < t, and 2% < T,
d .
Z \/;CL#)j?QmaX{Z’J} < \/gz \/ aibj < A\/%
Similarly, 29 < 2t < \/7 < /A, and so:

Z \/ A2j*iaibj < AZ \/ aibj = A\/%

i
Lemma2.25. A(G) > A(t+ 1)
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Proof: Take x € R™ to be —2~% on vertices in V;, and 277 on vertices in V;, for i < ¢. It is easy to
verify that z | 1, and that ||z|[2 = N - (¢ + 1). Let M be the adjacency matrix if G. Since T is
an eigenvector of M corresponding to the largest eigenvalue, by the variational characterization of
eigenvalues, A(G) > ﬁg Hence, to prove the lemma it suffices to show that Mz > AN (¢+1)2.
Indeed:

t—1
Mz = Zd1942N2 (3+7) 4Zdzt41N2 (i+t)
,J=0 =0
= —NZ2’+J+AN21—4 NZ2Z”+4ANZ1
1,5=0 i,j=0

= QN(22<t+1> —4-22"Y + AN((t+1)% +4t) > AN(t + 1)
-



Chapter 3

Constructing expander graphs by 2-lifts

3.1 Introduction

An d-regular graph is called a A\-expander, if all its eigenvalues but the first are in [—\, A]. Such
graphs are interesting when d is fixed, A < d, and the number of vertices in the graph tends to
infinity. Applications of such graphs in computer science and discrete mathematics are many, see
for example [48] for a survey.

It is known that random d-regular graphs are good expanders ([17], [32], [29]), yet many applica-
tions require an explicit construction. Some known construction appear in [51], [35], [8], [49], [6],
[52], [1] and [59]). The Alon-Boppana bound says that A > 2+/d — 1 —o(1) (cf. [57]). The graphs
of [49] and [52] satisfy A < 2+/d — 1, for infinitely many values of d, and are constructed very
efficiently. However, the analysis of the eigenvalues in these construction relies on deep mathe-
matical results. Thus, it is interesting to look for construction whose analysis is elementary.

The first major step in this direction is a construction based on iterative use of the zig-zag product
[59]. This construction is simple to analyze, and is very explicit, yet the eigenvalue bound falls
somewhat short of what might be hoped for. The graphs constructed with the zig-zag product have
second eigenvalue O(d3/*), which can be improved, with some additional effort to O(d?/?). Here
we introduce an iterative construction based on 2-lifts of graphs, which is close to being optimal

and gives A\ = O(y/dlog® d).

A graph G is called a k-lift of a “base graph” G if there isa k : 1 coveringmap 7 : V(G) — V(G).
Namely, if y1,...,ys € G are the neighbors of z € G, then every 2’ € 7—!(x) has exactly one
vertex in each of the subsets 71 (y;). See [10] for a general introduction to graph lifts.

The study of lifts of graphs has focused so far mainly on random lifts [10, 11, 12, 47, 31]. In
particular, Amit and Linial show in [11] that w.h.p. a random k-lift has a strictly positive edge
expansion. It is not hard to see that the eigenvalues of the base graph are also eigenvalues of the
lifted graph. These are called by Joel Friedman the “old” eigenvalues of the lifted graph. In [31]
he shows that w.h.p. a random k-lift of a d-regular graph on n vertices is “weakly Ramanujan”.
Namely, that all eigenvalues but, perhaps, those of the base graph, are, in absolute value, O(d®/*).
In both cases the probability tends to 1 as & tends to infinity.

Here we study 2-lifts of graphs. We conjecture that every d regular graph has a 2-lift with all new

27
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eigenvalues at most 21/d — 1 in absolute value. It is not hard to show (e.g., using the Alon-Boppana
bound [57]) that if this conjecture is true, it is tight. We prove (in Theorem 3.3.1) a slightly weaker
result; every graph of maximal degree d has a 2-lift with all new eigenvalues O(+/dlog® d) in
absolute value. Under some natural assumptions on the base graph, such a 2-lift can be found effi-
ciently. This leads to a polynomial time algorithm for constructing families of d-regular expander

graphs, with second eigenvalue O(+/dlog® d).

3.2 The construction scheme

3.2.1 Déefi nitions

Let G = (V, E) be a graph on n vertices, and let A be its adjacency matrix. Let A\; > Xy >
... > A, be the eigenvalues of A. We denote by A\(G) = max;___, |A\i|. We say that G is an
(n,d, u) — expander if G is d-regular, and A\(G) < p. If M(G) < 24/d—1 we say that G is
Ramanujan.

A signing of the edges of G is a function s : E(G) — {—1, 1}. The signed adjacency matrix of a
graph G with a signing s has rows and columns indexed by the vertices of G. The (z,y) entry is
s(z,y) if (z,y) € E and 0 otherwise.

A 2-lift of @, associated with a signing s, is a graph G defined as follows. Associated with every
vertex z € V are two vertices, =, and xy, called the fiber of z. If (z,y) € E, and s(z,y) = 1 then
the corresponding edges in G are (zo0,%0) and (zq,y1). If s(z,y) = —1, then the corresponding
edges in G are (zo,:) and (z1, o). The graph G is called the base graph, and G a 2-lift of G.
By the spectral radius of a signing we refer to the spectral radius of the corresponding signed
adjacency matrix. When the spectral radius of a signing of a d-regular graph is O(\/&) we say that
the signing (or the lift) is Quasi-Ramanujan.

Forv,u € {-1,0,1}", denote S(u) = supp(u), and S(u,v) = supp(u) U supp(v).
It will be convenient to assume throughout that V(G) = {1, ..., n}.

3.2.2 Thespectrum of 2-lifts

The eigenvalues of a 2-lift of G can be easily characterized in terms of the adjacency matrix and
the signed adjacency matrix:

Lemma 3.2.1. Let A be the adjacency matrix of a graph G, and A, the signed adjacency matrix
associated with a 2-lift G. Then every eigenvalue of A and every eigenvalue of A; are eigenvalues
of G. Furthermore, the multiplicity of each eigenvalue of G is the sum of its multiplicities in A and
As.

Proof: It is not hard to see that the adjacency matrix of G is:

i [ A A
=(% 7))
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Where A; is the adjacency matrix of (V, s7!(1)) and A, the adjacency matrix of (V, s~*(—1)). (So
A=A+ Ay, A, = A; — A,). Let v be an eigenvector of A with eigenvalue . It is easy to check
that 9 = (v v) is an eigenvector of A with eigenvalue /.

Similarly, if u is an eigenvector of A, with eigenvalue )\, then & = (u —u) is an eigenvector of A
with eigenvalue \.

As the ©’s and @’s are perpendicular and 2n in number, they are all the eigenvectors of A. i

We follow Friedman’s ([31]) nomenclature, and call the eigenvalues of A the old eigenvalues of G,
and those of A, the new ones.

3.2.3 Theiterative construction

Consider the following scheme for constructing (n, d, A)-expanders. Start with Gy = K441, the
complete graph on d + 1 vertices ! . Its eigenvalues are d, with multiplicity 1, and —1, with
multiplicity d. We want to define G; as a 2-lift of G;_1, such that all new eigenvalues are in the
range [— A\, A]. Assuming such a 2-lifts always exist, the G; constitute an infinite family of (n, d, )-
expanders.

It is therefore natural to look for the smallest A = A(d) such that every graph of degree at most
d has a 2-lift, with new eigenvalues in the range [—A, A]. In other words, a signing with spectral
radius < \.

We note that A(d) > 2v/d — 1 follows from the Alon-Boppana bound. More concretely:

Proposition 3.2.1. Let G be a d-regular graph which contains a vertex that does not belong to any
cycle of bounded length, then no signing of G has spectral radius below 2v/d — 1 — o(1).

To see this, note first that all signing of a tree have the same spectral radius. This follows e.g.,
from the easy fact that any 2-lift of a tree is a union of two disjoint trees, isomorphic to the base
graph. The assumption implies that G contains an induced subgraph that is a full d-ary tree 7" of
unbounded radius. The spectral radius of 7" is 2v/d — 1 — o(1). The conclusion follows now from
the interlacing principle of eigenvalues.

We conjecture that this lower bound is tight:

Conjecture 3.2.1. Every d-regular graph has a signing with spectral radius at most 2v/d — 1.

We have numerically tested this conjecture quite extensively. A close upper bound is proved in
section 3.3.1.

3.24 Examples

We give a few examples of specific graphs for which we know how to construct a 2-lift where all
new eigenvalues are small.

1We could start with any small d-regular graph with alarge spectral gap. Such graphs are easy to fi nd.
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Figure 3.1: The Railway Graph. Edges where the signing is —1 are bold.

1. The complete graph on d + 1 vertices, and the complete bipartite graph with d vertices

on each side:

We show a good signing of K, 1, the complete graph on d + 1 vertices. Suppose there exists
an Hadamard matrix, H, of size d + 1. Note that H — I is a signed adjacency matrix for
Kgq.1. Itiswell known that its spectral radius is v/d + 1. Hence, the spectral radius of H — 1,
isat most vd + 1+ 1.

For a general d, it is known that there exists an Hadamard matrix H of size n, withd < n <
2d. Take H as the submatrix defined by the first d + 1 rows and columns. By the Interlacing
Theorem its spectral radius is at most v/2d, and the same argument as above gives a 2-lift of
K41 with all new eigenvalues at most v/2d + 1 in absolute value.

Note that a similar argument works for a complete bipartite graph with the same number of
vertices on each side.

. The grid:

Let G be the Cayley graph of the group Z,,, x Zs,, with generators (1, 0), (—1,0), (0,1) and
(0,—1). Let s be —1 on edges corresponding to (0, 1) (or (0, —1)), and connecting vertices
where the first coordinate is even. Let s be 1 elsewhere.

Consider A2, and think of it as counting length 2 paths. Clearly it has 4 on the diagonal. Now
consider two vertices, x and y, at distance 2 in the graph. If z and y share the same value
in some coordinate, then the corresponding entry in A2 is either 1 or —1, altogether 4 such
entries in each row. Otherwise, there are 2 length 2 paths that connect = and y - either moving
first in the first coordinate, and then in the second, or vice versa. One of these paths has both
edges signed as 1, while the other has the horizontal edge marked as 1 and the vertical edge
marked as —1. Thus, the (z,y) entry in A% is 0. Clearly the spectral radius of A2 is at most
that of | A2|, the matrix obtained from A2 by taking the absolute value of each entry. This, in
turn, is 8-regular. Hence the spectral radius of A, is at most v/8 < 2v/3 = v/12.

. The railway graph:

Let R be the 3-regular graph defined as follows. V(R) = {0,...,2k — 1} x {0,1}. For
i € [2k],7 € {0,1}, the neighbors of (i, j) € Rare ((« — 1) mod 2%, j), ((: + 1) mod 2k, j)
and (i,1 — j). Define s, a signing of R, to be —1 on the edges ((2:,0), (27,1)), for i €
{0,...,k — 1}, and 1 elsewhere (see Figure 3.1). Let A, be the signed adjacency matrix. It
is easy to see that A2 is a matrix with 3 on the diagonal, and two 1’s in each row and column.
Thus, its spectral radius is 5, and that of A, is v/5 < 2v/2.
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4. The r-dimensional railway:
Let R" be the Cayley graph of the group Z,,, x ¥, with the generator set of all elements which
are either 1 or —1 in one coordinate, and 0 in r coordinates (so it is (r + 2)-regular). Think
of R as being constructed by starting from the railway graph, and iteratively multiplying the
vertex set by z,. We define a signing s of the graph by induction on r. For = 1 use the
signing depicted in Figure 3.1. We shall define a signing s, such that in A2 the only non-zero

entries are r + 2 on the diagonal, and £1 in entries corresponding to vertices (xg, 1, . . ., Z;)
and (yo, ¥1, - - -, ¥r) Such that |zg — yo| = 2, and for i > 0, z; = y;. Clearly this holds for
r=1.

Think of the (r + 1)-dimensional railway as two copies of the r-dimensional railway, z,, x
zh x {0} and Z,, x 7§ x {1}. Let s’ be the signing for R". Define a signing s of R"*! to
be the same as s’ on the edges spanned by z,, x z5 x {0}, and —s’ on the edges spanned by
Z., x 74 x {1}. Define s to be 1 on the remaining edges (those crossing from z,, x 7% x {0}
to Z,, x 74 x {1}).

Consider two vertices, z and v, at distance 2 from each other in R"+L. If both are in z,, x
z5 x {0}, or both are in z,, x z5 x {1}, then the claim holds by the induction hypothesis.
Otherwise, there are two paths from z to y, one that first crosses, then takes one step within
the copy of R", and one then first takes one step within the copy of R", and then crosses. The
crossing edges have the same sign (1). The edges within the two copies of R" are copies of
the same edge, hence, by the construction of s, they have opposite signs. Summing the signs
of these two paths, we get that the (x, y) entry in A% is 0.

Using the same argument as in example 2, the spectral radius of A? is at most r + 4, and thus
that of A, at most /7 +4 < 2y/r + 1.

3.3 Quasi-ramanujan 2-lifts

3.3.1 Quasi-ramanujan 2-liftsfor every graph

In this subsection we prove a weak version of Conjecture 3.2.1:

Theorem 3.3.1. Every graph of maximal degree d has a signing with spectral radius O(+/d - log® d).

By the relation between discrepancy and eigenvalues shown in Lemma 2.1.1, it is enough to show
that with positive probability the discrepancy of randomly signed graph is small. Hence, the theo-
rem will follow from the following lemma:

Lemma 3.3.1. For every graph of maximal degree d, there exists a signing s such that for all
v,u € {—1,0,1}™ the following holds:

tA
[v S“|‘ < 10+/dlogd, (3.1)

[o][[lul

where A; is the signed adjacency matrix.
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Proof: First note that it’s enough to prove this for «’s and v’s such that the set S(u,v) spans a
connected subgraph. Indeed, assume that the claim holds for all connected subgraphs and suppose
that S(u, v) is not connected. Split u and v according to the connected components of S(u, v), and
apply the claim to each component separately. Summing these up and using the Cauchy-Schwartz
inequality, we conclude that the claim for « and v as well. So henceforth we assume that S(u, v)
iS a connected.

Consider some u, v € {—1,0, 1}". Suppose we choose the sign of each edge uniformly at random.
Denote the resulting signed adjacency matrix by A;, and by E, , the “bad” event that VA

[o[ ||

10y/dlogd. Assume w.l.o.g. that |S(u)| > $|S(u,v)|. By the Chernoff inequality (v*A,u is the
sum of independent variables, attaining values of either +1 or +2):

PrE,] < Zexp(_100dlogd|S(uz|\S(U)\

8le(5(u), S())]
_100d1og d|S(u)[|S(v)]
8415(v)

< 2exp(

)

< d(-1015v))

We want to use the Lovasz Local Lemma [26], with the following dependency graph on the E,, ,:
There is an edge between E, , and E, ,» iff S(u,v) N S(u',v") # (. Denote k = |S(u,v)|. How
many neighbors, E,, ., does E,, , have, with |S(u',v")| = [?

Since we are interested only in connected subsets, this is clearly bounded by the number of rooted
directed subtrees on [ vertices, with a root in S(u, v). It is known (cf. [45]) that there are at most
k(d(lljll)) ~ kd"=' such trees (a similar argument appears in [33]. The bound on the number of
trees is essentially tight by [4]).

In order to apply the Local Lemma, we need to define for such » and v numbers 0 < X,,, < 1

such that:

X 11 (1= Xy ) > d 050l (3.2)

I

(v W'):Eyy~E

w! vl

Observe that for S C [n] there are at most 241! distinct pairs v, u € {—1,0,1}" with S(u,v) = S.
For all u, v set X,,, = d 3, where k = |S(u, v)|. Then in (3.2) we get:

— _ 154l
Yoo [ O Xew)=a™ [0 - a?) " ~
=1

(' w"):Eyw~E

w! vl

d_3kexp(—k Z d—3ldl24l) > d—3ke—2k > 410k

=1

asrequired. 1
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3.3.2 An explicit construction of quasi-ramanujan graphs

For the purpose of constructing expanders, it is enough to prove a weaker version of Theorem
3.3.1. Roughly, that every expander graph has a 2-lift with small spectral radius. In this sub-
section we show that when the base graph is a good expander (in the sense of the definition below),
then w.h.p. a random 2-lift has a small spectral radius. We then derandomize the construction to
get a deterministic polynomial time algorithm for constructing arbitrarily large expander graphs.

Definition 3.3.1. We say that a graph G on n vertices is (3, t)-sparse if for every u,v € {0,1}",
with |S(u,v)| <t,
uAv < Bull[|v]].

Lemma 3.3.2. Let A be the adjacency matrix of a d-regular (y(d), logn)-sparse G graph on n
vertices, where (d) = 10y/dlogd. Then for a random signing of G (where the sign of each edge
is chosen uniformly at random) the following holds w.h.p.:

L Vu,v € {~1,0,1}": [udo] < y(d)]]u]]||o]]

N

2. Gis (y(d),1 + log n)-sparse.
A, denotes the random signed adjacency matrix, and & the corresponding 2-lift.

Proof: Following the same arguments and notations as in the proof of Lemma 3.3.1, we have that
there are at most n-d* connected subsets of size k. For a given pair u, v such that |S(u, v)| = k, the
probability that requirement (1) is violated is at most d %% Since for each S there are at most 245!
pairs u, v such that S(u, v) = S, by the union bound, w.h.p. no pair u, v such that |S(u, v)| > logn
violates (1). If |S(u,v)| < logn then by (2) there are simply not enough edges between S(u) and
S(v) for (1) to be violated.

