Approximate Reasoning in Semi-structured Databases

Gosta Grahne and Alex Thomo
Concordia University
Email: {grahne,thomo}@cs.concordia.ca

Abstract

We give a general framework for approximate reasoning in semi-structured
databases. For approximate querying, the user will specify a regular path query,
and a regular transducer (or weighted regular expression) for the allowed se-
quences of elementary ”distortions” that keeps a word within an approximation
of an original word. The transducer also defines a function for the distance be-
tween two words. We show that approximate answers to regular path queries are
computable, and give an efficient algorithm for the task.

In our framework for approximate reasoning we also allow data instances to
approzimately satisfy a schema such as a Data Guide. We reduce the problem
of approximate satisfaction to the limitedness problem in Hashiguchi distance
automata. We further show that in the common case where the regular transducer
is prefix-closed, the limitedness problem can be solved in polynomial space.

1 Introduction

Almost all the query languages for semi-structured data provide the possibility for the
user to query the database through regular expressions. These queries are in essence
graph patterns and the answers to the query are subgraphs of the database that match
the given pattern [MW95, C+99, GT00, GT01]. For example, for answering the query

Q = (" - article) - (_* - ref - _* - (ullman + widom))

one should find all the paths having at some point an edge labelled article, followed
by any number of other edges then by an edge ref and finally by an edge labelled with
ullman or widom.

However, we are often willing to live with structural information that is approx-
imate. In other words the semistructured data represented by a graph database can
be an approximation of the real world rather than an exact representation. On the
other hand the user herself can have an approximate idea and/or knowledge about
the world, and this has as a consequence a need for non exact information to be ex-
tracted from the database. In both cases the conclusion is that we need to deal with
approximate queries and databases, and give approximate answers to the user queries.

If we consider the database graph to be the Web-graph then the current search
engines already deal with approximate matching of specific words or sentences against
the HTML text of the nodes. The result is usually ranked with regard to the degree of

proximity and then presented to the user. However, consider a scenario as in [MMM97]
where the links in the HTML pages are labeled by some predicates and we like to find
not only specific HTML pages containing some given text, but also we want these
pages to be linked by a path on which the link label sequence conforms to a given
language. Current search engines do not give the user the option to approximately
query the Web-graph through regular expressions. The same is true also for the
query languages for semistructured data; they do provide means to specify paths of
edge labels through regular expressions, but they do not have capabilities to specify
approximate paths.

The similar problem of finding approximate patterns in sequence databases is
treated in depth in [JMM95]. There, Jagadish, Mendelzon and Milo formalized a
very powerful rule-based system through which a user can specify the possible allowed
transformations of a string to some other string. The rule-based system contains in ad-
dition a “control sequence” regular expression that specifies all the allowed sequences
of applications of the rules.

However, the power of these transformation rules comes with a price to pay: It
is undecidable to say, in the general case, if a string s; can be transformed into
another string so given a set of transformation rules and a regular expression specifying
the possible control sequences. Special, decidable cases, such as star-free rules and
“atomic” transformation rules are presented in [JMM95].

It is worth noting here that for the free application of the three classical edit
operations, insert, delete, and substitute, which can easily be modeled as rules in the
formalism of Jagadish et al. the transformation problem is decidable. Actually, as is
the case of edit operations, some rules can be thought to correspond to a transducer.
Extending this idea, instead of transformation rules and control sequence expressions
we consider as a model for string transformation or distortion a reqular transducer. If,
instead of a single string we have a regular language L of strings, then the set of all
the possible distortions from the language L will be the set of all transductions of the
L words through 7.

