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Abstract
Flexible operation of a robotic agent requires interaction with
an uncalibrated or partially calibrated environment through the
use of sensing. Much of the recent work in robotics and com-
puter vision has concentrated upon the active observation of
dynamic targets by the robotic agent. This paper focuses on
autonomous interaction with moving targets in the environment.
In particular, we propose a system that performs autonomous
grasping of a moving target in an uncalibrated environment.
The proposed system is derived using the Controlled Active
Vision framework and provides the flexibility to robustly inter-
act with the environment in the presence of uncertainty. The
proposed work is experimentally verified using the Minnesota
Robotic Visual Tracker (MRVT) to select targets of interest, to
derive estimates of unknown environmental parameters, and to
supply a control vector based upon these estimates to guide the
manipulator in both the tracking and the grasping of a target.

1. Introduction
Current industrial manipulators suffer from ineffec-

tiveness due to their inability to perform satisfactorily in
a variety of situations. Current systems are often very
brittle and fail due to changes in the environment, the
manipulator, or the sensors. Typically, objects to be
manipulated are required to appear in distinguished posi-
tions and at pre-defined orientations (often through the
aid of fixtures), or (if moving) are required to maintain
stringent speed, location, and orientation restrictions. If
these restrictions are not adhered to, then the system fails
with no hope of recovery via sensing.

Flexible manipulation of objects requires the use of
sensors in order to determine salient properties of the
object of interest and the robot’s workspace. The recent
introduction of inexpensive and fast real-time image pro-
cessing systems allows for the efficient integration of
visual sensory information in the feedback loop of a
robotic system. Even though the robotic visual control
area has drastically expanded in the recent years, its main
focus has remained the visual tracking of objects by using
the information gathered by static- or robot-mounted
cameras [2][6][12][17][18][20]. This work, while impor-
tant in its results and implications, has concentrated upon
the active observation of the environment, leaving inter-
action as an issue for future research. In particular, only a
small number of researchers [1][8][9] [16] have proposed
vision-based robotic systems that interact with the
environment.

We propose a flexible system based upon a camera
repositioning controller operating under the Controlled

Active Vision framework [12][14]. The controller allows
the manipulator to robustly grasp objects present in the
workspace (see Figure 1). The system operates in an
uncalibrated space with an uncalibrated camera. More-
over, the proposed scheme allows automatic planning and
execution of all the necessary actions in order to grasp an
object. The object of interest is not required to appear in a
specific location, orientation, or depth, nor is it required
to remain motionless during grasping.

In this paper, we first discuss the visual measurements
we have used in this problem, elaborate on the use of
“coarse” and “fine” features for guiding grasping, and
discuss feature selection and reselection. We then
describe the application of the Controlled Active Vision
framework to the problem of vision-based grasping of
objects. We verify the operation of the system by present-
ing experimental results using the MRVT [4] system
where the manipulator successfully grasps moving
objects using a vision-based, closed loop control strategy
throughout the task. Finally, we discuss the strengths and
weaknesses of our approach, suggest required future
work, and summarize our results.

2. Vision-Based Control for Grasping
Measurements

We assume a pinhole camera model with a world
frame {RS} fixed with respect to the camera and the Z-
axis pointing along the optical axis. A point P = (XS, YS,
ZS)T in {RS} projects to a point p in the image plane with
image coordinates x and y. For simplicity, we assume that

, where and are the scaling factors
for pixel size and camera sampling and f is the camera
focal length.

By utilizing the derivation presented previously in
[12][17][18], we arrive at the following equations
describing the motion of p on the image plane due to P
moving with translational motion and

Figure 1: Experimental setup
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rotational motion :
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The continuous extraction of the positions of the fea-
tures’ projections on the image plane is based on optical
flow techniques as presented in [12][17][19].
Coarse and fine features

We decompose the motion into coarse and fine seg-
ments by using two different classes of object features
during operation as presented in [19]. Due to the wide
range of relative object depth, initial object features will
pass out of the view of the camera due to looming during
the grasp reach. Therefore, we use “coarse” and “fine”
features to guide manipulator. Coarse features are used to
initially align the gripper and to begin the reach. When
the coarse features approach the boundaries of the image
plane, fine features are selected. These are used to drive
the end-effector the remaining distance to the object and
to signal when to grasp the object using a pneumatic,
two-fingered hand. Proper orientation is maintained
throughout by visual information derived from either the
coarse or the fine features, depending upon the type of
features being used to guide the manipulator.
Feature selection/reselection

