
Inverted Index Compression and Query Processing
with Optimized Document Ordering

Hao Yan
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY, 11201

hyan@cis.poly.edu

Shuai Ding
CSE Department

Polytechnic Institute of NYU
Brooklyn, NY, 11201

sding@cis.poly.edu

Torsten Suel
�

Yahoo! Research
701 1st Ave

Sunnyvale, CA 94089
suel@poly.edu

ABSTRACTWeb sear
h engines use highly optimized 
ompression s
hemesto de
rease inverted index size and improve query through-put, and many index 
ompression te
hniques have been stud-ied in the literature. One approa
h taken by several re
entstudies [7, 23, 25, 6, 24℄ �rst performs a renumbering of thedo
ument IDs in the 
olle
tion that groups similar do
umentstogether, and then applies standard 
ompression te
hniques.It is known that this 
an signi�
antly improve index 
om-pression 
ompared to a random do
ument ordering.We study index 
ompression and query pro
essing te
h-niques for su
h reordered indexes. Previous work has fo
usedon determining the best possible ordering of do
uments. In
ontrast, we assume that su
h an ordering is already given,and fo
us on how to optimize 
ompression methods and querypro
essing for this 
ase. We perform an extensive study of
ompression te
hniques for do
ument IDs and present newoptimizations of existing te
hniques whi
h 
an a
hieve signif-i
ant improvement in both 
ompression and de
ompressionperforman
es. We also propose and evaluate te
hniques for
ompressing frequen
y values for this 
ase. Finally, we studythe e�e
t of this approa
h on query pro
essing performan
e.Our experiments show very signi�
ant improvements in in-dex size and query pro
essing speed on the TREC GOV2
olle
tion of 25:2 million web pages.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGE ANDRETRIEVAL℄:Information Sear
h and Retrieval.
General TermsAlgorithms, Performan
e
KeywordsInverted index, sear
h engines, index 
ompression, IR querypro
essing, do
ument ordering
1. INTRODUCTIONLarge web sear
h engines need to pro
ess thousands ofqueries per se
ond over tens of billions of pages. Moreover,the results for ea
h query should be returned within at mosta few hundred millise
onds. A signi�
ant amount of resear
hand engineering has gone into addressing these tremendousperforman
e 
hallenges, and various optimizations have beenproposed based on te
hniques su
h as 
a
hing, data 
om-pression, early termination, and massively parallel pro
ess-ing. We fo
us on one important 
lass of optimizations, index�Current AÆliation: CSE Dept., Polyte
hni
 Inst. of NYU.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.


ompression. Inverted index 
ompression is used in all majorengines, and many te
hniques have been proposed [27, 30℄.Informally, an inverted index for a 
olle
tion of do
umentsis a stru
ture that stores, for ea
h term (word) o

urringsomewhere in the 
olle
tion, information about the lo
ationswhere it o

urs. In parti
ular, for ea
h term t, the index
ontains an inverted list It 
onsisting of a number of indexpostings. Ea
h posting in It 
ontains information about theo

urren
es of t in one parti
ular do
ument d, usually theID of the do
ument (the do
ID), the number of o

urren
esof t in d (the frequen
y), and possibly other informationabout the lo
ations of the o

urren
es within the do
umentand their 
ontexts. The postings in ea
h list are usuallysorted by do
ID. For example, an inverted list It of the formf56; 1; 34gf198; 2; 14; 23g might indi
ate that term t o

