Inverted Index Compression and Query Processing
with Optimized Document Ordering

Hao Yan
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY, 11201

hyan@cis.poly.edu
ABSTRACT

Web search engines use highly optimized compression schemes
to decrease inverted index size and improve query through-
put, and many index compression techniques have been stud-
ied in the literature. One approach taken by several recent
studies [7, 23, 25, 6, 24] first performs a renumbering of the
document IDs in the collection that groups similar documents
together, and then applies standard compression techniques.
It is known that this can significantly improve index com-
pression compared to a random document ordering.

We study index compression and query processing tech-
niques for such reordered indexes. Previous work has focused
on determining the best possible ordering of documents. In
contrast, we assume that such an ordering is already given,
and focus on how to optimize compression methods and query
processing for this case. We perform an extensive study of
compression techniques for document IDs and present new
optimizations of existing techniques which can achieve signif-
icant improvement in both compression and decompression
performances. We also propose and evaluate techniques for
compressing frequency values for this case. Finally, we study
the effect of this approach on query processing performance.
Our experiments show very significant improvements in in-
dex size and query processing speed on the TREC GOV2
collection of 25.2 million web pages.

Categories and Subject Descriptors

H.3.3[INFORMATION STORAGE AND RETRIEVAL:

Information Search and Retrieval.

General Terms

Algorithms, Performance

Keywords

Inverted index, search engines, index compression, IR query
processing, document ordering

1. INTRODUCTION

Large web search engines need to process thousands of
queries per second over tens of billions of pages. Moreover,
the results for each query should be returned within at most
a few hundred milliseconds. A significant amount of research
and engineering has gone into addressing these tremendous
performance challenges, and various optimizations have been
proposed based on techniques such as caching, data com-
pression, early termination, and massively parallel process-
ing. We focus on one important class of optimizations, index

*Current Affiliation: CSE Dept., Polytechnic Inst. of NYU.

Copyright is held by the International World Wide Web Coefeze Com-
mittee (IW3C2). Distribution of these papers is limited tassroom use,
and personal use by others.

WWW 2009, April 20-24, 2009, Madrid, Spain.

ACM 978-1-60558-487-4/09/04.

Shuai Ding
CSE Department
Polytechnic Institute of NYU
Brooklyn, NY, 11201

sding@cis.poly.edu

*
Torsten Suel
Yahoo! Research

701 1st Ave

Sunnyvale, CA 94089

suel@poly.edu

compression. Inverted index compression is used in all major
engines, and many techniques have been proposed [27, 30].
Informally, an inverted index for a collection of documents
is a structure that stores, for each term (word) occurring
somewhere in the collection, information about the locations
where it occurs. In particular, for each term ¢, the index
contains an inverted list I; consisting of a number of indez
postings. Each posting in I; contains information about the
occurrences of ¢ in one particular document d, usually the
ID of the document (the docID), the number of occurrences
of ¢t in d (the frequency), and possibly other information
about the locations of the occurrences within the document
and their contexts. The postings in each list are usually
sorted by doclD. For example, an inverted list /; of the form
{56, 1,34}{198, 2,14, 23} might indicate that term ¢ occurs
once in document 56, at word position 34 from the beginning
of the document, and twice in document 198 at positions 14
and 23. We assume postings have docIDs and frequencies
but do not consider other data such as positions or contexts.
Many techniques for inverted index compression have been
studied in the literature; see [27, 30] for a survey and [1, 2,
3, 31, 28, 14] for very recent work. Most techniques first re-
place each docID (except the first in a list) by the difference
between it and the preceding doclD, called d-gap, and then
encode the d-gap using some integer compression algorithm.
Using d-gaps instead of docIDs decreases the average value
that needs to be compressed, resulting in a higher compres-
sion ratio. Of course, these values have to be summed up
again during decompression, but this can usually be done
very efficiently. Thus, inverted index compression techniques
are concerned with compressing sequences of integers whose
average value is small. The resulting compression ratio de-
pends on the exact properties of these sequences, which de-
pend on the way in which doclDs are assigned to documents.
This observation has motivated several authors [7, 23, 25,
6, 24] to study how to assign docIDs in a way that opti-
mizes compression. The basic idea here is that if we assign
doclDs such that many similar documents (i.e., documents
that share a lot of terms) are close to each other in the docID
assignment, then the resulting sequence of d-gaps will be-
come more skewed, with large clusters of many small values
interrupted by a few larger values, resulting in better com-
pression. In contrast, if doclDs are assigned at random, the
distribution of gaps will be basically exponential, and small
values will not be clustered together. In practice, IR systems
may assign doclDs to documents in a number of ways, e.g., at
random, in the order they are crawled or indexed, or based
on global measures of page quality (such as Pagerank [9]).
As we discuss later, in some cases it is difficult or impossible
to change the way doclDs are assigned, but there are many
other scenarios where reordering of documents could be used
to improve index compression.
In this paper, we follow the document reordering approach
studied in [7, 23, 25, 6, 24]. However, while previous work

has focused on finding the best ordering of documents in a
collection, we focus on the next step, how to optimize actual
index compression and query processing given some suitable
document ordering obtained from previous work. In particu-
lar, we extensively study and optimize state-of-the-art com-
pression techniques for docIDs, and propose new algorithms
for compressing frequencies, under such optimized orderings.
Frequency values tend to be small compared to docID gaps
(on average when a word occurs in a web page it occurs
only 3 to 4 times), and thus different techniques are needed
to improve their compression. We further study the impact
of doclD reordering on query throughput, and propose and
study a new index optimization problem motivated by the
trade-off between speed and compression ratio of the various
methods. Overall, our experimental results show very sig-
nificant improvements in both overall index size and query
processing speed in realistic settings. To our knowledge, no
previous work has looked at compression of frequencies, or
at overall query processing performance, under the document
reordering approach.

The remainder of this paper is organized as follows. In
the next section, we provide some technical background and
discuss related work. Section 3 describes our contributions
in more detail. In Section 4 we study techniques for doclD
compression, while Section 5 focuses on compression of fre-
quencies. Section 6 evaluates query processing performance,
and Section 7 studies hybrid schemes that apply different
compression techniques to different lists based on query load.
Finally, Section 8 provides concluding remarks.

2. BACKGROUND AND RELATED WORK

In this section, we first outline several known index com-
pression techniques that we use in our work. We then discuss
previous work on reordering for better inverted index com-
pression, and discuss the applicability of this approach in
real systems. Subsection 2.4 describes block-wise compres-
sion and skipping in IR query processors, and Subsection 2.5
introduces the TREC GOV2 data set used by us.

2.1 Index Compression Techniques

Recall that in inverted index compression, our goal is to
compress a sequence of integers, either a sequence of d-gaps
obtained by taking the difference between each docID and
the previous docID, or a sequence of frequency values. In
addition, we always deduct 1 from each d-gap and frequency,
so that the integers to be compressed are non-negative but do
include 0 values. We now sketch some known techniques that
we use and build on in this paper, in particular variable-byte
(var-byte) coding [22], Rice coding [27], Simple9 (S9) [2] and
the closely related S16 [28], PForDelta [14, 31], and binary
Interpolative Coding (IPC) [17]. We provide brief outlines
of these methods to keep the paper self-contained; for more
details, please see the cited literature. All methods except
IPC were recently implemented and evaluated in [28], and we
will reuse and extend these highly tuned implementations.