An algorithm based upon the SSD technique may fail
due to repeated patterns in the intensity function of the
image or due to large areas of uniform intensity in the
image. Both cases can provide multiple matches within a
feature point’s neighborhood, resulting in incorrect dis-
placement measures. Furthermore, during certain
movements of the manipulator (e.g., Z-axis translation
and X-, Y-, or Z-axis rotations), the features being
tracked will be distorted on the image plane, resulting in
loss of tracking. In order to avoid these problems, our
system automatically evaluates, selects, and reselects fea-
ture points as presented previously in [18][19].

Feature reselection is performed every th iteration in
a small area about each feature point using the method
described in [18][19]. This prevents loss of feature track-
ing due to distortions caused by the rotation about the Z-
axis required to align the gripper with the object and the
motion of the object. The reselection rate is based
upon the maximum rotation rate about Z, the estimated
motion of the object, and the expected velocity of the fea-
ture points on the image plane.

3. Grasping as a visual servoing problem
We address the problem of grasping (eye-in-hand con-

figuration) as a visual servoing problem in this section.
The grasping problem can be defined as “find the motion
of the manipulator that will grasp a static or slowly mov-
ing object.” Since we are dealing with an eye-in-hand
robotic system, we have to address the repositioning of
the manipulator in order to effect grasping. The specific
problem can be stated as “find the motion of the manipu-
lator that will cause the image projections of certain
feature points of the rigid target to move to desired image
positions.” We accomplish this by automatically defining

desired positions for the object features such that the
robot aligns the end-effector with the object, reaches
toward the object (while maintaining gripper/object
alignment), and grasps the object. Contrary to previous
research efforts [5], only partial knowledge of the inverse
perspective transformation is assumed.
Modeling approach

One feature point is not enough for the calculation of
the control input vector due to the fact that the number of
outputs is less than the number of inputs. Thus, we are
obliged to consider more points in our model. In order to
make the number of inputs equal to the number of out-
puts, we must consider at least three feature points which
are not collinear. Having more than three feature points
will result in a larger number of outputs than inputs. In
grasping, the robot-camera system is required to take a
certain pose with respect to the rigid target and this task
requires at least four feature points.

According to the derivation given in [15], we produce
the following equations written in the state-space form
for four features (this model holds for static or slowly
moving objects):

(3.1)

where , , and is the delay
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(3.2)

where

is the white noise vec-

tor and . The measurement
vector is computed using the SSD algorithm.

We can form a MIMO (Multi-Input Multi-Output)
ARX (AutoRegressive with auXiliary input). This model
consists of eight MISO (Multi-Input Single-Output) ARX
models, and is described by the following equation:

(3.3)

where is the white noise vector and is the back-
ward shift operator. The white noise vector corre-
sponds to the measurement noise, modeling errors, and
noise introduced by inaccurate robot control. In the next
section, we present the control and estimation techniques
for the repositioning problem.
Control and estimation for repositioning

In order to grasp an object using an eye-in-hand sys-
tem, the camera/manipulator must be repositioned with
respect to the target. We use a repositioning scheme
where the control objective is to move the manipulator in
such a way that the projections of the selected features on
the image plane move to some desired positions [13].
This section presents the control strategies that realize
this motion and the estimation scheme used to estimate
the unknown parameters of the model. Since the depth
information is not directly available, adaptive control
techniques are used for visually servoing around a object.
In particular, adaptive control techniques are used for the
recovery of the components of the translational and rota-
tional velocity vectors and , respectively. The
rest of the section will be devoted to the description of the
control and estimation schemes.

Control scheme for repositioning: The objective is
to move the features’ projections on the image plane to
some desired positions. The repositioning of the projec-
tions is realized by an appropriate motion of the camera.
The design of this controller is similar to the one pro-
posed in [15]. By transforming our objective to a cost
function, we can create a mathematical formula that con-
tinuously computes the desired motion of the camera.
This motion is transformed through a robot control
scheme to robot motion. In particular, a simple control
law can be derived by the minimization of a cost function
that includes the control signal [10]:

(3.4)
The vector represents the desired positions of the
projections of the four features on the image plane. Dur-
ing certain stages of the grasping the vector is
known but time-varying. By weighting the control signal,
we place some emphasis on the minimization of the con-
trol signal in addition to the minimization of the servoing
error. The response of the system is slower than having

but the control input signal is bounded and feasi-

ble. This is in agreement with the structural and opera-
tional characteristics of the robotic system and the vision
algorithm. A robotic system cannot track signals that
command large changes in the features’ image projec-
tions during the sampling interval T. The control law
which is derived from the minimization of the cost func-
tion (3.4) is:

(3.5)

The design parameters in this control law are the ele-
ments of the matrices and . The matrix
should be positive definite ( ) while should be
positive semidefinite ( ). If the matrix is full
rank then the matrix is invertible.
The matrix is singular when the four feature points
are collinear. This is similar to the work presented in [15]
that extends the number of points to m. For grasping, we
will use four points. Further details on the conditions for
singularity and a proof that those conditions make
singular can be found in [12].

By selecting GI and GM, one can place more or less
emphasis on the control input and the servoing error. By
following the results in [15], we can select the elements
of these matrices. If we want to include the noise of our
model and the inaccuracy of the matrix in our con-
trol law, the control objective (3.4) will become:

(3.6)
where the symbol E{X} denotes the expected value of the
random variable X and Fk is the sigma algebra generated
by the past measurements and the past control inputs up
to time k. The new control law is:

(3.7)

where is the estimated value of the matrix . The
matrix is dependent on the estimated values of the
features’ depth ( ) and the coordi-
nates of the features’ image projections. In particular, the
matrix is defined as follows:
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where is given by:

This matrix uses the estimated depth ( ) in the
calculation of . In the next section, we present esti-
mation techniques for estimating the depth factor.

Computation of by estimating :
The estimation of the feature’s depth with respect
to the camera frame can be done in multiple ways. In this
section, we present one estimation algorithm. Many more
similar algorithms can be found in [15]. Let us define the
inverse of the depth as . Then, the equa-
tions of each feature point can be written as:

(3.8)

where and are given by:

,

By following the methods in [15], the new form is:

. (3.9)

The vectors and are known every

instant of time, while the scalar is continuously
estimated.

The details of the estimation equations are presented in
[12]. Further analysis is given in [7] and [15].
Manipulator control for grasping

Manipulator motions are effected by a control law sim-
ilar to that in the previous sections:

We use this control law during both the object centering
and gripper alignment phase, and the object approach and

grasping phase. We can also extend the use of the control-
ler to the grasping of moving objects since we consider
slowly moving targets. If the higher speed objects exist,
the control law can be modified to include the motion of
the object as a disturbance term. The values of are
held constant during the centering and alignment phase
and are time-varying during the approach phase. During
approach, several intermediate values of the desired fea-
ture point locations are automatically calculated. These
intermediate values are used to smoothly guide the gripper
to the object and to maintain gripper alignment throughout
the approach and grasping phase. Even when the object is
in motion, the alignment and centering requirements of the
controller cause the manipulator to track the motion,
resulting in a system that can grasp objects in spite of their
motion.

4. Experimental Results
The proposed work is experimentally verified using the

Minnesota Robotic Visual Tracker (MRVT) [4] to auto-
matically select object features, to derive estimates of
unknown environmental parameters, and to supply a con-
trol vector based upon these estimates to guide the
manipulator in the grasping of a moving object.

We assume that the object of interest is a rectangular
prism with at least one linear dimension (width or length)
that fits into the span of the gripper fingers. We also
assume that there are some surface markings that provide
suitable fine features for grasping.

We conducted several sets of experiments by varying
object’s beginning position, orientation, depth, and
motion. The first set of experiments was conducted by
placing the object approximately 520 mm in depth, 44 mm
from the optical axis of the camera, and at a rotation of 14°
about the object’s Z-axis. The object moves approximately
parallel to the Y-axis of the manipulator. During the exper-
iment, the object reverses direction, as shown in Figure 3.
The system first aligns the gripper with the minimal linear
dimension of the object and forces the optical axis to pass
through the centroid of the object. Figure 2 and Figure 3
show the alignment of optical axis and the object centroid
during the early potions of the plots. Figure 3 clearly
shows the rotation needed to align the gripper with the
minimal linear dimension of the object. Figure 5 shows the
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Ẑs
i( )

k( )
------------- 0

x
i( )

k( )

Ẑs
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ĴF
i( )

k( ) 1 Zs
i( )

k( )⁄
Zs

i( )
k( )