urson
e in do
ument 56, at word position 34 from the beginningof the do
ument, and twi
e in do
ument 198 at positions 14and 23. We assume postings have do
IDs and frequen
iesbut do not 
onsider other data su
h as positions or 
ontexts.Many te
hniques for inverted index 
ompression have beenstudied in the literature; see [27, 30℄ for a survey and [1, 2,3, 31, 28, 14℄ for very re
ent work. Most te
hniques �rst re-pla
e ea
h do
ID (ex
ept the �rst in a list) by the di�eren
ebetween it and the pre
eding do
ID, 
alled d-gap, and thenen
ode the d-gap using some integer 
ompression algorithm.Using d-gaps instead of do
IDs de
reases the average valuethat needs to be 
ompressed, resulting in a higher 
ompres-sion ratio. Of 
ourse, these values have to be summed upagain during de
ompression, but this 
an usually be donevery eÆ
iently. Thus, inverted index 
ompression te
hniquesare 
on
erned with 
ompressing sequen
es of integers whoseaverage value is small. The resulting 
ompression ratio de-pends on the exa
t properties of these sequen
es, whi
h de-pend on the way in whi
h do
IDs are assigned to do
uments.This observation has motivated several authors [7, 23, 25,6, 24℄ to study how to assign do
IDs in a way that opti-mizes 
ompression. The basi
 idea here is that if we assigndo
IDs su
h that many similar do
uments (i.e., do
umentsthat share a lot of terms) are 
lose to ea
h other in the do
IDassignment, then the resulting sequen
e of d-gaps will be-
ome more skewed, with large 
lusters of many small valuesinterrupted by a few larger values, resulting in better 
om-pression. In 
ontrast, if do
IDs are assigned at random, thedistribution of gaps will be basi
ally exponential, and smallvalues will not be 
lustered together. In pra
ti
e, IR systemsmay assign do
IDs to do
uments in a number of ways, e.g., atrandom, in the order they are 
rawled or indexed, or basedon global measures of page quality (su
h as Pagerank [9℄).As we dis
uss later, in some 
ases it is diÆ
ult or impossibleto 
hange the way do
IDs are assigned, but there are manyother s
enarios where reordering of do
uments 
ould be usedto improve index 
ompression.In this paper, we follow the do
ument reordering approa
hstudied in [7, 23, 25, 6, 24℄. However, while previous work



has fo
used on �nding the best ordering of do
uments in a
olle
tion, we fo
us on the next step, how to optimize a
tualindex 
ompression and query pro
essing given some suitabledo
ument ordering obtained from previous work. In parti
u-lar, we extensively study and optimize state-of-the-art 
om-pression te
hniques for do
IDs, and propose new algorithmsfor 
ompressing frequen
ies, under su
h optimized orderings.Frequen
y values tend to be small 
ompared to do
ID gaps(on average when a word o

urs in a web page it o

ursonly 3 to 4 times), and thus di�erent te
hniques are neededto improve their 
ompression. We further study the impa
tof do
ID reordering on query throughput, and propose andstudy a new index optimization problem motivated by thetrade-o� between speed and 
ompression ratio of the variousmethods. Overall, our experimental results show very sig-ni�
ant improvements in both overall index size and querypro
essing speed in realisti
 settings. To our knowledge, noprevious work has looked at 
ompression of frequen
ies, orat overall query pro
essing performan
e, under the do
umentreordering approa
h.The remainder of this paper is organized as follows. Inthe next se
tion, we provide some te
hni
al ba
kground anddis
uss related work. Se
tion 3 des
ribes our 
ontributionsin more detail. In Se
tion 4 we study te
hniques for do
ID
ompression, while Se
tion 5 fo
uses on 
ompression of fre-quen
ies. Se
tion 6 evaluates query pro
essing performan
e,and Se
tion 7 studies hybrid s
hemes that apply di�erent
ompression te
hniques to di�erent lists based on query load.Finally, Se
tion 8 provides 
on
luding remarks.
2. BACKGROUND AND RELATED WORKIn this se
tion, we �rst outline several known index 
om-pression te
hniques that we use in our work. We then dis
ussprevious work on reordering for better inverted index 
om-pression, and dis
uss the appli
ability of this approa
h inreal systems. Subse
tion 2.4 des
ribes blo
k-wise 
ompres-sion and skipping in IR query pro
essors, and Subse
tion 2.5introdu
es the TREC GOV2 data set used by us.
2.1 Index Compression TechniquesRe
all that in inverted index 
ompression, our goal is to
ompress a sequen
e of integers, either a sequen
e of d-gapsobtained by taking the di�eren
e between ea
h do
ID andthe previous do
ID, or a sequen
e of frequen
y values. Inaddition, we always dedu
t 1 from ea
h d-gap and frequen
y,so that the integers to be 
ompressed are non-negative but doin
lude 0 values. We now sket
h some known te
hniques thatwe use and build on in this paper, in parti
ular variable-byte(var-byte) 
oding [22℄, Ri
e 
oding [27℄, Simple9 (S9) [2℄ andthe 
losely related S16 [28℄, PForDelta [14, 31℄, and binaryInterpolative Coding (IPC) [17℄. We provide brief outlinesof these methods to keep the paper self-
ontained; for moredetails, please see the 
ited literature. All methods ex
eptIPC were re
ently implemented and evaluated in [28℄, and wewill reuse and extend these highly tuned implementations.Var-Byte Coding: Variable-byte (var-byte) 
ompressionrepresents an integer in a variable number of bytes, whereea
h byte 
onsists of one status bit, indi
ating whether an-other byte follows the 
urrent one, followed by 7 data bits.Thus, 142 = 1 � 27 + 16 is represented as 10000001 0001000,while 2 is represented as 00000010. Var-byte 
ompressiondoes not a
hieve a very good 
ompression ratio, but is sim-ple and allows for fast de
oding [22℄ and is thus still used inmany systems.Ri
e Coding: This method 
ompresses a sequen
e of in-tegers by �rst 
hoosing a b su
h that 2b is 
lose to the average

