
New linking schemes for digital time-stampingAhto Buldas1 and Peeter Laud21 K�uberneetika AS; Akadeemia 21, Tallinn, Estonia2 K�uberneetika AS, Tartu Lab; Lai 36, Tartu, Estoniafahtbu,peeterg@cyber.eeAbstract. Binary Linking Schemes (BLS) for digital time-stamping [3]provide (1) relative temporal authentication to be performed in loga-rithmic time, and (2) time-certi�cates of reasonable size, which togetherwith the data published in a widely available medium enable the veri�erto establish their relative temporal positions, even if the database heldby the Time-Stamping Service (TSS) ceases to exist. We show that thesize of a time-certi�cate �(X) of a document X in the scheme presentedin [3] is bounded by 4 � log2N where k is the output size of the hashfunction and N is the number of time-stamps issued. We then presenta new BLS with �(X) � 6log2 3 � k � log2N and prove that the presentedscheme is optimal in that sense.1 IntroductionTime-stamps enable an incredulous veri�er to ascertain the date a digital doc-ument was created, signed or last modi�ed. Most of the time-stamping systemsproposed to date are based on trusted third parties and are, thereby, more orless vulnerable [6]. The key problem today in time-stamping is to reduce therole of trusted third parties. This is necessary for the segregation of duties andliabilities when using time-stamping for non-repudiation in legally valid digitalsignature schemes.First steps in this direction were made by Haber and Stornetta who proposeda linear linking scheme [4] in which the time-certi�cates, issued by the Time-Stamping Service (TSS), are linked together in a one-way manner, such thatthe veri�er, given two time-stamped documents, is able to ascertain which ofthe two was created earlier. The use of one-way functions signi�cantly reducesthe possibilities of the TSS to back-date documents without inverting the hashfunction or colluding with the clients. The idea was further re�ned by Pintoand Freitas [10]. According to them, the time-certi�cate for a document Xn issigTSS(n;Xn; Ln), where Ln = H(Xn; Ln�1). Although the linear linking schememakes time-stamping more reliable, it increases the complexity of veri�cationbecause the required number of hash-steps is linear on the number of time-stamps.Tree-like linking schemes [2, 1, 5] reduce the veri�cation cost signi�cantly.The main idea is to use Merkle authentication trees [7{9] for storing the time-stamp requests received during �xed time-periods, referred to as rounds. The



time-stamp Lr for round r is a cumulative hash of the time-stamp Lr�1 for the(r�1)-th round and of all the documents submitted to the TSS during the roundr, which are organized as an authentication tree. Time-certi�cate of a �xed doc-ument comprises the authentication path from the leaf corresponding to thisdocument to the root. The length of this path is logarithmic in the number ofdocuments time-stamped during the round. Thereby, the TSS has to store onlythe values Lr. For temporal authentication the veri�er needs some of the valuesLr and a time-certi�cate. The relative temporal order of two documents submit-ted during the same round can be ascertained only when assuming unconditionaltrustworthiness of the TSS. This is not a big problem if duration of rounds issmall enough. For example, it equals one second in Digital Notary [1, 5, 11] sys-tem. However, if the number of time-stamp requests per round is too small theauthentication trees cannot be used e�ectively. Another weakness of this schemeis that the verifying of one-way relationship between the time-stamps for roundsstill requires linear number of hash-steps.In Binary Linking Schemes [3] the linking item Ln is generated by applyinga one-way hash function H to the concatenation comprising Ln�1 and the valueof another suitably chosen Lf(n), with f being a �xed deterministic function, i.e.Ln = H(n;Xn; Ln�1; Lf(n));where Xn is the digest of the n-th time-stamped document. These schemes aremotivated by the fact that if f is chosen appropriately, the veri�cation requireslogarithmic number of hash-steps.The structure of this work is as follows. In section 2 we outline some generalrequirements for time-stamping systems. In section 3 binary linking schemes(BLS) and the relevant notation is introduced. Section 4 describes antimonotoneBLSs as a class of schemes that meet the requirements stated in section 2. It alsointroduces the notion of pass-through distance of a BLS, which is proportional tothe size of time-certi�cates. Section 5 describes a canonical way of decomposingantimonotone BLSs. In section 6 the main result of this paper, concerning thelower bound of pass-through distance of antimonotone BLSs, is proven. Section7 describes an antimonotone BLS which achieves this bound, and also discussesits implementation.2 General requirementsA digital data item does not, by itself, comprise the seal of time. Thereby, thetemporal relationship X < Y between data items X and Y has to be "modeled"by another relation, either mathematical or organizational. Obviously, mathe-matical (one-way) relations are more reliable than, for example, the relation:"The TSS said that X is older than Y ". Unfortunately, one cannot de�ne apurely mathematical relation that �xes the temporal positions of bit-stringswithout doing any special-purpose computations and without interaction be-tween the creators of the time-stamped material. Mathematics just does notdepend on any physical phenomenon such as time. Thereby, using a third party



