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Abstract

In this paper, we present a new recognition system for
the fast detection and classification of objects in spatial 3D
data. The system consists of two main components: A bi-
ologically motivated attention system and a fast classifier.
Input is provided by a 3D laser scanner, mounted on an
autonomous mobile robot, that acquires illumination inde-
pendent range and reflectance data. These are rendered into
images and fed into the attention system that detects regions
of potential interest. The classifier is applied only to a re-
gion of interest, yielding a significantly faster classification
that requires only 30% of the time of an exhaustive search.
Furthermore, both the attention and the classification sys-
tem benefit from the fusion of the bi-modal data, consider-
ing more object properties for the detection of regions of
interest and a lower false detection rate in classification.

1 Introduction

Object recognition and classification belong to the hard-
est problems in computer vision and have been intensely re-
searched [2]. Generally, for a given domain a large number
of different object classes has to be considered. Although
fast classifiers have been built recently [22], it is time con-
suming to apply many classifiers to an image. To preserve
high quality of recognition despite of limited time, the input
set has to be reduced. One approach is to confine classifi-
cation to image regions of potential interest found by atten-
tional mechanisms.

In human vision, attention helps identify relevant parts of
a scene and focus processing on corresponding sensory in-
put. Psychological work shows evidence that different fea-
tures, like color, orientations, and motion, are determined
in parallel, coding the saliency of different regions [20].
Many computational models of attention are inspired by
these findings [7, 21, 1].

Figure 1. The recognition system. Two laser
modes are provided by a 3D laser scanner,
rendered into images and fed into an atten-
tion system which computes a focus of at-
tention (FOA) from the data of both modes.
The classifier searches for objects only in the
FOA-region in depth and reflectance image
and combines the results by an appropriate
connection. The rectangles in the result im-
age (right) depict a detected object.

In this paper, we present a new system for the fast de-
tection and recognition of objects in spatial 3D data, using
attentional mechanisms as a front end for object recognition
(Fig. 1). Input is provided by a 3D laser scanner, mounted
on an autonomous mobile robot. The scanner yields range
as well as reflectance data in a single 3D scan pass [19].
Both data modalities are transformed into images and fed
into a visual attention system based on one of the standard
models of visual attention by Koch & Ullman [9]. In both
laser images, the system detects regions which are salient
according to intensity and orientations. Finally, the focus of
attention is sequentially directed to the most salient regions.



A focus region is searched for objects by a cascade of
classifiers built originally for face detection by Viola et al.
[22]. Each classifier is composed of several simple classi-
fiers containing edge, line or center surround features. The
classifier is applied to both laser modes. We show how the
classification is significantly sped up by concentrating on
regions of interest with a time saving that increases pro-
portionally with the number of object classes. The perfor-
mance of the system is investigated on the example of find-
ing chairs in an office environment. The future goal will be
a flexible vision system that is able to find different objects
in order of their saliency. The recognized objects will be
registered in semantic 3D maps, automatically created by
the mobile robot.

The fusion of two sensor modalities is performed in anal-
ogy to humans who use information from all senses. Differ-
ent qualities of the modes enable to utilize their respective
advantages, e.g., there is a high probability that disconti-
nuities in range data correspond to object boundaries what
facilitates the detection of objects: an object producing the
same intensity like its background is difficult to detect in
an intensity image, but easily in the range data. Addition-
ally, misclassification of shadows, mirrored objects and wall
paintings is avoided. On the other hand, a flat object, e.g.,
a sign on a wall, is likely not to be detected in the range
but in the reflectance image. The respective qualities of the
modes significantly improve the performance of both sys-
tems by considering more object properties for focus com-
putation and a lower rate of false detections in classification.
Furthermore, the scanner modalities are illumination inde-
pendent, i.e. they are the same in sunshine as in complete
darkness and no reflection artifacts confuse the recognition.

