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ABSTRACT 

Balanced likelihood ratio importance sampling methods 
were originally developed for the analysis of fault-tolerant 
systems. This paper provides a basis for adapting this ap-
proach to analyze the rare event probability that total sys-
tem size reaches a bound before returning to zero in tan-
dem Jackson networks. An optimal importance sampling 
distribution for the single server case is derived through 
direct application of the balanced likelihood ratio ap-
proach. The generalization of this approach to larger sys-
tems is explored via a two-node tandem Jackson network. 
A general heuristic approach is outlined along with certain 
open questions whose answers could lead to a more robust 
solution. Asymptotic characteristics of the proposed impor-
tance sampling approach for the two-node network are dis-
cussed. Bounded relative error is only possible under cer-
tain conditions. Numerical results illustrate the benefits of 
the approach. 

1 INTRODUCTION 

The analysis of rare event probabilities in tandem Jackson 
networks (for an introduction to Jackson networks see 
Chapter 1, Serfozo 1999) has received a lot of attention in 
the past decade. These models are simplified versions of 
switched telecommunications networks and other systems 
that can be modeled as networks of queues, i.e., manufac-
turing processes and computer networks. Efficient methods 
for analyzing the probability that capacities or buffer sizes 
are not large enough are needed to accurately assess sys-
tem reliability during system design. A buffer can cover 
the total system population or can be associated with one 
or more nodes in the network. Most work in this area con-
siders a single buffer that covers the total system. 

Importance sampling has been a popular approach for 
efficiently estimating rare event probabilities (see Heidel-
berger 1995). Zero-variance importance sampling, i.e., an 
importance sampling distribution that yields a constant 

 

value for every sample, is theoretically possible but typi-
cally impossible because it implies perfect knowledge of 
the performance parameter being estimated. Kuruganti and 
Strickland (1997) identify properties that characterize zero-
variance importance sampling distributions. Unfortunately, 
utilizing these properties does not appear to improve the 
complexity of this problem. Juneja (Juneja 1993, 2001) de-
velops these properties as a basis for identifying asymp-
totically optimal importance sampling distributions. Ap-
proaches for approximating a zero-variance importance 
sampling distribution by directly minimizing the variance 
of the importance sampling estimator or by minimizing the 
cross-entropy between the proposed importance sampling 
distribution and a zero variance distribution have been de-
veloped (see Rubinstein 1997, Lieber et al. 1999, and De-
Boer et al. 2000). 

Large deviations theory is a common tool for deriving 
and analyzing importance sampling estimators. Parekh and 
Walrand (1989) introduced a heuristic importance sam-
pling distribution for estimating the probability that total 
system size reaches some bound before returning to 0 in 
tandem Jackson networks with single server nodes. The 
distribution interchanges the arrival rate with the smallest 
service rate in the network. The efficiency of this method 
for a GI/GI/m queue was established by Sadowski (1991). 
Frater et al. (1991) extended this approach to Jackson net-
works consisting of single server nodes. Justifications for 
the Parekh and Walrand heuristic were formalized by 
Tsoucas (1992). Glasserman and Kou (1995) analyzed this 
heuristic for tandem Jackson networks consisting of single 
server nodes and established necessary and sufficient con-
ditions for this heuristic to be asymptotically efficient. 

The balanced likelihood ratio approach to importance 
sampling (see Alexopoulos and Shultes 1998, 2001) was 
developed for the analysis of rare events in fault-tolerant 
repairable systems. In that context, importance sampling 
estimators have been shown to guarantee variance reduc-
tion and yield bounded relative error. Unfortunately, guar-
anteed variance reduction does not guarantee computa-
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tional efficiency because variance reduction may come at 
the expense of computation time. This paper applies the 
general idea behind the balanced likelihood ratio approach 
to identify importance sampling distributions for estimat-
ing the probability that total system size reaches some 
bound before returning to 0 in tandem Jackson networks. 
The approach in this paper differs significantly from previ-
ous work. For a single node system, a closed form, zero 
variance importance sampling distribution for estimating 
this rare event probability that does not explicitly use 
knowledge of the true value for the unknown parameter is 
derived. This provides new insights into the construction of 
good importance sampling distributions for tandem queues. 
The proposed importance sampling distribution for tandem 
queues exploits queueing network structure that differs 
from the structure found in fault-tolerant repairable sys-
tems. Other properties of balanced likelihood ratio methods 
are maintained, including: guaranteed variance reduction 
over standard Monte Carlo methods, likelihood ratios that 
are bounded from above by one, and a distribution that 
adapts throughout sample paths. Some asymptotic proper-
ties of the proposed importance sampling estimators are 
known, while others are still under investigation. A pre-
liminary summary of these properties is provided. 