(the TSS) to avoid redundant broadcast and storage [2] in a time-stamping sys-tem seems to be necessary. The key problem today is to reduce the role of trustin time-stamping systems (and also, in digital signature systems).In an ideal time-stamping scheme each document X has a time-certi�cate�(X) issued by the TSS such that the certi�cates �(X) and �(Y ) together com-prise information enough for establishing the one-way relationship between Xand Y . In such a system the TSS is not necessary during the veri�cation proce-dure. It is proven ([3], Thm.2), however, that such systems do not exist. Eitherthe size of a certi�cate is unreasonably large (linear on the number of time-stamps) or the veri�er has to request additional verifying data from the TSS. Inreal implementations a reasonable trade-o� should be found.Most of the time-stamping schemes proposed to date are vulnerable in sensethat if the database held by the TSS ceases to exist, we are no more able toperform relative temporal authentication. Even if the time-stamps are regularly(say weekly) published in a newspaper, destruction of the database signi�cantlyreduces the accuracy { in Digital Notary system from one second to one week.What we really expect from the time-certi�cates is that:{ if X and Y are "close" enough in time (lie in the same round), their one-wayrelationship can be established using �(X) and �(Y );{ if X and Y are not "close" enough in time (lie in di�erent rounds), their one-way relationship can be established using �(X), �(Y ) and data published inthe newspaper.We demonstrate further that binary linking schemes provide these features. Wepresent a new linking scheme and prove that it is optimal in the sense that itguarantees time-certi�cates of the smallest possible size.3 Binary Linking Schemes. NotationBy a Binary Linking Scheme (BLS) we mean a directed graph (G; ) withoutcycles such that: (1) for each vertex v 2 G the set fw j w  vg contains no morethan two vertices; (2) there is a directed path between each pair of vertices.It is obvious that the vertices of a BLS can be indexed uniquely with consecu-tive positive integers 1; :::; N = jGj such that vn�1  vn for each 1 < n � N andthere is a unique function f : f2; :::; Ng �! f1; :::; Ng, further referred to as thelinking function of G, such that vm  vn if and only if m 2 fn� 1; f(n)g. Thevertices v1 and vN are called the �rst and the last vertex, respectively. Therefore,a binary linking scheme can be de�ned as a pair (G; f) of a totally ordered setand a linking function.The set of vertices [vm; vn] := fvkjm � k � ng is called an interval betweenvm and vn. If m � n, then the minimal length of a directed path betweenvm and vn in the graph G is denoted as d(vm; vn) and is referred to as thedistance between vm and vn. By the diameter �(G) we mean the maximumof the distance function d(�; �), i.e. � = max1�m�n�N d(m;n). The numberdpt(G) = max1�n�N d(1; n) + d(n;N) is called pass-through distance of G.