The motivation for considering transducers as a transformation model is similar
to the motivation for using regular expressions for querying recursive graph patterns.
Since the queries are recursive in their generality, a recursive mechanism is needed
for transforming them. Of course, a rule based formalism equipped with recursive
control sequences is also a recursive way to transform queries, but in practice, to
achieve decidable optimization problems etc, we are content with a more limited form
of recursion. This is in analogy with the fact that we are using regular expressions
for matching recursive graph patterns and not the more powerful formalisms such as
context-free rule-based grammars. As an example of the use of transducers for trans-
formation models consider the query @) above. Suppose we are willing to substitute
article by book at no cost, and we are willing to substitute ullman by abiteboul at cost
1, and by bancilhon at cost 5. Then the desired distortion transducer can be specified
by the following extended regular expression:

(A,0,A)* - ((ullman, 0, ullman) + (ullman, 1, abiteboul) + (ullman, 5, bancilhon))

This regular expression is defined over triplets (R,i,S), where i is the cost of sub-

stituting R by S, and (A,0,A) is a shorthand for), (R,0, R), with A being the
underlying (finite) alphabet. It is easy to see that such extended regular expressions
exactly correspond to regular transducers.

Now, imagine a user query () expressed by a regular expression, a database graph
DB and (an extended regular expression for) a transducer T, describing the tolerable
distortions to the query. Intuitively, first we distort the query @ into @' and then
issue Q' against the database DB. The result will be the approximate answer for the
query Q. Hence, the transformation problem for transducers is solvable. '

The second part of the paper deals the with the other point of view about the
approximate representation of the world through a database. We suppose that we
have a perfect description of what the world can be; this is the data guide [B+97,
GW97, ABS99]. On the other hand we have non-perfect database instances.

We again suppose that the user specifies a distortion transducer 7, through which
we can distort the data guide through allowed elementary distortions and then test if
the database conforms to the distorted data-guide. If the database indeed conforms
to the distorted data guide, we are interested in “how far” the database is from the
original data guide. We have then, for each path in the database, a set of words in the
data guide that have been transduced by 7 into this path. We are interested in finding
the closest one. Then, as a quantitative measure of approximate satisfaction, we
consider the largest among these closest distances. If this largest distance is bounded
by some k£ € N we say that the database k-satisfies the data guide. We prove that
the problem of the k-satisfaction cannot be easier than PSPACE. We then present a
construction by which the problem of finding the above largest distance is reduced to
the problem of limitedness in Hashiguchi distance automata [Has82].

The problem of limitedness in distance automata was shown to be decidable by
Hashiguchi in [Has82]. This means in turn that our problem of k-satisfaction is decid-
able. However, the decision procedure of [Has82| requires exponential space, and the
problem of a tighter lower bound is still open [Has00]. We prove that if the distance
automata is prefix closed, i. e. if all states are final, then the limitedness problem can
be decided in polynomial space. This subclass of distance automata corresponds to
a large practical sub case of the k-satisfaction problem, that is when the data guide
and the distortion transducer with have all the states final. Indeed, if we examine
the origin of a data guide [N+97], we can conclude that the assumption made about
the all states being final in the data guide automaton is quite reasonable. In fact, the
data guide can be considered as a DFA constructed in a bottom up fashion from a set
a sample databases, through the well-known subset construction. But the databases
considered as automata always have all their states final, and as a consequence, the
corresponding DFA will have all states final. Regarding the assumption that the dis-

LOf course, regular languages are closed under transductions, i. e. for any regular language Q and
regular transducer 7, the language 7 (Q) is regular. Why would the user not then write down the
expression for 7 (Q) directly then, instead of giving @ and 7. The first point is that it is not always
easy to do. The second point is that the user might previously have issued @), and wants to “relax” or
broaden) without having to rewrite the whole query. The third point is that the user is interested in
receiving the answers ranked according to their proximity of the query. If the transduction is folded
into the query, the “distance” between words and their transductions is lost.

tortion transducer consists of final states only, we note that any edit transducer fulfills
this requirement, as does also for instance any transducer specified by a finite set of

weighted substitutions of the form ullman % bancilhon.