Next, we show that w.h.p. (2) holds as well. Let s be a signing, and define 4, A, and A as
in Lemma 3.2.1. Given u = (u; ug),v = (v; ve) € {0,1}" x {0,1}", we wish to prove that
uAv < y(d)||ul|||v]|. As in the proof of Lemma 3.3.1 we may assume that S(u, v) is connected -
in fact, that it is connected via the edges between S(u) and S(v). Hence, we may assume that the
ratio of the sizes of these subsets is at most d. Define z = u; V ug, y = v1 V v9, ' = uq A ug, and
y' = v1 A vq (the characteristic vectors of S(uy, ug), S(v1,v2), S(u1) N S(ug) and S(vy) N S(vy)).
It is not hard to verify that:

WAV = up A1v; + Uy Agve + Us Agvy + usA1vy < TAY + ' Ay (3.3)

If|S(z,y)| < logn,thenclearly |S(z', y")| < logn and from the assumptionthat G is (y(d), logn)-
sparse

zAy + 7' Ay' < V(A (VIS@)ISW)] + VISE)IS (Y

Observe that |S(u)| = |S(z)| + |S(z")| and [S(v)| = [S(y)| + |S(y)|, s0 in particular uAv <
v(d)+/|S(w)||S(v)|, and requirement (2) holds.

So assume |S(z,y)| = |S(u,v)| = logn + 1. It is not hard to see that this entails S(uy,v1) N
S(ug,v2) = 0. In other words, S(u,v) contains at most one vertex from each fiber. Hence,
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2’ =y =0and [S(u)| = [S(z)], |S(v)| = |S(y)]- .
Denote S = S(z,y), and assume w.l.0.g. that |S(y)| > 3logn. From (3.3) udv < zAy, S0 it’s
enough to show that Ay < ~(d)+/|S(x)||S(y)|. If this is not the case, we can bound the ratio

between |S(x)| and |S(y)|: Since the graph is of maximal degree d we have Ay < d|S(X)].

|S()] v(d)z _ 100logd
Hence, S| > = =5

Observe that the edges between S(u) and S(v) in G originate from edges between S(z) and S(y)
in G in the following way - for each edge between S(z) and S(y) in G there is, with probability Z,
an edge between S(u) and S(v) in G.

Next we bound zAy. Averaging over all S\{i}, for i € S(y) we have that:

(1S()| - 2)zdy < |SH) V() V(S| - 1)IS()].

Hence the expectation of uAv is at most zcy(d)||ul|||v]|, where

_ VSWIISEI-1)
\<w—2 =

(assuming 7 is not very small). By the Chernoff bound, the probability that w Av > ~v(d)||u||||v]|
Is at most:

2exp(—woy(d)| ] [o]]) <

2.2
exp(—0.2v(d) (logn + 1\)/((;0\/10@)

exp(—20logd(logn + 1)),

)=

Since EE §|| > 100084 ‘and [S(v)| > Llogn.

There are at most d'°&™+1418n+1 pairs 4, v with S(u, v) connected and of size logn + 1, so by the
union bound, w.h.p., requirement (2) holds. 1

Corollary 3.3.1. Let A be the adjacency matrix of a d-regular (y(d), logn)-sparse G graph on n
vertices, where y(d) = 10+/dlogd. Then there is a deterministic polynomial time algorithm for
finding a signing s of G such that the following hold:

1. The spectral radius of A, is O(v/dlog’ d).

N

2. Gis (y(d),1 + logn)-sparse,

where A, is the signed adjacency matrix, and G is the corresponding 2-lift.
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Proof: Consider a random signing s. For each closed path p in G of length I = 2[logn] define
a random variable Y, equal to the product of the signs of its edges. From lemmas 3.3.2 and
2.1.1, the expected value of the trace of A., which is the expected value of the sum of these
variables, is O(+/dlog® d)* (since [ is even the sum is always positive). For each u,v € {0,1}",
with |S(u,v)| = logn + 1, and S (u, v) connected, define Z,,,, to be d' if uAv > ~v(d)||ul|||v||, and
0 otherwise. In the proof of Lemma 3.3.2 we’ve seen that the probability that Z,, , is not 0 is at
most d~'0%°¢" thus the expected value of Z,, , is at most d=8'°¢". Let Z be the sum of the Z, ,’s.
Recall that there are at most n(4d)'°8™+! pairs (u,v) such that |S(u,v)| = logn + 1, and S(u, v)
connected. Hence, the expected value of Z is less than =687,

Let X = Y + Z. Note that the expected value of X is approximately that of Y, O(1/dlog® d)".
The expectation of Y, and Z,,, can be easily computed even when the sign of some of the edges is
fixed, and that of the other is chosen at random. As there is only a polynomial number of variables,
using the method of conditional probabilities (cf. [9]) one can find a signing s such that the value
of X is at most its expectation. For this value of X, tr(A') = Y = O(v/dlog’d)}, and Z = 0
since if Z # 0 then Z > d'. Clearly, the spectral radius of A, is ng/dlog3 d). In the proof of

Lemma 3.3.2 we’ve seen that if G is (y(d),logn)-sparse then so is G, for any signing of G. For
our choice of s all Z,,, = 0, hence G is actually (y(d),logn + 1)-sparse. I

An alternative method for derandomization, using an almost £-wise independent sample space, is
given in the appendix.

Recall the construction from the beginning of this section. Start with a d-regular graph G, which
is an (no, d, 1)-expander, for 4 = 10y/dlogd and ny > dlog®ng. From the Expander Mixing
Lemma (cf. [9]), Go is (u, logng)-sparse. lteratively chose G, to be a 2-lift of G; according to
Corollary 3.3.1, fori =1, ...,log(n/ng). Clearly this is a polynomial time algorithm that yields a

(n, d,O(+/dlog® d))-expander graph.

3.3.3 Random 2-lifts

Theorem 3.3.1 states that for every graph there exists a signing such that the spectral radius of the
signed matrix is small. The proof shows that for a random signing, this happens with positive, yet
exponentially small, probability. The following example shows the limitations of this argument
and in particular, that there exist graphs for which a random signing almost surely fails to give a
small spectral radius.

Consider a graph composed of n/(d + 1) disjoint copies of K4, (the complete graph on d + 1
vertices). If all edges in one of the components are equally signed, then A, has spectral radius d.
For d fixed and n large, this event will occur with high probability. Note that connectivity is not
the issue here - it is easy to modify this example and get a connected graph for which, w.h.p., the
spectral radius of A; is Q(d).

However, for a random d-regular graph, it is true that a random 2-lift will, w.h.p., yield a signed
matrix with small spectral radius. This follows from the fact that, w.h.p., a random d-regular graph
is an (n, d, O(V/d))-expander ([32, 30, 29]). In particular, by the Expander Mixing Lemma, it is
(O(v/d),log n)-sparse. By Lemma 3.3.2, w.h.p., a random 2-lift yields a signed matrix with small
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spectral radius.

3.4 A stronger notion of explicitness

In this section we suggest an alternative derandomization scheme of section 3.3.2. We use the
construction of Naor and Naor [56] of a small, almost k-wise independent sample space. This
derandomization scheme leads to a construction which, in a sense, is more explicit than that in
section 3.3.2.

3.4.1 Derandomization using an almost k-wise independent sample space

Recall that in the proof of Corollary 3.3.1 we defined two types of random variables: Let [ =
2[logn]. For each closed path p of length [, Y}, is the product of the signs of the edges of p.
For each u,v € {0,1}", with [S(u,v)| = logn + 1, and S(u,v) connected, let Z,, be d' if
uAv > ~(d)||u||||v||, and 0 otherwise. Define X to be the sum of all these random variables.

For brevity it will be convenient to make the following ad-hoc definitions:

Definition 3.4.1. A signing s of a d-regular graph G is (n, d)-good, if the spectral radius of A; is
O(v/dlog®d) and G is (7(d), 1 + log n)-sparse.

A d-regular graph G is an (n, d)-good expander, if it’s an (n, d, O(1/dlog® d)-expander, and is
(v(d), 1 4 logn)-sparse.

The proof showed that finding a good signing is equivalent to finding a signing such that the value
of X is at most its expected value. We now show that this conclusion is also true when rather
than choosing the sign of each edge uniformly and independently, we choose the signing from an
(¢, k)-wise independent sample space, with k¥ = dlogn and e = d—241°8™,

Definition 3.4.2. ([56]) Let 2,, be a sample space of m-bit strings, and let S = s;...s,, be
chosen uniformly at random from €2,,,. We say that €2, is an (e, k)-wise independent sample space
if for any &' < k positions i; < iy... < iy,

Z | Prlsy, ...s:, = a] — 2% <e.

ac{—1,1}¥

Naor and Naor [56] suggest an explicit construction of such sample spaces. When & = O(logm)
and 1/e = poly(m), the size of the sample space is polynomial in m (simpler constructions are
also given in [7]).

We shall immediately see that the expected value of X does not change significantly when the
signing is chosen from such a sample space. Hence, an alternative way of efficiently finding a
good signing is to go over the entire sample space. For at least one point in it, the value of X is at
most its expected value, and thus the signing is good.
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Lemma3.4.1. Letm = dn/2, k = dlogn and e = d—241°¢™, Let ), be an (e, k)-wise independent
sample space. Let X be as in the proof of Corollary 3.3.1. Let U,,, be the uniform distribution on
m bits. Then

[Eq,, [X] — Eg,, [X]] = o(1).

Proof: Recall that X = > V), + >, , Z,,, Where Y, and Z,, are as above, the first sum is
over all closed paths of length [ = 2[logn], and the second sum is over all u,v € {0,1}", with
|S(u,v)| =logn+ 1and S(u,v) connected. Hence

[Ea,[X] — Eu, [X]| < ) [Ea, [Y] — Ev, (Y]l + Y [Ban[Zun] — Ev,, [Zua]l-

u,v

Let p be a path of length [, and denote the edges that appear in it an odd number of times by
i1,...1y, for some I' < I. Lets;,...s;, be the signs of these edges. Then the value of Y}, is

[1%_, si,, and (for every distribution)

ll
E[Y,] = Z Prisi,,...s, = o] - Haj.
j=1

ac{-1,1}¥

Thus,

[Eq,, [Yp] — Ev,, [Y]] =

ll
Y (e (Prasi, - si, = al = Pry,[si,,...8, = o])| <

ac{-1,1}¥" j=1

| Z (Per[Sil,...Sil, :O!]—z_l')| < €.

ac{-1,1}

As there are less than d' closed paths p of length I, 3~ [Eq,,[Y,] — By, [Y,]| < ed' = o(1). A
similar argument shows that | 3 °, | [Eq,,[Zu.0] — Eu,, [Zu]| = o(1) as well. 1

In fact, it follows that w.h.p. (say, 1 — n1_2 for an appropriate choice of €), choosing an element
uniformly at random from §2,,, leads to a good signing.

3.4.2 A probabilistic strongly explicit construction

The constructions of section 3.3.2 and of the previous subsection are explicit in the sense that given
n and d they suggest a polynomial (in n) time algorithm for constructing an (n, d)-good expander.
However, in some applications a stronger notion of explicitness is required. Namely, an algorithm
that given n, d and 7, j € [n], decides in time polylog(n) whether i and j are adjacent. We do not
know how to achieve such explicitness using the 2-lifts schema, but we can do so probabilistically.
Consider the following:
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Definition 3.4.3. Let f,, : {0,1} x [n] x [n] = {0,1}, witht = O(logn). Givenr € {0,1}, f,
defines a graph G, (r), on n vertices, where  and j are adjacent iff f,,(r, 4, j) = 1. We say that f,
is a d-probabilistic strongly explicit description of an (n, d)-good expander graph, if given n, f,
can be computed in time polylog(n), and, with probability at least 1 — ¢ (over a uniform choice of
1), Gy, (r) is an (n, d)-good expander graph.

We show that this notion of explicitness can be achieved by our construction. It will be convenient
to give a similar definition for a signing of a graph, and for a composition of such functions:

Definition 3.4.4. Let h,, : {0,1}' x[n]x[n] — {—1,1}, witht = O(logn). Givenr € {0,1}*, and
a graph G on n vertices, h,, defines a signing s, of G by s, (r)(i,j) = h,(r,i,7). We say that
hn is a §-probabilistic strongly explicit description of an (n, d)-good signing, if given n, h,, can be
computed in time polylog(n), and, for any (log n, y(d))-sparse d-regular graph G on n vertices,
with probability at least 1 — § (over a uniform choice of r), h,, defines an (n, d)-good signing.

Definition 3.4.5. Let f, : {0,1}" x [n] x [n] — {0,1}, and h,, : {0,1}"* x [n] x [n] — {-1,1}
be as above. Their composition, fo, : {0,1}" x [2n] x [2n] — {0, 1}, with ¢ = max{t,t,} is as
follows. For r € {0, 1}, let r; be the first ¢; bits of r, and 75 the first ¢, bits in 7. fy, is such that
the graph G, () is the 2-lift of G, (1) described by the signing sy, (r2).

The following lemma is easy, and we omit the proof:

Lemma 3.4.2. Let f, be a d;-probabilistic strongly explicit description of an (n, d)-good expander,
and h,, a d,-probabilistic strongly explicit description of an (n, d)-good signing. Then their com-
position is a (&; + d2)-probabilistic strongly explicit description of an (2n, d)-good expander.

Think of an (e, k)-wise independent space €2, as a function w : {0,1}* — {—1,1}"™, where
|| = 2% It follows from the work of Naor and Naor ([56]), that not only can w be computed
efficiently, but that given » € {0,1}*, p € [m] w(r), (the p’th coordinate of w(r)) can be computed
efficiently (i.e. in time polylog(m)). Take m = (%), and think of the elements of {—1, 1}™ as being

indexed by unordered pairs (i, j) € ([g]). Define hy,(r,i,j) = w(r); . It follows from the above
discussion than A, is a #-probabilistic strongly explicit description of an (n, d)-good signing, for
k and e as above.

We now describe how to construct a 6-probabilistic strongly explicit description of an (N, d)-good
expander graph. Let G’ be an (n, d)-good expander, with n > 1. Fori = 0,...,1 = log(N/n),
define n; = n- 2" and m; = (). Define k; = dlogn,;. Letw; : {0,1}% — {-1,1}™ be
a description of an (¢;, k;)-wise independent space of bit strings of length m;, where ¢; is such
that an element chosen uniformly at random from this space yields an (n;, d)-good signing with

probability at least 1 — .

3

The functions h,, (r,p, q) = wi(r)p,, are —s-probabilistic strongly explicit descriptions of (n;, d)-
good signings. Let f,, be a description of G. For simplicity, assume that adjacency in G can be
decided in time polylog(n). Thus, f, is, trivially, a 0-probabilistic strongly explicit description of
an (n, d)-good expander. Define f,, as the composition of f,, , and h,, ,. It follows from this
construction and Lemma 3.4.2 that:

Lemma 3.4.3. f,, isan %-probabilistic strongly explicit description of an (IV, d)-good expander
graph.
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3.4.3 Algorithmic aspect

Lemma 2.1.1 is algorithmic, in the sense that given a matrix with a large eigenvalue, we can
efficiently construct, from its eigenvector, a pair u,v € {0,1}" such that S(u) N S(v) = 0, and
luAv| > «allul|||v|| (There is a small caveat - in the proof we used a probabilistic argument for
rounding the coordinates. This can be easily derandomized using the conditional probabilities
method). Taking into consideration Note 2.2.1, given a d-regular graph G where \(G) is large, one
can efficiently find disjoint subsets S and 7', such that e(S, T') — £|S||T| > ¢- AN(G)/log d+/|S||T]
(for some constant ¢). We speculate that this might be useful in designing graph partitioning
algorithms.

In Lemma 3.3.1 we showed the with positive probability a random signing has a small spectral
radius. It is interesting to find a sample space where this happens with high probability. We
conjecture that the following algorithm works: Choose a signing at random. If some eigenvalue of
the signed matrix is big, use Lemma 2.1.1 to find a pair u, v € {0, 1}" such that |uAv| > «||ul|||v||.
Choose a signing at random for the edges between S(u) and S(v). Repeat until all eigenvalues are
small.

3.5 Group Lifts

The stepping-stone in the construction of expander graphs from 2-lifts was the simple characteriza-
tion of the new eigenvalues of. Here we generalize this result, and characterize the new eigenvalues
of general group-lifts.

Let G = (V, E) be a graph on n vertices, and (T', +) a finite group of size » (and 0 ¢ T). A
' — signing of G is function s : V- x V' — T" U {0} such that s(z,y) = 0iff (z,y) ¢ E, and for
(z,y) € E, s(x,y) = —s(x,y). The I'-signed adjacency matrix of a graph G (with respect to s)
is the following matrix over I' U {0}. Its rows and columns are indexed by the vertices of G. The
(z,y)’thentry is 0 if (z, y) is not an edge in the graph, and s((z, y)) ifitis.