Var-Byte Coding: Variable-byte (var-byte) compression
represents an integer in a variable number of bytes, where
each byte consists of one status bit, indicating whether an-
other byte follows the current one, followed by 7 data bits.
Thus, 142 = 1-27 + 16 is represented as 10000001 0001000,
while 2 is represented as 00000010. Var-byte compression
does not achieve a very good compression ratio, but is sim-
ple and allows for fast decoding [22] and is thus still used in
many systems.

Rice Coding: This method compresses a sequence of in-
tegers by first choosing a b such that 2° is close to the average

value. Each integer n is then encoded in two parts: a quo-
tient ¢ = |[n/(2%)] stored in unary code using g + 1 bits,
and a remainder 7 = n mod 2° stored in binary using b bits.
Rice coding achieves very good compression on standard un-
ordered collections but is slower than var-byte, though the
gap in speed can be reduced by using an optimized imple-
mentation described in [28].

S9: Simple9 (S9) coding is an algorithm proposed in [2]
that combines good compression ratio and high decompres-
sion speed. The basic idea in S9 is to try to pack as many
values as possible into a 32-bit word. This is done by divid-
ing each word into 4 status bits and 28 data bits, where the
data bits can be partitioned in 9 different ways. For example,
if the next 7 values are all less than 16, then we can store
them as 7 4-bit values. Or if the next 3 values are less than
512, we can store them as 3 9-bit values (leaving one data
bit unused).

Simple9 uses 9 ways to divide up the 28 data bits: 28
1-bit numbers, 14 2-bit numbers, 9 3-bit numbers (one bit
unused), 7 4-bit numbers, 5 5-numbers (three bits unused),
4 7-bit numbers, 3 9-bit numbers (one bit unused), 2 14-bit
numbers, or 1 28-bit numbers. The 4 status bits store which
of the 9 cases is used. Decompression can be optimized by
hardcoding each of the 9 cases using fixed bit masks, and
using a switch operation on the status bits to select the case.

S16: Simplel6 (S16) [28] uses the same basic idea as S9,
but has 16 ways of partitioning the data bits, where each of
the 16 cases uses all 28 data bits. The result is that S16 ap-
proximately matches the speed of S9, while achieving slightly
better compression. We note here that there are other meth-
ods related to S9, such as Relate10 and Carryover12 [2], that
also achieve improvements over S9 in certain cases.

PForDelta: This is a compression method recently pro-
posed in [14, 31] that supports extremely fast decompres-
sion while also achieving a small compressed size. PForDelta
(PFD) first determines a value b such that most of the val-
ues to be encoded (say, 90%) are less than 2° and thus fit
into a fixed bit field of b bits each. The remaining values,
called exceptions, are coded separately. If we apply PFD to
blocks containing some multiple of 32 values, then decom-
pression involves extracting groups of 32 b-bit values, and
finally patching the result by decoding a smaller number of
exceptions. This process can be implemented extremely effi-
ciently by providing, for each value of b, an optimized method
for extracting 32 b-bit values from b memory words. PFD
can be modified and tuned in various ways by choosing dif-
ferent thresholds for the number of exceptions allowed, and
by encoding the exceptions in different ways. We use some
modifications to PFD proposed in [28], but also add in this
paper additional ones that achieves significantly better per-
formance in terms of both size and speed.

Interpolative Coding: This is a coding technique pro-
posed in [17] that is ideal for the types of clustered or bursty
term occurrences that exist in real large texts (such as books).
In fact, the goal of the document reordering approach is to
create more clustered, and thus more compressible, term oc-
currences, and Interpolative Coding (IPC) has been shown
to perform well in this case [6, 7, 23, 24, 25].

TPC differs from the other methods in an important way: It
directly compresses doclDs, and not docID gaps. Given a set
of docIDs d; < diy1 < ... < dj where | < d; and d; < r for
some bounding values [and r known to the decoder, we first
encode d,, where m = (i + j)/2, then recursively compress
the docIDs d;, ... ,dm—1 using [and d,, as bounding values,
and then recursively compress dp 41, ... ,d; using d,, and r
as bounding values. Thus, we compress the docID in the

center, and then recursively the left and right half of the
sequence. To encode dy,, observe that dm > [+ m — i (since
there are m — i values d;,...d,—1 between it and [) and
dm < 1 —(j —m) (since there are j —m values dpm41,...d;
between it and r). Thus, it suffices to encode an integer in
the range [0, z] where ¢ = r —{ — j +¢— 2 that is then added
to [+m — i+ 1 during decoding; this can be done trivially
in [log,(z + 1)] bits, since the decoder knows the value of z.

In areas of an inverted list where there are many documents
that contain the term, the value z will be much smaller than
r—1. As a special case, if we have to encode k docIDs larger
than [and less than r where k = r — [— 1, then nothing
needs to be stored at all as we know that all docIDs properly
between [and r contain the term. This also means that
TPC can use less than one bit per value for very dense term
occurrences.

Evaluation: Index compression techniques are usually
evaluated in terms of: (1) The compression ratio, which de-
termines the amount of main memory needed for a memory-
based index or the amount of disk traffic for a disk-based in-
dex. State-of-the-art systems typically achieve compression
ratios of about 3 to 10 versus the naive 32-bit representation,
while allowing extremely fast decompression during inverted
list traversals. (2) The decompression speed, typically hun-
dreds of millions of integers per second, which is crucial for
query throughput. In contrast, compression speed is some-
what less critical, since each inverted list is compressed only
once during index building, and then decompressed many
times during query processing.

We note that there are two different ways to evaluate the
compression ratio. We can consider the total size of the in-
dex; this models the amount of space needed on disk, and
also the amount of main memory needed if the index is held
entirely in main memory during query processing. Alter-
natively, we can measure the compressed size of the inverted
lists associated with an average query under some query load;
this models the amount of data that has to be transferred
from disk for each query if the index is entirely on disk (and
also the amount of data that has to be moved from main
memory to CPU as this can become a bottleneck in highly
optimized systems). In reality, most systems cache part of
the index in memory, making a proper evaluation more com-
plicated. We consider both cases in our experiments, but find
that the relative ordering of the algorithms stays the same.

2.2 Document Reordering and Related | deas

Several papers have studied how to reorder documents for
better compression [7, 23, 25, 24, 6]. In particular, the ap-
proaches in [7, 23, 25, 6] first perform some form of text
clustering on the collection to find similar documents, and
then assign doclDs by traversing the resulting graph of doc-
ument similarities in a Depth-First-Search [7] or TSP-like
fashion. Subsequent work in [24] looked at a much simpler
approach, assigning docIDs alphabetically according to URL,
and showed that this method basically matches the perfor-
mance of previous techniques based on text clustering. Note
that such an alphabetical ordering places all documents from
the same site, and same subdirectory within a site, next to
each other. This results in improved compression as such
documents tend to have the same topics and use the same
writing style.