2 Graph Databases, Queries and Approximate Answers

Let A be a finite alphabet, called the database alphabet. Elements of A will be denoted
R,S,T,R',S', ..., Ry,S1,..., etc. We consider a database to be an edge labeled graph.
This graph model is typical in semistructured data, where the nodes of the database
graph represent the objects and the edges represent the attributes of the objects, or
relationships between the objects.

Formally, we assume that we have a universe of objects D. Objects will be denoted
a,b,c,a’ V', ..., ay,by, ..., and so on. A database DB over (D,A) is a pair (N, E),
where N C D is a set of nodes and E C N x A x N is a set of directed edges labelled

with symbols from A. If there is a path labelled Ry, Ry, ..., Ry from a node a to a

. Ri.Rs..R
node b we write a | —3""* p.

A query @ is a finite or infinite regular language over A. Let () be a query and
DB = (N, E) a database. Then the answer to () on DB is defined as

ans(Q,DB) = {(a,b):{a,b} C N and a b for some W € Q}.

A regular transducer T = (S,I,0,7,s,F) consists of a finite set of states S, an
input alphabet I, an output alphabet O, a starting state s, a set of final states F', and
a transition-output function 7 from finite subsets of S x I* to finite subsets of S x O*.
The transition-output function 7 can be also considered as relation 7 C S x I'* x S x O*.

Returning to the regular transducer T = (S, 1,0, 1,s, F), for a given word U € I*,
we say that a word W € O* is an output of T for U if there exists a sequence
(s,Ur,q1,W1) € 7, (81,Us, 89, W) €T, ..., ($p_1,Un, 8, Wy,) € 7 of state transitions
of T, such that ¢, €e F, U =U,...U, € I*, and W = W;... W, € O*. We write
W € T(U), where T (U) denotes the set of all outputs of 7 for the input word U.
For a language L C I*, we define T (L) = Jy;c;, T(U). We will often need to refer to
the relation induced by a transducer 7. This relation is a subset of I* x O*, and is
defined as

Rr={(UW):U€eTI* W eT(U)}

Relations induced by regular transducers are also called rational relations in the liter-
ature. For our purposes, we also need to know that rational relations are closed under
inverse and union [Yu97].

A regular transducer (S,I,0, T, s, F) is said to be in the standard form if 7 is a
function from S x (I U {e}) to 25%(OUh Intuitively. the standard form restricts the
input and output of each transition to be only a single letter or e. It is known that any
regular transducer is equivalent to a regular transducer in standard form (see [Yu97]).

As discussed in the introduction there are two places where approximations might
be called for: the database itself can be an approximate representation of the “real
world,” or the query issued by the user can be an approximation of the “real query”
the user would have submitted, had she known the structure of the database exactly.
In both cases we need a mechanism for describing the tolerable “distortions” through
which a query or a database can be transformed. Observe that the notion of distortions
is similar to the notion of transformations in [JMM95]. We describe the set of tolerable
distortions by a regular transducer. In this paper we will focus on distorting the query;
the treatment where the database is distorted is analogous. Given a query () and a
transducer T, the query @ can be distorted to the query Q" = T(Q). The set of
T -approzimate answers to a query () in a graph database DB, given a set of tolerable
distortions described by a regular transducer 7T is defined as

ans7(Q, DB) = ans(T(Q), DB).

A graph database can be seen as an NFA where the graph nodes are the automaton
states and all states are both initial and final. In the “classical” case, computing
ans(Q, DB) given an automaton Ag for Q and App for the database then essentially
amounts to constructing the Cartesian automaton Ag x App and outputting the pair
(a,b), if and only if there exists, in the Cartesian automaton, an initial state (_, a)
leading to a final state (_,b). (see [HSU77, MW95, ABS99]).

We show next that for computing ansy(Q, DB) we can construct an automaton
from the product of Ag, 7, and App. The approximate answer can then be read
from this automaton, similarly to the “classical” case.