The remainder of this paper is setup as follows: Sec-
tion 2 presents the model studied and provides an overview 
of importance sampling and issues related to identifying 
“good” importance sampling distributions. Section 3 pro-
vides the details of the proposed approach for a single node 
system. Section 4 explores the extension of this approach 
to tandem queues. Experimental results are discussed in 
Section 5 and Section 6 provides conclusions and direc-
tions for future research. 

2 BACKGROUND 

Consider a tandem Jackson network with m nodes. Let 
Xi(t) be the number of customers at node i in the network 
at time t, let si be the number of servers at node i and let b 
denote the total system (buffer) size. Inter-arrival times 
are independent exponential random variables with rate λ 
and customer service times at node i are exponential with 
rate µi. Assume all customers are identical, then the sys-
tem can be modeled as a continuous time Markov chain 
(CTMC) with system state ( ) ( ) ( )( )1

, ,
m

Y t X t X t= … . The 

state space is irreducible and finite, so the CTMC is a re-
generative process. Typically, the system empty state is 
used as a regeneration point. 

A performance parameter of interest is the time until a 
buffer fills, i.e., the total system size reaches b, given that 
the system starts empty.  Time until buffer overflow can be 
achieved by setting b one larger than the actual buffer size. 
Let T denote the time between visits to the empty state, and 
τ  denote the time until system size reaches b starting from 
the empty state. For tandem queues, if the vector queue 
length process is regenerative then the time until the buffer 
fills can be written as 

 

 [ ] ( )[ ]
( )

min ,
,

E T
E

P T

τ
τ

τ
=

<
 

 
as presented by Frater et al. (1991). The vector queue 
length process does not have to be regenerative for this ra-
tio representation to hold, but only the regenerative case is 
considered here. Confidence intervals can be obtained us-
ing the same formulas as for standard regenerative ratios 
(see  Law and Kelton 2000, pp. 531-533). To efficiently 
estimate [ ]E τ  requires efficient methods for estimating 

( )min ,E Tτ   and ( ).P Tτ <  

2.1 Focus on Rare Event Probabilities 

Attention is restricted to cases where min .ii
λ µ< This is not 

the system stability condition since node i  has si servers. 
However, if min ii

λ µ≥ , then it can be difficult to esti-

mate ( )min ,E Tτ   since the empty state may not be visited 

frequently. The upper bound on the arrival rate implies that 
estimating ( )min ,E Tτ   is not difficult. In contrast, estimat-

ing the rare event probability ( )P Tτ < is difficult. The rest 

of this paper focuses on estimating ( )P Tτ < . 

The quantity ( )P Tτ < only depends on the embedded 

discrete time Markov chain (DTMC). In contrast, the esti-
mation of ( )[ ]min ,E Tτ  requires the CTMC. Consider a ge-

neric system state ( )1
,..., .

m
x x  The total rate of event transi-

tions out of this state is 
 

 ( ) ( )1
1

,..., min , .
m

m i i i
i

r x x x sλ µ
=

= + ∑  

 
The one-step transition probabilities for the embedded 
DTMC are: the probability the next event is an arrival is 

( )1
,...,

m
r x xλ and the probability the next event is a service 

completion at node i is ( ) ( )1
min , ,...,

i i i m
x s r x xµ . 

2.2 Importance Sampling 

Let Ω denote the set of all possible regenerative cycles and 
for each ( ),  let Bω ω∈ Ω denote the largest system size ob-

served within the cycle. Since the problem only requires 
simulation of a DTMC, the probability regenerative cycle 
ω is observed ( )P ω  is the product of one-step transition 
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probabilities. Importance sampling allows a new distribu-
tion P′ to be defined such that ( ) ( )0 0P Pω ω′> ⇒ >  and  

 

 
( ) ( )( ) ( )

( ) ( )

( )( ) ( ) ( )

0 1

1 ,

P
P T B b P

P

B b L P

ω

ω

ω
τ ω ω

ω

ω ω ω
∈Ω

∈Ω

′< = =
′

′= =

∑

∑
 

 
where the likelihood ratio ( )L ω is the Radon-Nikodym de-

rivative of P with respect to P′ . If the importance sampling 
distribution is defined in terms of one-step transition prob-
abilities then the likelihood ratio ( )L ω can be decomposed 

into a product of one-step event likelihood ratios associated 
with each individual event within the cycle.  