A T'-signing, s, of G defines a graph G, a I'-lift of G, as follows. For every vertex z € V and
every element g € I' define a vertex z, in G. For every edge (xz,y) € E define in G the r edges
{(Zg: Ygts((wa)) oer-

Let p be an irreducible representation of I of dimension d. In particular, we think of p as associat-
ing with each group element a d x d unitary matrix. Fix s to be a I' — signing of G. Define the
nd x nd matrix A, , as follows. It is composed of n x n blocks of d x d submatrices. Each such
submatrix is thus indexed by a pair of vertices. The (x, y)’th submatrix is the all zeros matrix if =
and y are not adjacent in G. Otherwise, it is p(s(z,y)). Note that A, , is Hermitian.

Lemma3.5.1. LetG' = (V, E) be agraph on n vertices and I' a finite group of size r. Let py,...., p
be the irreducible representations of I, of dimensions d, . .., d;. Let G be a I' — li ft of G defined
by a I'-signing s. Then the eigenvalues of G are the union of the eigenvalues of the matrices A, ,,
fori=1,...,t.

Furthermore, let 1 be an eigenvalue of &, and denote by m; its multiplicity in A . Then its
multiplicity in G is Y°;_, d; - m;.
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Proof: We start by showing how the eigenvectors of G relate to those of A, ,,. Denote by £ the
number of irreducible representation of I'. Fix some representation p, and let d be its dimension.
Let v € C% be an eigenvector of A, , with eigenvalue x. Think of v as being the concatenation of
n Vectors, vy, . .., v, € C% For every g € I define w,, € C¢ by w,, = p(g)v,. Next we define d
vectors, u', ..., u¢ € C™ as follows. Think of the coordinates of the u!’s as being indexed by pairs
(g,z) where g € I"and = € V. Define the (g, =) coordinate of ' to be the I’th coordinate of w, .
We now show that the vectors u’ are eigenvectors of G, and that all eigenvectors of G can be
obtained in this way. As pv = A ,v, by the construction of A, ,, we have that for all z € [n]:

pos =Y p(s(x,y))v,

y:(z,y)eE

Fix some g € . Applying p(g) to both sides we get:
pwge = pp(9ue= > plg)p(s(z,y))vy

yi(z,y)EE

= Z p(g—|—smy Z wg+sccy

y:(z,y)EE yi(z,y)EE

In particular, this holds point-wise, so for every [ € [d], we have:

p(wg,z)i = Z (Worts(z9).9)1-

y:(z,y)€E

The neighbors of the vertex (g, z) in G are exactly all the (g + s(z,y),y), such that (z,y) € E.
Hence, for every [ € [d], a concatenation of these values is an eigenvector of G corresponding to
eigenvalue p. These are exactly the vectors ' defined above.

It remains to show that all eigenvectors are obtained in this way. Every irreducible representation
pi of dimension d; defines a matrix A, ,, that has n - d; eigenvectors. Each of these defines d;
eigenvectors of G, for a total of n Y. d?> = |G||T'| = |G|. Hence, it suffices to show that these
vectors are linearly independent.

We shall need some ungainly indexing. Denote by u®?*, for i € [k], p € [d;n] and | € [d;], the
eigenvector obtained in the following way. Let v*? be the p’th eigenvector of A; ,.. Let w,, be as
above. u*?! is the vector obtained from concatenating the {’th coordinates of the w, ,’s (as above).
Consider a linear combination of these vectors that equals zero: Y=, , cipu®”! = 0. In particular,
forevery g € T'and z € V, we have that:

0 = E:Cz,p,lu e

7p:

= : :cz,p,l < pl l’ $

ap:

2,
= E Ci,p,lpi g Lh %p)h

i,p,lsh

= § pz lhE Cz,p, hs

i,0,h
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where p;(g);is the I”th row of p;(g).

Define r" e CI'l by rit® = p;(g),». A well known corollary from Shur’s Lemma is that these
vectors are linearly independent. Hence, we have that for every z, 4, l and h: 3 ¢; 1 (vi?)n = 0.
Fixing 7 and /, and writing this as an equation in vector form, we get:

P
E Cip 0P = 0.
P

But the v*? are linearly independent, so for all p, ¢; ,;, = 0. As this is true for any choice of i and
1, we get that all coefficients are zero, and hence the vectors {u®?!} are linearly independent. 1

3.6 Experimental results

In this section we describe various heuristics for finding a good signing. We’ve tested these heuris-
tics on two datasets - a list of all 41301 3-regular graphs on 18 vertices and a list of 1000 randomly
generated 3-regular graphs. We assume that the graph is connected - otherwise the heuristic is
applied to each connected component. The 12 heuristics we’ve tested are the following:

1. Choose a signing for each edge independently and uniformly at random.
2. Choose uniformly at random a signing that assigns half the edges 1 and half the edges —1.

3. Pick an arbitrary spanning tree of the graph. Choose a random signing for edges outside
the tree. For each edge marked with —1, flip the value of the edges along the path in the
spanning tree that connects its two vertices.

4. Pick an arbitrary spanning tree of the graph. Sign its edges to —1, and the other edges to 1.
5. Choose a spanning tree at random, via a random walk. Sign its edges —1, and the rest 1.

6. Choose a spanning tree at random, via a random walk. Sign its edges —1, and the rest
1. Repeat the following step until the spectral radius no longer decreases: Let v be an
eigenvector associated with the spectral radius. Let (4, j) be an edge outside the tree such
that v; - v; is maximal. Change the sign of (, j) to —1. Choose an edge (¢', ;') from among
the edge in the cycle that was just created such that v; - v, is minimal, and change its sign
to 1.

7. Pick a random maximal matching in the graph. Sign its edges to —1, and the other edges to
1.

8. Choose some subset of vertices S. Go over all sign assignments to the vertices in S. For
each edge e let v be the vertex in S closest to it (if well defined). Let d be the distance from
e to v (if well defined). If both v and d are well defined, the sign of e is the parity of d times
the sign of v. Otherwise, it is 1.
Here we choose |S| = 4.



42

10.

11.
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. Start with all edges signed 1. Go over the edges in an arbitrary order, and choose the prefer-

able value with respect to the spectral radius of the current signed matrix.

First partition the edges into pairs of adjacent edges and “loner” edges in the following way.
To begin with, all edges are “free”. Each edge chooses one of its “free” neighbors uniformly
at random. If two edges choose each other they are added to the partition as a pair, and are
no longer free. If an edge has no free neighbors, it is added to the partition as a “loner”.
Pairs are signed arbitrarily with opposite signs. Loners are signed at random.

Start with all signs being 1. Look at the eigenvectors associated with eigenvalues, which, in
absolute value, are at least 0.999 the spectral radius. Choose an edge such that the product
of the entries associated with its vertices contribute most to the expression v A v (among all
such eigenvectors v, normalized to 1). Flip the sign of this edge. Repeat while this decreases
the spectral radius.

12. As 11, but start from a random signing.
Performance on dataset of all 41301 3-regular graphs on 18 vertices.

Algorithm | Iter | Good | Always | % Rmnjn | Avg. Rmnjn | Avg. Rad.
1 100 | 41301 2 0.82 41297 2.75
2 100 | 41301 1 0.82 41300 2.75
3 100 | 41297 3 0.77 38114 2.76
4 1 |30999 | 30999 0.75 30999 2.76
5 100 | 41301 28 0.85 41285 2.74
6 100 | 41301 | 32216 1.00 41301 2.63
7 100 | 41301 | 162 0.80 39806 2.76
8 10 | 37884 | 2730 0.60 27743 2.81
9 1 0 0 0.00 0 2.93
10 100 | 41301 5 0.79 41237 2.76
11 1 | 4078 | 4078 0.10 4078 2.89
12 100 | 41301 | 710 0.89 41301 2.73

Figure 3.2: Iter - Number of iterations per graph.

Good - Number of graphs such that in some iteration the signing was Ramanujan.
Always - Number of graphs such that in al iterations the signing was Ramanujan.
% Rmnjn - Fraction of signings that were Ramanujan.

Avg.
Avg.

Rmnjn - Number of graphs with average spectral radius of signings < 2+/2.
Rad. - Average spectral radius (2v/2 ~ 2.8284).
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Performance on dataset of all 41301 3-regular graphs on 18 vertices.

Distribution of graphs by number of iterations giving a Ramanujan signing.

Figure 3.3: Iter - Number of iterations per graph.
Good - Number of graphs such that in some iteration the signing was Ramanujan.
Always - Number of graphs such that in al iterations the signing was Ramanujan.
% Rmnjn - Fraction of signings that were Ramanujan.
Avg. Rmnjn - Number of graphs with average spectral radius of signings < 2+/2.
Avg. Rad. - Average spectral radius (2v/2 ~ 2.8284).

Alg. | 0-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91-100
1 0 0 0 17 164 | 847 | 3358 | 11031 | 20768 | 5116
2 0 0 0 24 179 | 908 | 3356 | 11048 | 20782 | 5004
3 16 | 111 | 315 | 907 | 1907 | 2643 | 3707 | 7989 | 18581 | 5125
5 0 0 18 135 | 603 | 2305 | 6697 | 18078 | 13463
6 0 0 0 0 0 0 3 45 194 | 41059
7 15 84 274 | 755 | 1405 | 2138 | 3370 | 7561 | 16942 | 8757
10 0 0 18 118 | 565 | 2217 | 5063 | 11851 | 17253 | 4216
12 0 0 0 4 17 139 | 962 | 3959 | 13722 | 22498
Performance on 999 3-regular graphs on 100 vertices.

Algorithm | Iter | Good | Always | % Rmnjn | Avg. Rmnjn | Avg. Rad.

1 100 | 999 0 0.77 998 2.81

2 100 | 999 0 0.77 996 2.81

3 100 | 999 0 0.77 982 2.81

4 1 | 817 817 0.82 817 2.81

5 100 | 999 0 0.81 999 2.81

6 100 | 999 626 0.99 999 2.77

7 100 | 999 0 0.77 990 2.81

9 1 0 0 0.00 0 2.99

10 100 | 999 0 0.76 996 2.81

11 1 0 0 0.00 0 2.94

12 100 | 999 0 0.83 999 2.81
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Performance on 999 3-regular graphs on 100 vertices.

Distribution of graphs by number of iterations giving a Ramanujan signing.

Alg. | 0-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91-100
1 0 0 0 0 1 20 108 546 319 5
2 0 0 0 0 3 16 117 541 314 8
3 0 0 1 13 3 13 111 511 338 9
5 0 0 0 0 1 8 51 358 549 32
6 0 0 0 0 0 0 0 0 0 999
7 1 0 1 3 6 30 146 465 341 6
10 0 0 0 1 4 26 171 487 306 4
12 0 0 0 0 0 8 33 261 604 93




Chapter 4

Graphswith bounded X

In chapters 2 and 3 we were interested in regular graphs, where the degree is bounded, and the
second eigenvalue is small. In this chapter we investigate what the graph looks like when the
degree is linear in the number of vertices, yet the second eigenvalue remains bounded by some
constant. Note that here we shall discuss the second largest eigenvalue, rather than the second
largest in absolute value.

We show that if the graph is n/2-regular, then it is close to being a complete bipartite graph, and
that for 0 < § < % and )\, there are only finitely many dn-regular graphs with second eigenvalue
at most \s.

It is worth noting that graphs with bounded second eigenvalue have been previously studied. The
apex of these works is probably that of Cameron, Goethals, Seidel and Shult, who characterize in
[19] graphs with second eigenvalue at most 2.

4.1 n/2-regular graphs

In this section we consider the family G of n/2-regular graphs, and second largest eigenvalue A,
bounded by a constant. We prove that, asymptotically, they are nearly complete bipartite.

Definition 4.1.1. Let G and H be two graphs on n vertices. We say that G and H are close, if
there is a labeling of their vertices such that |E(G) A E(H)| = o(n?).

Theorem 4.1.1. Every G € G is close to Ky, /2,/2, Where 7 is the number of vertices in G.

Note 4.1.1. By passing to the complement graph, if A\, = O(1), then G is close to the disjoint
union of two cliques, K,,sUK,, 5.

It is worthwhile noting that the only example we know of n/2-regular graphs with A\, bounded
are constructed by taking a complete bipartite graph, and changing a constant number of edges for
each vertex. These graphs are O(n)-close to being complete bipartite. Thus, we conjecture that
perhaps a stronger notion of closeness be proved.
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We need several lemmas before getting to the proof of the theorem. The first is the well-known
expander mixing lemma (cf. [9]). The second is a special case of Simonovitz’s stability theo-
rem ([65]), for which we give a simple proof here. The third is a commonly used corollary of
Szemeredi’s Regularity Lemma. We shall also make use of the Regularity Lemma itself (see e.g.

[24]).

Lemma4.1.1. Let G be an F-regular graph on n vertices with second largest eigenvalue ;. Then
every subset of vertices with % vertices has at most ;&% + 32k internal edges.

Lemma 4.1.2. Let R be a triangle-free graph on n vertices, with n?/4 — o(n?) edges. Then R is
close to K, 5 /2. Furthermore, all but o(n) of the vertices have degree § & o(n).

Proof: Denote by d; the degree of the sth vertex in R, and by m the number of edges. Then:

> (di+dy) dez (> di)?=

(i,j)€E(R) i€V(R) zEV(R

Thus, there is some edge (i, j) € E(R) such that d; + d; > *™ = n — o(n). LetI'; and I'; be
the neighbor sets of < and j. Since 7 and j are adjacent, and R has no triangles, the sets I'; and I';
are disjoint and independent. If we delete the o(n) of vertices in V\ (I'; U T';) we obtain a bipartite
graph. We have deleted only o(n?) edges, so the remaining graph still has n? /4 — o(n?) edges. But
this means that |['|, |[I';| = 5 — o(n), and that the degree of each vertex in these sets is ¢ + o(n).
|

Recall that the Regularity Lemma states that for every ¢ > 0 and m € N there’s an M, such that
the vertex set of every large enough graph can be partitioned into & subsets, for somem < k < M
with the following properties: All subsets except one, the “exceptional” subset, are of the same
size. The exceptional subset contains less than an e-fraction of the vertices. All but an e-fraction
of the pairs of subsets are e-regular.

The regularity graph with respect to such a partition and a threshold d, has the & subsets as vertices.
Two subsets, U; and U, are adjacent, if they are e-regular, and e(Uy, Uy) > dn?.

Lemma 4.1.3 ([24], Lemma 7.3.2). Let G be a graph on n vertices, d € (0,1], ¢ = d™*. Let R
be an e-regularity graph of G, with (non exceptional) sets of size at least £, and threshold d. If R
contains a triangle, then G contains a complete tripartite subgraph, with each side of size s.

Corollary 4.1.1. If G € G, and R is as in the lemma, with s = 10\,, then R is triangle free. In
this case, if R has % — o(k?) edges, then R is close to complete bipartite.

Proof: If R contains a triangle, then G contains a complete tripartite subgraph, with s vertices on
each side. Let U be the set vertices in this subgraph. Then e(U) = 3s? = 3003, but by lemma
4.1.1 e(U) < 50)% - a contradiction. The second part now follows from Lemma 4.1.2. ||
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Proof: (Theorem) We would like to apply the Regularity Lemmato graphs in G, and have e = o(1),
and £ = w(1) as well as £ = o(n). Indeed, this can be done. Since M depends only on m and e,
choose d = o(1), and m = w(1), such that the M given by the lemma satisfies Grm = e AsM
depends only on m and e, % can be made small enough, even with the requirements on d and m.
Let R be the regularity graph for the partition given by the Regularity Lemma, with threshold d as
above. Denote by & the number of sets in the partition, and their size by I (so k - I = n(1 — ),
for some 1 < €). We shall show that R is close to complete bipartite, and that G is close the graph
obtained by replacing each vertex in R with [ vertices, and replacing each edge in R by a K.

Call an edge in G (7) “irregular” if it belongs to an irregular pair; (iz) “internal” if it connects two
vertices within the same part; (zi2) “redundant” if it belongs to a pair of edge density smaller than
d, or touches a vertex in the exceptional set. Otherwise (iv), call it “good”.

Recall that e = o(1), so only o(k?) pairs of sets are not e-regular. Thus, G can have only o(I?k?) =

o(n?) irregular edges. Also, d = o(1), so the number of redundant edges is k* - o(1*) + o(l)2 =

o(n?). Finally, the number of internal edges is at most %Fk, hence there are %2 —o(n?) good edges.
The number of edges between two sets is at most /2, so R must have at least

n? —o(n?) k? 9

T —a W)
edges. The corollary implies that it is close to complete bipartite. By lemma 4.1.2, the valency of
all but o(k) of the vertices in R is indeed £ + o(k). This means that every edge in R corresponds

to 12 — o(I?) good edges in G (as the number of edges in R is also no more than % + o(k?)).

To see that GG is close to complete bipartite, let’s count how many edges need to be modified. First,
delete o(n?) edges that are not “good”. Next add all possible o(n?) new edges between pairs of
sets that have “good” edges between them. As R is close to complete bipartite, we need to delete
or add all edges between o(k?) pairs. Each such step modifies /? edges, altogether o(I?k?) = o(n?)
modifications. Finally, divide the o(n) vertices of the exceptional set evenly between the two sides
of the bipartite graph, and add all the required edges, and the tally remains o(n?). 1

Note 4.1.2. In essence, the proof shows that a graph with no dense induced subgraphs is close
to complete bipartite. This claim is similar in flavor to Bruce Reed’s Mangoes and Blueberries
theorem [58]. Namely, that if every induced subgraph G’ of G' has an independent set of size
|G'l — O(1), then G is close to being bipartite. The conclusion in Reed’s theorem is stronger in
that only a linear number of edges need to be deleted to get a bipartite graph.