We use alphabetical assignment of docIDs in all our exper-
iments, but our techniques work with any of the approaches.
Our focus is not on finding a better assignment of docIDs, but
on exploiting an existing assignment using optimized com-
pression and query processing techniques. In contrast, previ-

ous work considered only a few standard techniques for docID
compression, and did not consider frequency compression or
query processing.

Another related problem is the compression of inverted in-
dexes for archival collections, i.e., collections that contain
different versions of documents over a period of time, with
often only minor changes between versions. This problem has
recently received some attention in the research community
[11, 15, 29, 5], and the basic idea is also to exploit similarity
between documents (or their versions). The techniques used
are different, and more geared towards getting very large ben-
efits for collections with multiple very similar versions, as op-
posed to the reordering approach here which tries to exploit
more moderate levels of similarity. In future work, it would
be very interesting to compare these different approaches on
documents with different degrees of similarity. For example,
the alphabetical ordering used here could be easily extended
to versioned collections (by sorting first by URL and then
by version number), and could in fact be seen as providing
an alternative efficient implementation of the approach in [5]
that is based on merging consecutive postings in a list.

2.3 Feasbility of Document Reordering

IR systems may assign docIDs to documents in a number
of ways, e.g., at random, in the order they are crawled or in-
dexed, or sometimes based on global measures of page quality
(such as Pagerank [9]) that can enable faster query process-
ing through early termination. The document reordering ap-
proach in this paper and the previous work in [7, 23, 25, 6,
24] assumes that we can modify this assignment of docIDs to
optimize compression. While this is a reasonable assumption
for some systems, there are other cases where this is difficult
or infeasible. We now discuss two cases, distributed index
structures, and tiering and early termination techniques.

Large-scale search engines typically partition their docu-
ment collection over hundreds of nodes and then build a sep-
arate index on each node. If the assignment of documents
to nodes is done at random, then a local reordering of doc-
uments within a node might not give much benefit. On the
other hand, if pages are assigned to nodes based on a host-
level assignment or alphabetical range-partitioning, then we
would expect significant benefits. However, this might re-
quire changes in the architecture and could impact issues
such as load balancing.

Document ordering is also complicated by the presence of
tiering and other early termination mechanisms, which are
widely used in current engines. In a nutshell, these are tech-
niques that avoid a full traversal of the inverted lists for most
queries through careful index layout, which often involves
some reordering of the documents. In some approaches, such
as a document-based tiering approach [21], or a partitioning
of inverted lists into a small number of chunks [19, 16], re-
ordering for better compression can be applied within each
tier or chunk. Other approaches may assign docIDs based on
Pagerank [9] or other global document scores mined from the
collection [20], or use a different ordering for each list [13]; in
these cases our approach may not apply.

2.4 Query Processing in Search Engines

Query processing in state-of-the-art systems involves a num-
ber of phases such as query parsing, query rewriting, and
the computation of complex, often machine-learned, ranking
functions that may use hundred of features. However, at the
lower layer, all such systems rely on extremely fast access to
an inverted index to achieve the required query throughput.
In particular, for each query the engine typically needs to

traverse the inverted lists corresponding to the query terms
in order to identify a limited set of promising documents that
can then be more fully scored in a subsequent phase. The
challenge in this initial filtering phase is that for large col-
lections, the inverted lists for many commonly queried terms
can get very long. For example, for the TREC GOV2 collec-
tion of 25.2 million web pages used in this paper, on average
each query involves lists with several million postings.

Current systems typically use a style of query processing
called document-at-a-time (DAAT) query processing, where
all inverted lists associated with a query are opened for read-
ing and then traversed in an interleaved fashion. This ap-
proach has several advantages: (a) it performs extremely well
on the AND and WAND [10] style queries common in search
engines, (b) it enables a very simple and efficient interface be-
tween query processing and the lower-level index decompres-
sion mechanism, and (¢) it allows for additional performance
gains through forward skips in the inverted lists, assuming
that the postings in each list are organized into blocks of
some small size that can be independently decompressed.

In our experiments, we use an optimized DAAT query pro-
cessor developed in our group, and we organize each inverted
list into blocks with a fixed number of postings. We choose
128 postings as our default block size (shown to perform well,
e.g., in [28]), and keep for each inverted list two separate
arrays containing the last doclD and size of each block in
words in (almost) uncompressed form. This allows skipping
of blocks during query processing by searching in the array
of last docIDs. All decompression is performed in terms of
blocks; to add another compression method to our query pro-
cessor it suffices to supply a method for uncompressing the
docIDs of a block, and one to uncompress the frequencies. (A
block consists of all 128 doclDs followed by all 128 frequency
values.) This design is highly useful in Section 7, where we
use several compression techniques within the same index.

One interesting result of our experiments is that reorder-
ing of documents, in addition to improving compression, also
speeds up index traversal in a DAAT query processor. In par-
ticular, our query processor (with no changes in the software,
and independent of compression method) performs more and
larger forward skips during index access in the reordered case,
and as a result decompresses less than half as many blocks
per query as in the unordered case. Note that this is related
to, but different from, recent work in [8, 12] that shows how
to choose an optimal set of forward pointers (basically, how
to choose variable block boundaries) for each list based on an
analysis of the query load. Thus, we reorder documents while
keeping block sizes constant, while [8, 12] modify block sizes
while keeping the ordering constant; it would be interesting
to see how the approaches work in combination, and whether
the reordering could be improved by considering query loads.

25 TheTREC GOV2 Data Set

For our experiments, we use the TREC GOV2 data set
of 25.2 million web pages from the gov domain that is dis-
tributed by the US National Institute of Standards and Tech-
nology (NIST) and used in the annual TREC competitions.
This data is widely used for research in the IR community,
thus allowing others to replicate our results. It is based on a
2004 crawl of the gov domain, and is also accompanied by a
set of 100000 queries (the 2006 Efficiency Task Topics) that
we use in our evaluation.

While the data set does not represent a complete snapshot
of the gov domain at the time of the crawl, it nonetheless
contains a fairly significant subset of it. This is important
since our techniques perform best on “dense” data sets such

as GOV2 that are based on a fairly deep crawl of a subset
of domains. In contrast, a “sparse” set of 25.2 million pages
crawled at random from the many billions of pages on the
web would not benefit as much.

3. CONTRIBUTIONSOF THISPAPER

In this paper, we study the problem of optimizing com-
pression and query processing performance given a suitable
assignment of docIDs. Previous work in [7, 23, 26, 6, 24]
focused on finding a good docID assignment, and then eval-
uated the assignment by compressing docIDs using standard
techniques. In contrast, we focus on how to best exploit a
given assignment by optimizing compression and query pro-
cessing techniques for this case. Our compression codes are
available at http://cis.poly.edu/westlab/. Our main con-
tributions are as follows:

(1) We propose new versions of the PForDelta (PFD) ap-
proach and compare them with state-of-the-art tech-
niques in the literature as well as new variants that are
tuned for both speed and compression ratio. Our ex-
perimental results show that our versions of PFD can
achieve significant improvements in size and speed.