The presented architecture introduces an new approach
for object recognition, however, parts of it have already
been investigated. Pessoa and Exel combine attention and
classification, but whereas we detect salient objects in com-
plex scenes, they focus attention on discriminative parts of
pre-segmented objects [17]. Miau, Papageorgiou and Itti
detect pedestrians on attentionally focused image regions
using a support vector machine algorithm [12]; however,
their approach is computationally much more expensive and
lacks real-time abilities. Object recognition in range data
has been considered by Johnson and Hebert using an ICP
algorithm for registration of 3D shapes [8], an approach ex-
tended in [18]; in contrast to our method, both use local,
memory consuming surface signatures based on prior cre-
ated mesh representations of the objects.

The paper is organized as follows: Section 2 describes
the 3D laser scanner. In section 3 we introduce the atten-
tional system and in 4 the object classification. Section 5
presents the experiments performed by the combination of
attention and classification and discusses the results. Fi-
nally, section 6 concludes the paper.

2 The Multi-modal 3D Laser Scanner

The data acquisition in our experiments was performed
with a 3D laser range finder (top of Fig. 1, [19]). It is built
on the basis of a 2D range finder by extension with a mount
and a small servomotor. The scanner works according to
the time-of-flight principle: It sends out a laser beam and
measures the returning reflected light. This yields two kinds
of data: The distance of the scanned object (range data) and
the intensity of the reflected light (reflectance data).

One horizontal slice is scanned by serially sending out
laser beams using a rotating mirror. A 3D scan is performed
by step-rotating the 2D scanner around a horizontal axis
scanning one horizontal slice after the other. The area of
180◦(h)×120◦(v) is scanned with different horizontal (181,
361, 721 pts) and vertical (210, 420 pts) resolutions. To vi-
sualize the 3D data, a viewer program based onOPENGL
has been implemented. The program projects a 3D scene
to the image plane, such that the data can be drawn and in-
spected from every perspective. Typical images have a size
of 300 × 300 pixels. The depth information of the 3D data
is visualized as a gray-scale image: small depth values are
represented as bright intensities and large depth values as
dark ones.

3 The Laser-Based Attention System

The Bimodal Laser-Based Attention System (BILAS)
detects salient regions in laser data by simulating eye move-
ments. Inspired by the psychological work of Treisman et
al. [20], we determine conspicuities of different features in
a bottom-up, data-driven manner. These conspicuities are
fused into a saliency map and the focus of attention is di-
rected to the brightest, most salient point in this map. Fi-
nally, the region surrounding this point is inhibited, allow-
ing the computation of the next FOA.

The attention system is shown in Fig. 2 (cf. [5]); it is
built on principles of one of the standard models of visual
attention by Koch & Ullman [9] that is used by many com-
putational attention systems [7, 1, 3, 10]. The implementa-
tion of the system is influenced by the Neuromorphic Vision
Toolkit (NVT) by Itti et al. [7] that is publicly available and
can be used for comparative experiments (cf. [5]). BILAS
contains several major differences as compared to the NVT.
In the following, we will describe our system in detail em-
phasizing the differences between both approaches.

The main difference to existing models is the capability
of BILAS to process data of different sensor modalities si-
multaneously, an ability not available in any other attention
system the authors know about. In humans, eye movements
are not only influenced by vision but also by other senses
and the fusion of different cues competing for attention is
an essential part of human attention. The sensor modalities
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Figure 2. The Bimodal Laser-Based Atten-
tion System (BILAS). Depth and reflectance
images rendered from the laser data are
processed independently. Conspicuities ac-
cording to intensity and orientations are de-
termined and fused into a mode-specific
saliency map. After combining both of these
maps, a focus of attention (FOA) is directed
to the most salient region.

used in this work are depth and reflectance values provided
by the 3D laser scanner; in future work, we will use cam-
era data additionally. The system computes saliencies for
every mode in parallel and finally fuses them into a single
saliency map.

Feature Computations

On images of both laser modalities, five different scales (0–
4) are computed by Gaussian pyramids, which successively
low-pass filter and subsample the input image; so scalei+1
has half the width and height of scalei. Feature computa-
tions on different scales enable the detection of salient re-
gions with different sizes. In the NVT, 9 scales are used but
the scales 5 to 8 are only used for implementation details
(see below) so our approach yields the same performance
with fewer scales. As features, we consider intensity and
orientation.

