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Abstract. Binary Linking Schemes (BLS) for digital time-stamping [3]
provide (1) relative temporal authentication to be performed in loga-
rithmic time, and (2) time-certificates of reasonable size, which together
with the data published in a widely available medium enable the verifier
to establish their relative temporal positions, even if the database held
by the Time-Stamping Service (TSS) ceases to exist. We show that the
size of a time-certificate 7(X) of a document X in the scheme presented
in [3] is bounded by 4 - log, N where k is the output size of the hash
function and N is the number of time-stamps issued. We then present
a new BLS with 7(X) ~ ﬁ -k -log, N and prove that the presented
scheme is optimal in that sense.

1 Introduction

Time-stamps enable an incredulous verifier to ascertain the date a digital doc-
ument was created, signed or last modified. Most of the time-stamping systems
proposed to date are based on trusted third parties and are, thereby, more or
less vulnerable [6]. The key problem today in time-stamping is to reduce the
role of trusted third parties. This is necessary for the segregation of duties and
liabilities when using time-stamping for non-repudiation in legally valid digital
signature schemes.

First steps in this direction were made by Haber and Stornetta who proposed
a linear linking scheme [4] in which the time-certificates, issued by the Time-
Stamping Service (TSS), are linked together in a one-way manner, such that
the verifier, given two time-stamped documents, is able to ascertain which of
the two was created earlier. The use of one-way functions significantly reduces
the possibilities of the TSS to back-date documents without inverting the hash
function or colluding with the clients. The idea was further refined by Pinto
and Freitas [10]. According to them, the time-certificate for a document X, is
sigrgg(n, Xn, Ly), where L,, = H(X,,, Ln_1). Although the linear linking scheme
makes time-stamping more reliable, it increases the complexity of verification
because the required number of hash-steps is linear on the number of time-
stamps.

Tree-like linking schemes [2,1, 5] reduce the verification cost significantly.
The main idea is to use Merkle authentication trees [7-9] for storing the time-
stamp requests received during fixed time-periods, referred to as rounds. The



time-stamp £, for round r is a cumulative hash of the time-stamp £, for the
(r—1)-th round and of all the documents submitted to the TSS during the round
r, which are organized as an authentication tree. Time-certificate of a fixed doc-
ument comprises the authentication path from the leaf corresponding to this
document to the root. The length of this path is logarithmic in the number of
documents time-stamped during the round. Thereby, the TSS has to store only
the values £,.. For temporal authentication the verifier needs some of the values
L, and a time-certificate. The relative temporal order of two documents submit-
ted during the same round can be ascertained only when assuming unconditional
trustworthiness of the TSS. This is not a big problem if duration of rounds is
small enough. For example, it equals one second in Digital Notary [1,5,11] sys-
tem. However, if the number of time-stamp requests per round is too small the
authentication trees cannot be used effectively. Another weakness of this scheme
is that the verifying of one-way relationship between the time-stamps for rounds
still requires linear number of hash-steps.

In Binary Linking Schemes [3] the linking item L,, is generated by applying
a one-way hash function H to the concatenation comprising L,,_1 and the value
of another suitably chosen Ly (,), with f being a fixed deterministic function, i.e.

L, = H(n, Xn: Ly ) Lf(n))7

where X, is the digest of the n-th time-stamped document. These schemes are
motivated by the fact that if f is chosen appropriately, the verification requires
logarithmic number of hash-steps.

The structure of this work is as follows. In section 2 we outline some general
requirements for time-stamping systems. In section 3 binary linking schemes
(BLS) and the relevant notation is introduced. Section 4 describes antimonotone
BLSs as a class of schemes that meet the requirements stated in section 2. It also
introduces the notion of pass-through distance of a BLS, which is proportional to
the size of time-certificates. Section 5 describes a canonical way of decomposing
antimonotone BLSs. In section 6 the main result of this paper, concerning the
lower bound of pass-through distance of antimonotone BLSs, is proven. Section
7 describes an antimonotone BLS which achieves this bound, and also discusses
its implementation.