(2) We look at the problem of optimizing the compression
of frequency values under such assignments. Previous
work only considered doclDs, but we show that frequen-
cies can also be compressed significantly better through
suitable doclD assignment. Our main contribution here
is the application of transformations inspired by move-
to-front coding to improve the compressibility of fre-
quency values.

(3) We study the impact of docID reordering on overall
index size and query throughput on the TREC GOV2
data set of 25.2 million web pages. We observe a reduc-
tion in minimum index size by about 50% over the case
of a random docID ordering, resulting in a minimal
size of about 3.45 GB for a full-text index of the en-
tire collection. We also show that the docID reordering
leads to significant improvements in query throughput
on conjunctive queries for document-at-a-time (DAAT)
query processors by reducing the number of random
seeks in the index, in addition to any benefits obtained
via the reduction in index size.

(4) The various compression techniques studied by us show
a trade-off between speed and compression ratio. Thus,
the techniques that achieve the smallest size are much
slower than the fastest ones, which in turn result in a
larger index size. This motivates us to study hybrid
index organizations that apply different compression
schemes to different lists. We set up a formal opti-
mization problem and show that by selecting a suitable
compression scheme for each list based on an analysis
of a query log, we can simultaneously achieve almost
optimal size and speed.

4. DOCID COMPRESSION

In this section, we perform a detailed study of compression
techniques for docIDs. In particular, we first study distribu-
tions of docIDs on TREC GOV2 data set, and then discuss
state-of-the-art compression methods and propose our new
algorithms, and finally we evaluate all these methods through
some preliminary experiments.

4.1 Distributionsof Docl Ds

The performance of a compression method depends on the
data distribution it is applied to. For inverted index compres-

sion, compression is best when there are many small numbers.
The optimized assignment of doclDs is intended to increase
the number of small numbers and thus improve compression
performance. In Figure 1, we show a histograms of d-gaps
for the TREC GOV2 data set under three different order-
ings of documents: original, which we get from the official
TREC GOV2 data set; sorted, where docIDs are re-assigned
by us after we sort their URLSs, as in [24]; and random, where
doclDs are assigned at random.

From Figure 1 we can see that the sorted ordering results
in more small gaps than the other two kinds of indexes, sug-
gesting a higher compression ratio. In addition, the d-gaps
for the original ordering have a similar histogram as those
for the random ordering, suggesting that the compression
methods will very likely have a similar performance. Fur-
thermore, we analyze individual inverted lists and find that
such a reordering results in more clusters (not shown in the
Figure 1), i.e., sequences of consecutive small d-gaps.

0.8
@ 07
% -e-sorted
o 06 -
k) =0~ original
§ 05 —-random
2 04t
)
$ 03
8
§ 02|
e
& o1

0

0 5 10 15 20 25
Log2(gap)

Figure 1: Histograms of d-gaps for inverted lists corre-
sponding to 1000 random queries on the TREV GOV2
data set, under three different orderings: original, sorted
and random. The x-axis is the number of bits required to
represent d-gaps in binary, and the y-axis is the percent-
age of such d-gaps. (Thus, the first point is for 1-gaps,
the second for 2-gaps, the third for 3-gaps plus 4-gaps,
and so on.)

4.2 Optimizing PFor Delta compression

We now describe two modifications to PFD that achieve
significant improvements over the versions in [31, 14, 28].
Recall that the implementations of PFD in previous work
encode a block of 128 value by first allocating 128 b-bit slots,
and then for those 90% of the values less than 2 directly
storing them in their corresponding slots. For each value
larger than 2°, called a ezception, we store an offset value
in the exception’s corresponding slot indicating the distance
from the current exception to the next one, and the actual
value of the exception in some additional space after the 128
b-bit slots. One disadvantage of such a code structure is that
when two consecutive exceptions have a distance of more
than 2°, we have to use more than one offset to represent the
distance, by forcing additional exceptions in between these
two exceptions. We cannot solve this problem by simply
increasing b since this would waste lots of bits on 90% of
values; but if we decrease b more exceptions will be produced.
This means in particular that this version of PFD cannot
profitably use any values of b less than b = 3, but this case
is very important in the reordered case.

To overcome this problem, we present a new code struc-
ture for PFD by storing the offset values and parts of the
exceptions in two separate arrays (while we still maintain
128 b-bit slots). In particular, for an exception, we store its
lower b bits, instead of the offset to the next exception, in its
corresponding slot, while we store the higher overflow bits
and the offset in two separate arrays. These two arrays can

be further compressed by any compression method, and we
find that S16 is particularly suitable for this. We call this
approach NewPFD.

Our second improvement is in the selection of the b value
for each block. As it turns out, selecting a constant threshold
for the number of exceptions does not give the best tradeoff
between size and speed. Instead, we model the selection of
the b for each block as an optimization problem similar to
that in Section 7. Thus, we initially assign the b with the
smallest compressed size to each block, and then increase
speed as desired by selecting a block that gives us the most
time savings per increase in size, and change the b of that
block. We call this OptPFD. We note here that for a given
target speed, we can easily derive simple global rules about
the choice of b, instead of running the iterative optimization
above. Thus this version can be very efficiently implemented
even on very large collections.

4.3 Optimizing other methods

We now present a few minor optimizations of some other
methods that we used in our experimental evaluation.

GammaDiff: This is a variation of Gamma coding that,
for a given integer z, encodes the unary part of the Gamma
code (that is, 1+ [logz]) as the difference between 1+ |logz |
and the number of bits required to represent the average of
all gaps in the list. The motivation for GammaDiff is that
when doclDs are clustered, the differences between d-gaps
and their expected average gap may be much smaller than
the gaps themselves.

S16-128: As S9 and S16 only have 9 or 16 possible cases
for encoding numbers, sometimes they have to choose a waste-
ful case when a better one might exist. Now suppose we have
a sequence of numbers consisting mainly of small values. In
this case, a version of S16 called S16-128 can do slightly bet-
ter by providing more cases for small numbers and fewer for
larger numbers.

Optimized IPC: Recall that the key step of interpolative
coding (IPC) is to encode a number z in the range < lo, hi >,
where lo and hi are respectively the lowest and highest possi-
ble values of z. The original IPC encodes the offset 0 = x —lo
using a b-bit number, where b = [r] and r = hi — lo+ 1 is
the number of possible values of the offset. This wastes bits
if 7 is not a power of 2. We can do better by using a trick
from Golomb coding to encode o as follows: If 0 < 2° — r,
use b — 1 bits to represent o, otherwise use b bits to represent
0+ 2" —r. (This technique was already described for IPC
in [27].) In addition, before we apply the above optimiza-
tion, we transform the range of values in such a way that the
shorter codes are applied to values in the middle of the range,
since such values are more likely even in a highly clustered
list. Also, while TPC is usually considered as a list-oriented
method, meaning it starts by encoding the median of the en-
tire list, we apply it to blocks of a certain size. As it turns
out, this also improves compression if we choose a good block
size. In particular, block sizes of the form 2° — 1 appear to
work best, and thus we choose blocks of 127 values for our
implementation.