The intensity feature maps are created by center-
surround mechanisms which compute the intensity differ-
ences between image regions and their surroundings. These

Figure 3. Differences of NVT (left) and BILAS
(right). See text for details.

mechanisms simulate cells of the human visual system re-
sponding to intensity contrasts. The centerc is given by a
pixel in one of the scales2−4, the surrounds is determined
by computing the average of the surrounding pixels for two
different sizes of surrounds with a radius of 3 resp. 7 pixels.
According to the human system, we determine two kinds
of center-surround differences: the on-center-off-surround
differenced(on-off)(c, s) = c − s, responding strongly to
bright regions on a dark background, and the off-center-
on-surround differenced(off-on)(c, s) = s − c, responding
strongly to dark regions on a bright background. This yields
2 × 6 = 12 intensity feature maps. The six maps for each
center-surround variation are summed up by inter-scale ad-
dition, i.e. all maps are resized to scale 2 and then added up
pixel by pixel. This yields 2 intensity maps.

The computations differ from these in the NVT, since we
compute on-center-off-surround and off-center-on-surround
differences separately. In the NVT, these computations are
combined by taking the absolute value|c − s|. This ap-
proach is a faster approximation of the above solution but
yields some problems. Firstly, a correct intensity pop-out is
not warranted as is depicted in Fig. 3, top. The white ob-
ject pops out in the computation with BILAS but not with
the NVT. The reason is the amplification of maps with few
peaks (see below). Secondly, if top-down influences are in-
tegrated into the system, a bias for dark-on-bright or bright-
on-dark is not possible in the combined approach but in the
separated one. This is for instance an important aspect if
the robots searches for an open door, visible as a dark re-
gion in the depth image. The two approaches vary also in
the computation of the differences themselves. In the NVT,
the differences are determined by subtracting two scales at
a time, e.g.I6 = scale(4)−scale(8). Our approach results
in a slightly slower computation but is much more accurate
(cf. fig. 3, bottom) and needs fewer scales.

The orientation maps are obtained by creating four ori-
ented Gabor pyramids detecting bar-like features of orien-
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tations{0 ◦, 45 ◦, 90 ◦, 135 ◦}. In contrast to Itti et al., we
do not use the center-surround technique for computing the
orientation maps. The Gabor Filters already provide maps,
showing strong responses in regions of the preferred orien-
tation and weak ones elsewhere, which is exactly the infor-
mation needed. Finally, the maps2− 4 of each pyramid are
summed up by inter-scale addition. This yields four orien-
tation feature maps of scale 2, one for each orientation.

Fusing Saliencies

All feature maps of one feature are combined into a con-
spicuity map, using inter-scale addition for the intensity
maps and pure pixel addition for the orientation maps. The
intensity and the orientation conspicuity maps are summed
up to a mode-specific saliency map, one representing depth
and one reflection mode. These are finally summed up to
the single saliency mapS.

If the summation of maps was done in a straightforward
manner, all maps would have the same influence. That
means, that if there are many maps, the influence of each
map is very small and its values do not contribute much to
the summed map. To prevent this effect, we have to de-
termine the most important maps and give them a higher
influence. To enable pop-out effects, i.e. immediate detec-
tion of regions that differ in one feature, important maps
are those that have few popping-out salient regions. These
maps are determined by counting the number of local max-
ima in a map that exceed a certain threshold. To weight
maps according to the number of peaks, each map is di-
vided by the square root of the number of local maximam:
w(map) = map/

√
m.

The Focus of Attention

To determine the most salient location inS, the brightest
point is located in a straightforward way instead of using
a winner-take all network as proposed by Itti et al. While
losing biological plausibility, the maximum is found even
though with less computational resources. Starting from
the most salient point, region growing finds recursively all
neighbors with similar values within a certain threshold.
The width and height of this region yield an elliptic FOA,
considering size and shape of the salient region in contrast
to the circular fixed-sized foci of most other systems.

