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aAbstra
tWe give a general framework for approximate reasoning in semi-stru
tureddatabases. For approximate querying, the user will spe
ify a regular path query,and a regular transdu
er (or weighted regular expression) for the allowed se-quen
es of elementary "distortions" that keeps a word within an approximationof an original word. The transdu
er also de�nes a fun
tion for the distan
e be-tween two words. We show that approximate answers to regular path queries are
omputable, and give an eÆ
ient algorithm for the task.In our framework for approximate reasoning we also allow data instan
es toapproximately satisfy a s
hema su
h as a Data Guide. We redu
e the problemof approximate satisfa
tion to the limitedness problem in Hashigu
hi distan
eautomata. We further show that in the 
ommon 
ase where the regular transdu
eris pre�x-
losed, the limitedness problem 
an be solved in polynomial spa
e.1 Introdu
tionAlmost all the query languages for semi-stru
tured data provide the possibility for theuser to query the database through regular expressions. These queries are in essen
egraph patterns and the answers to the query are subgraphs of the database that mat
hthe given pattern [MW95, C+99, GT00, GT01℄. For example, for answering the queryQ = ( � � arti
le) � ( � � ref � � � (ullman+ widom))one should �nd all the paths having at some point an edge labelled arti
le, followedby any number of other edges then by an edge ref and �nally by an edge labelled withullman or widom.However, we are often willing to live with stru
tural information that is approx-imate. In other words the semistru
tured data represented by a graph database 
anbe an approximation of the real world rather than an exa
t representation. On theother hand the user herself 
an have an approximate idea and/or knowledge aboutthe world, and this has as a 
onsequen
e a need for non exa
t information to be ex-tra
ted from the database. In both 
ases the 
on
lusion is that we need to deal withapproximate queries and databases, and give approximate answers to the user queries.If we 
onsider the database graph to be the Web-graph then the 
urrent sear
hengines already deal with approximate mat
hing of spe
i�
 words or senten
es againstthe HTML text of the nodes. The result is usually ranked with regard to the degree of1



proximity and then presented to the user. However, 
onsider a s
enario as in [MMM97℄where the links in the HTML pages are labeled by some predi
ates and we like to �ndnot only spe
i�
 HTML pages 
ontaining some given text, but also we want thesepages to be linked by a path on whi
h the link label sequen
e 
onforms to a givenlanguage. Current sear
h engines do not give the user the option to approximatelyquery the Web-graph through regular expressions. The same is true also for thequery languages for semistru
tured data; they do provide means to spe
ify paths ofedge labels through regular expressions, but they do not have 
apabilities to spe
ifyapproximate paths.The similar problem of �nding approximate patterns in sequen
e databases istreated in depth in [JMM95℄. There, Jagadish, Mendelzon and Milo formalized avery powerful rule-based system through whi
h a user 
an spe
ify the possible allowedtransformations of a string to some other string. The rule-based system 
ontains in ad-dition a \
ontrol sequen
e" regular expression that spe
i�es all the allowed sequen
esof appli
ations of the rules.However, the power of these transformation rules 
omes with a pri
e to pay: Itis unde
idable to say, in the general 
ase, if a string s1 
an be transformed intoanother string s2 given a set of transformation rules and a regular expression spe
ifyingthe possible 
ontrol sequen
es. Spe
ial, de
idable 
ases, su
h as star-free rules and\atomi
" transformation rules are presented in [JMM95℄.It is worth noting here that for the free appli
ation of the three 
lassi
al editoperations, insert, delete, and substitute, whi
h 
an easily be modeled as rules in theformalism of Jagadish et al. the transformation problem is de
idable. A
tually, as isthe 
ase of edit operations, some rules 
an be thought to 
orrespond to a transdu
er.Extending this idea, instead of transformation rules and 
ontrol sequen
e expressionswe 
onsider as a model for string transformation or distortion a regular transdu
er. If,instead of a single string we have a regular language L of strings, then the set of allthe possible distortions from the language L will be the set of all transdu
tions of theL words through T .The motivation for 
onsidering transdu
ers as a transformation model is similarto the motivation for using regular expressions for querying re
ursive graph patterns.Sin
e the queries are re
ursive in their generality, a re
ursive me
hanism is neededfor transforming them. Of 
ourse, a rule based formalism equipped with re
ursive
ontrol sequen
es is also a re
ursive way to transform queries, but in pra
ti
e, toa
hieve de
idable optimization problems et
, we are 
ontent with a more limited formof re
ursion. This is in analogy with the fa
t that we are using regular expressionsfor mat
hing re
ursive graph patterns and not the more powerful formalisms su
h as
ontext-free rule-based grammars. As an example of the use of transdu
ers for trans-formation models 
onsider the query Q above. Suppose we are willing to substitutearti
le by book at no 
ost, and we are willing to substitute ullman by abiteboul at 
ost1, and by ban
ilhon at 
ost 5. Then the desired distortion transdu
er 
an be spe
i�edby the following extended regular expression:(�; 0;�)� � ((ullman ; 0; ullman) + (ullman ; 1; abiteboul ) + (ullman ; 5; ban
ilhon))This regular expression is de�ned over triplets (R; i; S), where i is the 
ost of sub-2