4.4 Preliminary Experiments

Before presenting our results, we describe our experimental
setup, which we also use in later sections. For the data set,
we used the TREC GOV2 data set. We then selected 1000
random queries from the supplied query logs; these queries
contain 2171 unique terms. All experiments were performed
on a single core of a 2.66GHz Intel(R) Core(TM)2 Duo CPU
with 8GB of memory.

[[sorted [original [random |

list-IPC w/o opt 0.95 2.70 2.83
list-IPC 0.88 2.46 2.57
block-TPC 0.85 2.40 2.51

Table 1: Compressed size in MB/query for docIDs us-
ing a basic list-wise IPC (without optimizations), a list-
wise version with all other optimizations enabled, and its
block-wise version, under the original, sorted, and ran-
dom orderings.

In Table 1, we compare the original IPC, which is list-wise,
with its improved version with our various optimizations and
its block-wise version with our optimizations, on the GOV2
data set under the original, sorted, and random orderings.
From Table 1, we can observe the following: First, all TPC
algorithms work significantly better on the d-gaps under the
sorted ordering than under the other two orderings; second,
both list-wise and block-wise IPC with our optimizations are
much better the original IPC, but block-wise TPC with our
optimizations achieves the best compression.

INd
»

{

N
T

Compressed Size (MB/query)
©

1.6 [—PFD
- == NewPFD /
14 || ——optPFD e
1.2 : :
900 000 1100 1400

1 ; 1200 1300
Decompression Speed (million ints/sec)
Figure 2: Compressed size in MB/query versus decom-
pression speed in million integers per second for doclIDs,
using PFD, NewPFD, and OptPFD under the sorted or-
dering. The points from left to right for PFD and New-
PFD correspond to the following percentages of excep-
tions: 5%, 8%, 10%, 20%, and 30%. For OptPFD, the points
correspond to different target speeds for the optimization
and their corresponding sizes.

Compared to IPC, the main advantage of PFD is that
decoding is very fast. In Figure 2, we show the trade-offs
between decompression speed and compressed size for PFD,
NewPFD, and OptPFD as introduced above. From Figure 2,
we see that OptPFD can always achieve a much smaller
compressed size for a given decoding speed than the other
method. Thus, choosing b not based on a global threshold
on exceptions, but based on a global target speed, achieves a
much better trade-off than the naive global threshold used in
PFD and NewPFD. While OptPFD is still worse than IPC in
terms of compressed size, decompression is much faster than
for any version of TPC (as we will show later). We also ran
experiments under the original document ordering, and ob-
served slightly smaller but still significant gains for OptPFD
over PFD and NewPFD, while PFD and newPFD were over-
all similar in performance.

In Figure 3, we compare the average compressed size per
query of the doclDs for most of the state-of-the-art inverted
index compression methods on the TREC GOV2 data set
under the original, sorted, and random orderings. For each
data set, we show results of twelve compression methods:

(3]

/\ -e-sorted

-o-original ——

—-random

N
T

L\

Compressed Size (MB/query)
w £y

0
€ 2L PSS
N & @& ® &
&

Figure 3: Compressed size in MB/query for docIDs us-
ing twelve methods, under the original, sorted, and ran-
dom orderings.

var-byte, S9, S16, S16-128, OptPFD, Delta coding, Gamma
coding, GammaDiff, Rice coding, a variant of Rice coding
called RiceVT described in [27, 18] which essentially pro-
motes the implicit probabilities of small gaps, the block-wise
interpolative coding with our above optimizations, and en-
tropy, which uses the global frequency distribution of the
compressed integers. For OptPFD, we chose a setting that
minimizes the compressed size.

From Figure 3, we make the following observations: First,
just as Figure 1 suggested, many compression methods can
achieve a much better compression ratio on the d-gaps under
the sorted ordering than under the other two orderings; sec-
ond, all compression methods on d-gaps under the original
ordering achieve similar performances with those under the
random orderings; third, [IPC achieves the best compression
performance among all methods; fourth, OptPFD is quite
competitive with all other methods (even with IPC, although
it is slightly worse than TPC in terms of size). One disadvan-
tage of IPC is that its decompression is slow. In contrast, all
other methods to the left of the entropy method are fairly
fast, and much faster than those further to the right.

5. FREQUENCY COMPRESSION

Frequency values tend to be quite small, and unlike docIDs,
they are not in sorted order. In this section, we first discuss
the effect of docID reordering on frequencies, and then pro-
pose more effective compression algorithms. In particular, we
show that reordered frequencies can be transformed in such
a way that their entropy is lowered significantly, leading to
better compression.

5.1 Effect of Reordering on Frequencies

Frequency values by themselves are not changed at all by
reordering, and thus reassigning doclD by sorting URLs does
not affect the distribution of frequencies. However, such an
ordering results in more local clusters of similar values. This
can be shown by comparing the compressed size of context-
sensitive and context-free methods. The former methods,
which include IPC, S9, S16, and OptPFD, exploit the neigh-
bor information to encode a number, while the latter meth-
ods, such as gamma or delta coding, encode each number
independently, resulting in no change in compression after
reordering.

In Figure 4, we display the compressed size of the fre-
quency data under state-of-the-art compression methods on
the TREC GOV2 data set, using original, sorted, and ran-
dom orderings. From Figure 4, we see exactly what we
would expect: The context-sensitive methods (all methods
to the left of entropy) get better compression results under
the sorted ordering than under the other orderings, while

5

E -e-sorted

24 /\ -o-original

3 —=random

g

330

N

(2]

327

]

@

e

sl r

£

]

So e
<] © > e I & d X
N &L & é’&.o@ & &

S P S & & g
S

Figure 4: Compressed size in MB/query for frequencies
using twelve methods, under the original, sorted, and ran-
dom orderings.

the other methods get the same results under all three order-
ings. We also notice that for the context-sensitive methods,
compression under the original ordering has very similar per-
formance with that under the random ordering. As before,
IPC achieves the best compression performance.

However, none of the existing methods takes advantage of
the local clusters created by the sorted ordering to further
reduce compressed size. In the following, we show that un-
der such an ordering, the context information of frequencies
can be further exploited to reduce frequency values and thus
significantly improve compression.

5.2 New Algorithms

The basic idea is that we exploit the context information
of frequencies to transform them into even smaller values,
using one of the following two techniques: a version of Move-
To-Front coding (MTF) [4], and a method we call Mostly-
Likely-Next (MLN). More precisely, we propose to perform
a transformation on the frequency values before compressing
them with other compressors.

Move-To-Front (MTF): The MTF [4] transform is used
as an important part of Burrows-Wheeler transform-based
compression [27]. Its basic idea is that, as long as a number
has been seen lately, it will be represented by an index that
is likely to be smaller than its own value, in a separate in-
dex array whose first element is always the number we just
saw. For example, given a list of numbers [5, 5, 5, 3,2, 2], and
assuming that all numbers are in the range [1,5], we keep a
separate index array which is initialized as < 1,2,3,4,5 >.
We first encode the first number 5 as its index in the index
array, which is the same as own value 5, and then move 5
to the front of the index array such that next time when we
meet 5 again we will encode it as the index in the index array,
which is 1, instead of the real value 5. From then on, when-
ever we meet a value, we encode it as its index in the index
array and move it to the front of the index array. Therefore,
the original list could be encoded as < 5,1,1,4,4,1 >. From
the example we can see that MTF works well especially when
there is a cluster of numbers of the same value.