2 General requirements

A digital data item does not, by itself, comprise the seal of time. Thereby, the
temporal relationship X < Y between data items X and Y has to be "modeled”
by another relation, either mathematical or organizational. Obviously, mathe-
matical (one-way) relations are more reliable than, for example, the relation:
”The TSS said that X is older than Y”. Unfortunately, one cannot define a
purely mathematical relation that fixes the temporal positions of bit-strings
without doing any special-purpose computations and without interaction be-
tween the creators of the time-stamped material. Mathematics just does not
depend on any physical phenomenon such as time. Thereby, using a third party



(the TSS) to avoid redundant broadcast and storage [2] in a time-stamping sys-
tem seems to be necessary. The key problem today is to reduce the role of trust
in time-stamping systems (and also, in digital signature systems).

In an ideal time-stamping scheme each document X has a time-certificate
7(X) issued by the TSS such that the certificates 7(X) and 7(Y") together com-
prise information enough for establishing the one-way relationship between X
and Y. In such a system the TSS is not necessary during the verification proce-
dure. It is proven ([3], Thm.2), however, that such systems do not exist. Either
the size of a certificate is unreasonably large (linear on the number of time-
stamps) or the verifier has to request additional verifying data from the TSS. In
real implementations a reasonable trade-off should be found.

Most of the time-stamping schemes proposed to date are vulnerable in sense
that if the database held by the TSS ceases to exist, we are no more able to
perform relative temporal authentication. Even if the time-stamps are regularly
(say weekly) published in a newspaper, destruction of the database significantly
reduces the accuracy — in Digital Notary system from one second to one week.
What we really expect from the time-certificates is that:

— if X and Y are "close” enough in time (lie in the same round), their one-way
relationship can be established using 7(X) and 7(Y);

— if X and Y are not ”close” enough in time (lie in different rounds), their one-
way relationship can be established using 7(X), 7(Y') and data published in
the newspaper.

We demonstrate further that binary linking schemes provide these features. We
present a new linking scheme and prove that it is optimal in the sense that it
guarantees time-certificates of the smallest possible size.

3 Binary Linking Schemes. Notation

By a Binary Linking Scheme (BLS) we mean a directed graph (G, <) without
cycles such that: (1) for each vertex v € G the set {w | w < v} contains no more
than two vertices; (2) there is a directed path between each pair of vertices.

It is obvious that the vertices of a BLS can be indexed uniquely with consecu-
tive positive integers 1, ..., N = |G| such that v,_1 + v, for each 1 < n < N and
there is a unique function f:{2,...., N} — {1,..., N}, further referred to as the
linking function of G, such that v, + v, if and only if m € {n — 1, f(n)}. The
vertices v1 and v are called the first and the last vertex, respectively. Therefore,
a binary linking scheme can be defined as a pair (G, f) of a totally ordered set
and a linking function.

The set of vertices [vy,, v,] := {vg|m < k < n} is called an interval between
Uy and v,. If m < n, then the minimal length of a directed path between
v and v, in the graph G is denoted as d(vy,,v,) and is referred to as the
distance between v, and v,. By the diameter A(G) we mean the maximum
of the distance function d(-,-), i.e. A = maxi<m<n<ny d(m,n). The number
dpi (G) = maxi<p<n d(1,n) + d(n, N) is called pass-through distance of G.



Let the shortest paths between v; and v,, and between v,, and vy be unique.
In this case we denote them by head(n) and tail(n), respectively. These paths
are unique if the underlying scheme is antimonotone.

4 Antimonotone schemes

In binary linking schemes [3] a time-certificate 7(X,,) for n-th document X,, of
the round r comprises the authentication paths from the time-stamp £,_; for
the previous round to the linking item L,, which is represented by the path
head(n) in the linking graph; and from L, to the time-stamp £, for the current
round, represented by tail(n). It is shown [3] that if the linking function f is
antimonotone, i.e.

f(n) <m<n = f(n) < f(m)

for arbitrary m and n, then tail(m) and head(n) have an intersection point for
every L, and L, (m < m) which belong to the same round. Therefore, anti-
monotone linking schemes guarantee that any two time-certificates 7(X,,) and
7(X,) together contain information enough for establishing a one-way relation-
ship between L,, and L,, which is sufficient to meet the requirements stated
above.