Finally, an inhibition of return mechanism (IOR) is ap-
plied to the focused region by resetting the corresponding
values in the saliency map, enabling the computation of the
next FOA. Fig. 4 shows an example run of the system; to
depict the output of the system, we present a trajectory for
a single camera image instead of two laser images.

If two laser images are supplied as input, the attention
system benefits from the depth as well as from the re-
flectance data, since these data modes complement each

1.

6.

Figure 4. A trajectory of the first 6 foci of at-
tention, generated by the attention system.

other: An object producing the same intensity like its back-
ground may not be detected in a gray-scale image, but in the
range data. On the other hand, a flat object – e.g. a poster
on a wall or a letter on a desk – is likely not to be detected
in the depth but in the reflectance image (cf. [6]).

4 Object Classification

Recently, Viola and Jones have proposed a boosted cas-
cade of simple classifiers for fast face detection [22]. In-
spired by these ideas, we detect office chairs in 3D range
and reflectance data using a cascade of classifiers composed
of several simple classifiers.

Feature Detection using Integral Images

The six basic features used for classification are shown in
Fig. 5 (left); they have the same structure as the Haar basis
functions also considered in [15, 22]. The base resolution
of the object detector is20× 40 pixels, thus the set of pos-
sible features in this area is very large (361760 features). A
single feature is effectively computed on input images us-
ing integral images [22], also known as summed area tables
[11]. An integral imageI is an intermediate representation
for the image and contains the sum of gray-scale pixel val-
ues of an imageN :

I(x, y) =
x∑

x′=0

y∑

y′=0

N(x′, y′).

The integral image is computed recursively by the formula:
I(x, y) = I(x, y − 1) + I(x − 1, y) + N(x, y) − I(x −
1, y − 1) with I(−1, y) = I(x,−1) = 0, requiring only
one scan over the input data. This representation allows the
computation of a feature value using several lookups and
weighted subtractions (Fig. 5 right). To detect a feature,
a threshold is required which is automatically determined
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Figure 5. Left: Edge, line, diagonal and cen-
ter surround features used for classification.
Right: The computation of the sum of pixels
in the shaded region is based on four integral
image lookups: F (x, y, h, w) = I(x+w, y+h)−
I(x, y + h) − I(x + w, y) + I(x, y). Feature val-
ues are calculated by subtractions of these
values weighted with the areas of the black
and white parts.

during a fitting process, such that a minimum number of
examples are misclassified.

Learning Classification Functions

The Gentle Ada Boost Algorithm is a variant of the pow-
erful boosting learning technique [4]. It is used to select a
set of simple features to achieve a given detection and error
rate. The various Ada Boost algorithms differ in the update
scheme of the weights. According to Lienhart et al., the
Gentle Ada Boost Algorithm is the most successful learn-
ing procedure for face detection applications [11].

Learning is based onN weighted training examples
(xi, yi), i ∈ {1 . . . N}, wherexi are the images andyi ∈
{−1, 1} the supervised classified output. At the beginning,
the weightswi are initialized withwi = 1/N . Three steps
are repeated to select simple features until a given detec-
tion rated is reached: First, every simple feature is fit to
the data. Hereby, the errore is evaluated with respect to the
weightswi. Second, the best feature classifierht is chosen
for the classification function and the countert is increased.
Finally, the weights are updated withwi := wi · e−yiht(xi)

and renormalized.
The final output of the classifier is sign(

∑T
t=1 ht(x)),

with h(x) = α, if x ≥ thr. andh(x) = β otherwise.α and
β are the outputs of the fitted simple feature classifiers, that
depend on the assigned weights, the expected error and the
classifier size. Next, a cascade based on these classifiers is
built.

The Cascade of Classifiers

The performance of one classifier is not suitable for object
classification, since it produces a high hit rate, e.g., 0.999,
and error rate, e.g., 0.5. Nevertheless, the hit rate is much
higher than the error rate. To construct an overall good clas-
sifier, several classifiers are arranged in a cascade, i.e., a
degenerated decision tree. In every stage of the cascade, a
decision is made whether the image contains the object or
not. This computation reduces both rates. Since the hit rate

is close to one, their multiplication results also in a value
close to one, while the multiplication of the smaller error
rates approaches zero. Furthermore, the whole classifica-
tion process speeds up, because the whole cascade is rarely
needed. Fig. 6 shows an example cascade of classifiers for
detecting chairs in depth images.