stituting R by S, and (�; 0;�) is a shorthand for PR2�(R; 0; R), with � being theunderlying (�nite) alphabet. It is easy to see that su
h extended regular expressionsexa
tly 
orrespond to regular transdu
ers.Now, imagine a user query Q expressed by a regular expression, a database graphDB and (an extended regular expression for) a transdu
er T , des
ribing the tolerabledistortions to the query. Intuitively, �rst we distort the query Q into Q0 and thenissue Q0 against the database DB. The result will be the approximate answer for thequery Q. Hen
e, the transformation problem for transdu
ers is solvable. 1The se
ond part of the paper deals the with the other point of view about theapproximate representation of the world through a database. We suppose that wehave a perfe
t des
ription of what the world 
an be; this is the data guide [B+97,GW97, ABS99℄. On the other hand we have non-perfe
t database instan
es.We again suppose that the user spe
i�es a distortion transdu
er T , through whi
hwe 
an distort the data guide through allowed elementary distortions and then test ifthe database 
onforms to the distorted data-guide. If the database indeed 
onformsto the distorted data guide, we are interested in \how far" the database is from theoriginal data guide. We have then, for ea
h path in the database, a set of words in thedata guide that have been transdu
ed by T into this path. We are interested in �ndingthe 
losest one. Then, as a quantitative measure of approximate satisfa
tion, we
onsider the largest among these 
losest distan
es. If this largest distan
e is boundedby some k 2 N we say that the database k-satis�es the data guide. We prove thatthe problem of the k-satisfa
tion 
annot be easier than PSPACE. We then present a
onstru
tion by whi
h the problem of �nding the above largest distan
e is redu
ed tothe problem of limitedness in Hashigu
hi distan
e automata [Has82℄.The problem of limitedness in distan
e automata was shown to be de
idable byHashigu
hi in [Has82℄. This means in turn that our problem of k-satisfa
tion is de
id-able. However, the de
ision pro
edure of [Has82℄ requires exponential spa
e, and theproblem of a tighter lower bound is still open [Has00℄. We prove that if the distan
eautomata is pre�x 
losed, i. e. if all states are �nal, then the limitedness problem 
anbe de
ided in polynomial spa
e. This sub
lass of distan
e automata 
orresponds toa large pra
ti
al sub 
ase of the k-satisfa
tion problem, that is when the data guideand the distortion transdu
er with have all the states �nal. Indeed, if we examinethe origin of a data guide [N+97℄, we 
an 
on
lude that the assumption made aboutthe all states being �nal in the data guide automaton is quite reasonable. In fa
t, thedata guide 
an be 
onsidered as a DFA 
onstru
ted in a bottom up fashion from a seta sample databases, through the well-known subset 
onstru
tion. But the databases
onsidered as automata always have all their states �nal, and as a 
onsequen
e, the
orresponding DFA will have all states �nal. Regarding the assumption that the dis-1Of 
ourse, regular languages are 
losed under transdu
tions, i. e. for any regular language Q andregular transdu
er T , the language T (Q) is regular. Why would the user not then write down theexpression for T (Q) dire
tly then, instead of giving Q and T . The �rst point is that it is not alwayseasy to do. The se
ond point is that the user might previously have issued Q, and wants to \relax" orbroaden Q without having to rewrite the whole query. The third point is that the user is interested inre
eiving the answers ranked a