Note 4.1.3. In fact, the proof gives something a bit stronger. Let ¢, (n) be the number of edges in an
n-vertex complete r-partite graph, with parts of equal size. Using the general Stability Theorem
([65]) instead of Lemma 4.1.2, the same proof shows that if a graph has ¢,, — o(n?) edges and no
dense induced subgraphs, then it is close to being complete r-partite.

4.2 dn-regular graphs

In Theorem 4.1.1 we required that the degree is n/2. We can deduce from the theorem that this
requirement can be relaxed:
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Corollary 4.2.1. Let G be a family of d-regular graphs, with d < 7, (n being the number of vertices
in the graph) and bounded second eigenvalue, then every G € G is close to a complete bipartite
graph.

Proof: Let M € M,, be the adjacency matrix of such a d-regular graph, and denote M = J — M,
where J is the all ones matrix. Consider the graph H corresponding to the following matrix:

M M
v= (o)

Clearly H is an n-regular graph on 2n vertices. Denote by (z,y) the concatenation of two n-
dimensional vectors, x, y, into a 2n dimensional vector. Let v be an eigenvector of M correspond-
ing to eigenvalue ). It is easy to see that v is also an eigenvalue of M: If v = T (and thus \ = d) it
corresponds to eigenvalue n — A, otherwise to (—\).

Thus, (v,v) and (v, —v) are both eigenvectors of N. If v = I they correspond to eigenvalues
n, 2d — n, respectively, otherwise to 0, 2). Since the »’s are linearly independent, so are the 2n
vectors of the form (v, v) and (v, —v): Consider a linear combination of these vectors that gives 0.
Both the sum and the difference of the coefficients of each pair have to be 0, and thus both are 0.
So we know the entire spectrum of V, and see, since d < 7, that theorem 4.1.1 holds for it.

Let H' be a complete bipartite graph that is close to H. Since H differs from H' by o(n?) edges,
the same holds for subgraphs over the same set of vertices. In particular, G is close to the subgraph
of H' spanned by the first n vertices. Obviously, every such subgraph is itself complete bipartite.
|

Corollary 4.2.2. Forevery 0 < § < % and c, there are only finitely many én-regular graphs with
)\2 <c.

Proof: Consider such a graph with »n large. By the previous corollary it is close to complete
bipartite. Since it is also regular, it must be close to K’z =, which contradicts the constraint § < %
|

4.3 Graphs with both Ay, and \,_; bounded by a constant

Theorem 4.1.1 can loosely be stated as follows: A regular graph with spectrum similar to that of a
bipartite graph (\; being close to n/2 and A, being close to 0) is close to being complete bipartite.
We conclude this section by noting that if we strengthen the assumption on how close the spectrum
of a graph is to that of a bipartite graph, we get a stronger result as to how close it is to a complete
bipartite graph.

Theorem 4.3.1. Let G be a family of Z-regular graphs on n vertices, with both A\, and A,_;
bounded by a constant. Then every G € G is close to a K= =, in the sense that such a graph can

be obtained from G' by modifying a linear number of edges for O(+/n) vertices of G, and O(/n)
edges for the rest.
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Proof: First note that it follows that \,,(G) = —% + O(1). Take G € G, and let A be its adjacency
matrix. Clearly tr(A2) = 2. If A\,_1(G) = —O(1), then

f%:wmA%:A§+Aﬁ+ SN

Since A\ = §

As Ny, ..., A1 = O(1) we have
X == +0(n)
And since ), is negative, and is smaller than A; in absolute value:
n

A= =5 +0().

Let = be an eigenvector corresponding to A,. Suppose, w.l.0.g that ||z|| = 1 and that z, = 1.
ngtt);ﬁSA ={u:z, <—(1— )} and B = {w:z, > (1 - )} Theeigenvalue condition on
v ;

g—mn:— Y .

u:(u,v)€E

Thus, there is a vertex u such that z, < —(1 — O(+)). Itis not hard to verify that v must have
% — O(y/n) neighbors in A, and that v must have % — O(y/n) neighbors in B.

2
Now denote A’ = {u : z, < —3},and B’ = {w : z,, > 1}. Again, itis not hard to check that each
vertex in A must have § —O(y/n) neighbors in B’, and vice versa. Thus, delete the O(,/n) vertices
that are neither in A nor in B. For each remaining vertex in A (similarly in B), its degree is at most
%, and at least £ — O(y/n). It has & — O(y/n) neighbors in B, so the number of its neighbors in
A, and the number of its non-neighbors in B is O(y/n). By deleting and adding O(y/n) edges to
each vertex, we get a complete bipartite graph. 1
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Chapter 5

M onotone maps, sphericity and the
KL-divergence

5.1 Introduction

The motivation for the work in this chapter arised from our involvement in the ProtoNet project
([63]). The aim of this project is to generate a (meaningful) hierarchical clustering of all known
protein sequences in an unsupervised manner. Roughly speaking, the collection of all these se-
quences can be thought of as a finite metric space, where the points are the sequences, and the
distances are (roughly) the edit distances between the sequences.

A hierarchical clustering of a metric space, at least for our purpose, is a binary tree with leaves
corresponding to the points in the metric space. Each internal node in the tree defines a cluster
of points in a natural way - those which correspond to leaves that are descendents of this internal
node. A cluster is considered “good” if the points in it are close to each other. The goal of the
ProtoNet project is to create a “good” hierarchical clustering, where clusters reveal connections
between proteins, that are not readily evident otherwise.

A hierarchical clustering algorithm usually builds the tree structure in a greedy manner. It starts
with the leaves of the tree. Think of them as a forest of trees of depth 0. It then iteratively chooses
two “close” trees in the forest, and merges them into a single tree, by adding a new node as the
parent of the roots of both these trees. For the algorithm to be well defined, one needs to define a
distance between trees. Let C; and C, be the clusters defined by the leaves of two trees in the for-
est. In the ProtoNet project several ways defining the distance between two clusters as the average
over all pairwise distances are used. Another plausible way of doing so (though not implemented
in ProtoNet) is to define the distance as max;ec, jec, dist(%, ) Of minec, jec, dist(s, j).

A different approach to clustering of a metric space is to first embed the space into, say, Euclidean
space, and then do the the clustering in that space. One could hope that if the structure of the
metric space is not lost in the embedding, the additional structure induced by having the points in
Euclidean space will give rise to better clustering. Indeed, many clustering algorithms are designed
to address only the Euclidean problem.

Euclidean embeddings of finite metric spaces have been extensively studied, with the aim of find-

o1
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ing an embedding that doesn’t distort the metric too much. We refer the reader to the survey papers
of Indyk ([41]) and Linial ([46]), as well as chapter 15 of MatouSek’s Discrete Geometry book [53].
Here we focus on a different type of embeddings. Namely, those that preserve the order relation of
the distances. We call such embeddings monotone. There are quite a few applications that make
this concept natural and interesting, since there are numerous algorithmic problems whose solu-
tion depends only on the order among the distances. Specifically, questions that concern nearest
neighbors. The notion of monotone embeddings suggests the following general strategy toward
the resolution of such problems. Namely, embed the metric space at hand monotonically into a
“nice” space, for which good algorithms are known to solve the problem. Solve the problem in the
“nice” space - the same solution applies as well for the original space. “Nice” often means a low
dimensional normed space. Thus, we focus on the minimal dimension which permits a monotone
embedding.

In section 5.2 we observe that any metric on n points can be monotonically embedded into an
n-dimensional Euclidean space, and that the bound on the dimension is asymptotically tight. The
embedding clearly depends only on the order of the distances (Lemma 5.2.1). We show that for al-
most every ordering of the (g) distances among n points, the host space of a monotone embedding
must be Q(n)-dimensional. Similar bounds are given for embeddings into /.., and some bounds
are also deduced for other norms.

Next we consider embeddings that are even less constrained. Given a metric space (X, §) and some
threshold ¢, we seek a mapping f that only respects this threshold. Namely, ||f(z) — f(y)]| < 1
iff §(z,y) < t. The input to this problem can thus be thought of as a graph (adjacency indicating
distances below the threshold ¢). The minimal dimension d, such that a graph G can be mapped this
way into /¢ is known as the sphericity of G, and denoted Sph(G). Reiterman, Rédl and Sifajova
([61]) show that the sphericity of K, ,, is n. This is, then, an explicit example of a metric space
which requires linear dimension to be monotonically embedded into /,. Other than that, the best
lower bounds previously known to us are logarithmic. In section 5.3 we prove a better lower
bound, namely that for 0 < 6 < %, Sph(G) = Q(5;%7), for any n-vertex dn-regular graph, with
bounded diameter. Here ), is the second largest eigenvalue of the graph. We also show examples
of quasi-random graphs of logarithmic sphericity. This is somewhat surprising since quasi-random
graphs tend to behave like random graphs, yet the latter have linear sphericity.

Finally, we consider “soft clustering”. Here the objective is not to partition the metric space into
clusters, but rather define a distribution over clusters. Intuitively, this distribution measures how
likely it is that the point belongs to each cluster.

Thus, suppose that each point 7 in the metric space has a distribution p; (over £ clusters) associated
with it. Consider an operator ¢ : A*~! x AF~! — R, where A*~! is the (k — 1)-dimensional
simplex. We can think of our distance function as arising from this operator, that is, dist(i,j) =
&(pi, p;). Given such an operator, a natural question is which metric spaces can arise form it.

The case when ¢ is the inner product operator has been studied extensively ([13]), yet is still largely
open. Here we study the KL-divergence operator, and show that all metric spaces may arise from
it.
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5.2 Monotone Maps

5.2.1 Définitions

Let X = ([n], d) be a metric space on n points, such that all pairwise distances are distinct. Let || ||
be a norm on R%. We say that ¢ : X — (R%, || ||) is @ monotone map if for every w, z,y,z € X,

d(z,y) < 0w, 2) & [|o(z) = d(y)l| < [|o(w) = d(2)]|
We denote by d(X, || ||) the minimal ¢ such that there exists a monotone map from X to (R, || ||).

We denote by d(n, || ||) = maxx d(X, || ||), the smallest dimension to which every n point metric
can be mapped monotonically.

The first thing to notice is that we are actually concerned only with the order among the distances
between the points in the metric space, and not with the actual distances. Let (X, d) be a finite
metric space, and let p be a linear order on ()2() We say that p and (X, §) are consistent if for every
w,z,y,z2 € X,0(z,y) <d(w,z2) & (z,y) <, (w,2).

We start with an easy, but useful observation.

Lemma5.2.1. Let X be afinite set. For every strict order relation p on (’;) there exists a distance
function § on X, that is consistent with p.

Proof: Let {eij}(i el be small, non-negative numbers, ordered as per p. Define 6(i, j) = 1+¢;;.
) 2

It is obvious that § induces the desired order on the distances of X, and, that if the €’s are small,

the triangle inequality holds. 1

When we later (Section 5.2.3) use this observation, we refer to it as a standard e-construction,
where e = maxe;;. It is not hard to see that this metric is Euclidean, that is, the resulting metric
can be isometrically embedded into /5, see Lemma 5.2.3 below.

We say that an order relation p on ([g]) is realizable in (R?, || ||) if there exists a metric space
(X, d) on n points which is consistent with p, and a monotone map ¢ : X — R%. We say that ¢ is
a realization of p. (In other words, d(n, || ||) is the minimal d such that any linear order on ([g]) is
realizable in (R, || [|).)

We denote by J = J, the n x n all ones matrix, and by PSD,, the cone of real symmetric n x n
positive semidefinite matrices. We omit the subscript n when it is clear from the context.

Finally, for a graph G, and U, V' subsets of its vertices, we denote by e(U, V) = |{(u,v) € E(G) :
weUweV},ande(U) = [{(u,u') € E(G) : u,u’ € U}|.

5.2.2 Monotone Mapsinto /..

Lemma5.22. % —1<d(n,ls) <n



o4 CHAPTER 5. MONOTONE MAPS, SPHERICITY AND THE KL-DIVERGENCE

Proof: It is well known that any metric X on n points can be embedded into {7 isometrically,
hence d(n,ly) < n.

For the lower bound, we define a metric space (X, §) with 2n + 2 points that cannot be realized
in . By lemma 5.2.1, it suffices to define an ordering on the distances. In fact, we define only
a partial order, any linear extension of which will do. The 2n + 2 points come in n + 1 pairs,
{i, Yitict,m1- 1T 2 & {zi,u:}, we let §(x;, vi) > 0(z4, 2), 6(yi, 2). Assume for contradiction
that a monotone map ¢ into [, does exist. For each pair (x, y) define j(x, y) to be some index ¢ for
which |¢(z); —¢(y);| is maximized, that is, an index i for which |¢(z); —d(y)i| = ||¢(x) — d(Y) ]| co-

By the pigeonhole principle there exist two pairs, say (z1,y1) and (z2, y2), for which j(z,4:1) =
J(z2,y2) = j. Itis easy to verify that our assumptions on the four real numbers ¢(z1);, ¢(z2);,
é (1), ¢(y2);, are contradictory. Thus d(n,l) > 5 —1. 1

5.2.3 Monotone Mapsinto /5.

Lemma 5.2.3. § < d(n,ly) < n. Furthermore, for every § > 0, and every large enough n, almost

no linear orders p on ([72‘]) can be realized in dimension less than 7.

Note 5.2.1. The upper bound is apparently folklore. As we could not find a reference for it, we give
a proof here.

Proof: Let p be a linear order on (I2)). Let e be a real symmetric matrix with the following
properties:

e ¢; = 0 foralli.
1 . .
o - >¢; >0, foralli # 5.

e The numbers e, ; are consistent with the order p.

Since the sum of each row is strictly less than one, all eigenvalues of ¢ are in the open interval
(—1,1). It follows that the matrix I — € is positive definite. Therefore, there exists a matrix V' such
that V'V* = I —e. Denote the i’th row of V by v;. Clearly, the v;’s are unit vectors, and < v;, v; >=
—e¢;,; fori # j. Therefore, |[v; — v;|[3 =< vi,v; > + < vj,v; > =2 < v;,v; >= 2+ 2¢;5. It
follows that the map ¢ (i) = wv; is a realization of p, and the upper bound is proved. In fact, one
can add another point without increasing the dimension, by mapping it to 0, and perturbing the
diagonal.

For the lower bound, it is essentially known that if X is the metric induced by K, ,,, then d(X, l) >
n. We discuss this in more detail in the next section.

For the second part of the lemma we need a bound on the number of sign-patterns of a sequence of
real polynomials. Let p, ..., p,, be real polynomials in [ variables of (total) degree d, and let x € R
be a point where none of them vanish. The sign-pattern at z is ( sign(p:(z)), ..., sign(pm(x))). De-
note the total number of different sign-patterns that can be obtained from p1, ..., p, bY s(p1, ..., Pm)-
A variation of the Milnor-Thom theorem [55] due to Alon, Frankl and Radl [5] shows:
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Theorem 5.2.1. [5] Let py, ..., p,, be real polynomials as above. Then for any integer & between 1
and m:

S(P1y oy D) < 2kd - (Akd — 1) %1

Set n = ¢ - d, for some constant ¢, and I = n - d. Consider a point z € R', and think of it as an
n x d matrix. Denote the ;th row of this matrix by x;. As before, x realizes an order p on ([g]) if
the distances ||z; — z;|| are consistent with p.

For two different pairs, (i1, 71) and (s, jo), define the polynomial
p(i1,j1),(i2,j2)(x) = Hxll - x]'1||2 - Hxlz - x]éHz'

The list contains m = ((g)) polynomials of degree 2. Note that there isa 1 : 1 correspondence
between orders on ([;”) and sign-patterns of p., ..., p,, thus no more than s = s(p1, ..., p,,) Orders
may be realized in 4.

Take k = pn?, for some large constant i.. Then log s is approximately 2cd? log d. By contrast, that
total number of orders is (72’)' so its log is about c2d?log d. If c is bigger than 2, almost all order
relations can not be realized. 1

5.2.4 Other Norms

We conclude this section with three easy observations about monotone maps into other normed
spaces. The first gives an upper bounds on the dimension required for embedding into /,,:

Lemma5.2.4. d(n,l,) < (3).
Proof: By Lemma 5.2.3, any metric space on n points can be mapped monotonically into /5. It is
known (see [23] and also chapter 15 of [53]) that any [, metric on n points can be isometrically
embedded into (g) -dimensional /,. The composition of these mappings is a monotone mapping of
the metric space into (7)-dimensional /,. 11

The second observation is that the second part of Lemma 5.2.3 holds for any /,,, where p is even
and independent of . Namely:

Lemma 5.2.5. d(n,ly,) = Q(n)
(the constant of proportionality depends on p)

The proof is essentially the same as that in Lemma 5.2.3. Simply repeat the argument with poly-
nomials of degree 2p rather than quadratic polynomials.