Though the size of a time-certificate is logarithmic, it may become significant
if the rounds are large. If the average number of documents time-stamped during
around is N and a k-bit hash function is used, the size of a certificate 7(X) is

[7(X)| = 2k - dp

where dp; is the pass-through distance of the linking scheme used. In [3] an
upper bound 2k - A for the size of 7(X) has been given. However, the pass-
through distance may be smaller than the diameter. As we are going to show
below, the linking scheme in [3] has d,; < 2 -log, N, while it has been shown
in [3] that A ~ 3 -log, N for this linking scheme. For example, if N = 107 and
k = 160 bits then |7(X)| < 1.9 K bytes.

Another thing that has to be kept in mind is the number of hash-steps during
verification. It is proportional to the diameter A = A(G). Linking schemes that
are optimal for A may not be optimal for d,; and vice versa. However, the
diameter and pass-through distance of an antimonotone scheme are of the same
magnitude, i.e.

1
54 < dy <24

The linking schemes used inside the rounds may be optimized for d,; because in
this case the storage is more expensive; the schemes used to link the time-stamps
for rounds may be optimized for A because d,: does not make sense here. In this
article we concentrate on finding schemes with minimal pass-through distance.



5 Structure of antimonotone schemes

We define a binary operation ®, further referred to as product of binary linking
schemes. For schemes (G, f1) and (G2, f2) the product-scheme G; ® G is a pair
(G, f) where |G| = |G1| + |G2| and

fi(2), if 1 <i<|G
f@) = q f2(i = |G|+ 1) + |G| - 1if |Gy <i < |G|
|G| if i = |G|

The resulting scheme is depicted in Figure 1. The product operation is an essen-

|G|

Fig. 1. The product-scheme G1 ® G2

tial tool when studying the structure of antimonotone binary linking schemes
because

(G, f) = [v1,vp0a)] © [vpa), via)—1] (1)
whenever G is antimonotone. Therefore, all antimonotone schemes can be gener-
ated using singleton scheme I and the ®-operation. Each of them is represented
uniquely as an element of the free groupoid ((I), ®) with one generator. Whereas
the number of vertices in the scheme is equal to the number of I-s in the cor-
responding non-associative word, the number of antimonotonic schemes with n
vertices is equal to the n-th Catalan number

Cﬂ_l(?n2>.
n\n—1

Here and further it has been assumed that all binary linking schemes being
spoken about are antimonotone. Let G and H be binary linking schemes. We
now concentrate on representing dy:(G1 ® G2) as a function of dp:(G1) and
dp:(G2). It turns out that we need additional parameter D(G) := d(1,|G|) for
this purpose. We have

D(Gh ® G2) = D(Gq) +1 (2)
dpt (G1 ® G2) = max{dp(G1) + 1,dp (G2) + D(G1) + 1}.
The linking scheme in [3] can be defined recursively by the equations Ty := I,

T,:=1®T) and T}, := T, ® T, Thereby, it can be proven by mathematical
induction that dp;(T,,) = 2n—1 and |T},| = 2™ which gives dp(T},) = 2-log, |T,|—
1. Below, we present a scheme with d: (7)) = % log, |T,| + o(log |T,|) and
prove that this bound cannot be tightened.



6 Structure of optimal schemes

As the Catalan numbers C,, are exponential in n, finding schemes with minimal
pass-through distance by using brute force is obviously intractable. Decomposi-
tion formulas (2) slightly simplify the problem. Let

M (n) := min{d,:(G) : G is a BLS with |G| = n.}
M(n,d) := min{dy(G) : G is a BLS with |G| = n and D(G) =d.}.

Let M(n) denote the set of all binary linking schemes G with |G| = n and
dpt(G) = M(n). Let M(n,d) denote the set of binary linking schemes with
|G| = n, D(G) = d and dp(G) = M(n,d). By (1) each G with |G| = n can be
represented as a product G = G; ® G2, where |G| = ¢ and |G| = n — £ for
suitable 1 < ¢ < m. As the functions d,:(G) and D(G) are monotone with respect
to the arguments d¢ (G1), dpt(G2) and D(G1), the minimum of dy; (G) for a fixed
|G| = n and D(G) = d can always be obtained by choosing G; € M(¢,d—1) and
Gy € M(n — £). Therefore, the values of M (n,d) can be found by the recursive
equations

M(n,d) = drﬁn{iiln max{M(¢,d - 1)+ 1, M (n — {) + d}, (3)

M(n) = 1I<ndl£1nM(11 d).