Theorem 1 Let Q be a query, DB a graph database and T a distortion transducer.
Then a Cartesian transducer C can be constructed such that (a,b) € ansy(Q, DB), if
and only if there exists, in C, an initial state (_, _,a) leading to a final state (_, _,b).

Proof Sketch. Let Ag = (Sg, A, 7q, S0y, Fg) be an e-free NFA that accepts @, and
let T = (S7,A,A,7r,50,, Fr) be the distortion transducer in standard form. Con-
sidering the database DB as another e-free NFA, App = (Spp, A, 7B, SpB,SDB),
we construct the transducer C = (S.A, A, 71,5, F), where S = Sg x St x Spg,

Sy = S0g X Sop X Sopps F'= Fg x Fr x Fpp, and transition relation 7 is defined by,
for (paqu) € S and R17R2 €AU {6}7

T = {((p7Q75)7R17 (pluqlasl)aRQ) : (pu Rlapl) € TQ and (qu RlaqlaRQ) SN and (57R275’) € 7-DB} U
{((p7Q75)7€7 (p7 qlusl)uRQ) : (Q7€7 qluRQ) SN¥ and (87R27S,) € TDB} U
{((p7Q75)7R17 (pluq175)76) : (p7 Rlapl) € TQ and (Q7 Rlaqlae) S TT}

From the above theorem we now know that the approximate query answering
is decidable. Recall that the corresponding problem for the rule based formalism
proposed in [JMM95] is undecidable in its full generality.

Ranking the approximate answers

So far we have considered ansy(Q, DB) as a pure set. The way the distortions are
defined, it makes sense to define distances between words in the relation Ry. The
well known edit distance is an example of such a distance. Observe that if we rule out
transitions of the form e/e from a transducer, since such transitions are useless for any
distortion, then each transition in the transducer corresponds to an edit operation.
Namely, transitions of the form e/R correspond to insertions, R/e corresponds to
deletion, and R/S, where R # S corresponds to substitution. Each transition of
the above forms is called an elementary distortion. 1t is easy to see that regular
transducers can be extended by attaching non-negative weights to the transitions.
Different insertions, deletions, and substitutions can be given user specified weights in
this fashion. Transitions of the form R/R are called matches and they can be weighted
0. Given a path p in a transducer, we define the distortion §(p) induced by this path
as the sum of the weights along this path. Given two words U and W, and a distortion
transducer T, the T-distance d7(U, W), is defined as

{ inf{d(p) : p is an accepting path in 7, in(p) = U, and out(p) = W}
dr(UW) = .

oo otherwise

where in(p) is the word of input symbols labeling the path p and out(p) is the word
of output symbols labeling the path p.

Suppose we have a query @), a database DB and a distortion transducer 7. For
each pair (a,b) of database objects in the T-approximate answer of the query @, we
denote with DB, the regular language of words labeling the database paths between
a and b (cf. [MW95]). Then, in order to rank the pair (a,b) we need to find the closest
words U € @ and W € DB, ; with respect to the distance d7. Formally, given a
query (), a database DB, and a distortion transducer 7', the rank is a function from
all pairs of database objects to N U {oo} defined by

rank(a,b) = inf{dr-(U,W):U € Q,V € DBg,}.

Obviously (a,b) € anst(Q, DB) if and only if rank(a, b) # oc.
The ranking problem for anst(Q, DB) is to order the set with respect to the rank-
function.

Theorem 2 The set anst(Q, DB) can be ranked in time O((JAg| x |DB| x |T|)?),
where |Ag| is the number of states in an e-free automaton for Q, |DB| is the number
of database objects, and |T| is the number of states in the distortion transducer.