The third observation gives a lower bound for arbitrary norms. We first note the following:

Lemmab5.2.6. Let || || be an arbitrary n-dimensional norm and let z1, ..., z5» be points in R™, such
that ||z; — z;|| > 1 for all i # j. Then there exits a pair (z;, z;) such that ||z; — ;|| > 2
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Proof: Denote by v the volume of B, the unit ball in (R", || ||). The translates z; + ;B are
obviously non intersecting, so the volume of their union is (2)"v. Assume for contradiction that
all pairwise distances are less than 2, then all these balls are contained in a single ball of radius less
than 2. But this is impossible, since the volume of this ball is less than (3)"v. 1

Note that the /., norm shows that indeed an exponential number of points is required for the lemma
to follow. We do not know, however, the smallest base of the exponent for which the claim holds.
The determination of this number seems to be of some interest.

Corollary 5.2.1. There exists an n-point metric spaces (X, ¢) such thatforanynorm || ||, d(n, || ||) =
Q(logn).

Proof: We construct a distance function on 5™ + 1 points which can not be realized in any n-
dimensional norm. By lemma 5.2.1 it suffices to define a partial order on the distances. Denote
the points in the metric space 0, ..., 5. Let the distance between 0 and any other point be smaller
than any distance between any two points z # j > 0. Consider a monotone map ¢ of the metric
space into n-dimensional normed space. Assume, w.l.0.g., that min; j—1__s» ||¢(7) — ¢(j)|| = 1.
By the previous lemma there exists a pair of points, 4,5 # 0, such that ||¢(i) — ¢(j)|| > 2. But
for ¢ to be monotone it must satisfy ||¢(0) — ¢(i)|| < 1 and ||¢(0) — #(j)|| < 1, contradicting the
triangle inequality. |

5.3 Sphericity

So far we have concentrated on embeddings of a metric space into a normed space, that preserve
the order relations between distances. However, in the examples that gave us the lower bounds
for I, and for arbitrary norms, we actually only needed to distinguish between ”long” and “short”
distances. This motivates the introduction of a broader class of maps, that need only respect the
distinction between short and long distances. More formally, let X = ([n], §) be a metric space. Its
proximity graph with respect to some threshold 7, is a graph on n vertices, with an edge between
i and j iff (7, 7) < 7. An embedding of a proximity graph, is a mapping ¢ of its vertices into
normed space, such that ||¢(i) — ¢(j)|| < 1 iff (4,7) is an edge in the proximity graph (We as-
sume that no distance is exactly 1). The minimal dimension in which a graph can be so embedded
(in Euclidean space) was first studied by Maehara in [50] under the name sphericity, and denoted
Sph(G). Following this terminology, we call such an embedding spherical.

The sphericity of graphs was further studied by Maehara and Frankl in [28], and then by Reiterman,
Radl and Sifajova in [61], [60], [62]. Breu and Kirkpatrick have shown in [16] that it is NP-hard
to recognize graphs of sphericity 2 (also known as unit disk graphs) and graphs of sphericity 3. We
refer the reader to [60] for a survey of most known results regarding this parameter, and mention
only a few of them here.

Theorem 5.3.1. Let G be graph on n vertices with minimal degree ¢. Let ), the least eigenvalue
of its adjacency matrix.

1. Sph(Kpy) <m+2 —1[50].
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I

2. Sph(G) = O(X21logn) [28].

3. Sph(G) = O((n — 0) log(n — 6)) [60].
4. Sph(K,,) > n [61].
5. All buta % fraction of graphs on n > 37 vertices have sphericity at least x — 1 [60].

6. f(ﬁl;(G) > % where «(G) is the independence number of G, and r(G) is its radius

The first thing to notice is that any lower bower on the sphericity of some graph on n vertices is
also a lower bound on d(n, l,). In particular, the fact that Sph(kK,,,,) > n proves the lower bound
in Lemma 5.2.3. (Similarly, any upper bound on the former also applies to the latter.)

In this section we are interested in graphs of large sphericity. The above results tell us that they
exist in abundance, yet that graphs of very small or very large degree have small sphericity (the
maximal degree is an upper bound on |\, |, hence by (2) the sphericity is small if all degrees are
small). Other than the complete bipartite graph, the above results do not point out an explicit graph
with super-logarithmic sphericity.

5.3.1 Upper bound on margin

Following Frankl and Maehara [28], consider an embedding of a proximity graph where there is
a large margin between short and long distances. In such a situation, the Johnson-Lindenstrauss
Lemma ([43]) would yield a spherical embedding into lower dimension. Specifically suppose
all short distances are at most 1 — m, and all long distances are at least 1 + m. The Johnson-
Lindenstrauss Lemma says that the points can be embedded in dimension }2 log n with distortion
at most 1 + e. In particular, if we can find an initial spherical embedding where (1+m)/(1+¢€) >
(1 —m)(1 + ¢), then the Lemma yields a new spherical embedding, into dimension = log 7.

In other words, an embedding with margin m allows e to be taken (when m is small) roughly as
big as m. For this to give sub-linear sphericity, we need that €2 = w(k’%), or

logn

).

m = w(
n

Alas, we show that for most regular graphs the margin can not be so large:

Theorem 5.3.2. Let G be a dn-regular graph, with second eigenvalue A\, > % Let ¢ be a spherical
embedding of G. Denote a = maxy,., ||¢(u) — #(v)||3, and b = min,, ||¢(u) — é(v)|[3. Then

b—a=0(2%2).

Think of § as fixed. For a random ¢én-regular graph, w.h.p. Ay = O(y/n). Hence, w.h.p. in
any spherical embedding the margin is O(ﬁ), and in particular does not allow for dimension
reduction.
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Proof: Denote m = min{1 — a,b — 1}, and for a vertex i, denote v; = ¢(3). The largest value m
can attain, over all embeddings ¢, is given by the following quadratic semidefinite program:

maxm
stN(i,j) € E(G) |lvi—v|?<1—m
V(i,j) ¢ B(G) |lui—vl?>1+m

Its dual turns out to be:

min %trA
s.t. Ae PSD
V(i,j) € E(Q) Ai; <0
V(i,j) ¢ E(G),i#j Ai; >0

Vi Y A;=0

j=1,...,n

Equivalently, we can drop the last constraint, and change the objective function to min > ;’"?A__‘.
- . .  Zeikg 18]
Next we construct an explicit feasible solution for the dual program, and conclude from it a bound

onm.

Let M be the adjacency matrix of G. Define A = I + oJ — M. To satisfy the constraints we
need:

Ae PSD
B>a>0
1+an—Gon=0

The last condition implies o = 8 — % so it follows that 8 > «, and the constrainton g is 5 > i

Now, since we assume that the graph is én-regular, its Perron eigenvector is I, corresponding to
eigenvalue on. Therefore, we can consider the eigenvectors of M to be eigenvectors of J and
I as well, and hence also eigenvectors of A. If A # dn is an eigenvalue of M, then 1 — S\
is an eigenvalue of A, corresponding to the same eigenvector. Denote by A, the second largest
eigenvalue of M, then in order to satisfy the condition A € PSD it is enough to set 8 = i in
which case all the constraints are fulfilled.

We conclude that:
trA n(l+ )
Sy 1Ayl on2(B—a) + (1= 0)n? — n)a
n+ - _ el

(B2 — 1) + ((1—0)n — 1) (2 - 1) In on

m <
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In particular, b — a = O(22£2). |

Think of ¢ as fixed. The theorem shows we can’t get sub-linear sphericity via the Johnson-
Lindenstrauss lemma, if Ay = O(v/nlogn).

Frankl and Maehara show that the J-L lemma does yield sub-linear sphericity when A,, = o(, /-%=).

logn
Consequently, we get that a dn-regular graph can’t have both A\, = O(y/nlogn) and A\, =
o(, /=%-). This is a bit more subtle than what one gets from the second moment argument, namely,

logn

that the graph can’t have both A, = o(y/n) and A, = o(y/n).

5.3.2 Lower bound on sphericity

Theorem 5.3.3. Let GG be a d-regular graph with diameter D and )\, the second largest eigenvalue
of G’s adjacency matrix, at least d — 2n. Then Sph(G) = Q(%).

In the interesting range where d < 7, and A, > 1 the bound is Sph(G) = Q(dD;’A\‘;). Note that for
this bound to be linear, we would like )\, to be bounded (independently of d). However, as we saw
in chapter 4, this holds only for graphs which are close to being complete bipartite.

Proof: It will be useful to consider the following operation on matrices. Let A be an n x n
symmetric matrix, and denote by a the vector whose i-th coordinate is A;;. Define R(A) to be the
n x n matrix with all rows equal to @, and C'(A4) = R(A)". Define:

A=24—-C(A)—R(A)+J

First note that the rank of A and that of A4 can differ by at most 3. Now, consider the case where A
is the Gram matrix of some vectors vy, ..., v, € R¢. Then all diagonal entries of A equal one, and
the (7, 7) entry is 2< v;, v; > — < v, v; > — < v;,v; > +1=1— [|lv; — v;]|%

We will need the following lemma (see [40], p.175):

(trX)?
X Xl

Lemma 5.3.1. Let X be a real symmetric matrix, then rank(X) >

Applying this to A, we conclude that:

TL2

rank(A) > (5.1)
SRS S (i TR IOE
Let vy, ..., v, € RY be an embedding of G. By the discussion above it is enough to show that
S [l vyl = 0D 22, 52)
d— Xy

i#j
By the triangle inequality ||v; — v;|| < D for any two vertices. So the LHS of (5.2) is bigger by at
most a factor of D? than:

Do (lwi—wlP =1+ Y (A= llo—vlf*) =

(1,4)¢E (i.j)eE
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Z o — 5] ? — Z o — vy ? — ()+nd (53

(1,9)¢E (i,))€E

We can bound this sum from above, by solving the following SDP:

max Do Vit Vi —2Vi) + Y (Vi — Vi +2Vy) — (;L) +nd
(i.j)¢E (i.j)eE
s.t. Ve PSD
V(i,j) e E Vi+V;—2V; <1
V(Z,j) ¢E V;i-i-‘/}'j—QVij >1
The dual problem is:
min itrA
s.t. Ae PSD
V(i,j) e E Ay < -1
V(i,j) ¢ E;i#j Aij>1
Vi € [n] > Ay=0
j=1,...n

Let M by the adjacency matrix of the graph, and set A = (ad — n)I + J — aM, where o > 2
will be determined shortly. This takes care of the all constraints except for A € PSD. Note that
since M is regular, its eigenvectors are also eigenvectors of A. Moreover if Mu = Au for a non
constant u, then Au = ad — n — a\ (and AT = 0). So take o = 5, and by our assumption on
)\2, (0% 2 2.

Now A gives an upper bound on (5.3):

1 1
A= Tn(ad—n+1
2t7° 5 (ad—n+1) =

This, by (5.1), shows that the dimension of the embedding is 2 (%) A |

5.3.3 A Quasi-random graph of logarithmic sphericity

It is an interesting problem to construct new examples of graphs of linear sphericity. Since random
graphs have this property, it is natural to search among quasi-random graphs. There are several
equivalent definitions for such graphs (see [9]). The one we adopt here is:

Definition 5.3.1. A family of graphs is called quasi-random if the graphs in the family are (1 +
o(1))%-regular, and all their eigenvalues except the largest one are (in absolute value) o(n) .

Counter-intuitively, perhaps, quasi-random graphs may have very small sphericity.

Lemma 5.3.2. Let G be the family of graphs with vertex set {0, 1}*, and edges connecting vertices
that are at Hamming distance at most £. Then G is a family of quasi-random graphs of logarithmic
sphericity.
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Proof: The fact that the sphericity is logarithmic is obvious - simply map each vertex to the

vector in {0, 1}" associated with it. The Krawtchouk polynomial of order s over z% is defined by
KM () = > (1) (;) (f:;) To show that all eigenvalues except the largest one are o(2*) we
need the following facts about Krawtchouk polynomials (see [67]. For simplicity we assume that

k is odd):
1. Forany z € Z§ with [¢| =4, 3 e, (=1)<"*> = K® ).
2. Yoo KP() = K[V - 1),

3. Forany s and k, max;—o__, |[K{" (i) = K (0) = (%).
Observe that G is a Cayely graph for the group z& with generator set {g € z% : |g| < £}. Since
7k is abelian, the eigenvectors of the graphs are independent of the generators, and are simply the
characters of the group written as the vector of their values. Namely, corresponding to each y € z%
we have an eigenvector v, such that v¥ = (—1)<*¥>. For every y, v§ = 1, so to figure out the
eigenvalue corresponding to v¥, we simply need to sum the value of v¥ on the neighbors of 0. Note
that for y = 0 we get the all 1s vector, which corresponds to the largest eigenvalue. So we are
interested in y’s such that |y| > 0. By the first two facts above we have:

ol

-1

M= Y (FD) = ST EB(y)) = KE |yl - 1).

2

v ‘

»
Il
)

k
gEZ2a|g|S§

By the third fact, this is at most (1) ~ 2= = o(2*71). I
2

5.4 Inverting the KL-divergence

5.4.1 Introduction

Consider the following clustering problem. Let Py, . .., P, be unknown distributionson {1, ..., k}.
Let ¢ be a (known) operator that measures distance or similarity between distributions. The input
to the problem is a matrix A defined by A; ; = ¢(P;, P;), and the task is to reconstruct (or apporx-
imate) the distributions P, ..., P,.

For example, one of the main questions of sequence analysis in computational biology is the fol-
lowing. Given a set of n proteins and their pairwise sequence similarity, compute a set of % clusters,
and a measure of how likely each protein is to belong to each cluster. These clusters might corre-
spond to protein functions, folds or domains. In other words, given a similarity matrix, we want to
compute, for each protein, a probability distribution over the clusters.

Given ¢, the first question is for what A’s a solution exists. One possible choice for ¢ is the inner-
product operator. Let C, by the cone of all matrices which are both non-negative and positive
semi-definite. Let C; by the cone of all matrices A such that there exist a non-negative matrix B
with BB = A (such matrices are called completely positive). It is not hard to verify that both are
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indeed cones. Note that C'; is not exactly the set we’re interested in, as we did not require that B
be stochastic. However, the entries in each row of B can be normalized to sum up to 1.

It is not hard to see that C; C Cy. It is known that for n > 4, C; # Cy. The question of char-
acterizing C; by its supporting hyperplanes (or deciding membership in C4) has recieved much
attention, yet much is still unknown (cf. [13]).

Here we study a different operator - the so-called KL-divergence or cross-entropy. Let P =
(p1,...,pk) and Q@ = (qi,...,qx) be two distributions on {1, ..., k}, we define and denote the
KL-divergence of P w.r.t. @ as follows (cf. [21]):

k
Di
D(P||Q) =) p;log o
i=1 ¢

We say that a n x n matrix is realizable (w.r.p.t. KL-divergence) if there are distinct distributions
Py, ..., P, suchthat A, ; = D(P;||P;). Our goal is to prove that following theorem:

Theorem 5.4.1. An n x n matrix A is realizable if and only if it has zeros on the diagonal and
positive entries elsewhere.

The fact that A must have zeros on the diagonal follows from the fact that D(P||P) = 0. Hence,
for any distribution P, D(P||P) = 0. The fact that for P # @@ D(P||Q@) > 0 is not too hard to see
and is well known (cf. [21]).

5.4.2 TheKL-divergence of composed distributions

The key lemma in proving Theorem 5.4.1 expresses the KL-divergence of distributions obtained
by composing some base distributions.

Lemma 5.4.1. Let Q = U, be a set with a partition {Q2;}. Let X and Y be distributions on
[m], and, for i« = 1,...,m, let U; and V; be distributions on ;. Let p be the distributon on Q
defined by choosing an i € [m] according to X, and then an element in ; according to U;. Let ¢
be the distributon on € defined by choosing an i € [m] according to Y, and then an element in Q;
according to V;. Then,

D(pllg) = D(X||Y) + ) _ Pr[X =] - D(Ui||Vi)-

=1

Proof: Denote z; = Pr[X = i|, y; = Pr[Y =i]. Fori = 1,...,m and j € ;, denote
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ui; = Pr(U; = jland v;; = Pr[V; = j].

D(pllg) = szzuulogju”

V.

i=1 jeqQ; Lo
= E E TiU; | log +log )

V;

=1 geQ 3
— 1 1.]
= a:z og Ui j —|— xz U;, 5

JEQ = JEQ;

= D(X||Y)+ ZPr[X = i] - D(Ui|| V),

Where the last equality follows from > u;; =1foralli =1,. |

JEQ;
Corollary 5.4.1. For X =Y we get D(p||q) = Y_ z;D(U;||V;), hence any convex combination of
realizable matrices can be realized.

Corollary 5.4.2. Let U; and V; be two distributions on €2,. Let Uy = V5 be some distribution on
Q9. Forsome e < 1, let X = Y be the distribution (¢, 1 — €). This gives D(p||q) = eD(U1||V4).
Hence, any linear down scaling of a realizable matrix can be realized.

5.4.3 Proof of the Theorem

We now give two proofs for Theorem 5.4.1. Both are algorithmic, in the sense that given a matrix
A one can efficiently compute distributions the realize it. However, typically one would like the
distribution space (the number of clusters) to be small. Unfortunatley, in both proofs this is not the
case.

Proof: (1) Let A be an n x n matrix with zero on the diagonal, and positive entries elsewhere. We
construct realizable matrices B for 1 < i # j < n, such that A4 is in the convex hull of the B%7’s.
By Corollay 5.4.1, this will prove the theorem.

Let N be a large number such that forall 1 < i # j < n, 1/N < A;; < N. Fixi # j. Let
Ui, .. U be the following distributions on 2 points. For k # i, j,

Up = ( 5w, L — NQN) (to make them distinct, one can take small perturbations thereof).