These equations are valid if we assume that M (1,0) = 0 and M (n,0) = oo for
n > 1. Let X(m) := max{|G| : G is a BLS with d,;(G) = m.}. Using formulas

d:123456789
1
22
333
4344
44455
544566
55565677
65556788
655667899
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Table 1. Values of M (n,d) and M (n) for small schemes.

(3) it is possible to determine, that

X0)=1,X(1)=2, X(2)=3, X(3)=5, @
X(4)=7,X(5) =11, X(6) = 16, X (7) = 23.

We are going to prove that there exists no sequence of non-isomorphic binary
linking schemes G1,Gs,...,Gp, ... with |Giy1| > |Gy| for every i, such that



dpt(Gn) < ¢ -logyn + ¢y for each n, where ¢ < 3/log,3 ~ 1.89. We prove
that
X(m)=3-X(m—-3)+1, (5)

whenever m > 8. Let X'(m) denote the set of all binary linking schemes G with
pass-through distance d,:(G) = m and with cardinality |G| = X (m). Equation
(5) implies that if G1, G, ..., G, ... is a sequence with G,, € X (m) for each index
m, then the corresponding sequence d,q(G1), dpi(G2), ... grows approximately as
3/1og, 3 - log, |G |. For proving (5) we have to know more about the structure
of optimal schemes G € X (m).

Let X(m,d) := max{|G| : G is a BLS with dy:(G) = m and D(G) = d} and
let X(m,d) denote the set of all binary linking schemes G with d,:(G) = m,
D(G) =d and |G| = X (m, d).
Theorem 1. FEach scheme G € X(m,d) can be represented as a product G =
Gy ® Gy where G1 € X(m —1,d—1) and Gy € X(m — d).

Proof. Let G € X(m,d). By (1) we have that G = G1 ® Gy, where Gy =
[Vr(G))s Vja|-1]- By the definition of the operation ®, each directed path from
v1 to v|g| goes through the vertex vy (|g)). This holds also for the shortest path
between these vertices. Therefore, D(G1) = d — 1 and

m = dpt(G) = max{dpt(GH) + 1, dpt(GQ) + d}

If either dp: (G1)+1 < m or dy(G2) +d < m, then Gy and G respectively could
be replaced by larger schemes without changing d,:(G). This follows from the
trivial fact that |H @ I| = |[H| + 1 and dp:(H ® I) = dy(H) + 1. That, however,
would be a contradiction. Thereby, dy:(G1) = m — 1 and dp(G2) = m — d. The
statement of the theorem follows.

An obvious corollary of Theorem 1 is that if G € X(m) and D(G) = d then
there exist binary linking schemes G1,Gs, ..., G4 € X'(m — d) such that

G=(..(I®G)®G)®...)®0G, (6)
Corollary 1. For each positive integer m

X (m) zlrgndasxmd-X(mfd)-{—l. (7)

Proof. Let G € X(m,d). By (6) we have X(m,d) = |G| =d-X(m —d) + 1. As
X (m) = maxi<q<m X (m,d), equation (7) follows.

Lemma 1. If G € X(m), then D(G) < 4.

Proof. Let d = D(G) > 4. By Corollary 1, we have X(m) > 2-X(m —2)+1
and X(m —2) > (d —2) - X(m — d) + 1. Therefore

X(m)>2-X(m—-2)+1>2(d-2)- X(m—-d)+3>d-X(m—d)+3
>d-X(m—d)+1,

because 2(d — 2) > d.