Zs
i( ) k( ) ζ s

i( ) k( )

yF
i( )

k( ) AF
i( )

k 1–( )yF
i( )

k 1–( ) +=

ζ s
i( )

k d–( )JF1
i( ) k d–( )t k d–( ) +

JF2
i( )

k d–( )r k d–( ) nF
i( )

k( )+

JF1
i( )

k( ) JF2
i( ) k( )

JF1
i( )

k( ) T 1– 0 x
i( )

k( )

0 1– y
i( )

k( )
=

JF2
i( ) k( ) =

T
x

i( )
k( )y

i( )
k( ) 1 x

i( )
k( )( )

2
+[ ]– y

i( )
k( )

1 y
i( )

k( )( )
2

+[ ] x
i( )

k( )y
i( )

k( )– x
i( )

k( )–

.

∆yF
i( )

k( ) ζ s
i( )

k d–( )ut
i( )

k d–( ) nF
i( )

k( )+=

∆yF
i( )

k( ) ut
i( )

k d–( )

ζ s
i( )

k( )

ucon k( ) Ĵ
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Ĵ

T
k( )GM–=

y k( ) ydes k d+( )–[ ] +{
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reach along the Z-axis (optical axis) and, once the system
has identified that the conditions required for grasping
are met and the gripper has been closed, shows the with-
drawal of the manipulator along the Z-axis near the end
of the plot. The time axis is given in cycles that corre-
spond to the cycle time of the robot’s controller (28
msec).

During this experiment, object alignment (both grip-
per alignment and object tracking) is updated as the
system is able to measure the position of the features
more accurately. Figure 3 reflects the adjustments made
during the approach as the object reverses direction.

It should be noted that the system must assume that
the coarse feature points are the corners of the object in
order to identify the minimal linear dimension and per-
form the alignment. Also, the size of the black square that
supplies the fine points is known, allowing the system to
predict the final positions of the fine features in order to
allow grasping; however, the system selects these points
automatically and their initial positions are unknown and
are dependent upon the movements of the manipulator
during the coarse guidance and the object’s motion.

The second set of experiments used an object that
exhibited a slightly curved path coupled with an object
rotation about an axis parallel to, but not colinear with,
the optical axis. Figure 6 and Figure 7 show the transla-
tional motion of the object. Figure 6 also shows an initial
translation to align the optical axis with the object cen-
troid. In this case, the object was initially displaced 20
mm along the X-axis. Figure 8 shows the rotation of the
object during the grasping task. The rate of rotation

increases over time, resulting in some oscillation during
the grasping. Figure 9 shows the approach, grasp, and
withdrawal with respect to the Z-axis. In this experiment,
the three dimensional motion of the object caused the
system to take slightly longer to drive the features to their
desired positions; thus, overall time-to-grasp was longer.

In these experiments, the minimal dimension of the
object (59 mm) falls within the span of the gripper fingers
(72 mm) with only a small tolerance on each side for con-
trol error and noise. If the system simply relied upon the
gripper and optical axis alignment of the first stage, the
accuracy needed to grasp a wide object such as this box
would not have been available and the failure rate of the
system would have been much higher. The object motion
in both of these experiments also demonstrates the bene-
fit of using vision throughout the grasping task. The
change in direction of the first experiment and the non-
constant rate of rotation in the second experiment pose
significant problems for a system that includes a prepro-
grammed component during grasping. Since our system
has no such preprogrammed component, it successfully
grasps the object in both cases.
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5. Conclusions
In this paper, we have presented a method of incorpo-

rating visual sensing during basic grasping tasks. This
allows a robotic system to achieve a high level of accuracy
while grasping objects that are near in size to the gripper
opening. The method is based upon the Controlled Active
Vision framework [12] and is implemented using the Min-
nesota Robotic Visual Tracker [4].

The system successfully grasps rectangular prisms
regardless of the initial orientation and motion, even
though the objects used have only a single graspable
dimension that requires extremely tight tolerances to fit
within the gripper’s fingers. It also does not require a cali-
brated camera or accurate measurements of other
environmental parameters (e.g., focal length, tool transfor-
mation, object dimensions, etc.).

The preliminary system uses a priori knowledge about
the fine feature points and is currently restricted to a single
geometric class of objects. These limitations provide the
basis for future work and refinements to the system.
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