Ui = (32,1 — 72)-
Uj = (221\’ ’ 1—- 221N)'

It is not hard to verify that D(U;||U;) > N, and that for any other pair of distributions, the KL-
divergence is at most . Let B*/ be the matrix obtained from these distributions, then A is in the
convex hull of all the B*?. By Caratheodory’s theorem, A can be written as a convex combination
of at most n + 1 B%7’s, hence the realization of A in this way requires distributions on 2(n + 1)
points. 1

- IHz
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Proof: (1) Fix 0 < ¢ < 1 suchthat 27« < le%. Lete;; be such that 27« < ¢; < e For

i =1,...,nlet D, be the following distribution on n points. For j # i, Pr[D; = j] = ¢; ;. Denote
8; = Zj € j, S0 Pr[D; = i] = 1 — s;. We have that:

1—81'

61', 61','
D(DzHD]) = Z 6i7k'—k + €i,j log 17] + (]. — Si) log

k;él,] Gj)k J 6.75Z
If € is small, this is dominated by the last summand:

€k 1 21 n—2
< —€"—) = .

ktig K ki

log 2

—€;,; log IGL < —€?=~log2 = €.

— S5 n €

1—s;
(1 —s;)log i

~ log —.
€yi €

This allows us to approximate a realization of any matrix A whose entries satisfy % > Aij > log 5.
However, by Corollary 5.4.2, we can also realize any linear scaling down of A. Hence, as ¢ tends
to 0, we can approximate as well as we want any matrix A. Taking the limit distributions gives us
a realization of A. Note that this realization requires n + 1 points. I

5.5 Open Problems

The only explicit examples known so far for graphs that have linear sphericity are K, , and small
modifications of it. We conjecture that more complicated graphs, such as the Paley graph, also
have linear sphericity. Note that the lower bound presented here only shows a bound of Q(4/n)
for the Paley graph. It is also interesting to know if the bound can be improved, either as a pure
spectral bound, or with some further assumptions on the structure of the graph.

What is the largest sphericity, d = d(n), of an n-vertex graph? We know that £ < d <n —1. Can
this gap be closed? For a seemingly related question, the smallest dimension required to realize
a sign matrix (see [5]) the answer is known to be % & o(n). We have also seen a similar gap for
d(n,ly) and d(n,ly). Can this be closed? Can some kind of interpolation arguments generalize
the bounds we know for these two numbers to bounds on d(n, l,,) for p > 2?

Our interest in sphericity arose from a search for a lower bound on d(n, ). But why limit the
discussion to Euclidean space? What can be said of spherical embeddings into /; or [,,? The
former may be particularly interesting, as it will give a non-trivial lower bound on d(n, l;).

In inverting the KL-divergence, we showed that this can be done with distributions on n+1 clusters,
where the distribution for each point in the metric space is concentrated on its own cluster. Clearly
this is useless for clustering. It is interesting what can be said about this problem when the number
of clusters is bounded.



Chapter 6

Algorithmsfor stable problem instances

6.1 Introduction and definitions

In this chapter we try to develop efficient algorithms for optimization problem instances under the
assumption that the solution is “stable” or “distinct”. Our case in point in studying this notion is
the problem of data clustering. This problem is NP-hard in essentially any plausible formulations.
Nonetheless, many heuristics for clustering are successful in practice. When such heuristics fail to
produce a good solution, it is often because the data has no firm underlying structure that clearly
defines the “correct solution”.

Consider the points in the plane shown in Figure 6.1. The points in the left plot clearly define three
clusters, while those on the right do not. The definition of what is the correct solution in the latter
plot is likely to depend of the exact formalization of the problem. Similarly, small perturbation
of the points will probably lead to different “optimal” solutions, and there will tend to be many
solutions which are near-optimal.

Our motto in this chapter is: “Clustering is either easy or boring”. Put another way, we would
like to show that either an optimal solution can be found efficiently, or there’s a good excuse for
not finding it, namely, that in an informal sense the optimal solution is not well defined. We start
by giving a formal definition of the clustering problem, and what instances of it are considered
“stable”.

Definition 6.1.1. The input to the k-clustering problem is a graph G = (V, E), and a weight
function w : E — R. The objective is to partition V' into k£ subsets, Vi,...,Vk, such that
D ici Doueviwey; W(u, v) is maximized.

We say that a weight function w’ is a ~y-perturbation of w (for v > 1) if Ve € E, w(e) < w'(e) <
v - w(e).

An instance (G, w) to the k-clustering problem is ~y-stable if for all v-perturbations w’ of w, the
optimal partition of (G, w') is unique, and these partitions are all identical.

Note that ~-stability for every v > 1 is equivalent to G being k-partite.
In fact, there is only one perturbation, w’ that needs to be considered. Let Vi, ..., V} be an optimal
partition of (G, w). Itis not hard to see that in order to establish ~-stability it is enough to consider

65
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Figure 6.1: Good (left) and bad (right) instances of the clustering problem.

the perturbation w' that multiplies by ~ all edges which are internal to the V;’s.

We could have also allowed dividing some values of w by -, but for simplicity we do not. It is an
easy fact that ~-stability under this alternative definition is equivalent 2-stability under the previ-
ous one.

We are interested in the following questions:

1. Is there a -y such that there exists a polynomial time algorithm that solves correctly -stable
instances of the k-clustering problem (possibly, v = y(n))? If so, how small can ~y be taken?
Since this problem in NP-hard, the promise of stability is essential (if P = NP).

2. For values of - below this bound, how well can polynomial time algorithms approximate the
solution to ~y-stable instances, as a function of ?

3. For known approximation algorithms, can better approximation ratios be guaranteed when
the input is ~y-stable?

4. Given an instance to the k-clustering problem, is it possible to efficiently compute, or ap-
proximate, its stability? Is it possible to do so when the optimal partition is supplied as
well?

Another interesting question is how to efficiently sample ~-stable instances, in a non-trivial way.
This is necessary should we want to consider the above questions for random instances. It is
possible to generate a v-stable instance from an given instance (G,w) in the following way.
Let Vi,..., Vi be an optimal partition. Let w'(4,j) = w(i,j) if 4,5 belong to the same V}, and
w'(4,5) = v - w(i,7) otherwise. It is not hard to see that (G, w') is y-stable, and that all y-stable
instances are obtainable in this way. We do not know, though, how to generate “typical” ~y-stable
instances.

The concept can be applied to other combinatorial optimization problems. We focus on the 2-
clustering problem, more commonly known as the Max-Cut problem, in the section 6.2, and dis-
cuss the Vertex Cover problem and the Multi-way Cut problem in the section 6.3.
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6.2 Stable Max-Cut

6.2.1 Notation

The partition induced by v on [n], for v € R, is the partition ({i : v; > 0}, {7 : v; < 0}). If G isa
graph on n vertices, this partition is also called the cut induced by v in G.

The indicator vector of a partition (S, S) of [n] (or a cut in graph on [n]), is the vector v € {—1,1}",
withv; = 1iffi € S.

The weighted adjacency matrix corresponding to an input (G, w), is a matrix W indexed by the
vertices of the graph with W, ; = w(i, j). We generally assume throughout that w is a non-negative
function.

For a weighted graph G, we denote the indicator vector of its maximal cut by mc*. We generally
assume that this cut is unique, otherwise mc* is an indicator of some maximal cut.

For two disjoint subsets of vertices in the graph, A, B, E(A, B) denotes the set of edges going
between them. For a set of edges ' C E, denote w(F) = >, w(e). For asubset A C [n], we
denote A = [n]\A.

Let (G, w) be an instance of the Max-Cut problem. Let (S, S) be the optimal partition of V. We
say that (G, w) is y-locally stable if for all v € S

- Zw(u,v) < Zw(u,v),

u€es ues

and forallv € S

- Zw(u,v) < Zw(u,v),

ues uesS

It is known that Max-Cut is NP-hard even when it is y-locally stable (for ~ at most exponential in
the size of the input). In fact, one can easily “force” local stability:

Definition 6.2.1. Let G be a graph with weighted adjacency matrix W, and w the sum of the
weights of its edges. G* isa graph on V' x {0, 1}, with weighted adjacency matrix

x _ W w-I
G _(w-l W )

It is not hard to see that the maximal cut in G* is essentially two copies of that in G. Specifically,
(S, S) isamaximal cutin G iff (S x {0} US x {1}, S x {1} U S x {0}) is a maximal cut in G*.
It is also not hard to see that G is ~y-stable, iff G* is.

6.2.2 The Goemans-Williamson algorithm

The best currently known approximation algorithm for the Max-Cut problem is that of Goemans
and Williamson ([36]). It is based on a semi-definite relaxation of the problem, which we now
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describe. Ideally, we would like to solve the following problem:

.. 1 .
Maximize 3 Z w(i, 7)(1 — yiy,)
(1,5)€E
overy € {—1,1}".

Clearly, this is equivalent to minimizing Z(i’j)eEw(i,j)yiyj, over y € {—1,1}", or minimizing
> jyer Wiy Yi; over all {—1,1}-matrices Y that are positive semi-definite and of rank 1. Goe-
mans and Williamson’s algorithm relaxes the rank constraint, yielding a semi-definite program-
ming problem which can be solved efficiently. The approximation guarantee of their algorithm
is ~ 0.8786. However, they show that when the weight of the maximal cut is relatively big, this
guarantee can be improved. Namely, let R be the ratio between the weight of the maximal cut and
the total weight of the edges. Let h(t) = arccos(1 — 2t)/m. Then the approximation ratio is at
least h(R)/R.

It is not hard to see that when the input is very stable, the maximal cut is indeed relatively big. First
observe that ~-stability implies local ~-stability. Otherwise, multiplying the weights of all edges
(u,v), foru € S, by v, would make the cut (S\{v}, S U {v}) preferable to (S, S).

It follows that for ~y-stable instances the maximal cut weighs at least # of the total weight. Hence,

the performance guarantee of the G-W algorithm on ~-stable instances is at least (1 — O(%)).
The semi-definite program used in the G-W algorithm can be strengthened when the input is -
stable, by inequalities that express this stability. It is interesting whether these additional con-

straints can improve the approximation ratio further.

6.2.3 A greedy algorithm

We begin with an algorithm that gives an exact solution when the input is very stable. Since
the maximal cut is unique, its edges form a connected spanning bipartite graph. The algorithm
iteratively identifies sets of edges which are in the maximal cut, until they form such a graph.

FindMaxCut(G, w)

1. Initidize T = (V(G),0) Throughout the algorithm 7" will be a bipartite subgraph
of G.

2. While T is not connected, do:

(8 LetCh,...,C; betheconnected componentsof T'. Each of themisabipartite
graph, so denote V(C;) = (L;, R;).

(b) Let C;» be a component with the least number of vertices. For each j =
1,...,t, 9 79 1, let E? = E(Li,Lj) @] E(Ri,Rj) and .E]1 = E(Lz,RJ) @]
E(R;,Lj). Let j* and c* be such that the weight of E¢. is maximal among
al E.

J

(c) Addtheedgesof EF. toT

3. Output the cut defi ned by the two sides of T'.
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Lemma 6.2.1. The above algorithm is well defined, and outputs the correct solution on vnA-
stable instances of Max-Cut (where n is the number of vertices in the graph, and A the maximal
degree),

Proof: Let (S, S) be the maximal cut. We maintain that throughout the algorithm, for each con-
nected component C; = (L;, R;) either L, C Sor R; C S.

This clearly holds at the outset. If it holds at termination, the algorithm work correctly. So consider
the first iteration when this does not hold. Let C;- be a smallest connected component at this stage,
and denote £ = |C;«|. Up to this point our assumption holds, so either L;s C S or R« C S.
W.l.o.g. assume the former. Let j* and ¢* be those chosen as in step 2b. Since this is the point
where the algorithm errs, E¢. is added to T, yet E5. N E(S, S) =0.

Now consider the ~- perturbatlon of the graph obtalned by multiplying the edges in EC by . If the
original graph is y-stable, the maximal cut of the perturbed graph is (.S, S) as well. ConSIder the
cut obtained by flipping the sides of L;« and R;-. That is, denote Z = S\ L;» U R;+, and consider
the cut (Z, Z).

The cut (Z, Z) contains the edges ., which (S, S) does not. For each j # j*, let ¢, be such that
E 7 is in the cut (S, S) (we’ll be mterested only in non-empty subsets). In the extreme case, all
these edges are not in the cut (7, Z). Observe that all other edges in E(S, S) are also in E(Z, 7).
Define J ={j #1i: E 7 2 (}. Since the weight of (7, Z), even in the perturbed graph, is smaller
than that of (S, .5), we have that:

ES) <> w(E}

j€T
Recall that E5. was chosen to be the set of edges with the largest total weight. Hence, djesw (E]c.f) <
| J|w(EE), and so y < |J|. Clearly, | J| < min{%, KA}, and so:

N2 < %m — nA.

This is a contradiction to the assumption that the input is v/nA-stable. 1

Note that we have actually proven that the algorithm works as long as it can find a connected
component C;-, such that |{j : Ef # 0} <, forc =0, 1.

6.2.4 A spectral algorithm

Recall that the semi-definite algorithm of Goemans and Williamson relaxes the problem:

min . 1) Ys Y
ye{-1,1}» Z wli- vy
(1.J)EE

to
min _1 Z Wi ;Y.

YEPSD Y;,;
(i,j€E
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Rather than relaxing the rank constraint, consider the relaxation of the condition y € {—1,1}", to
y € R, ||y||> = n. By the variational characterization of eigenvalues, this relaxation amounts to
finding the eigenvector corresponding to the least eigenvalue of V.

In the most general setting, a cut is obtained from such a vector by choosing a threshhold 7, and
partitioning the vertices according to whether the corresponding entries in y are greater or lesser
than 7. This technique is sometimes called spectral partitioning. Here we always take 7 = 0:

Definition 6.2.2. Let W be an n x n matrix. Let A be its least eigenvalue, and « the corresponding
eigenvector. The spectral partitioning induced by W is the partition of [n] induced by u.

Lemma 6.2.2. Let W be the weighted adjacency matrix of a y-stable instance of Max-Cut. Let D
be a diagonal matrix, and « an eigenvector corresponding to the least eigenvalue of W + D. If

> %M then the spectral partitioning induced by W + D yields the maximal cut.
Proof: For any diagonal matrix D, think of W + D as the weighted adjacency matrix of a graph,
with loops added. These loops do not contribute to the weight of any cut, so for any D, a cut is
maximal in W iff it is maximal in W + D. Furthermore, it is not hard to see that W' is ~-stable, iff
W + D is.
Let D be a diagonal matrix, and u an eigenvector corresponding to the least eigenvalue of W + D.
For the lemma to be meaningful, assume that u has no 0 entries. Normalize u so that min; j)e g u; -
uj = 1. Let D’ be the diagonal matrix D;; = D;; + u;. Let W' be the matrix W} ; = W, ; - |u;u;].
Observe that W' is a y-perturbation of W, hence the maximal cut in W', and in W' + D', is the
same as in W. In other words, mc* is a vector that minimizes the expression:

min zAzx.
ze{-1,1}"

Note that since W is stable, the maximal cut is unique. Let y be the indicator vector for the cut
induced by u. Assume for contradiction that mc* # y, —y. Let v be the vector v; = |u;|mc].
Observe that:

mc* (W' + D' Ymc* < y(W'+ D)y

mc* (W' + D'Ymce* = v(W + D)v

y(W'+ D"y = u(W + D)u.
This implies u(W + D)u > v(W + D)w, which is a contradiction, since ||u|| = |[v||, and u
minimizes the expression min, g~ ZWH2)Z g

[l

Note 6.2.1. In fact, a somewhat stronger result can be proven. It suffices that

MaX (G, eE : ujuj<0 —UiUj

Y2
MING H)EE : usu; >0 Uity
It remains an intriguing question whether a large enough ~ entails the existence of such a diagonal
matrix D, and how to find it efficiently. We present some experimental results in section 6.2.7, and
conclude this section with one special case where D can be found efficiently.

Lemma 6.2.3. Let W be the weighted adjacency matrix of a Max-Cut instance. Define a diagonal
matrix D by D;; = mc; >, W; jmce;. If W + D is positive semi-definite, then the maximal cut in
W can be found efficiently.
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Proof: It is easy to see that mc* is an eigenvector of W + D corresponding to eigenvalue 0.
As W + D is positive semidefinite, 0 is the least eigenvalue of W + D, so this is indeed a
special case of the assertion in Lemma 6.2.2. Let ¢ be such that tr(D + ¢I) = 0 (in other
words, ¢ = —tr(D)/n). The eigenvectors of W + D and W + D + cI are the same, and, in
particular, mc* is the eigenvector of W + D + cI associated with its least eigenvalue. Denote
m = mc*(W + D + cl)mc* = mc*Wmc*. This is the value we wish to compute.

Consider the following optimization problem: Let A be the set of all positive definite matrices A
such that A; ; = W;; for i # j, and tr(A) = 0. Find an A € A such that its least eigenvalue of is
maximal. Denote this value by m/'.