Let the shortest paths between v1 and vn, and between vn and vN be unique.In this case we denote them by head(n) and tail(n), respectively. These pathsare unique if the underlying scheme is antimonotone.4 Antimonotone schemesIn binary linking schemes [3] a time-certi�cate �(Xn) for n-th document Xn ofthe round r comprises the authentication paths from the time-stamp Lr�1 forthe previous round to the linking item Ln, which is represented by the pathhead(n) in the linking graph; and from Ln to the time-stamp Lr for the currentround, represented by tail(n). It is shown [3] that if the linking function f isantimonotone, i.e. f(n) < m � n =) f(n) � f(m)for arbitrary m and n, then tail(m) and head(n) have an intersection point forevery Lm and Ln (m < n) which belong to the same round. Therefore, anti-monotone linking schemes guarantee that any two time-certi�cates �(Xm) and�(Xn) together contain information enough for establishing a one-way relation-ship between Lm and Ln, which is su�cient to meet the requirements statedabove.Though the size of a time-certi�cate is logarithmic, it may become signi�cantif the rounds are large. If the average number of documents time-stamped duringa round is N and a k-bit hash function is used, the size of a certi�cate �(X) isj�(X)j = 2k � dptwhere dpt is the pass-through distance of the linking scheme used. In [3] anupper bound 2k � � for the size of �(X) has been given. However, the pass-through distance may be smaller than the diameter. As we are going to showbelow, the linking scheme in [3] has dpt � 2 � log2N , while it has been shownin [3] that � � 3 � log2N for this linking scheme. For example, if N = 107 andk = 160 bits then j�(X)j � 1.9 K bytes.Another thing that has to be kept in mind is the number of hash-steps duringveri�cation. It is proportional to the diameter � = �(G). Linking schemes thatare optimal for � may not be optimal for dpt and vice versa. However, thediameter and pass-through distance of an antimonotone scheme are of the samemagnitude, i.e. 12� � dpt � 2�:The linking schemes used inside the rounds may be optimized for dpt because inthis case the storage is more expensive; the schemes used to link the time-stampsfor rounds may be optimized for � because dpt does not make sense here. In thisarticle we concentrate on �nding schemes with minimal pass-through distance.



5 Structure of antimonotone schemesWe de�ne a binary operation 
, further referred to as product of binary linkingschemes. For schemes (G1; f1) and (G2; f2) the product-scheme G1
G2 is a pair(G; f) where jGj = jG1j+ jG2j andf(i) = 8<:f1(i); if 1 < i � jG1jf2(i� jG1j+ 1) + jG1j � 1 if jG1j < i < jGjjG1j if i = jGj.The resulting scheme is depicted in Figure 1. The product operation is an essen-
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                G1 G2jG1j1 jGj � 1 jGjFig. 1. The product-scheme G1 
G2tial tool when studying the structure of antimonotone binary linking schemesbecause (G; f) �= [v1; vf(jGj)]
 [vf(jGj); vjGj�1] (1)whenever G is antimonotone. Therefore, all antimonotone schemes can be gener-ated using singleton scheme I and the 
-operation. Each of them is representeduniquely as an element of the free groupoid (hIi;
) with one generator. Whereasthe number of vertices in the scheme is equal to the number of I-s in the cor-responding non-associative word, the number of antimonotonic schemes with nvertices is equal to the n-th Catalan numberCn = 1n �2n� 2n� 1� :Here and further it has been assumed that all binary linking schemes beingspoken about are antimonotone. Let G and H be binary linking schemes. Wenow concentrate on representing dpt(G1 
 G2) as a function of dpt(G1) anddpt(G2). It turns out that we need additional parameter D(G) := d(1; jGj) forthis purpose. We haveD(G1 
G2) = D(G1) + 1 (2)dpt(G1 
G2) = maxfdpt(G1) + 1; dpt(G2) +D(G1) + 1g:The linking scheme in [3] can be de�ned recursively by the equations T 01 := I ,Tn := I 
 T 0n and T 0n+1 := Tn 
 T 0n. Thereby, it can be proven by mathematicalinduction that dpt(Tn) = 2n�1 and jTnj = 2n which gives dpt(Tn) = 2�log2 jTnj�1. Below, we present a scheme with dpt(Tn) = 3log2 3 log2 jTnj + o(log jTnj) andprove that this bound cannot be tightened.