2.2.1 Asymptotic Properties 

Relative error, also known as the coefficient of variation, is 
the ratio of the standard deviation of an estimator over its 
expected value. Bounded relative error refers to the behav-
ior of an estimator as the quantity to be estimated is re-
duced to zero which occurs by varying a rarity parameter 
for the system under study. An estimator yields bounded 
relative error if the relative error remains bounded as the 
quantity to be estimated approaches zero. This implies that 
the computational effort or sample size required to achieve 
a desired level of accuracy (relative half-width) remains 
bounded in the limit. There are a couple of ways to force 

( )P Tτ < to zero. The buffer size can be increased to infin-

ity or the arrival rate can be decreased to zero. The former 
approach is the most common approach used in the queue-
ing network literature.  

An estimator is asymptotically efficient if the relative 
error grows at a sub-exponential rate as the quantity to be 
estimated approaches zero. This implies that the number of 
samples required to achieve a desired level of accuracy 
grows at a sub-exponential rate. Several importance sam-
pling distributions in the literature have been shown to 
have linearly bounded relative error when b is the rarity pa-
rameter (for example, see Glasserman and Kou 1995, and 
Kroese and Nicola 1999). Bounded relative error implies 
asymptotic efficiency. 

2.2.2 Variance Reduction Ratio 

Variance reduction does not necessarily equate to compu-
tational savings. When comparing two sampling proce-
dures, it is not fair to use a fixed sample size if one method 
utilizes more computation time than the other. Fixing the 
computational effort would lead to different sample sizes. 
For example, each regenerative cycle generated consists of 
many events and the number of events within each cycle 
can vary significantly. The variance reduction ratio (VRR) 
measures the trade-off between improved variance and the 
additional computation cost associated with this improve-
ment. Specifically, to compare two estimators, a ratio of 
the corresponding variances is multiplied by a ratio of the 
corresponding computational effort, i.e., the number of 
events sampled to generate the variance.  If a VRR is less 
than one, then the approach in the numerator is more effi-
cient. If a VRR is greater than one, then the approach in the 
denominator is more efficient. Typically, VRRs are esti-
mated empirically. 

2.2.3 Balanced Likelihood Ratios 

The proposed importance sampling approach is an exten-
sion of the balanced likelihood ratio approach developed 
for estimating the reliability of fault-tolerant repairable 
systems (see Alexopoulos and Shultes 1998, 2001). In that 
case, all system events are classified into two classes: 
events that move the system “closer” to system failure, i.e., 
component failure events, and events that move the system 
“away” from system failure, i.e., repair completions. A 
similar classification is possible for tandem Jackson net-
works: events that increase system size, i.e., arrival events, 
and events that reduce system size, i.e., service comple-
tions. These classifications are similar, especially for single 
node queueing networks.  

The balanced likelihood ratio method “balances” event 
likelihood ratios from these two classes. Specifically, from 
a regenerative state, if all events fall into one of these two 
classes then the following properties exist: 

 
• Every arrival event increases the system size and 

is followed by a sequence of service completions 
that cancel out the arrival event when the cus-
tomer leaves the system. 

• To achieve zero-variance when estimating func-
tionals that are only non-zero when the rare-event 
is observed, every cycle must visit the rare-event. 
Hence, events that would complete a cycle before 
the system experiences the rare-event should have 
zero probability in the IS distribution. 

• If an IS distribution increases the probability of 
arrival events, then arrival event likelihood ratios 
are less than one. These event likelihood ratios 
can be used as multipliers to reduce corresponding 
service probabilities. Reducing service probabili-
ties increases arrival probabilities. 

• Once buffer overflow is observed, the IS distribu-
tion can revert to standard Monte Carlo sampling 
probabilities. This is called Dynamic Importance 
Sampling (DIS) in the literature. 

 
To summarize, each customer in the system experiences a 
series of events. Each event accumulates an event likeli-
hood ratio. At any time, the product of event likelihood ra-
tios accumulated for a customer is less than one. When a 
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customer leaves, then the product of the corresponding 
event likelihood ratios becomes one. This idea is similar to 
the cyclic approach proposed by Juneja (2001), but there 
are significant differences. Balanced likelihood ratio meth-
ods do not explicitly consider sequences of events that re-
turn a system to a fixed state. Instead, events are grouped 
with corresponding event likelihood ratios so that at all 
times within a cycle, the product of event likelihood ratios 
is bounded from above by one.  

3 A SINGLE QUEUE 

With only one node, the node index i is dropped for the 
rest of this section. Applying the importance sampling ap-
proach described in Section 2, there are exactly two types 
of events in the system: customer arrivals and service 
completions. The first two events within a cycle must be 
customer arrivals, otherwise the cycle would end before 
reaching the bound on system size. Each service comple-
tion will cancel out exactly one event likelihood ratio asso-
ciated with a customer arrival. 