We experimented with several MTF-based mechanisms for
preprocessing frequency values. While the basic MTF version
achieved some benefits, we found that other variants that do
not directly teleport the last used element to the first slot
in the array actually performed better. In the end, meth-
ods that move the last used value from its current position
i to a position such as i/2 or 2i/3 achieved overall best per-
formance in our experiments. We also note that MTF may
slow down the speed of decompression, especially when the
range of values is large, since we have to do exactly the same
move-to-front operations for all numbers to be decoded.

Most-Likely-Next (MLN): An alternative called MLN

is also used to transform numbers to smaller values, but can
overcome some problems of MTF. In a nutshell, MLN uses
a table that stores for each value (within some limited range
[0...Q—1]) which values are most likely to follow. Thus, for
Q = 16, MLN would rely on a 16 x 16 array, precomputed for
each list, that lists in position (7, j) the (5 + 1)th most likely
value to follow a value of i. Conversely, when applying MLN,
we replace each value with its rank in the array indexed by
the value of its predecessor. (For values > @, no tranforma-
tion is applied.) Thus, MLN needs to store an array for each
list. However, in our experiments, MLN outperformed the
best version of MTF in terms of both size and decompres-
sion speed. Both MTF and MLN result in significant runs
of 1 values in the transformed set of frequencies, since many
frequency values under the ordered list are followed by more
occurrences of the same value.

5.3 Experimental Results

We start by comparing the performance of our PForDelta
variants, PFD, NewPFD, and OptPFD, on frequency val-
ues under sorted document ordering. The results are shown
in Figure 5, where we see that again OptPFD significantly
outperforms the other two versions in terms of the trade-off

between decoding speed and size.
23

17 | —PpFD //

- =- NewPFD
—e—OptPFD

15
700 800 900 1000 1100 1200 1300 1400

Figure 5: Compressed size in MB/query versus decom-
pression speed in million integers per second for frequen-
cies, using PFD, NewPFD and OptPFD, under sorted

ordering.

In Table 2, we compare the average compressed sizes of the
frequency data per query on the TREC GOV2 data set, under
the original, sorted, and random orderings. We use three dif-
ferent versions each for list-oriented and block-oriented 1PC:
The best version from before, a version that uses MTF, and
one that uses MLN.

[[list [block |
[[sorted [orig [rand [sorted [orig | rand |
1PC 1.26 1.65 1.71 1.21 1.59 1.65

IPC-MTF 0.93 1.65 1.75 0.89 1.59 1.69
IPC-MLN 0.92 1.58 1.65 0.89 1.52 1.59

Table 2: Compressed size in MB/query for frequencies,
under the original, sorted, and random orderings, using
IPC, IPC with MTF, and IPC with MLN, for list- and
block-oriented methods.

From Table 2 we make the following observations: First,
as with doclDs, IPC performs much better under sorted or-
dering than under the original and random orderings, and
the block-wise versions always perform better than their list-
wise counterparts; second, for frequencies under the sorted
ordering, the versions with MTF and MLN are much better
than the one without them; third, IPC with MLN slightly
outperforms IPC with MTF.

| [basic | MTF | MLN |

block IPC 1.21 0.89 0.89
s9 1.65 1.53 1.52
s16 1.57 1.44 1.43

s16-128 1.50 1.38 1.37
NewPFD 1.88 1.73 1.72
OptPFD 1.63 1.43 1.31
entropy 1.45 1.13 1.14
var-byte 4.63 4.63 4.63
rice 1.88 1.70 1.69
gammaDiff | 2.16 1.80 1.79
riceVT 1.72 1.44 1.43
gamma 1.64 1.52 1.28

Table 3: Compressed size in MB/query for frequencies
under sorted document ordering.

Both MTF and MLN can also be applied to the other al-
gorithms to get better compression ratios. From Table 3, we
observe the following: First, the entropy is greatly reduced
by either MTF or MLN; second, all methods except var-byte
improve over their basic versions, no matter whether they
use MTF or MLN; third, MLN is usually better and never
much worse than MTF. We also tried MTF and MLN trans-
formations of d-gaps for doclDs, but there was no benefit.

6. QUERY PROCESSING PERFORMANCE

In previous sections, we studied the compression ratios of
various techniques on random queries, but did not consider
decompression speed, total index size, and query processing
performance. In this section, we study these issues in detail.

We start out with decompression speed. In the experi-
ments, we used the optimized decompression methods from
[28] for var-byte, Rice coding, S9, and S16, and S16-128, New-
PFD with fixed threshold 10% for exceptions, OptPFD with
minimum compressed size, and the best block-wise version of
IPC. (We did not try to implement optimized decompressors
for gammaDiff, riceVT, gamma, and delta coding, as these
methods are known to be relatively slow.) In Table 4 we
give for each method the decoding speed in millions of inte-
gers decoded per second for three cases: Decompression of
docIDs, and decompression of frequencies with and without
MLN transformation.

[[docID | freq [freq-MLN |

var-byte 637 729 273
s9 748 846 269
s16 691 898 267

s16-128 498 550 245

NewPFD 1055 1120 298

OptPFD 1102 1034 212
rice 489 404 199
IPC 55 51 52

Table 4: Decoding speeds in millions of integers decoded
per second, for docIDs, frequencies, and frequencies with
MLN transformation.

The results in Table 4 are overall not surprising. NewPFD
and OptPFD are the fastest techniques, though S9, S16, S16-
128, and var-byte are also quite efficient. In contrast, IPC is
much slower. Adding MLN slows down the faster methods
significantly, but does not impact slow methods such as IPC
much. We note that additional increases in speed can be
obtained for OptPFD by trading off size versus speed.

Next, we look at total index size. For this, we built block-
wise compressed indexes for three methods that we believe
provide the most interesting trade-offs between decompres-

sion speed and compressed size: IPC, NewPFD, and OptPFD.

We compare ordered and unordered indexes, and for ordered
indexes we provide numbers both with and without MLN.
The results are shown in Table 5. We see very significant
improvements in index size through document reordering.
The best compression is obtained with TPC, using MLN

for frequencies, which results in a total index size of around
3.45 GB. This compares to an index size of about 3.88 GB for
the smallest size under OptPFD, using sorted docID ordering
and MLN for frequencies. In fact, even without MLN (which
as shown earlier slows down OPTPFD significantly) we can
obtain an index size only slightly larger than 4 GB. In con-
trast, NewPFD results in much larger index sizes, of 5.5 GB
and more, showing the benefit of OptPFD over NewPFD.
We note that many other sizes between 4 GB and 5.5 GB
can be obtained by trading off size versus speed in OptPFD
(though even the smallest size results in fairly fast decoding).
However, note that even NewPFD is much better than the
best unordered results, and that all the ordered indexes can
be completely held in main memory given realistic memory
sizes of 4 to 6 GB.
[[sorted [original |
[[TPC [New [Opt [TPC [New | Opt
docID | 2617 | 3746 | 2853 | 5365 | 6122 | 5903
freq 1142 | 2027 | 1255 | 1363 | 2307 | 1653
total | 3759 | 5773 | 4108 | 6728 | 8429 | 7556
fA*MLN | 834 | 1844 | 1023 - - -
total | 3451 | 5590 | 3876 - - -
Table 5: Compressed index size in MB for the en-
tire TREC GOV2 data set, for IPC, NewPFD with 10%
threshold on exceptions, and OptPFD optimized for min-

imal index size. For the sorted case, we provide numbers
for frequencies and total index sizes with and without
MLN.