ording to their proximity of the query. If the transdu
tion is foldedinto the query, the \distan
e" between words and their transdu
tions is lost.3



tortion transdu
er 
onsists of �nal states only, we note that any edit transdu
er ful�llsthis requirement, as does also for instan
e any transdu
er spe
i�ed by a �nite set ofweighted substitutions of the form ullman 57! ban
ilhon.
2 Graph Databases, Queries and Approximate AnswersLet � be a �nite alphabet, 
alled the database alphabet. Elements of � will be denotedR;S; T;R0; S0; : : : ; R1; S1; : : :, et
. We 
onsider a database to be an edge labeled graph.This graph model is typi
al in semistru
tured data, where the nodes of the databasegraph represent the obje
ts and the edges represent the attributes of the obje
ts, orrelationships between the obje
ts.Formally, we assume that we have a universe of obje
ts D. Obje
ts will be denoteda; b; 
; a0; b0; : : : ; a1; b2; : : :, and so on. A database DB over (D;�) is a pair (N;E),where N � D is a set of nodes and E � N ���N is a set of dire
ted edges labelledwith symbols from �. If there is a path labelled R1; R2; : : : ; Rk from a node a to anode b we write a R1:R2:::Rk�! b.A query Q is a �nite or in�nite regular language over �. Let Q be a query andDB = (N;E) a database. Then the answer to Q on DB is de�ned asans(Q;DB) = f(a; b) : fa; bg � N and a W�! b for some W 2 Qg:A regular transdu
er T = (S; I;O; �; s; F ) 
onsists of a �nite set of states S, aninput alphabet I, an output alphabet O, a starting state s, a set of �nal states F , anda transition-output fun
tion � from �nite subsets of S� I� to �nite subsets of S�O�.The transition-output fun
tion � 
an be also 
onsidered as relation � � S�I��S�O�.Returning to the regular transdu
er T = (S; I;O; �; s; F ), for a given word U 2 I�,we say that a word W 2 O� is an output of T for U if there exists a sequen
e(s; U1; q1;W1) 2 � , (s1; U2; s2;W2) 2 � , . . . , (sn�1; Un; sn;Wn) 2 � of state transitionsof T , su
h that qn 2 F , U = U1 : : : Un 2 I�, and W = W1 : : :Wn 2 O�. We writeW 2 T (U), where T (U) denotes the set of all outputs of T for the input word U .For a language L � I�, we de�ne T (L) = SU2L T (U). We will often need to refer tothe relation indu
ed by a transdu
er T . This relation is a subset of I� � O�, and isde�ned as RT = f(U;W ) : U 2 I�;W 2 T (U)g:Relations indu
ed by regular transdu
ers are also 
alled rational relations in the liter-ature. For our purposes, we also need to know that rational relations are 
losed underinverse and union [Yu97℄.A regular transdu
er (S; I;O; �; s; F ) is said to be in the standard form if � is afun
tion from S � (I [ f�g) to 2S�(O[f�g). Intuitively. the standard form restri
ts theinput and output of ea
h transition to be only a single letter or �. It is known that anyregular transdu
er is equivalent to a regular transdu
er in standard form (see [Yu97℄).4