To learn an effective cascade, the classification function
h(x) is learned for every stage until the required hit rate
is reached. The process continues with the next stage us-
ing only the currently misclassified negative examples. The
number of features used in each classifier increases with ad-
ditional stages (cf. Fig. 6).

The detection of an object is done by laying a search
window over several parts of the input image, usually run-
ning over the whole image from the upper left to the lower
right corner. To find objects on larger scales, the detector is
enlarged by rescaling the features. This is effectively done
by several look-ups in the integral image. In our approach,
the search windows are only applied in the neighborhood of
the region of interest detected by the attentional system.

5 Experiments and Results

We investigate the performance of the system on the ex-
ample of finding chairs in an office environment. However,
the future goal will be the construction of a flexible vision
system that is able to search for and detect different object
classes while the robot drives through its environment. If
the robot moves, the time for the recognition is limited and
it is not possible to search for many objects in a scene. A
naive approach to restrict processing is to search the whole
image for the first object class, then for the second class
and so on. The problem is that if there is not enough time
to check all object classes, some of the classes of the data
base would never be checked. In our approach, we restrict
processing to the salient regions in the image recognizing
objects in order of their saliency.

To show the performance of the system, we claim three
points: Firstly, the attention system detects regions of in-
terest. Secondly, the classifier has good detection and false
alarm rates on laser data. And finally, the combination of
both systems yields a significant speed up and reliably de-
tects objects at regions of interest. These three points will
be investigated in the following.

Firstly, the performance of attention systems on camera
data was evaluated by Parkhurst et al. [16] and Ouerhani
et al. [14]. They demonstrate that attention systems based
on the Koch-Ullman model [9] detect salient regions with a
performance comparable to humans. We showed in [6] and
[5] that attentional mechanisms work also reliably on laser
data and that the two laser modes complement each other,
enabling the consideration of more object qualities. Two
examples of these results are depicted in Fig. 7.
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(2) (2) (2)

evaluated feature classifier:

h(x) ={ α
β

Figure 6. The first three stages of a cascade of classifiers to detect an office chair in depth data.
Every stage contains several simple classifiers that use Haar-like features.

Figure 7. Two examples of foci found by the
attention system on laser data. Left: Camera
image of the scene. Right: The correspond-
ing scene in laser data with foci of attention.
The traffic sign, the handicapped person sign
and the person were focused (taken from our
results in [5]).

Secondly, we tested the performance of the classifier. Its
high performance for face detection was shown in [22], here
we show the performance on laser data. The classifier was
trained on laser images (300 × 300 pixels) of office chairs.
We rendered 200 training images with chairs from 46 scans.
Additionally, we provided 738 negative example images to
the classifier from which a multiple of sub-images is created
automatically.

The cascade in Fig. 6 presents the first three stages of the
classifier for the object class “office chair” using depth val-
ues. One main feature is the horizontal bar in the first stage
representing the seat of the chair. The detection starts with
a classifier of size20×40 pixels. To test the general perfor-
mance of the classifier, the image is searched from top left
to bottom right by applying the cascade. To detect objects

Figure 8. The combination of both laser
modes for classification reduces the amount
of false detections. The false detection in the
reflectance image (left) does not exist in the
depth image (middle) and therefore it is elim-
inated in the combined result (right).

Table 1. Detections and false detections of the
classifier applied to 31 chair images.

object no. detections false detections
class of refl. depth comb. refl. depth comb.

obj. im. im. im. im.
chair 33 30 29 29 2 2 0

at larger scales, the detector is rescaled. The classification is
performed on a joint cascade of range and reflectance data.
A logical “and” combines the results of both modes, yield-
ing a reduction of false detections. Fig. 8 shows an exam-
ple of a recognized chair in a region found by the attention
system. The false detection in the reflectance image (left)
does not exist in the depth image (middle) and therefore is
eliminated in the combined result (right). Table 1 summa-
rizes the results of exhaustive classification, i.e., searching
the whole image, with a test data set of 31 scans that are not
used for learning (see also [13]). It shows that the number
of false detections is reduced to zero by the combination of
the modes while the detection rates change only slightly.