Lemma 2. If m is chosen such that for each d € {1,2,3}

X(m—d—1)>=-X(m —d), (8)

Wl o

then X (m —1) > 2X(m).
Proof. Using Lemma 1 and Corollary 1,

2
X(m—1)=max d-X(m—-1—-d)+1> max d--X(m—d)+1
1<d<3 1<d<3 3

Y

3 \1<d<3

w

2 2
- (max d-X(md)+1> = —-X(m).
Lemma 3. If m > 8, then for each d € {1,2, 3}

X(m - d) > ;X(mfd+1). )

Proof. We prove the lemma by mathematical induction with base m = 8. If
m = §, these inequalities follow immediately from Corollary 1, Lemma 1 and
Equations (4). For m > 8 induction hypothesis gives us that the inequalities (8)
hold and by Lemma 2 we conclude that X (m —1) < 2/3- X (m) which completes
the induction step.

Theorem 2. If m > 8, then X(m) =3X(m —3) + 1.

Proof. Let n > 8. By Lemma 3, we have 3X(m — 3) > 2X(m —2) > X(m — 1)
and thus

X(m)= max d-X(m—d)+1
1<d<3
=max{X(m—1),2-X(m—2),3-X(m—-3)} +1

=3-X(m—3)+1.

Thereby, we have an exact formula for X (m):

(1, if m = 0;

2, ifm=1;

3, if m=2;

) 5, if m = 3

m)=137, if m = 4;
%-SMQE—%,ifmZ5andm52 (mod 3);
%-SMQG—%,ifmZ5andeO (mod 3);
L%-3m57—%,ifm25andmzl (mod 3).
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Fig. 2. Recursive construction of T,.

7 A new linking scheme

We define a new scheme using the recursive procedure and the product operation.
Let T7 = I and
T, = ((I ® Tnfl) ® Tnfl) & Ty 1.

The resulting scheme T;, is depicted in Figure 2. Obviously, the number of ver-
tices in T, is given by the recursive formula |T,| = 3 - |T,,—1| + 1 and T = 1.
Therefore

|T,| = 1/2- 3" —1/2.

As for the pass-through distance we have again a recursive formula d(T),) =
dpt(Tr—1) + 3 and d: (Th) = 0, it follows that dp(T},) = 3n. Hence,

du(T)) 3 1
log, [T}, ~logy3 1+o0(1)

Although we have a scheme providing time-certificates of minimal size, it is also
important for practical implementations that the values of linking function f
can be found in reasonable time. We derive a formula for f for a more general
case. Let k € N\{1} and let 7" be a BLS. Let T (k,T) = ([T (k, T)]n)nenufoy be
a family of BLSs defined as follows:

[T(k,T)]o:=T
[T (k. Dl o= (- (L& [Tk, T)]n) @[T (k,D)]a) @) © [T (k,T)]n,

k times

where n € N U {0}. Let S, := |[T(k,T)]n|- Thus Sp = |T| and for every n €
N U {0} holds S,,11 = kS, + 1. Therefore

k™ —1
k-1~

Sp =k"T|+

Let f,:{2,...,S.} — {1,...,S,} be the antimonotone function defining the
BLS [T (k,T)]». The function fq is given by T'. For f,, n € N, holds (see Fig. 2)

r—Sn_1, ife=1S,_1+1
fn(x) = .fn,1(512 - (l - I)Snfl)
+(=1)S,1,if (1 —-1)Sp—1+2<2<I1S,_1,



where 1 < < k. For every n,n' € N U {0} and 2z € N\{1} where n < n' and
z < S, holds fn(x) = fn(z) because [T (k,T)]n contains [T (k,T)], as initial
segment. The function f: N\{1} — N defined by

f(z) = folz), ifz < S,

thus defines the infinite BLS containing each [T (k,T)],, as initial segment. The
function f can be expressed as follows:

flz) = r—S,, ifxe=10S,+1,1<I<k
- fle=18,) +1S,,if 1S, +2< < (1+1)S,,1<I<k.

Assuming that arithmetic operations take constant time, the complexity of find-
ing f(m) is O(logm - loglogm).

8 Conclusions

We presented a new linking scheme for digital time-stamping that does not
assume the trustworthiness of the TSS and remains usable even if the database
held by the TSS is lost. Time-certificates in this scheme enable to ascertain
the relative temporal positions of the documents time-stamped during the same
round. Their size is 6/1og,(3) - k - logy N, where k is the output length of the
used hash function and NV is the number of documents time-stamped during a
round. We proved that using antimonotone linking schemes it is not possible to
achieve smaller certificates.
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