6 Structure of optimal schemesAs the Catalan numbers Cn are exponential in n, �nding schemes with minimalpass-through distance by using brute force is obviously intractable. Decomposi-tion formulas (2) slightly simplify the problem. LetM(n) := minfdpt(G) : G is a BLS with jGj = n.gM(n; d) := minfdpt(G) : G is a BLS with jGj = n and D(G) = d.g:Let M(n) denote the set of all binary linking schemes G with jGj = n anddpt(G) = M(n). Let M(n; d) denote the set of binary linking schemes withjGj = n, D(G) = d and dpt(G) = M(n; d). By (1) each G with jGj = n can berepresented as a product G = G1 
 G2, where jG1j = ` and jG2j = n � ` forsuitable 1 � ` < n. As the functions dpt(G) and D(G) are monotone with respectto the arguments dpt(G1), dpt(G2) and D(G1), the minimum of dpt(G) for a �xedjGj = n and D(G) = d can always be obtained by choosing G1 2 M(`; d�1) andG2 2 M(n� `). Therefore, the values of M(n; d) can be found by the recursiveequations M(n; d) = mind�`<nmaxfM(`; d� 1) + 1;M(n� `) + dg; (3)M(n) = min1�d�nM(n; d):These equations are valid if we assume that M(1; 0) = 0 and M(n; 0) = 1 forn > 1. Let X(m) := maxfjGj : G is a BLS with dpt(G) = m.g. Using formulasn d: 1 2 3 4 5 6 7 8 9 M(n)2 1 13 2 2 24 3 3 3 35 4 3 4 4 36 4 4 4 5 5 47 5 4 4 5 6 6 48 5 5 5 5 6 7 7 59 6 5 5 5 6 7 8 8 510 6 5 5 6 6 7 8 9 9 5Table 1. Values of M(n; d) and M(n) for small schemes.(3) it is possible to determine, thatX(0) = 1; X(1) = 2; X(2) = 3; X(3) = 5;X(4) = 7; X(5) = 11; X(6) = 16; X(7) = 23: (4)We are going to prove that there exists no sequence of non-isomorphic binarylinking schemes G1; G2; :::; Gn; ::: with jGi+1j > jGij for every i, such that



dpt(Gn) � c � log2 n + c0 for each n, where c < 3= log2 3 � 1:89. We provethat X(m) = 3 �X(m� 3) + 1; (5)whenever m � 8. Let X (m) denote the set of all binary linking schemes G withpass-through distance dpt(G) = m and with cardinality jGj = X(m). Equation(5) implies that if G1; G2; :::; Gm; ::: is a sequence with Gn 2 X (m) for each indexm, then the corresponding sequence dpd(G1); dpd(G2); ::: grows approximately as3= log2 3 � log2 jGmj. For proving (5) we have to know more about the structureof optimal schemes G 2 X (m).Let X(m; d) := maxfjGj : G is a BLS with dpt(G) = m and D(G) = dg andlet X (m; d) denote the set of all binary linking schemes G with dpt(G) = m,D(G) = d and jGj = X(m; d).Theorem 1. Each scheme G 2 X (m; d) can be represented as a product G =G1 
G2 where G1 2 X (m� 1; d� 1) and G2 2 X (m� d).Proof. Let G 2 X (m; d). By (1) we have that G = G1 
 G2, where G2 =[vf(jGj); vjGj�1]. By the de�nition of the operation 
, each directed path fromv1 to vjGj goes through the vertex vf(jGj). This holds also for the shortest pathbetween these vertices. Therefore, D(G1) = d� 1 andm = dpt(G) = maxfdpt(G1) + 1; dpt(G2) + dg:If either dpt(G1)+1 < m or dpt(G2)+d < m, then G1 and G2 respectively couldbe replaced by larger schemes without changing dpt(G). This follows from thetrivial fact that jH 
 I j = jH j+1 and dpt(H 
 I) = dpt(H) + 1. That, however,would be a contradiction. Thereby, dpt(G1) = m� 1 and dpt(G2) = m� d. Thestatement of the theorem follows.An obvious corollary of Theorem 1 is that if G 2 X (m) and D(G) = d thenthere exist binary linking schemes G1; G2; :::; Gd 2 X (m� d) such thatG = (: : : ((I 
G1)
G2)
 : : :)
Gd (6)Corollary 1. For each positive integer mX(m) = max1�d�m d �X(m� d) + 1: (7)Proof. Let G 2 X (m; d). By (6) we have X(m; d) = jGj = d �X(m� d) + 1. AsX(m) = max1�d�mX(m; d), equation (7) follows.Lemma 1. If G 2 X (m), then D(G) < 4.Proof. Let d = D(G) � 4. By Corollary 1, we have X(m) � 2 � X(m � 2) + 1and X(m� 2) � (d� 2) �X(m� d) + 1. ThereforeX(m) � 2 �X(m� 2) + 1 � 2(d� 2) �X(m� d) + 3 � d �X(m� d) + 3> d �X(m� d) + 1;because 2(d� 2) � d.