The event likelihood ratio associated with an arrival 
when there are x ≥ 1 customers in the system is 

 

[ ] ( )( )
[ ] ( ) ( )( )( )

[ ]( ) ( )

min ,

1 1 min , min ,

1 1 min ,

x s
l x

l x x s x s

l x x s

λ λ µ

µ λ µ

λ
λ µ

+
=

− − +

=
+ − −

 

 
and l[0] is artificially set to zero. Similarly, the event like-
lihood ratio associated with a service completion when 
there are x > 1 customers in the system is 
 

[ ] ( ) ( )( )
[ ] ( ) ( )( )( )

min , min ,

1 min , min ,

x s x s
l x

l x x s x s

µ λ µ

µ λ µ

+
=

− +
 

 
which equals [ ]1 1 .l x −  Service completions are not al-

lowed if x ≤ 1 and system size has not reached b. The can-
cellation of arrival and service event likelihood ratios guar-
antees that the importance sampling distribution leads to 
constant likelihood ratios and the constant value 
is ( )P Tτ < . Notice that this is not asymptotic optimality 

and the distribution does not depend on the buffer size. 

3.1 Asymptotic Behavior 

Since the balanced likelihood ratio importance sampling 
distribution is optimal, it is not necessary to consider the 
asymptotic properties described in Section 2.2.1. However, 
it is interesting to examine the effects of increasing b or re-
ducing λ on this importance sampling distribution.  
The following two lemmas identify the trend in arrival 
event likelihood ratios for fixed b and λ. Two trends are 
handled simultaneously: increasing (decreasing). 

 
Lemma 1 For x ≥ 1, if [ ] ( ) ( )1 min ,l x x sλ µ− < >  then 

[ ] ( ) ( )min , .l x x sλ µ< >  

Proof  Assume [ ] ( ) ( )1 min , .l x x sλ µ− < > Then 

[ ] ( ) ( )
[ ]( ) ( ) ( ) ( )

[ ] [ ]( ) ( ) ( ) ( )

1 min , 0,  and

1 1 min , min , ,  then

.
min ,1 1 min ,

l x x s

l x x s x s

l x
x sl x x s

λ µ

λ µ µ

λ λ
µλ µ

− − > <

+ − − > <

= < >
+ − −

 

 
Lemma 2 For x ≥ 1, if [ ] ( ) ( )1 min ,l x x sλ µ− < >  then 

[ ] ( ) [ ]1 .l x l x> < −  

Proof  Assume [ ] ( ) ( )1 min , .l x x sλ µ− < > Then 

 
[ ] ( )( ) [ ]( ) ( )1 min , 1 1 0.l x x s l xµ λ− − − − > <  

 
Multiplying this equation out and rearranging terms yields 
 

[ ] [ ]( ) ( ) ( ) [ ]1 .
1 1 min ,

l x l x
l x x s

λ
λ µ

= > < −
+ − −

 

 
The proof of Lemma 3 relies on two observations. Lemma 
2 implies that arrival event likelihood ratios strictly in-
crease (decrease) until the bound in Lemma 1 is reached. 
Lemma 1 implies that arrival event likelihood ratios never 
cross over the bound. 
 
Lemma 3 [ ]lim .

x
l x sλ µ

→∞
=  

Proof Lemmas 1 and 2 imply that the sequence of l[x] 
must converge to some limit. For ,x s≥  the event likeli-
hood ratios are either monotonically increasing or mono-
tonically decreasing. There are three possibilities. Either 
the l[x] converge to ,sλ µ they converge to a value 

,p sλ µ< or they converge to a value .p sλ µ>  The latter 

two cases are symmetric, so it is sufficient to only consider 
one of them. Consider the case .p sλ µ<  The proof is by 

contradiction. Suppose that the l[x] are converging to a 
limit .p sλ µ< This implies that for any 0ε > there should 

be an infinite sub-sequence of event likelihood ratios that 
are greater than p-ε and less than p (see Bartle 1976, pp. 
90-92). To complete the proof, a contradiction is reached 
by constructing an 0ε > such that any event likelihood ra-
tio  in ( ),p pε−  leads to a subsequent event likelihood ratio 

that is larger than p. 
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If there exists an 0ε > such that any event likelihood 
ratio  in ( ),p pε−  leads to a subsequent event likelihood 

ratio that is larger than p, then 
 

( )( ) .
1

p
p s

λ
λ ε µ

>
+ − −

 

 
Solving this equation for 0ε > yields 
 

1
.

p ps

p s

λ µε
µ

  − −<   
  

 

 
The right hand side is positive. 