Another interesting observation is that the ratio of fre-
quency data to docID data is much smaller than in our pre-
vious experiments. The reason is that when looking at total
index size, we include a large amount of data in shorter (but
not very short) lists, while our query-based measurements
are skewed towards longer lists. In shorter lists, d-gaps are
larger while frequency values tend to be smaller, compared to
longer lists. The benefits of OptPFD over NewPFD for com-
pressed size also tend to be larger on these lists, particularly
for frequencies.

Next, we look at query processing speed for intersection-
based queries using BM25 ranking. Table 6 shows query
performance for an index compressed with OptPFD (but no
MLN for frequencies) using ordered and unordered docID
assignments, under the assumption that all index data is in
main memory. Somewhat surprisingly, the ordered index is
about twice as fast as the unordered one! Note that this is
not due to savings in disk accesses, as all the data is in main
memory, and also not due to changes in decompression speed,
as the ordering has only a moderate impact on the speed of
OptPFD. Instead, as shown in Table 6, this is mainly due to
the ordered index decoding much fewer blocks of data than
the unordered one.

[[sorted [original |

running time (ms/query) 6.15 12.08
num of docIDs decoded (million/query) 0.71 1.53
num of freqs decoded (million/query) 0.53 1.04

Table 6: Running time and number of decoded docIDs
and frequencies for OptPFD on the GOV2 data set.

In fact, this increase in speed can be explained in a sim-
ple and intuitive way. Consider the shortest list in a query.
Under DAAT query processing, almost all of the shortest list
will be decompressed, and most docIDs in this list will gen-
erate a lookup into the next longer list. If the docIDs in the
shortest list are clustered, then more of these lookups will
hit the same block of the next longer list, while other blocks
do not get hit at all and do not have to be decompressed.
(Informally, if we throw enough balls uniformly at random

into n bins we will hit almost all bins, but if our throws are
clustered in certain areas, then many more balls are needed
to hit most bins.) A formal analysis of this phenomenon is
complicated dependencies between terms and queries with
more than two terms, and we leave this for future work.

Finally, we also give query processing speeds for other com-
pression methods, in particular IPC and NewPFD, with and
without doclID reordering. Note that the number of decom-
pressed blocks per query does not change, as all methods use
the same blocks of 128 postings. As we see in Table 7, we
also get significant improvements in query processing speed
for the other methods by using ordered indexes. However,
the method achieving the best compression, IPC, is much
slower than the faster methods. NewPFD is even faster than
OptPFD, but as shown in Table 5, the index size is much
larger. Moreover, the same speed at lower index size could
be obtained by trading size for speed within OptPFD (not
shown here).

[[sorted [original]

1IPC 29.44 59.18
NewPFD 4.98 9.74
OptPFD 6.15 12.08

Table 7: Running times in ms per query for IPC (with
MLN), NewPFD, and OptPFD.

7. MIXED-COMPRESSION INDEXES

In previous sections, we have seen that using reordered in-
dex structures results in significant improvements in index
size and query processing speed. However, the best method
in terms of size, IPC, which outperforms all other methods
by a significant margin, is fairly slow and can decompress
only about 50 million integers per second. The fastest meth-
ods, PForDelta and its variants, i.e., PFD, NewPFD and
OptPFD, are around 20 times faster, but produce a larger
index (though the index size for PForDelta under reordered
doclDs is still better than for the best method without re-
ordering). Thus, there is a trade-off between size and speed
among the different methods.

This motivates the question of whether we can get a better
trade-off by combining different compression methods in the
same index. Our index setup can easily accomodate different
compressors within the same index (or even the same list), as
all compression is performed in a block-wise fashion. More-
over, from studies on inverted index caching, we know that
different parts of the index have very different access frequen-
cies; e.g., in [28] more than 90% of all index accesses can be
served from a cache of 30% of the index size. Thus, we could
exploit this highly skewed access pattern, by compressing fre-
quently accessed inverted lists using a very fast method, and
other lists using a slower method that gives better compres-
sion. Our goal is for the resulting index to have both size
and speed close to the best achieved by any method.

More formally, we are interested in the following problems:

Problem 1: Given a limit ¢ on the average time for pro-
cessing a query, and a set of available compression methods,
select for each inverted list a compression method such that
the overall index size is minimized, while satisfying the time
limit .

Problem 1°: Given a limit ¢ on the average time for pro-
cessing a query, a limit b on the amount of 1/O bandwidth (in
MB/s) that is available, a caching policy P that uses some
main memory to cache index data, and a set of available com-
pression methods, select for each inverted list a compression
method such that the total amount of main memory that has
to be available for caching is minimized, while satisfying the
limits on ¢ and b.

In the first problem, we are looking at a main-memory res-
ident index, and our goal is to minimize the amount of mem-
ory we need to provide, given a (feasible) time constraint.
Our hope is that by relaxing the time constraint very slightly
versus the minimum, we can very substantially decrease the
memory requirement. The second problem looks at an index
that is partially cached in memory (a very common setup in
practice), and the goal is to minimize the amount of memory
that needs to be provided for caching to assure that the avail-
able I/O-bandwidth does not become the main bottleneck of
the system. Note that the first problem is the special case of
the second where b = 0, i.e., no disk access is allowed. Also,
there are obviously many other ways to set up these opti-
mization problems, including duals of the above, or setups
that model the search architecture in more detail.

Due to space constraints, we focus on Problem 1. The
problem is obviously NP-Complete due to its relationship to
Bin Packing, but we would expect a very good approximation
via simple greedy approaches in this case. In particular, we
take the following approach:

(a) Select a sufficiently large query trace. For each avail-
able compression method, build an index and issue the
queries against this index.

(b) For each inverted list [,, for a term w, and each com-
pression method ¢, measure the following: (i) s.(w),
the compressed size of list I, under method ¢, and (ii)
te(w), the total amount of time spent decompressing
the list using method c over the given query log.

(c) Initially, assign to each inverted list the compression
method that gives the smallest size.

(d) Now repeatedly greedily select a list I, and change its
compression method to a faster but less space-efficient
method, until the time constraint is satisfied. In par-
ticular, in each step, choose the list /,, that minimizes
(ser(w) — s_c(w))/(te(w) —t) over all w and all meth-
ods ¢’ # ¢ where c is the compression method currently
used for [,,. In other words, choose the list and com-
pression method that gives you the smallest increase in
index size per time saved.!