As dis
ussed in the introdu
tion there are two pla
es where approximations mightbe 
alled for: the database itself 
an be an approximate representation of the \realworld," or the query issued by the user 
an be an approximation of the \real query"the user would have submitted, had she known the stru
ture of the database exa
tly.In both 
ases we need a me
hanism for des
ribing the tolerable \distortions" throughwhi
h a query or a database 
an be transformed. Observe that the notion of distortionsis similar to the notion of transformations in [JMM95℄. We des
ribe the set of tolerabledistortions by a regular transdu
er. In this paper we will fo
us on distorting the query;the treatment where the database is distorted is analogous. Given a query Q and atransdu
er T , the query Q 
an be distorted to the query Q0 = T (Q). The set ofT -approximate answers to a query Q in a graph database DB, given a set of tolerabledistortions des
ribed by a regular transdu
er T is de�ned asansT (Q;DB) = ans(T (Q);DB):A graph database 
an be seen as an NFA where the graph nodes are the automatonstates and all states are both initial and �nal. In the \
lassi
al" 
ase, 
omputingans(Q;DB) given an automaton AQ for Q and ADB for the database then essentiallyamounts to 
onstru
ting the Cartesian automaton AQ�ADB and outputting the pair(a; b), if and only if there exists, in the Cartesian automaton, an initial state ( ; a)leading to a �nal state ( ; b). (see [HSU77, MW95, ABS99℄).We show next that for 
omputing ansT (Q;DB) we 
an 
onstru
t an automatonfrom the produ
t of AQ, T , and ADB. The approximate answer 
an then be readfrom this automaton, similarly to the \
lassi
al" 
ase.Theorem 1 Let Q be a query, DB a graph database and T a distortion transdu
er.Then a Cartesian transdu
er C 
an be 
onstru
ted su
h that (a; b) 2 ansT (Q;DB), ifand only if there exists, in C, an initial state ( ; ; a) leading to a �nal state ( ; ; b).Proof Sket
h. Let AQ = (SQ;�; �Q; s0Q ; FQ) be an �-free NFA that a

epts Q, andlet T = (ST ;�;�; �T ; s0T ; FT ) be the distortion transdu
er in standard form. Con-sidering the database DB as another �-free NFA, ADB = (SDB;�; �DB ; SDB ; SDB),we 
onstru
t the transdu
er C = (S;�;�; �; S0; F ), where S = SQ � ST � SDB ,S0 = s0Q � s0T � S0DB , F = FQ � FT � FDB , and transition relation � is de�ned by,for (p; q; s) 2 S and R1; R2 2 � [ f�g,� = f((p; q; s); R1; (p0; q0; s0); R2) : (p;R1; p0) 2 �Q and (q;R1; q0; R2) 2 �T and (s;R2; s0) 2 �DBg [f((p; q; s); �; (p; q0; s0); R2) : (q; �; q0; R2) 2 �T and (s;R2; s0) 2 �DBg [f((p; q; s); R1; (p0; q0; s); �) : (p;R1; p0) 2 �Q and (q;R1; q0; �) 2 �T gFrom the above theorem we now know that the approximate query answeringis de
idable. Re
all that the 
orresponding problem for the rule based formalismproposed in [JMM95℄ is unde
idable in its full generality.5



Ranking the approximate answersSo far we have 
onsidered ansT (Q;DB) as a pure set. The way the distortions arede�ned, it makes sense to de�ne distan
es between words in the relation RT . Thewell known edit distan
e is an example of su
h a distan
e. Observe that if we rule outtransitions of the form �=� from a transdu
er, sin
e su
h transitions are useless for anydistortion, then ea
h transition in the transdu
er 
orresponds to an edit operation.Namely, transitions of the form �=R 
orrespond to insertions, R=� 
orresponds todeletion, and R=S, where R 6= S 
orresponds to substitution. Ea
h transition ofthe above forms is 
alled an elementary distortion. It is easy to see that regulartransdu
ers 
an be extended by atta
hing non-negative weights to the transitions.Di�erent insertions, deletions, and substitutions 
an be given user spe
i�ed weights inthis fashion. Transitions of the form R=R are 
alled mat
hes and they 
an be weighted0. Given a path p in a transdu
er, we de�ne the distortion Æ(p) indu
ed by this pathas the sum of the weights along this path. Given two words U andW , and a distortiontransdu
er T , the T -distan
e dT (U;W ), is de�ned asdT (U;W ) = � inf fÆ(p) : p is an a