Proof. Consider the Cartesian transducer C constructed in the proof of Theorem
1. We can view C as a directed weighted graph. The weight of an edge is a natural
number when when the edge is labeled by a transition of the form R/e, ¢/R, or R/S,
where R € A and R # S. The weight is 0 for R/R-labelled edges. Then the rank
of a pair (a,b) is equal to the shortest path between an initial state (_,_,a) and a
final state (_, _, b). For shortest paths, both Dijskstra’s algorithm and Floyd-Warshall

algorithm (see e.g. [AHU74]) have the asymptotic worst-case running time mentioned
in the claim. [|

Although the running times for both Dijkstra’s and Floyd-Warshall algorithms are
asymptotically the same, perhaps Dijkstra’s algorithm is better suited in our scenario.
First, in practice the user might be interested in computing only objects reachable
by @Q-paths only from a limited number of objects, for example when we have a
rooted database graph. In such a case the running time of Dijkstra’s algorithm is
O((lAg| x |DB| x |T])?), and we don’t need to compute the shortest paths between
all pairs of objects, as in the Floyd-Warshall algorithm. The second reason has to do
with a natural generalization of the approximate answering of a query. Most of the
times the user is interested only in the top k-answers. Then Dijkstra’s algorithm is
the ideal choice: It processes the nodes in the order of their distance from the source.
Obviously, we can construct the transducer C on the fly and stop the execution of
the algorithm when the first pair (a,b) of objects, ranked as k + 1 in ans7(Q, DB), is
produced.

3 Approximate Satisfaction of Data Guides

Data guides were originally introduced in the Lore project as a concise and accurate
summary of a given database graph [GW97, N+97]. The data guide is a schema, and
we want the database to conform to this schema. However, sometimes we are willing
to consider databases that approximately conform to a given data guide.

In such cases we would like to have some quantitative estimation of the approx-
imate conformation of the database to the data guide. Usually, both the database
DB and the data guide DG are considered to be edge labelled graphs. The question
of whether DB satisfies DG is determined by whether there exists a simulation or
bisimulation from DB to DG. If we consider both DB and DG as automata, then
simulation corresponds to L(DB) C L(DG), and bisimulation corresponds to the
equality of these languages (see e.g. [ABS99]).

Without loss of generality, we only consider language inclusion (not equality) in
this paper. We again suppose that the user specifies a weighted distortion transducer
T, through which we can distort the data-guide through allowed elementary distortions
and then test if the database DB conforms to the distorted data-guide 7 (DB), in
other words, if L(DB) C L(T(DGQ)).

If the database indeed conforms to the distorted data guide, we are interested in
“how far” the database is from the original data guide.

Suppose that indeed L(DB) C L(T (DG)). Then for each word W € L(DB) there
exists a set of words U € L(DG), such that W € T (U). For each W we want to find
the closest such U, and the distance between L(DG) and L(DB) is then the largest
among these closest distances (like the diameter of a graph). To formally capture this
distance between languages, we need the following definitions.

Given a distortion transducer T, let W be a word in the second column of Ry, and
L be the set of words appearing in the first column of R7. The T-distance between

L and W is defined as
dr(L,W) = inf{dr(U W) :U € L}.

Then let L; be the set words appearing in the first column of Ry, and Ly those
appearing in the second column. The T-distance between L and L is defined as

d7(Ly, Ly) = sup{dy(L1,W): W € Lg}.
Now we can say that a database DB k-satisfies a data guide DG if
1. L(DB) C L(T(DG)), and
2. dr (T(DG),L(DB)) < k,

where T (DG@) is the subset of words in L(DG) that appear in the first column of R7.
We are going to prove the following lower bound:

Theorem 3 Given a data-guide DG, a database DB, o distortion transducer T, and
an integer k € N, the problem of deciding whether or not d7(T(DG), L(DB)) <k, is
PSPACE-hard, even if L(DB) C L(T(DQ)).