3.1.1 Result: Optimality as b Tends to Infinity 

The limit specified in Lemma 3 is independent of b and 
may not be achieved for small buffer sizes. However, if the 
buffer size is increased without bound, then the event like-
lihood ratios converge to the limit in Lemma 3 and the lim-
iting importance sampling arrival and service completion 
probabilities are the same as those obtained if one swaps 
the arrival rate with the service rate. 

3.1.2 Result: Optimality as λλλλ Tends to Zero 

Decreasing the arrival rate or increasing the service rate 
are alternate ways to force buffer overflows to be more 
rare. If either of these approaches is considered, then the 
balanced likelihood ratio method forces the importance 
sampling probability associated with customer arrivals to 
approach one. This occurs because the event likelihood 
ratios associated with arrivals approach zero. This has the 
same effect as swapping the arrival and service rates in 
these alternate limits. 

4 TANDEM QUEUES 

In tandem queues, the approach developed for the single 
node case requires several modifications. The most signifi-
cant change is that events fall into m+1 classes instead of 
just two. Arrival events in tandem queues are similar to ar-
rival events in the single node case. Service completions at 
the last (mth) node are similar to service completions in the 
single node case. Unfortunately, service completion at any 
of the other m-1 nodes are new types of events. These 
events do not directly move the system closer to nor further 
away from the bound on system size b. There is an indirect 
influence in that customers move closer to departure with 
each of these events. 

It is not possible to ignore these m-1 intermediate 
nodes in the importance sampling distribution. The reason 
is simple. The goal is to make arrival events more likely. 
Arrival events are always possible and if an importance 
sampling distribution increases the likelihood of arrival 
events then other events must have reduced likelihoods. At 
various points in time, any mixture of the m different ser-
vice completions may be possible. Consequently, the im-
portance sampling distribution has to be flexible enough to 
make any or all m different service completion events less 
likely. To accomplish this, an arrival event is “paired” with 
the sequence of m service completions required to push a 
customer through the tandem network. 

In the single node case, arrivals are forced under IS if 
there is only one customer in the system and the rare event 
has not been observed. In tandem queues, arrivals are 
forced under IS if there is only one customer in the system, 
the customer is at the last node, and the rare event has not 
been observed. This difference creates a problem because 
there is no obvious way to start using importance sampling 
within a cycle. An initial “pseudo” event likelihood ratio of 
c will be constructed to handle this issue. 

A consequence of these differences is that it is not 
clear whether an optimal importance sampling distribution 
can be achieved by applying the balanced likelihood ratio 
approach. However, it should be possible to identify heu-
ristics that work well. 

4.1 A Two-Node Tandem Queue 

The balanced likelihood ratio approach for tandem queues 
is illustrated through the two-node case. To mimic the 
properties of the optimal importance sampling distribution 
constructed in Section 3, we construct a balanced likeli-
hood ratio approach that yields event likelihood ratios that 
are strictly less than one. This property guarantees that 
variance reduction is achieved, but does not guarantee a 
variance reduction ratio larger than one. The key idea is 
that each arrival event generates an event likelihood ratio. 
This event likelihood ratio can be split, via a square root, 
for use as a multiplier for the probability of one service 
completion at node 1 and one service completion at node 2. 

Before formalizing the approach, consider the follow-
ing four possible scenarios an arriving customer can en-
counter in a two-node network: (1) the system is empty, (2) 
all customers are waiting for service at node 1, (3) all cus-
tomers are waiting for service at node 2, (4) some custom-
ers are waiting for service at node 1 and node 2. The trend 
in event likelihood ratios can be identified in each case. 
Without loss of generality, the following 4 points are dis-
cussed in the context of single server queues (s=1). Let l2 
be a generic arrival event likelihood ratio.  

Case 1: The system is empty. The event likelihood ra-
tio for the next event is one since the next event has to be 
an arrival. This event likelihood ratio is artificially re-
placed by c in the implementation, because an event likeli-
hood ratio of one does not allow service completion prob-
abilities associated with this arrival to reduced. 
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Case 2: All customers in the system are at node 1. The 
constraint 

 
( )

( )( ) ( )
1 2

1 1 11 1
l

l l

λ λ µ λ
µ λ µ λ µ

+
= ≤

− + + −
 

 
on all event likelihood ratios for customer arrival events 
establishes an upper bound on event likelihood ratios. This 
constraint allows l to be used as a multiplier for the prob-
ability of completing service at each of the two service 
nodes making these events less likely. Forcing l < 1 and 
solving this constraint for l leads to the inequality 
 

( )1

1

4
.