epting path in T ; in(p) = U; and out(p) =Wg1 otherwisewhere in(p) is the word of input symbols labeling the path p and out(p) is the wordof output symbols labeling the path p.Suppose we have a query Q, a database DB and a distortion transdu
er T . Forea
h pair (a; b) of database obje
ts in the T -approximate answer of the query Q, wedenote with DBa;b the regular language of words labeling the database paths betweena and b (
f. [MW95℄). Then, in order to rank the pair (a; b) we need to �nd the 
losestwords U 2 Q and W 2 DBa;b with respe
t to the distan
e dT . Formally, given aquery Q, a database DB, and a distortion transdu
er T , the rank is a fun
tion fromall pairs of database obje
ts to N [ f1g de�ned byrank(a; b) = inf fdT (U;W ) : U 2 Q;V 2 DBa;bg:Obviously (a; b) 2 ansT (Q;DB) if and only if rank(a; b) 6=1.The ranking problem for ansT (Q;DB) is to order the set with respe
t to the rank-fun
tion.Theorem 2 The set ansT (Q;DB) 
an be ranked in time O((jAQj � jDBj � jT j)3),where jAQj is the number of states in an �-free automaton for Q, jDBj is the numberof database obje
ts, and jT j is the number of states in the distortion transdu
er.Proof. Consider the Cartesian transdu
er C 
onstru
ted in the proof of Theorem1. We 
an view C as a dire
ted weighted graph. The weight of an edge is a naturalnumber when when the edge is labeled by a transition of the form R=�, �=R, or R=S,where R 2 � and R 6= S. The weight is 0 for R=R-labelled edges. Then the rankof a pair (a; b) is equal to the shortest path between an initial state ( ; ; a) and a�nal state ( ; ; b). For shortest paths, both Dijskstra's algorithm and Floyd-Warshall6



algorithm (see e.g. [AHU74℄) have the asymptoti
 worst-
ase running time mentionedin the 
laim.Although the running times for both Dijkstra's and Floyd-Warshall algorithms areasymptoti
ally the same, perhaps Dijkstra's algorithm is better suited in our s
enario.First, in pra
ti
e the user might be interested in 
omputing only obje
ts rea
hableby Q-paths only from a limited number of obje
ts, for example when we have arooted database graph. In su
h a 
ase the running time of Dijkstra's algorithm isO((jAQj � jDBj � jT j)2), and we don't need to 
ompute the shortest paths betweenall pairs of obje
ts, as in the Floyd-Warshall algorithm. The se
ond reason has to dowith a natural generalization of the approximate answering of a query. Most of thetimes the user is interested only in the top k-answers. Then Dijkstra's algorithm isthe ideal 
hoi
e: It pro
esses the nodes in the order of their distan
e from the sour
e.Obviously, we 
an 
onstru
t the transdu
er C on the 
y and stop the exe
ution ofthe algorithm when the �rst pair (a; b) of obje
ts, ranked as k+1 in ansT (Q;DB), isprodu
ed.3 Approximate Satisfa
tion of Data GuidesData guides were originally introdu
ed in the Lore proje
t as a 
on
ise and a