For the upper bound of we need the notion of a distance automata [Has82]. A
distance automaton A = (S, A, Sy, 7, F,w) is an automaton with positive weights on
its transitions. Formally, the weight is a function w : S x A x S — NU{oc}, such that
w(s,R,t) € N when (s,R,t) € 7 and w(s, R,t) = oo when (s, R,t) € 7. The weight
function w is extended to w : S x A* x S — NU {oo} as follows: for any s,t € Q,
W e A* and R € A,

0 ifs=t
1. w(s,e,t) :{ o ifst

2. w(s, WR,t) = inf{w(s, W,t') + w(t',R,t) : t' € S}.
Then, the distance of a word W accepted by this distance automaton is defined as
dW) = inf{w(s,W,t): W € L(A),s € Sy and t € F'}

We also need the following definition. Let A = (S, A, 7, Sy, F,w) be a distance
automaton. Then A is said to have limited distance if there is k € N such that
k> sup{d(W): W € L(A)}.

We will show in Theorem 5 that the problem of the k-satisfaction of a data guide
DG by database DB through a distortion transducer can be casted to the problem of
limitedness in distance automata. The problem of limitedness in distance automata is
shown to be decidable [Has82]. This means in turn that our problem of k-satisfaction
is decidable. However, the decision procedure of [Has82] is in EXPSPACE and the
problem of a tighter lower bound is still open [Has00]. In the next theorem we prove
that for the subclass of distance automata with all the states final, the limitedness
problem can be decided in PSPACE. As we discussed in the Introduction, this subclass
of distance automata corresponds to practical subproblems of k-satisfaction.

Theorem 4 Given a distance automaton with all states final, i.e. A= (S,A,7,Sy,5,w),
the problem of deciding whether or not the automaton A has limited distance is in
PSPACE.

We now turn to the reduction of the k-satisfaction problem into the problem of
limitedness in distance automata. Consider a data-guide DG, a database DB, and a
distortion transducer 7. In the following we will show a construction for a distance
automaton such that the language accepted by it, is exactly the language of the
database paths and the cost of each DB path will represent the smallest 7 -distance
of this path from the set of words related through the transduction, and included in
the data-guide language.

Let Apg = (Spa, A, 0pa, So,e: Fpa) be an e-free data-guide automaton, App =
(Spm, A, dpB, Sops. Fpp) the database automaton, and finally, let C = Apg x T X
App = (S, A, A, 1, Sy, F) be a Cartesian transducer constructed as in the Theorem
1.

Lemma 1 For U € T(DG) and W € L(DB) we have that
dT(Uu W) = dC(U7 W)

From the transducer C we will construct another “distance equivalent” transducer
C', with e-free output automaton, and with the same set of states, as follows.

Consider the graph derived by C consisting of the edges with € output only. Call
it &¢. The edges of & will be labeled and weighted with same label and cost as the
corresponding transitions in C. We shall use ¢ — CLOSU RE(s), similarly to [HU79],
to denote the set of all vertices ¢ such that there is path from s to ¢ in &.

Obviously, all the transitions with non-e output of C will be present in the trans-
ducer C', that we are constructing. Furthermore, we will introduce a transition with
output labeled R # € in C' from a state s to a state ¢ whenever there is a path from
vertex s to a vertex v in &¢, and a transition with R labeled output in C, from the
state v to the state t. Formally, if C = (S, A, A, 7, Sy, F), then C' = (S, A, A, 7/,
So, F'), where F' = FU{s:s € Sy and e - CLOSURE(Sy) N F # (} and

" = {(s,R,t,R): (v,R',t,R) € T and R # €} U
{(s, W,t,R) : Jv € e — CLOSU RE(s) such that,
there is a transition (v, R',t, R) € 7, where R # €}

where W will be a word labeling the(a) cheapest path from vertex s to vertex v in &c.
Also, the cost of a new transition (s, W, ¢, R) will be the cost of the(a) corresponding
cheapest path from s to v in &, plus the cost of the(a) cheapest transition with output
labeled by R, from state v to state ¢ in C.

Lemma 2 Let C' be an e-free output Cartesian transducer constructed as above. Then
the following are true.