Forany A € A, me*Amc* = m, so the least eigenvalue of any such A its least at most ™. Thus,
m' < ™. However, W + D + ¢l € A, and its least eigenvalue is exactly ™, so m' = .
Grotschel, Lovasz and Schrijver [37, 38] show that the ellipsoid algorithm solves convex optimiza-
tion problems under very general conditions. Delorme and Poljak ([22] observe that this applies
to the above optimization problem (this essentially already appears in [15] as well). In particular,
we can compute m, and from it, the value of the maximal cut. If the solution to the optimization
problem is unique, we can also get D and mc* from it. This uniqueness can be achieved by making

minute perturbationsin W. 1

6.2.5 Distinctness and spectral stability

So far our way to make the motto “Clustering is either easy or boring” explicit was by saying that
if the optimal solution changes under y-perturbations, then it is not interesting.

Next we study the notion of a distinctness of a solution. Intuitively, we want the optimal solution
to be significantly better than all other solutions. However, one can modify the optimal cut by
switching the position of only few vertices, and the value of the cut will not change much. Thus,
for the definition to be non-vacuous, we should consider the drop in the weight of the cut as a
function of the (Hamming) distance from the maximal cut. This distinction is reminiscent of the
difference between graph connectivity and expansion.

For simplicity, we restrict the definition to d-regular, unweighted graphs:

Definition 6.2.3. Let C' C E be the set of edges of a cut in a d-regular graph G,andT" C V. The
relative net contribution of 7" to the cut is:
po(T) = Hee (T xT)YNCY —|{ee (T xT)n(E\O)}|
¢ dmin{|T|,n — |T} '

Let C* C FE be the set of edges in a maximal cut of G. We say that it is p-distinct, if forall T C V,
pc-(T) = p.

In this section we show that if a graph is highly distinct in this sense, spectral partitioning works:

Theorem 6.2.1. Let C* C E be the set of edges in a maximal cut of d-regular graph G. Assume
that this cut is p - distinct, and, furthermore, that for all v € V, pc: ({v}) > «. If

2
P
—>1

a+10
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then the maximal cut can be found efficiently.

In proving the theorem, it is worthwhile to consider yet another definition of stability.

Definition 6.2.4. Let (G, w) be an instance of Max-Cut with a unique optimum, and W its weighted
adjacency matrix. Let \; > XAy > ... > A, be the eigenvalues of W. (G, w) is called (e, )-
spectrally stable (for0 < e < 1,~v > 1)if:

1. (G, w) is y-locally stable.

2. )\n—l = 6)\n.

An Intuitive reason to require a gap at the lower end of the spectrum is that by Lemma 6.2.2 the
eigenvector corresponding to the least eigenvalue might suggest a good cut. If the two smallest
eigenvalues are close, we get two “good suggestions”. Spectral stability rules out this case.

Lemma 6.2.4. Let (G, w) be an (e, v)-spectrally stable instance of Max-Cut, and W its weighted
adjacency matrix. Let § be the minimal row sum in W, and \,, be W’s least eigenvalue. If

v—1 1 1
— > (1 An|l = =|A Ay
Y1 2( +6)‘ n| 2‘ n T An 1|

then there is a diagonal matrix D such that the spectral partitioning induced by W + D coincides
with the maximal cut. Furthermore, such a matrix D can be found efficiently.

For example, if all the row sums in W are the same, then g > 1. In this case, the requirement in
the lemma regarding the tradeoff between the spectral gap and the local stability is:

6<’Y—_3.
v+1

In proving the lemma, we’ll need the following observation:

Claim 6.2.1. Let \; > Xy > ... > )\, be the eigenvalues of a real symmetric matrix W, such
that \,_; = e\,, forsome 0 < ¢ < 1. Let z,y € R™ be two orthogonal unit vectors. Then
Wz +yWy > (14 €)\,.

Proof: Let u be a unit eigenvector of 1 corresponding to eigenvalue \,,. Denote zll =< z,u > u,

o+ =z — 2ll, and similarly y!l and y=.

Note that ||z + y||> = ||z||* + ||y||* = 2. Thus,
2|+ [yl =< z,u >+ < yu>=<z+yu>< |z +yl[|Ju]| = V2.
It follows that:

sWr+yWy = (2l + 25wl +24) + @ + yH Wl +t)
> Ma(ll21? + 11y"112) + At ([l 2 + [y |1?)
= Aa(llz]? + 111> + ellz*[|* + elly ).
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Denote a = |[2!|2, and so ||y!l]|2 < (V2 — y/a)?. As e < 1, we have that:

Wz +yWy > Mo+ (V2= Va) +e(l—a)+e(l - (V2 - Va)?)
= 2X(1+a—v2a+e(V2a - a)).

Taking the derivative and comparing to zero, we get that this expression is maximized for o = 3,
giving the claim. I

Proof: (Lemma 6.2.4) Let 5 = —§/\,. Let D be a diagonal matrix with D, ; = mc; Z]. Wi jmc;.
From local stability, this is at least 7—:&5, hence this is also a lower bound on all of D’s eigenvalues.
Note that mc* is an eigenvector of W + D, corresponding to eigenvalue 0. Let z and y be two
(orthogonal) unit eigenvectors of W + D corresponding to the two smallest eigenvalues of W + D.
Since 0 is an eigenvalue of W + D, at least one of these two eigenvalues is not positive, say, the
one corresponding to z. In particular, (W + D)z < 0, or

y-ls -1
y+1  y+1

By Claim 6.2.1, yWy > (1 + € — 53—:&))\71- But the eigenvalue of W + D corresponding to y is
given by:

Wz < —xDx < — BAn.

v—1 y—1
W+D)y > (14+e—B—)\,+—6
y( Jy > (1+e€ ﬂ7+1) P

v—1
( ‘ B7+1)

Since 0 is an eigenvalue of W + D, it must be the least one. Recall that mc* is the eigenvector of
W + D corresponding to this value, as claimed in the first part of the lemma. The second part now
follows from Lemma 6.2.3. |

As noted above, the concept of “distinctness” is close in spirit to edge expansion (cf. [9]) in a
graph. Indeed, the connection between edge expansion and spectral gap shows that distinctness
implies spectral stability.

Lemma 6.2.5. Let C* C E be the set of edges in a maximal cut of a d-regular graph G.2 Assume
that this cut is p - distinct, and, furthermore, that for all v € V', p¢- ({v}) > a. Suppose £ + 3 —
3>0.ThenGis (4 — % — 3o, TF2)-spectrally stable.

Proof: The fact that Vo € V, pc-({v}) > «, is equivalent to the local stability being at least 2.
It remains to show a spectral gap.
The Cheeger constant of a d regular graph is defined as:

. Hee (TxT)NEY
he =
¢ reviiniss dIT|

Clearly, hg > p. The Cheeger constant is related to the spectral gap between the first and second
eigenvalues of G. Namely, letd = Ay > Xy > ... > ), be the eigenvalues of G, then (see e.g.
[48]):
h2
&S(L-é%d (6.1)
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Let A be the adjacency matrix of G, and w’ € R" a unit vector such that < w',1 >= 0,
< w',mec* >= 0, and w'Aw" < A, ;. Such a vector can be constructed by taking a linear combi-
nation of the eigenvectors of A which correspond to eigenvalues A, and A, ;. Define w € R" to
be the vector obtained by point-wise multiplication of w’ and mc* (i.e. w; = w; - mc;). Note that
||w|| = |Jw'|| = 1. Since < w', T >= 0 and < w’, mc* >= 0, it follows that < w, I >= 0 as well.
Consider the graph H induced by the edges E\C*. It has maximal degree 12d, hence its least
eigenvalue is at least —152d. Let B be the adjacency matrix of H. In particular, w'Bw' > —15%d.
By the definition of w,

wAw = w'Bw' — w'(A — B)w' = 2uw'Buw' —w'Aw' > -\, 1 — 2(1 — a)d.
By the variational characterization of the second eigenvalue,

TAx

2~

Ay = max wAw,

z:<z,I>=0 Hx‘

and so:
)\n,1 2 _AQ - 2(1 - Oj)d
By the Cheeger inequality (6.1),
h2
Aot > (7(3 + 2a — 3)d.

Using the variational characterization again, we have that

A, < % < —od.
[|me*||
Thus, as p < hg and A\, > —d,
h2 p2
A1 — Ap > (76‘ +20—3+a)d > (5 +3a — 3)| Al

Hence,

)\n—l :02

<4- -
N, STy s
|

A straightforward calculation shows that Lemmatta 6.2.4 and 6.2.5 imply Theorem 6.2.1.

6.2.6 Random graphs

Consider the following model for random weighted graphs. Let P be some probability measure on
[0, 00). Generate a matrix W' (a weighted adjacency matrix), by choosing each entry W/, i < j,
independently from P. Set W;; = Wj, for i > j, and W;; = 0. Let C be the set of edges in

the maximal cut of W (for “reasonable” P’s, this will be unique w.h.p.). Set W; ; = ~ - W}, for
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(i,7) € C.

Itis easy to see that W is indeed ~y-stable, yet for certain probability measures the problem becomes
trivial. For example, if P is a distribution on {0, 1}, the maximal cut in W simply consists of all
the edges with weight .

An even simpler random model is the following. Take n even. Generate an n x n matrix W' as
above. Choose S C [n], |S| = n/2 uniformly at random. Let C be the set of edges in the cut
(S,S). Set Wy ; = - W/, for (¢,5) € C. Denote this distribution G(n, P, ~). For an appropriate
v, Ww.h.p. (S, S) will be the maximal cut in . This random model is close to what is sometimes
known as “the planted partition model” ([18, 15, 25, 42, 20, 27, 54, 64]).

In this section we show that w.h.p. the maximal cut of graphs from this distribution can be found
efficiently. Our technique follows that of Boppana in [15].

Theorem 6.2.2. Let P be a distribution with bounded support, expectation x and variance o2.
There exists a polynomial time algorithm that w.h.p. solves Max-Cut for G € G(n, P,~), for

y=1 +Q(\/@).

The theorem follows from Lemma 6.2.3 and the following one:

Lemma 6.2.6. Let P be a distribution with bounded support, expectation x and variance 2. Let
G € G(n, P,v), and S the subset chosen in the generating G. Let mc € {—1, 1}" be the indicator
vector of the cut (5,5). Let D be the diagonal matrix defined by D;; = mc; Y-, Wi ymc;. If

v > 14 Q(y/E2), then w.h.p.:
1. mc is the indicator vector of the maximal cut in G.
2. W + D is positive semi-definite.

The key element in the proof is the following result of Firedi and Komlés:

Theorem 6.2.3. ([34]) Let a,, ¢ < j be independent random variables with values in [—- K, K],
expectation 0 and variance < o?. Let A be a matrix with 4;; = A;; = a;;, fori < j. Let
A1 > ... > )\, beits eigenvalues. Then w.h.p. max|)\;| < 20v/n + O(Kn'/3logn).

Proof: (Lemma 6.2.6) Let W', W and S be as in the definition of G(n, P, ). Define matrices A,
B, C4 and Cp by

4. = {W{,j—u if icS, jeSorjesS,icS
N

0 otherwise
B.. — Wij—nu ifi?éjESO_ri#ng
" 0 otherwise
(Ca)iy = 4 H ifiecS, jeSorjesS, iel
AT 0 otherwise

Cpis = L if i£jecSori#£j;¢€8S
Blij = 0 otherwise

Let D4 and Dy diagonal matrices defined by (D4);; = sun >>; Aijand (Dp)i; = Tun >, Bij.
To clarify these notations, observe that W' = A+ Cy+ B+ Cp, W =y(A+ C4) + B+ Cpand
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D =~vD4 — Dg. We need to prove that W + D is, w.h.p., positive semi-definite.

It is not hard to verify that the eigenvalues of C'4 are —1 un and ; un, each with multiplicity 1, and
0 with multiplicity n — 2. The eigenvalues of C'g are —u with multiplicity n — 2, and %,un with
multiplicity 2.

As D, and Dg are diagonal, their eigenvalues are simply their diagonal entries. By the Chernoff
bound, with probability at least 1— % every such entry deviates from %,un by at most O(o+/nlogn).
By the Furedi-Komlos theorem, the absolute value of all eigenvalues of A and B is, w.h.p., bounded
by 20v/n + O(n'/3logn).

Letz L mc be a unit vector. We shall show thatw.h.p. 0 < x(W + D)z = v -2(A+Ca+ Dy)x+
Observe that mc is an eigenvector of C4 corresponding to eigenvalue —%,un. Hence xCyz > 0,
and w.h.p.

1
2Y(A+ Ca+ Dp)x > 7(§,Lm — O(oy/nlogn)),
since xAx and x D 4z are no less than the least eigenvalue of A and D 4, respectively.
Similarly, w.h.p. (B + Cg — Dg)z > —Lun — O(oy/nlogn). Asy =1 + O(1/™52), we get
that w.h.p. (W + D)z > 0.

It remains to show that w.h.p. mc is indeed an indicator vector for the maximal cut in W. Assume
that indeed W + D is positive semi-definite. Let u € {—1,1}" be the indicator vector for the
maximal cut in W, and assume for contradiction that © # mc. In particular, since the maximal
cut is unique (W is vy-stable) ulWu < meWme. Since uDu = meDme = tr(D), u(W + D)u <
me(W 4+ D)me. However, mc as an eigenvector of W + D corresponding to the least eigenvalue.
Since ||u|| = ||mc||, w(W + D)u > mc(W + D)mec, a contradiction. 11

Note 6.2.2. More generally, the distribution P may depend on n. Let P be a distribution on
[0, K + p], with expectation p < K and variance 0. Then Lemma 6.2.6 holds if

logn logn

_ —1
,Y_ 1+Q(/’L (U n n_g/g)'

Even more generally, the lemma holds for the following model. Choose S and define C' as before.
Choose the edge weights independently at random from distributions with variance at most o2, and
expectation yu for e € C, and u for e ¢ C. With «y as above, the lemma holds.

6.2.7 Experimental results

In this section we present results from computer simulations. We test variations on the spectral
partitioning method to seek the maximal cut, and see how well they perform as a function of
stability.

The weighted graphs in the simulations were generated in the following way. For each edge, a
value x was sampled independently from a standard normal distribution, and the weight was taken
as |z|. We chose to use normal, rather than uniform, distribution, to allow for some very big
weights. In practice, we performed these experiments using Matlab (version 6).
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The results from the simulation are depicted in Figure 6.2. Six variations on spectral partitioning
were used, as described below. The basic idea behind all of them is inspired from Lemma 6.2.2.
We choose random values for the diagonal (from a standard normal distribution), and look at the
eigenvector corresponding to the least eigenvalue of the resulting matrix. We repeat this 1000
times, obtaining 1000 vectors, which we denote vy, ..., vi900. We denote by wuq, ..., u1g0 the
corresponding sign vectors (i.e. (u;); = sign(v;);).
The last 3 methods described here rely on edge contraction in a weighted graph, where the weights
may be negative. Contracting an edge of a weighted graph W on n vertices yields a weighted
graph W' on n — 1 vertices in one of two ways.
A separating contraction encodes keeping the two vertices on different sides of the cut. In this
case, for each k£ # i, j we define Wy, = Wy, = Wi, — Wj,. A juxtaposing contraction encodes
keeping the two vertices on the same side of the cut. In this case, for each k& # i, j we define
ik = Wy, = Wix + Wi Inboth cases we also assign weights to the vertices (the diagonal in
W), which encodes the weight of the contracted edges, and thus define W, = W;; + W ; + W ;.
and W;; = W; + W; ; — W; ;. Finally, in both cases we remove the j’th row and column from the
matrix, and keep all other entries as in W.
The six algorithms tested are the following:

1. All, best: For each 4, consider the cut induced by v;. Take the best cut. As can be expected,
this method outperforms the others. Even for stability 1, it found the optimal cut in 2558 of
the 2600 graphs. For stability 1.12 and higher, the optimal cut was missed in only one or two
graphs.

2. All, val; All, sign: Both these methods use an average of the generated vectors to construct
a cut. The first outputs the cut induced by sign > v;, and the second the one induced by
sign > u,;. As can be seen in Figure 6.2, both methods performed equally well, and their
average success ratio is essentially identical. In fact, it is essentially impossible to discern
between the two plots in the figure for stability > 1.

3. Edge, val: This method iteratively contracts one edge. At each iteration 1000 random
diagonals are generated, and from them 1000 vectors v; as above. The algorithm then looks
at the vector z = ) _ v;, and contracts the edge (¢, j) such that |z;z;| is maximized. If z;z; <0
a separating contraction is performed, otherwise a juxtaposing one.

4. Edge, sign: This method iteratively contracts one edge as above. rather than looking at
> v, itlooks at )y u;.

5. Edge, big: This method is a greedy algorithm. It does not look at the wv;’s, but, rather,
serves as a baseline to measure how well the spectral methods perform in comparison with
this “trivial” algorithm. The algorithm contracts edges one by one, each time choosing the
one with the largest absolute value. If the weight is positive, a separating contraction is
performed, otherwise a juxtaposing one. Perhaps surprisingly, it outperforms the algorithms
described in (2) and (4) above.

This was carried out for 2600 random weighted graphs on 10 vertices, and repeated 11 times, for
values of stability growing from 1 to 1.2 by increments of 0.02. A graph was made ~y-stable by



78 CHAPTER 6. ALGORITHMS FOR STABLE PROBLEM INSTANCES

Success for 2600 random graphs, 1000 iterations

e~ — All, val
— All, sign
= = Al best
= FEdge, val
1= Edge, sign
1 Edge, big

0.7} - 1

Success ratio

0.6 , b

0.5 b

0.4 b

|
1 1.02 104 1.06 108 11 112 114 116 118 1.2
Stability

Figure 6.2: Success ratio in identifying the maximal cut as a function of the cut’s stability.

multiplying the edges in the maximal cut by ~.