uratesummary of a given database graph [GW97, N+97℄. The data guide is a s
hema, andwe want the database to 
onform to this s
hema. However, sometimes we are willingto 
onsider databases that approximately 
onform to a given data guide.In su
h 
ases we would like to have some quantitative estimation of the approx-imate 
onformation of the database to the data guide. Usually, both the databaseDB and the data guide DG are 
onsidered to be edge labelled graphs. The questionof whether DB satis�es DG is determined by whether there exists a simulation orbisimulation from DB to DG. If we 
onsider both DB and DG as automata, thensimulation 
orresponds to L(DB) � L(DG), and bisimulation 
orresponds to theequality of these languages (see e.g. [ABS99℄).Without loss of generality, we only 
onsider language in
lusion (not equality) inthis paper. We again suppose that the user spe
i�es a weighted distortion transdu
erT , through whi
h we 
an distort the data-guide through allowed elementary distortionsand then test if the database DB 
onforms to the distorted data-guide T (DB), inother words, if L(DB) � L(T (DG)).If the database indeed 
onforms to the distorted data guide, we are interested in\how far" the database is from the original data guide.Suppose that indeed L(DB) � L(T (DG)). Then for ea
h word W 2 L(DB) thereexists a set of words U 2 L(DG), su
h that W 2 T (U). For ea
h W we want to �ndthe 
losest su
h U , and the distan
e between L(DG) and L(DB) is then the largestamong these 
losest distan
es (like the diameter of a graph). To formally 
apture thisdistan
e between languages, we need the following de�nitions.Given a distortion transdu
er T , letW be a word in the se
ond 
olumn of RT , andL be the set of words appearing in the �rst 
olumn of RT . The T -distan
e between7



L and W is de�ned as dT (L;W ) = inf fdT (U;W ) : U 2 Lg:Then let L1 be the set words appearing in the �rst 
olumn of RT , and L2 thoseappearing in the se
ond 
olumn. The T -distan
e between L1 and L2 is de�ned asdT (L1; L2) = supfdT (L1;W ) : W 2 L2g:Now we 
an say that a database DB k-satis�es a data guide DG if1. L(DB) � L(T (DG)), and2. dT (T (DG); L(DB)) � k,where T (DG) is the subset of words in L(DG) that appear in the �rst 
olumn of RT .We are going to prove the following lower bound:Theorem 3 Given a data-guide DG, a database DB, a distortion transdu
er T , andan integer k 2 N, the problem of de
iding whether or not dT (T (DG); L(DB)) � k, isPSPACE-hard, even if L(DB) � L(T (DG)).For the upper bound of we need the notion of a distan
e automata [Has82℄. Adistan
e automaton A = (S;�; S0; �; F; !) is an automaton with positive weights onits transitions. Formally, the weight is a fun
tion ! : S���S ! N [f1g, su
h that!(s;R; t) 2 N when (s;R; t) 2 � and !(s;R; t) = 1 when (s;R; t) 62 � . The weightfun
tion ! is extended to ! : S � �� � S ! N [ f1g as follows: for any s; t 2 Q,W 2 �� and R 2 �,1. !(s; �; t) = � 0 if s = t1 if s 6= t2. !(s;WR; t) = inf f!(s;W; t0) + !(t0; R; t) : t0 2 Sg.Then, the distan
e of a word W a

epted by this distan
e automaton is de�ned asd(W ) = inf f!(s;W; t) : W 2 L(A); s 2 S0 and t 2 FgWe also need the following de�nition. Let A = (S;�; �; S0; F; !) be a distan
eautomaton. Then A is said to have limited distan
e if there is k 2 N su
h thatk � supfd(W ) :W 2 L(A)g.We will show in Theorem 5 that the problem of the k-satisfa
tion of a data guideDG by database DB through a distortion transdu
er 
an be 
asted to the problem oflimitedness in distan
e automata. The problem of limitedness in distan
e automata isshown to be de
idable [Has82℄. This means in turn that our problem of k-satisfa
tionis de
idable. However, the de
ision pro
edure of [Has82℄ is in EXPSPACE and theproblem of a tighter lower bound is still open [Has00℄. In the next theorem we provethat for the sub
lass of distan
e automata with all the states �nal, the limitednessproblem 
an be de
ided in PSPACE. As we dis
ussed in the Introdu
tion, this sub
lassof distan
e automata 
orresponds to pra
ti
al subproblems of k-satisfa
tion.8