We note that query processing time in our setup consists of
the time for decompression and the times for other tasks such
as intersection and score computation, and that the latter
are independent of the compression methods used (since all
methods use the same block size for decompression). Thus,
we can easily check if the time constraint is satisfied in (d)
without reexecuting the query trace. Also, for best results it
is useful to treat the frequencies and doclDs of a list sepa-
rately, as most queries decompress fewer frequency data than
doclD data.

We implemented the above method, and ran it on 99000
of the 100000 queries on the TREC GOV2 data set, leaving
the other 1000 for testing the performance of the resulting
configuration. In Figure 6, we show results for a hybrid in-
dex combining TPC and OptPFD. As shown, while IPC re-
quires about 29 ms per query, we can get less than 12 ms
with almost the same size by using a hybrid index. We also
note the version of OptPFD that we used only minimizes
compressed size, and that a better overall tradeoff than the
one in the figure could be achieved by selecting different set-
tings for OptPFD. (In fact, this hybrid index optimization

'We assume here that both enumerator and denominator are
strictly positive.

problem motivated the optimization problem underlying the
size/speed tradeoff for OptPFD in Figure 2.)
35

30

Query Speed (ms)
- - n nN
o o o o

o
T

3400 3500 3600 3700 3800 3900 4000 4100
Compressed Size (MB)

4200

Figure 6: Total index size in MB versus processing speed
per query in milliseconds, for a hybrid index involving
OptPFD and IPC. The leftmost point is for pure IPC
and the rightmost for pure OptPFD.

8. CONCLUSIONS

In this paper, we have studied compression and query pro-
cessing in inverted indexes with optimized document order-
ing. Previous work has focused on finding document order-
ings that minimize index size under standard compression
schemes. In contrast, we focus on how to tune compression
schemes and maximize query througput given a good order-
ing. Our experimental results show significant benefits in
compressed index size and query throughput.

Our work motivates several interested open questions. First,
we showed that query processing benefits from more efficient
skipping in reordered indexes. This was a natural side prod-
uct of reordering, but additional improvements might be pos-
sible by combining reordering with the ideas in [8, 12] for
selecting block boundaries in compressed indexes.

Second, as mentioned in Subsection 2.2, there is an inter-
esting relationship between compression of reordered indexes
and efficient indexing of archival collections. We are cur-
rently investigating how to apply the ideas in this paper to
archival collections. We are also looking at performance op-
timizations that allow faster decompression of interpolated
codes, and at how to find document orderings that are bet-
ter than the alphabetical ordering studied in [24] and used
by us in this paper.

Acknowledgements: This research was partially sup-
ported by NSF Grant 11S-0803605, and by a grant from
Google.

9. REFERENCES

[1] V. Anh and A. Moffat. Index compression using fixed binary
codewords. In Proc. of the 15th Int. Australasian Database
Conference, pages 61 67, 2004.

[2] V. Anh and A. Moffat. Inverted index compression using
word-aligned binary codes. Information Retrieval, 8(1):151-166,
Jan. 2005.

[3] V. Anh and A. Moffat. Improved word-aligned binary
compression for text indexing. IEEE Transactions on
Knowledge and Data Engineering, 18(6):857-861, 2006.

[4] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive
data compression scheme. Communications of the ACM, 29(4),
Oct. 1986.

[5] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum. A
time machine for text search. In Proc. of the 30th Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 519-526, 2007.

[6] R. Blanco and A. Barreiro. Document identifier reassignment
through dimensionality reduction. In Proc. of the 27th
European Conf. on Information Retrieval, pages 375 387, 2005.

(7]

(17]

(18]

[19]

[26]

[27]

(28]

D. Blandford and G. Blelloch. Index compression through
document reordering. In Proc. of the Data Compression
Conference, pages 342—-351, 2002.

P. Boldi and S. Vigna. Compressed perfect embedded skip lists
for quick inverted-index lookups. In Proc. of the 12th Int. Conf.
on String Processing and Information Retrieval, 2005.

S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proc. of the Seventh World Wide Web
Conference, 1998.

A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien.
Efficient query evaluation using a two-level retrieval process. In
Proc. of the 12th Int. Conf. on Information and Knowledge
Management, pages 426 434, November 2003.

A. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel,
J. McPherson, R. Qi, and E. Shekita. Indexing shared content in
information retrieval systems. In Proc. of the 10th Int. Conf.
on FEztending Database Technology, pages 313 330, 2006.

F. Chierichetti, S. Lattanzi, F. Mari, and A. Panconesi. On
placing skips optimally in expectation. In Proc. of the Int.
Conf. on Web Search and Data Mining, pages 15-24, 2008.

R. Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31(2):109 118, June 2002.

S. Heman. Super-scalar database compression between RAM
and CPU-cache. MS Thesis, Centrum voor Wiskunde en
Informatica, Amsterdam, Netherlands, July 2005.

M. Herscovici, R. Lempel, and S. Yogev. Efficient indexing of
versioned document sequences. In Proc. of the 29th European
Conf. on Information Retrieval, 2007.

X. Long and T. Suel. Optimized query execution in large search
engines with global page ordering. In Proc. of the 29th Int.
Conf. on Very Large Data Bases, pages 129-140, 2003.

A. Moffat and L. Stuiver. Binary interpolative coding for
effective index compression. Information Retrieval, 3(1):25 47,
2000.

A. Moffat and J. Zobel. Parameterised compression for sparse
bitmaps. In Proc. of the 15th Annual Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval, pages
274-285, 1992.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document
retrieval with frequency-sorted indexes. J. of the American
Society for Information Science, 47(10):749 764, 1996.

M. Richardson, A. Prakash, and E. Brill. Beyond pagerank:
machine learning for static ranking. In Proc. of the 15th Int.
World Wide Web Conference, 2006.

K. Risvik, Y. Aasheim, and M. Lidal. Multi-tier architecture for
web search engines. In First Latin American Web Congress,
pages 132-143, 2003.

F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression
of inverted indexes for fast query evaluation. In Proc. of the
25th Annual SIGIR Conf. on Research and Development in
Information Retrieval, pages 222-229, Aug. 2002.

W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted file
compression through document identifier reassignment. Inf.
Processing and Management, 39(1):117-131, 2003.

F. Silvestri. Sorting out the document identifier assignment
problem. In Proc. of 29th Furopean Conf. on Information
Retrieval, pages 101 112, 2007.

F. Silvestri, S. Orlando, and R. Perego. Assigning identifiers to
documents to enhance the clustering property of fulltext
indexes. In Proc. of the 27th Annual Int. ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 305-312, 2004.

F. Silvestri, R. Perego, and S. Orlando. Assigning document
identifiers to enhance compressibility of web search engine
indexes. In Proc. of the 19th ACM Symp. on Applied
Computing, pages 600-605, 2004.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann, second edition, 1999.

J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In Proc. of the 17th Int.
World Wide Web Conference, April 2008.

J. Zhang and T. Suel. Efficient search in large textual collection
with redundancy. In Proc. of the 16th Int. World Wide Web
Conference, 2007.

J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2), 2006.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proc. of the Int. Conf. on
Data Engineering, 2006.