6.3 Other problems

In this section we exemplify how to generalize the greedy algorithm in section 6.2.3 to two other
combinatorial optimization problems, Vertex Cover and Multi-way Cut. As before, the input is
a graph and a weight function over the edges or the vertices. A solution is either a subset of the
vertices or of the edges. An instance is ~y-stable, if for all v-perturbations of the weight function,
the solution is identical.

6.3.1 Vertex Cover

The input to the Vertex Cover problem is a graph with weights over the vertices. The goal is to find
a subset of vertices that intersects all edges, and has minimal total weight. Denote by VC'(G, w),
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the optimal solution to this problem for input (G, w) (for simplicity assume it is unique). The
following algorithm finds the optimal cover if the instance is stable enough:

FindVertexCover (G, w)
1. Initidize Uy, Uy = 0.
2. While U; doesnot intersect all edgesin G:
(8) Choosew avertex of maximal weightin V\ (U, U Uy).
(b) Addw to Up.
(c) Addall of v'sneighborswhicharein V\(Ug U Uy) to Uy.

3. Output U .

Lemma 6.3.1. Let (G, w) be a ~-stable instance to the Vertex Cover problem, with  at least the
maximal degree in G. Then the above algorithm outputs the optimal solution.

Proof: Let S be the optimal solution. We show by induction that throughout the run of the algo-
rithm, U; € S C V\Up.

When Uy, U; = () this is trivial. Suppose the claim holds until a vertex v is chosen in step 2a. Let
H be the subgraph of G spanned by V'\ (U, U U;). Denote by w|y the restriction of w to these
vertices. Clearly the maximal degree in H is at most . Note that all edges in G\ H intersect some
vertex in Uy, so by the induction hypothesis, VC(H, w|y) = S\Ux.

It is not hard to see that (H,w|y) is also v-stable: If w’ is a y-perturbation of w|y that leads to
a different solution, then its extension to G by identifying it with w over the vertices in U is a
~-perturbation of w that contradicts the stability assumption.

Denote the neighbors of v in H by N. If N = (), then clearly v ¢ VC(H,w|x), and we are done.
So assume for contradiction that |N| > 0 and v € S. By our assumption on -y, | N| < ~. Consider
w', the ~y-perturbation of w| g that multiplies the weight of v by +, and is identical to w| g otherwise.
Clearly, SUN\{v} is acover of the edges. As v has maximal weight, v-w(v) > |N|-w(v) > w(N).
Thus, w'(S U N\{v}) < w'(S), in contradiction with (H, w|g) being ~-stable.

We conclude that v ¢ S. But as all its edges need to be covered by some vertex in S, it must be
the case that V C S. Hence, the induction hypothesis continues to hold after steps 2b and 2c. I

6.3.2 Multi-way Cut

The input to the Multi-way Cut problem is a graph G' with weights over the edges, and an inde-
pendent set of vertices, 7. The objective is to find a set of edges with minimal weight, such that
their deletion disconnects every vertex in 7" from all the others. A greedy algorithm gives an exact
solution for stable instances:
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FindM ultiwayCut(G, w)
1. Initialize F' to be a graph with no edges over the vertex set of G.

2. While E\F isnot aminimal (i.e. there'san E' ¢ E\F, which isaso a multi-way
cut) do:

(8 Let(Ch,...,C; bethe connected components of F' which are not verticesin
T. Let E; ; bethe subset of edges between C; and C.

(b) Let:* besuchthat C;« containsthe least number of vertices. Let j* be such
that the weight of E;- ;- is maximal among all E;- ;.

(c) Addtheedgesof E;- ;- to F

3. Output E\F'.

Lemma 6.3.2. For v/nA-stable instances of Multi-way Cut (where 7 is the number of vertices in
the graph, and A the maximal degree), the above algorithm outputs the correct solution.

Proof: The structure of the proof is very similar to that of Lemma 6.2.1. Let M be the set of edges
composing the optimal solution. We show by induction that throughout the run of the algorithm,
Fn M = (. When F contains no edges, this holds trivially. Assume that the claim holds up to a
point where there are ¢ connected components in 7', the smallest of which contains & vertices. Let
i* and j*, be as in step 2b of the algorithm. So |Cy+| = k. Let J = {j # j* : E;» ; # 0}.

Consider an edge e = (u,v) € E;» j» (u € Ci=,v € Cj+). Assume for contradiction that e € M.
We first show that if this is the case, then E;. ;- C M. From the minimality of M, there are
t1,to € T, such thatin (E\M) U {e} there’s a path p from ¢, to ¢,. W..0.g. assume that it crosses
e once, and from  to v. Let (u',v’) be some other edge in E;- ;-. Consider the path p' from ¢;
to t,, defined as follows. It proceeds from ¢; to u in the same way p does (using no edges of M).
It then proceeds from u to «' using edges in F'. This can be done since both are in the connected
component C;= of F. By the induction hypothesis, this part of p’ is also not in M. Then p’ goes
from u' to o', from v’ to v using edges of F', and from v to ¢, in the same way that p did. Note that
the latter two parts do not use edges in M. As t; and ¢, are disconnected in E\ M, it must be the
case that (u',v") € M. Hence, Ej« j« C M.

Define w' as the -perturbed weight function obtained from w by multiplying the weight of the
edges in E;- j« by v. Define M' = M\E; j« U (UjesEi» ;). Since TN Cy« = (0, M' is also a
multi-way cut. Hence, if the input is y-stable,

v w(Ei ) < w(Ujes B ).

As E;- ;- was chosen to be of maximal weight, this implies v < |J|. Clearly, |J| <t —2,kA. In
particular, as tk < n, v? < tkA < nA. This is a contradiction to the assumption that the input is
vnA-stable. 1



Chapter 7

Extensions of Hoffman’s bound

7.1 Introduction

7.1.1 Hoffman’sbound

Let G be a graph on n vertices, x its chromatic number, and A its adjacency matrix. Let A; and \,,
the largest and least eigenvalues of A. A theorem of Hoffman [39] states that:

A
>1—-—.
X Z A,
The first result in this chapter is a new proof for this bound. We prove, in fact, the following
strengthening of it (which also follows from Hofmman’s original proof):

Theorem 7.1.1. [39] Let G be a graph. Let W # 0 be a symmetric matrix such that W; ; = 0

whenever (i, j) ¢ E. Let A\; and )\, be the largest and least eigenvalues of . Then x(G) > 1_3\7'

7.1.2 Thevector chromatic number

Karger, Motwani and Sudan [44] define a quadratic programming relaxation of the chromatic num-
ber, called the vector chromatic number. This is the minimal & such that there exist unit vectors
Ui, ..., U, €R™ with:

< Ujy Uj > ———,

u u] E—1
whenever (i, j) is an edge in the graph.
Let x, denote the vector chromatic number of G. Karger, Motwani and Sudan observe that x, < x.
In this chapter we show that Hoffman’s bound holds for this parameter as well:
Theorem 7.1.2. Let G be a graph. Let W # 0 be a symmetric matrix such that W; ; = 0 whenever
(1,7) & E. Let \; and \,, be the largest and least eigenvalues of 1¥. Then
At

J(G)>1— 2L
Xo(G) > N

81
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7.1.3 The-covering number

Let ¢) be a graph parameter, such that ¢/ = 1 on graphs with no edges, and for every graph G,
¥(G) > x(G). The 1-covering number of a graph G was defined by Amit, Linial and MatouSek
[12] to be the minimal & such that there exist £ subsets of G, Sy, ..., Sk so that for every v € G,
Zz’ 1 vES; m 2 L.

They show that this value is bounded between /x(G) and x(G), and ask whether better lower
bounds can be proven when ¢(G) = dgn(G)+1 (the degeneracy of G + 1), and ¢(G) = A(G) +1
(the maximal degree in G + 1).

To state our result, we’ll need a couple of ad-hoc definitions:

Definition 7.1.1. A graph G has c-vertex cover if there exists a cover E(G) = Uicy () E; such that
foralli e V(G), E; C{e€ E : i €e},and |E;| < c.

Denote by L, ,(G) the minimal £ such that there exist £ subsets of G, Sy, ..., S, so that for all
i=1,...,k G[Si| has a a - 4(G)-vertex cover, and for every v € G, 3=, s, yamsy > 1
Observe that all graphs have a ¢ (G)-vertex cover for /(G) = dgn(G) + 1, and a 3¢ (G)-vertex
cover when ¢(G) = A(G) + 1. So in these cases, L, ; and L, 1, respectively, are exactly the
1-covering numbers.

Note also that « = 0 means that the S; are independent sets. Thus, since v» = 1 on such sets,

L,lp,() =X

Theorem 7.1.3.

d— A\,

200 — N\,
where )\, is the least eigenvalue of G, and d the average degree.

Lw,a (G) 2

Note that when the graph is regular and . = 0, this is the same as Hoffman’s bound.
For random d-regular graphs, |\,| = O(v/d) and x = @(lo‘gid). So in this case (if « is taken small)
the bound is slightly better than ,/x mentioned above.

7.1.4 The A-clustering number

Finally, we are interested in a graph parameter that has to do with how well a graph can be parti-
tioned into sparse clusters:

Definition 7.1.2. Let W be a weighted adjacency matrix of a graph G. A partition V' = Uleci IS
a A-clustering of GG into & clusters if

max A (C;) < A,

i€[k]
where \; (C;) is the largest eigenvalue of the sub-graph spanned by the vertices in C;.
The A-clustering number of G is the minimal £ such that there exists a A-clustering of G into k&
clusters.
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It is not hard to see that the 0-clustering number is identical to the chromatic number.

For example, let G be a weighted graph with Zj W;,; =dforalli =1,...,n, which is y-stable
for the k-clustering problem (see Chapter 6). Let 4, ..., C} denote the optimal solution. From
~-stability it follows that for each ¢, and each v € C}, the maximal weight of edges emanating from

v to neighbors in C; is at most 3:& - d. The maximal row sum is an upper bound on the spectral

radius, and so A, (C;) < %-d. Hence, for such instances, for A\ > g;—}-d, the A-clustering number
is at most k.
We show that Hoffman’s bound can also be extended to this graph parameter:

Theorem 7.1.4. Let W be a weighted adjacency matrix. Let A\; and A, the largest and least
eigenvalues of /. The A-clustering number of the graph is at least:

A1 — A
A=A,

7.2 Vectorial characterization of the least eigenvalue

The proofs of the four theorems mentioned in the previous section rely on the following observa-
tion:

Lemma 7.2.1. Let A be a real symmetric matrix and \,, its least eigenvalue.

Zn Ai,j <V, V5 >

Ap = min ==L (7.1)
>ica |vill3
where the minimum is taken over all vy, ..., v, € R".

Proof: By the Rayleigh-Ritz characterization, \,, equals

min E Ai,jmixj
]

st. zeR"”

[lzfl2 = 1.

Denote by PSD,, the cone of n x n positive semi-definite matrices. For each unit vector x € R",
let X' be the matrix X ; = x;z;. This is a positive semi-definite matrix of rank 1 and trace 1, and
all such matrices are obtained in this way. Hence, A, equals:

min ZAZ,]XZ,]
]

st. X ePSD,
rank(X) =1
tr(X) = 1.
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However, the rank restriction is superfluous. It restricts the solution to an extreme ray of the cone
PSD,, but, by convexity, the optimum is attained on an extreme ray anyway. Hence, \,, equals:

min ZAZ,JX%J
6.J

st. X e€PSD,
tr(X) = 1.

Now, think of each X € PSD,, as a Gram matrix of n vectors, vy, ..., v, (i.e. X;; =< v;,v; >).
An equivalent formulation of the above is thus:

min ZAi’j <V, V5 >
i,J
st. v, €R" fori=1,...,n

n

> lills = 1.

=1

Clearly, this is equivalentto 7.1. |

7.3 Proofs of the theorems

7.3.1 A new proof of Hoffman’sbound

We start by proving the strengthening of Hoffman’s bound [39] stated in Theorem 7.1.1. Let G be
a graph on n vertices with chromatic number x. Letc: V' — [x] be a x-coloring of G. Let W # 0
be a symmetric matrix such that ; ; = 0 whenever (i, j) ¢ E. Let A; and )\, be the largest and
least eigenvalues of .

By Lemma 7.2.1, any choice of n vectors gives an upper bound on \,,. We now choose particular
Vvectors, vy, ..., v,. Letus, ..., u, € S™ be the vertices of a regular (x — 1)-dimensional simplex
centered at the origin. In other words, < u;, u; >= —ﬁ fori # j, and ||us||2 = 1. Leta € R”
be an eigenvector of W, corresponding to ;. Set v; = o - uc().

For 7 and j such that ¢(i) = ¢(j) (i.e. v; and v; are on the same line), W, ; = 0. Hence, by Lemma
7.2.1,

A g Wijouay <wguj > 1 35 Wijoiey
t > im0 - w3 x—1 ol
1 odWa 1

= - - W
x—1 [laf? x—1

Equivalently, x > 1 — 4%, as claimed. 1
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7.3.2 Extending Hoffman’sbound to vector coloring

We now prove Theorem 7.1.2. Let G be a graph on n vertices with vector chromatic number .
Let W # 0 be a symmetric matrix such that W; ; = 0 whenever (4, j) ¢ E. Let A\; and ), be the
largest and least eigenvalues of W.

Again we choose vectors vy, .. ., v,, and look at the bound they give on A,,. Let uq,...,u, € S™
be vectors on which the vector chromatic number is attained. That is, < u;, u; >< —le_l for
(1,7) € E, and ||us|ls = 1. Let & € R™ be an eigenvector of W corresponding to A;. Set
V; = O * Uy,

Since W; ; = 0 whenever < u;, u; > > ———, by Lemma 7.2.1,
< 2 Wijoucyy < ui, uj > c__ L 2y Wijaiaj
" Yhe? B T -1 Y0l
1 o'W 1
= - ) a = — . )\1.

Xo— 1 |laff? Xo— 1

Equivalently, x, > 1 — £+, as claimed. 1

7.3.3 Extending the bound to ¢-covering numbers

In this section we prove Theorem 7.1.3. Denote k = Ly, ,(G), and let uq, ..., u; be the vertices
of the regular £ — 1-dimensional simplex centered at 0 - i.e. < u;,u; >= 1 when¢ = j and k_—_ll
otherwise. Again we choose vectors v+, . .., v,. We do so probabilistically. Let S,..., Sy be the

subsets attaining the value k. For each ¢, v; will be chosen from among the u;’s such that i € S
Specifically, let h; = Z] ics; w(S) The probability that v; is chosen to be u; is p; ; = h; ' (5 7
J

Note that 2, > 1, and so p; ; < (there is a slight abuse of notation here - by v(S;) we refer

to (G[S;]).)

Say that an edge is “bad” if both its endpoints are assigned the same vector. For a given j, the
probability that an edge (i,¢") € E(S;) is “bad” because both endpoints were assigned to u; is
pi ;P j. Thus, the expected number of “bad” edges is at most:

k
D D Pupes:
7j=1

(i,4')EE(S;)

Each S; has a o - 9(G)-vertex cover E(S;) = UE}. Summing the expression above according
to this cover (some edges might be counted more than once) we get that the expected number of
“bad” edges is at most:

ZZ > pupig < ZZM Zzpz,a_az S py=an

Jj=14€S; ¢ : (“)EEZ j=11€S; j=11€S; 1€G j 1 1€S;

In particular, there is a choice of v;’s such that the number of “bad” edges is at most this value. As-

sume this is the case. If (i, j) € E(G) isa “bad” edge then < v;, v; >= 1. Otherwise < v;,v; >= — 5.
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Lemma 7.2.1 now gives:

1 2k d
An < <20m— m(dn— 2om)> /n = @2

or (k — 1)\, < 2ka — d. Equivalently, k > %. 1

Note 7.3.1. In the definition of the -covering number, and of L, ,, it is required that for every
v € G, Y0 pes; ﬁ > 1. The bounds given in [12] hold also if we demand that all sums equal
1. In this case, the theorem holds also if we relax the condition that all S; have an « - ¥(G)-vertex

cover, and require only that for each S;, |E(S;)| < a - ¥(S;) - [V (S;)].

7.3.4 Extending the bound to the A-clustering number

Here we prove Theorem 7.1.4. Denote the A-clustering number of W by k. Let uq,...,u; € R™
be the vertices of a regular simplex centered at the origin, as above. Let o € R™ be an eigenvector
of W, corresponding to \;. Let C, ..., C be a A\-clustering of G. Define ¢ : V' — [k] to be the
index of the cluster containing a vertex. That is, 7 € Cy;). Define W, to be the weighted adjacency
matrix of the sub-graph spanned by C; (So Ai(W;) < A). Setv; = o - ug(s).-

By Lemma 7.2.1,

o iy %% < Us), o) > Wi
B i 07 - [lug I3
L Zi,j:qﬁ(i)#qﬁ(j) i Wi i Zzy : ¢(i)=a(s) Wi
k=1 208 >l
1 o'Wa N k Zle Yijec, @ Wi
k=1 Jloff k-1 S a2
1 k

< -
S vt

An

Equivalently, k > 22=X |
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