Theorem 4 Given a distan
e automaton with all states �nal, i.e. A = (S;�; �; S0; S; !),the problem of de
iding whether or not the automaton A has limited distan
e is inPSPACE.We now turn to the redu
tion of the k-satisfa
tion problem into the problem oflimitedness in distan
e automata. Consider a data-guide DG, a database DB, and adistortion transdu
er T . In the following we will show a 
onstru
tion for a distan
eautomaton su
h that the language a

epted by it, is exa
tly the language of thedatabase paths and the 
ost of ea
h DB path will represent the smallest T -distan
eof this path from the set of words related through the transdu
tion, and in
luded inthe data-guide language.Let ADG = (SDG; �; ÆDG; S0DG ; FDG) be an �-free data-guide automaton, ADB =(SDB ; �; ÆDB ; S0DB ; FDB) the database automaton, and �nally, let C = ADG � T �ADB = (S; �; �; �; S0; F ) be a Cartesian transdu
er 
onstru
ted as in the Theorem1.Lemma 1 For U 2 T (DG) and W 2 L(DB) we have thatdT (U;W ) = dC(U;W )From the transdu
er C we will 
onstru
t another \distan
e equivalent" transdu
erC0, with �-free output automaton, and with the same set of states, as follows.Consider the graph derived by C 
onsisting of the edges with � output only. Callit EC . The edges of EC will be labeled and weighted with same label and 
ost as the
orresponding transitions in C. We shall use �� CLOSURE(s), similarly to [HU79℄,to denote the set of all verti
es t su
h that there is path from s to t in EC .Obviously, all the transitions with non-� output of C will be present in the trans-du
er C0, that we are 
onstru
ting. Furthermore, we will introdu
e a transition withoutput labeled R 6= � in C0 from a state s to a state t whenever there is a path fromvertex s to a vertex v in EC , and a transition with R labeled output in C, from thestate v to the state t. Formally, if C = (S; �; �; �; S0; F ), then C0 = (S; �; �; � 0;S0; F 0), where F 0 = F [ fs : s 2 S0 and �� CLOSURE(S0) \ F 6= ;g and� 0 = f(s;R0; t; R) : (v;R0; t; R) 2 � and R 6= �g [f(s;W; t;R) : 9v 2 �� CLOSURE(s) su
h that,there is a transition (v;R0; t; R) 2 �; where R 6= �gwhere W will be a word labeling the(a) 
heapest path from vertex s to vertex v in EC .Also, the 
ost of a new transition (s;W; t;R) will be the 
ost of the(a) 
orresponding
heapest path from s to v in EC , plus the 
ost of the(a) 
heapest transition with outputlabeled by R, from state v to state t in C.Lemma 2 Let C0 be an �-free output Cartesian transdu
er 
onstru
ted as above. Thenthe following are true.1. out(C0) = out(C) 9



2. in(C0) � in(C)3. RC0 � RCLemma 3 Let W 2 out(C) = out(C0). Then dC(in(C);W ) = dC0(in(C0);W )If we now eliminate the input from the transitions in C0 we obtain an �-free distan
eautomaton A = (S;�; � 00; S0; F; !), where� 00 = f(p;R; q) : (p;W;R; q) 2 � 0 for some Wg;and the weight ! of a transition in A is given by the 
ost of the(a) 
orresponding
heapest transition in the transdu
er C0. Now, we 
an state the following theorem.Theorem 5 Let DG be a data-guide, DB a database, and T a transdu
er of alloweddistortions. Compute the �-free output Cartesian transdu
er C0 and 
onsider the dis-tan
e automaton A 
onstru
ted as previously. Then, dist(A) = dT (T (DG); L(DB)).Referen
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