2
l

λ λ λ µ
µ

+ +
≥  

 
If l is smaller than this lower bound then the subsequent 
event likelihood ratio will be larger than l2. 

Case 3: All customers are waiting for service at node 
2. This is the same as Case 2 with 1µ replaced by 2.µ  

Case 4: Some customers are waiting for service at 
node 1 and node 2. This case is the same as Case 2 with 

1µ replaced by 1 2.µ µ+  

Combining the bounds from Cases 2-4 yields 
 

( )( )
( )

1 2

1 2

4min ,
.

2min ,
l l

λ λ λ µ µ
µ µ

+ +
≥ =  

 
If the lower bound on l holds at equality, then the inequal-
ity ( )1 2

min , 2λ µ µ< must hold in order for all event likeli-

hood ratios associated with arrivals to be less than one.  
If an event likelihood ratio smaller than 2l  is used, 

say l′ , then the next arrival event likelihood ratio will be 
larger than l′ . This trend continues until an arrival event 
likelihood ratio larger than 2l  is observed at which point 
the trend reverses. 

The bounds on l can be extended to multi-server nodes 
by replacing ( )1 2

min ,µ µ with an appropriate multi-server 

rate. To accomplish this, the bound becomes state depend-
ent. Let kS  denote the set of system states with k custom-

ers in the system. With single servers, the smallest possible 
service rate is always ( )1 2

min , .µ µ  For multiple servers this 

turns into 
 

( )
( )

1 ,...
min min ,

m k
i i i

x x S
i

x s µ
∈

 
 
 
∑ . 

 
Since the bound must hold for all k, the set of cases cov-
ered by the proposed importance sampling distribution still 
requires ( )1 2
min , 2λ µ µ< . However, the limit of the event 

likelihood ratios can vary with buffer size b. 
Define two stacks: l1 for node 1 service completion 

probability multipliers, and l2 for node 2 multipliers.  Ini-
tially each stack contains one multiplier, c  on l1 and 0 on 
l2 where the 0 guarantees that an arrival occurs if the sys-
tem is in state ( )0,1  and system size has not reached b. 

Let il , for i=1 and 2, denote the multiplier at the head of 

stack i. The event likelihood ratio associated with an arri-
val event when the system is in state ( ) ( )1 2

,Y t x x= is 

 

( )( )
( )
( )( )

( ) ( )

2
min ,

min ,
1

min ,

1 min ,

i i ii

j j j jj

i i ii

i i i i
i

x s
l

l x s

x s

l x s

λ
λ µ

µ

λ µ

λ
λ µ

+
=

−
+

=
+ −

∑
∑

∑

∑

 

 
and then if ( ) ( )1 2

, 0,0x x ≠ , then l is pushed onto both stacks. 

Similarly, the event likelihood ratio for a service comple-
tion at node i is 
 

( )
( )( )

( )
( )( )

min ,

min ,
1 .

min ,

min ,

i i i

j j jj

ii i i i

j j jj

x s

x s

ll x s

x s

µ

λ µ

µ

λ µ

+
=

+

∑

∑

 

 
This procedure for specifying importance sampling prob-
abilities is complete except for the selection of the initial 
event likelihood ratio c. 

4.1.1 Initial Event Likelihood Ratios 

There are numerous approaches for specifying an initial 
event likelihood ratio. The key is that the likelihood ratio 
associated with a regenerative cycle should not exceed one. 
One approach that satisfies this condition is to let 

( )( )2
2max , .c l λ λ µ= + This construction guarantees that 

all arrival event likelihood ratios throughout the regenera-
tive cycle are less than or equal to c. 

4.1.2 Asymptotic Behavior 

With the specified choice for c, an upper bound on the like-
lihood ratio for an entire cycle is c(b-1)/2. This corresponds 
to a path that hits b when all but one customer is at the sec-
ond node. Similarly, let ( )( )2

2min , .d l λ λ µ= +  A lower 
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bound on cycle likelihood ratios is d(b-1). The difference be-
tween these bounds is  

 

 ( ) ( )
1

1 2 1 21 1
b

b bb d
c d c

c

−
− −−

   − = −     
 

 
which is an upper bound for the absolute deviation be-
tween any observation and the sample mean. Taking the 
limit as b → ∞ forces this bound to approach zero. In the 
limit, the proposed importance sampling distribution is a 
zero-variance distribution. The proposed importance sam-
pling distribution only achieves bounded relative error if 
the rate of convergence to the zero-variance distribution is 
faster than the rate the expected value is converging to 
zero. It is not clear whether this is true.  