1. out(C") = out(C)

2. in(C") Cin(C)

3. Rer C Re

Lemma 3 Let W € out(C) = out(C'). Then de(in(C), W) = de/(in(C"), W)

If we now eliminate the input from the transitions in C' we obtain an e-free distance
automaton A = (S, A, 7", Sy, F,w), where

" ={(p,R,q) : (p,W,R,q) € 7' for some W},

and the weight w of a transition in A is given by the cost of the(a) corresponding
cheapest transition in the transducer C'. Now, we can state the following theorem.

Theorem 5 Let DG be a data-guide, DB a database, and T a transducer of allowed
distortions. Compute the e-free output Cartesian transducer C' and consider the dis-
tance automaton A constructed as previously. Then, dist(A) = dr (T (DG), L(DB)).

References

[Abi97] S. Abiteboul. Querying Semistructured Data. Proc. of ICDT 1997 pp.
1-18.

[ABS99] S. Abiteboul, P. Buneman and D. Suciu. Data on the Web : From
Relations to Semistructured Data and Xml. Morgan Kaufmann, 1999.

[AHUT74] A. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley 1974.

[B+97] P. Buneman, S. B. Davidson, M. F. Fernandez and D. Suciu. Adding
Structure to Unstructured Data. Proc. of ICDT 1997, pp. 336—-350.

[C+99] D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Rewriting of
Regular Expressions and Regular Path Queries. Proc. of PODS 1999,
pp. 194-204.

[C+00b] D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Answering
Regular Path Queries Using Views. Proc. of ICDE 2000, pp. 389 398

[CPYT] C. Choffrut and G. Pighizzini. Distances Between Languages and Re-
flexivity of Relations. Proc. of MFCS 1997, pp. 199-208

[FS98] M. F. Fernadez and D. Suciu. Optimizing Regular path Expressions
Using Graph Schemas Proc. of ICDFE 1998, pp. 14-23.

[GWIT] R. Goldman, J. Widom DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases. Proc. of VLDB 1997, pp.
436-445.

10

[GTOO]

[GTO1]

[Has82]

[Has00]

[HU79)

[HRS76]

[HSU77]

[IMMOY5]

[MW95]

[MMM?97]

[N+97]

[Yu97]

G. Grahne and A. Thomo. An Optimization Technique for Answering
Regular Path Queries Informal Proc. of WebDB 2000 pp. 99 104.

G. Grahne and A. Thomo. Algebraic rewritings for optimizing regular
path queries. ICDT 2001, pp. 303-315

K. Hashiguchi. Limitedness Theorem on Finite Automata with Distance
Functions. J. Comp. Syst. Sci. 24, 1982 pp. 233 244.

K. Hashiguchi. New upper bounds to the limitedness of distance au-
tomata. Theoretical Computer Science 233(1-2), 2000 pp. 19 32.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley 1979.

H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski, On the
Equivalence, Containment, and Covering Problems for the Regular and
Context-Free Languages. J. Comp. Syst. Sci. 12(2) 1976, pp. 222 268

H. B. Hunt III, T. G. Szymanski, and J. D. Ullman. Operations on
sparse relations. Comm. ACM 20(3), 1977, pp. 171-176

H. V. Jagadish, Alberto O. Mendelzon, Tova Milo. Similarity-Based
Queries. Proc. PODS 1995 pp. 36-45.

A. O. Mendelzon and P. T. Wood, Finding Regular Simple Paths in
Graph Databases. SIAM J. Comp. 24:6, (December 1995).

A. O. Mendelzon, G. A. Mihaila and T. Milo. Querying the World Wide
Web. Int. J. on Digital Libraries 1(1), 1997 pp. 54 67.

S. Nestorov, J. D. Ullman, J. L. Wiener, S. S. Chawathe. Representative
Objects: Concise Representations of Semistructured, Hierarchial Data.
Proc. of ICDE, 1997, pp. 79 90.

S. Yu. Reqular Languages. In: Handbook of Formal Languages.
G. Rozenberg and A. Salomaa (Eds.). Springer Verlag 1997, pp. 41
110

11