Finally, we show the results of the combination of at-
tention and classification system and analyze the time per-
formance. The coordinates of the focus serve as input for
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Figure 9. A complete run of the recognition
system. Left column: Focus in reflectance,
depth, and combined image. The last one is
transferred to the classifier. Right column:
chair detected by the classifier in reflectance
image, depth image and combined image.

the classifier. Since a focus is not always at the center of
an object but often at the borders, the classifier searches for
objects in a specified region around the focus (here: radius
20 pixels). In this region, the classifier begins its search for
objects with a20 × 40 search window. To find chairs at
larger scales, the detector is enlarged by rescaling the sim-
ple features.

In all of our examples, the objects were detected if a fo-
cus of attention pointed to them and if the object was de-
tected when searching the whole image. If no focus points
to an object, this object is not detected. This is conform to
our goal to detect only salient objects in the order of de-
creasing saliency.

Fig. 9 shows some images from a complete run of the
recognition system. The left column depicts the most salient
regions in the single reflectance (top) and depth image (mid-
dle) and the computed focus in the combination of both
modes (bottom). The right column shows the rectangle that
denotes a detected chair in reflectance and depth image and
at the bottom the chair that is finally recognized by the joint
cascade. Fig. 10 shows some more examples: the chairs are
successfully detected even if the focus is at the object’s bor-

Figure 10. Three examples of chair detec-
tions. Left: Combined foci of attention.
Right: corresponding detections by the clas-
sifier. Top: Chair is detected even if the fo-
cus is at its border. Middle: Detection of two
chairs. Bottom: Chair is detected although
it is presented sidewards and partially oc-
cluded.

der (top and middle) and if the object is partially occluded
(bottom). However, severely occluded objects are not de-
tected; the amount of occlusion still enabling detection has
to be investigated further.

The classification needs 60 ms if a focus is provided as
a starting point, compared to 200 ms for an uninformed
search across the whole image (Pentium-IV-2400). So the
focused classification needs only 30% of the time of the ex-
haustive one. The attention system requires 230 ms to com-
pute a focus for both modes, i.e., form object classes the
exhaustive search needsm ∗ 200 ms, the attentive search
needs230+m∗60 ms. Therefore, already for two different
object classes in the data base, the return of investment is
reached and the time saving increases proportionally with
the number of objects.

6 Conclusions

In this paper, we have presented a new architecture for
combining biologically motivated attentional mechanisms
with a fast method for object classification. Input data
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are provided by a 3D laser scanner mounted on top of
an autonomous robot. The scanner provides illumination-
independent, bi-modal data that are transformed to depth
and reflectance images. These serve as input to an atten-
tion system, directing the focus of attention sequentially to
regions of potential interest. The foci determine starting
regions for a cascade of classifiers which use Haar-like fea-
tures. By concentrating classification on salient regions, the
classifier has to consider only a fraction of the search win-
dows than in the case of an exhaustive search over the whole
image. This speeds up the classification part significantly.

The architecture benefits from the fusion of the two laser
modes resulting in more detected objects and a lower false
classification rate. The range data enables the detection
of objects with the same intensity like their background
whereas the reflection data is able to detect flat objects.
Moreover, misclassifications of shadows, mirroring objects
and pictures of objects on the wall are avoided.

In future work, we will include top-down mechanisms in
the attention model, enabling goal dependent search for ob-
jects. Furthermore, we plan to additionally integrate camera
data into the system, allowing the simultaneous use of color,
depth, and reflectance. The classifier will be trained for ad-
ditional objects which compete for saliency. The overall
goal will be a flexible vision system that recognizes salient
objects first, guided by attentional mechanisms, and regis-
ters the recognized objects in semantic maps autonomously
built by a mobile robot. The maps will serve as interface
between robot and humans.
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