If the rarity parameter is the arrival rate for customers 
λ, then the balanced likelihood ratio importance sampling 
distribution converges to a zero-variance distribution. It 
can be shown (omitted for brevity) that, in this limit, the 
balanced likelihood ratio estimator yields bounded relative 
error. If the rarity parameter is the maximum system size b, 
then it is not clear whether bounded relative error is 
achieved or not. Bounded relative error and asymptotic ef-
ficiency are discussed further in Section 5. 

4.2 A Modification 

The asymptotics of the proposed importance sampling dis-
tribution provide a bound on the size of the range of values 
that can be observed from a single sample path. Relative to 
the quantity being estimated, this range can be large. Of 
greater concern is that the largest values can correspond to 
sequences of events that occur with minimally biased event 
probabilities. Hence relatively large values may be rare 
under importance sampling implying that large sample 
sizes may be needed to reach steady-state in the simulation. 
This issue also applies to existing IS distributions. A modi-
fication is proposed to reduce this problem. 

Observe that it is not necessary to bias all service 
probabilities. To increase the probability of an arrival 
event, it is sufficient to reduce the probability of only one 
service event. This leads to the following modification. 
Consider states where both nodes are busy. For these 
states, instead of multiplying the probability of a service 
completion at each node by a multiplier, leave the service 
completion probability at node 1 alone and multiply the 
service completion probability at node 2 by a multiplier. If 
a service completion at node 1 occurs, then the correspond-
ing event likelihood ratio is one. But a multiplier was 
placed on stack l1 for this event. This multiplier can be 
popped off stack l1 and placed on a new stack l3. Multipli-
ers on stack l3 can be used as a second multiplier for ser-
vice completions at node 2. Let 3l  be the head of stack l3 

when it is not empty and one otherwise. 
The proposed modification changes the form of arrival 
event likelihood ratios. If the second node is busy then ar-
rival event likelihood ratios have the following form: 
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This implies that importance sampling probabilities for 
service completions at node 1 revert back to the original 
probabilities (i.e., no importance sampling) and importance 
sampling probabilities for service completions at node 2 
become 
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If the second node is idle, then event likelihood ratios are 
the same as before (i.e., without the modification). 

4.2.1 Asymptotic Behavior 

The proposed modifications reduce the upper bound on 
likelihood ratios for an entire cycle to 1 2bc − because service 
completions at node 1 are only biased when node 2 is idle. 
The bound on the absolute deviation between any observa-
tion and the sample mean is 

 

 ( )( )11 2 1 1 1 2 .
bb b bc d c c d c

−− − −− = −  

 
Taking limits yields the same results obtained for the im-
portance sampling distribution without the modification. 
However, the rate of convergence to the zero-variance dis-
tribution is increased, if b → ∞ , 0λ → since the exponent 
on c increases by 2.b  

4.3 More Than Two Nodes 

Issues raised in the development of the balanced likelihood 
ratio approach for the two-node case carry over to cases 
with more nodes. It appears that the bound on λ, required 
to guarantee arrival event likelihood ratios are smaller than 
one, generalizes to ( )1

min ,..., .
m

mλ µ µ<  This has not been 

derived analytically, but has been validated numerically for 
several cases. To generalize the upper bound on arrival  
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event likelihood ratios, a root to the following equation, 
between zero and one, can be found numerically 
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The modified balanced likelihood ratio approach for the 
two node system can be extended and the asymptotic prop-
erties in these cases are the same as the two-node case. 

5 NUMERICAL RESULTS 

Three test cases are considered. All cases have single serv-
ers at each node in the network. The first case satisfies and 
the other cases violate the necessary condition derived by 
Glasserman and Kou (1995) for the heuristic solution 
(Swap) of interchanging the arrival rate with the smallest 
service rate to be asymptotically efficient. All simulation 
results are based on 10,000,000 regenerative cycles. Each 
simulation run provides an estimate for  ( )0 0

P Tτ <  (the 

Mean), a 95% confidence interval half-width (Halfwidth), 
and the corresponding relative error (RE). Computation 
times (CPU) are displayed in terms of the average number 
of events per regenerative cycle. Standard Monte Carlo es-
timates are unavailable at this sample size. Consequently, 
all VRRs compare balanced likelihood ratio methods to the 
Swap heuristic. The proposed balanced likelihood ratio 
method without modification (BLR1) is omitted for brevity 
and the method with modification (BLR2) is shown. All 
simulations were implemented in C++ and run on a PC. 