Lemma 2. If m is chosen such that for each d 2 f1; 2; 3gX(m� d� 1) � 23X(m� d); (8)then X(m� 1) � 23X(m).Proof. Using Lemma 1 and Corollary 1,X(m� 1) = max1�d�3 d �X(m� 1� d) + 1 � max1�d�3 d � 23X(m� d) + 1� 23 � max1�d�3 d �X(m� d) + 1� = 23 �X(m):Lemma 3. If m � 8, then for each d 2 f1; 2; 3gX(m� d) � 23X(m� d+ 1): (9)Proof. We prove the lemma by mathematical induction with base m = 8. Ifm = 8, these inequalities follow immediately from Corollary 1, Lemma 1 andEquations (4). For m > 8 induction hypothesis gives us that the inequalities (8)hold and by Lemma 2 we conclude that X(m�1) � 2=3 �X(m) which completesthe induction step.Theorem 2. If m � 8, then X(m) = 3X(m� 3) + 1.Proof. Let n � 8. By Lemma 3, we have 3X(m� 3) � 2X(m� 2) � X(m� 1)and thus X(m) = max1�d�3 d �X(m� d) + 1= maxfX(m� 1); 2 �X(m� 2); 3 �X(m� 3)g+ 1= 3 �X(m� 3) + 1:Thereby, we have an exact formula for X(m):
X(m) = 8>>>>>>>>>>><>>>>>>>>>>>:

1; if m = 0;2; if m = 1;3; if m = 2;5; if m = 3;7; if m = 4;232 � 3m�53 � 12 ; if m � 5 and m � 2 (mod 3);332 � 3m�63 � 12 ; if m � 5 and m � 0 (mod 3);472 � 3m�73 � 12 ; if m � 5 and m � 1 (mod 3).



PPPPP@@���XXXEEEE Tn�1PPPPP@@���XXXEEEE Tn�1 PPPPP@@���XXXEEEE Tn�1u uu u u uu� ���	� ���	� ���	Fig. 2. Recursive construction of Tn.7 A new linking schemeWe de�ne a new scheme using the recursive procedure and the product operation.Let T1 = I and Tn := ((I 
 Tn�1)
 Tn�1)
 Tn�1:The resulting scheme Tn is depicted in Figure 2. Obviously, the number of ver-tices in Tn is given by the recursive formula jTnj = 3 � jTn�1j + 1 and T0 = 1.Therefore jTnj = 1=2 � 3n+1 � 1=2:As for the pass-through distance we have again a recursive formula dpt(Tn) =dpt(Tn�1) + 3 and dpt(T0) = 0, it follows that dpt(Tn) = 3n. Hence,dpt(Tn)log2 jTnj = 3log2 3 � 11 + o(1) :Although we have a scheme providing time-certi�cates of minimal size, it is alsoimportant for practical implementations that the values of linking function fcan be found in reasonable time. We derive a formula for f for a more generalcase. Let k 2 Nnf1g and let T be a BLS. Let T (k; T ) = ([T (k; T )]n)n2N[f0g bea family of BLSs de�ned as follows:[T (k; T )]0 := T[T (k; T )]n+1 := ((� � � (I 
 [T (k; T )]n)
 [T (k; T )]n)
 � � �)
 [T (k; T )]n| {z }k times ;where n 2 N [ f0g. Let Sn := j[T (k; T )]nj. Thus S0 = jT j and for every n 2N [ f0g holds Sn+1 = kSn + 1. ThereforeSn = knjT j+ kn � 1k � 1 :Let fn : f2; : : : ; Sng �! f1; : : : ; Sng be the antimonotone function de�ning theBLS [T (k; T )]n. The function f0 is given by T . For fn, n 2 N, holds (see Fig. 2)fn(x) = 8<:x� Sn�1; if x = lSn�1 + 1fn�1(x� (l � 1)Sn�1)+ (l � 1)Sn�1; if (l � 1)Sn�1 + 2 � x � lSn�1;
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