The first test case has an arrival rate of 0.18, the ser-
vice rate at node 1 is 0.42, and the service rate at node 2 is 
0.4. Results for b = 25 are displayed in Table 1, and results 
for b = 100 are displayed in Table 2.  

 
Table 1: ( )0 0

P Tτ < Estimates for Test Case 1 with b = 25 

Method Mean Halfwidth RE CPU VRR 
Swap 3.83e-8 1.88e-9 0.05 72 - 
BLR2 3.67e-8 1.84e-9 0.03 103 0.74 

 
Table 2: ( )0 0

P Tτ < Estimates for Test Case 1 with b = 100 

Method Mean Halfwidth RE CPU VRR 
Swap 4.13E-34 2.20E-35 0.03 319 - 
BLR2 4.58E-34 1.09E-34 0.12 432 0.03 

 
For test case 1 with b = 25, BLR2 is approximately 

equivalent to the Swap heuristic in performance.  When b 
= 100, Swap appears to perform much better than BLR2, 
but this is misleading. The variance estimate from the 
Swap heuristic is unstable in that it grew by a factor of 10 
when the sample size was changed from 1,000,000 to 
10,000,000. All BLR cycles are forced to reach system size 
b which leads to larger CPU times than Swap. The initial 
likelihood ratio for BLR, c = 0.870, limits the biasing of 
service events.  

The second test case considers a significantly smaller 
arrival rate than the first. Test case 2 has arrival rate 0.03, 
node 1 service rate 0.5, and node 2 service rate 0.47. Re-
sults for b = 25 are displayed in Table 3, and results for b = 
100 are displayed in Table 4. 

 
Table 3: ( )0 0

P Tτ < Estimates for Test Case 2 with b = 25 

Method Mean Halfwidth RE CPU VRR 
Swap 2.46E-28 1.48E-29 0.03 48 - 
BLR2 2.57E-28 2.85E-31 0.00 49 2642 

 
Table 4: ( )0 0

P Tτ < Estimates for Test Case 2 with b = 100 

Method Mean Halfwidth RE CPU VRR 
Swap 6.11E-118 4.61e-119 0.04 204 - 
BLR2 7.77E-118 2.40e-119 0.03 211 3.57 

 
The relative errors for BLR2 are significantly smaller 

in case 2 than for case 1. This supports the proposition that 
BLR methods yield bounded relative error as the arrival 
rate approaches zero. In addition, VRRs of 2642 and 3.57 
indicate that BLR2 is more efficient than the Swap heuris-
tic for this test case. The initial event likelihood ratio for 
BLR is c = .082. 

The relative errors in test cases 1 and 2 grow linearly 
in the buffer size for BLR2. There does not appear to be 
any pattern in the relative errors for the Swap heuristic. 
Throughout all of these experiments, sample size is an is-
sue. The variance estimates from BLR2 are stable, but the 
variance estimates from the Swap heuristic typically vary 
greatly within the first 10,000,000 cycles. 

The third test case considers an arrival rate between 
the first two. The arrival rate is 0.12, the service rate at 
node 1 is 0.42, and the service rate at node 2 is 0.46. Re-
sults for b = 25 are displayed in Table 5. BLR2 outper-
forms the Swap heuristic with a VRR of 2.58. The initial 
event likelihood ratio for BLR is c = .485. 

 
Table 5: ( )0 0

P Tτ < Estimates for Test Case 3 with b = 25 

Method Mean Halfwidth RE CPU VRR 
Swap 4.84e-13 6.62e-14 0.03 44 - 
BLR2 6.44e-13 3.27e-14 0.00 70 2.58 

6 CONCLUSIONS 

The balanced likelihood ratio approach yields a zero vari-
ance importance sampling distribution for a single node 
system when computing the probability the total system 
size reaches a bound within a regenerative cycle. Applying 
the balanced likelihood ratio method to tandem queues is 
more challenging. The two importance sampling distribu-
tions proposed have some nice theoretical properties, but 
only BLR2 appears to work reasonably well in practice. 
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Performance of BLR2 appears to be consistent for different 
buffer sizes and improves as the arrival rate decreases. This 
improvement should also occur if the number of servers at 
nodes increased. Numerous issues remain open for the ap-
plication of the balanced likelihood ratio approach in gen-
eral queueing systems. 

Within the Markovian framework, the proposed im-
portance sampling distributions represent a first step in the 
development of general balanced likelihood ratio methods. 
Asymptotic properties including rates of convergence to 
steady-state need to be more fully understood. Restrictions 
on model parameters need to be relaxed and variations on 
the proposed approaches that consistently yield variance 
reduction ratios larger than one are sought.  
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