value. Ea
h integer n is then en
oded in two parts: a quo-tient q = bn=(2b)
 stored in unary 
ode using q + 1 bits,and a remainder r = n mod 2b stored in binary using b bits.Ri
e 
oding a
hieves very good 
ompression on standard un-ordered 
olle
tions but is slower than var-byte, though thegap in speed 
an be redu
ed by using an optimized imple-mentation des
ribed in [28℄.S9: Simple9 (S9) 
oding is an algorithm proposed in [2℄that 
ombines good 
ompression ratio and high de
ompres-sion speed. The basi
 idea in S9 is to try to pa
k as manyvalues as possible into a 32-bit word. This is done by divid-ing ea
h word into 4 status bits and 28 data bits, where thedata bits 
an be partitioned in 9 di�erent ways. For example,if the next 7 values are all less than 16, then we 
an storethem as 7 4-bit values. Or if the next 3 values are less than512, we 
an store them as 3 9-bit values (leaving one databit unused).Simple9 uses 9 ways to divide up the 28 data bits: 281-bit numbers, 14 2-bit numbers, 9 3-bit numbers (one bitunused), 7 4-bit numbers, 5 5-numbers (three bits unused),4 7-bit numbers, 3 9-bit numbers (one bit unused), 2 14-bitnumbers, or 1 28-bit numbers. The 4 status bits store whi
hof the 9 
ases is used. De
ompression 
an be optimized byhard
oding ea
h of the 9 
ases using �xed bit masks, andusing a swit
h operation on the status bits to sele
t the 
ase.S16: Simple16 (S16) [28℄ uses the same basi
 idea as S9,but has 16 ways of partitioning the data bits, where ea
h ofthe 16 
ases uses all 28 data bits. The result is that S16 ap-proximately mat
hes the speed of S9, while a
hieving slightlybetter 
ompression. We note here that there are other meth-ods related to S9, su
h as Relate10 and Carryover12 [2℄, thatalso a
hieve improvements over S9 in 
ertain 
ases.PForDelta: This is a 
ompression method re
ently pro-posed in [14, 31℄ that supports extremely fast de
ompres-sion while also a
hieving a small 
ompressed size. PForDelta(PFD) �rst determines a value b su
h that most of the val-ues to be en
oded (say, 90%) are less than 2b and thus �tinto a �xed bit �eld of b bits ea
h. The remaining values,
alled ex
eptions, are 
oded separately. If we apply PFD toblo
ks 
ontaining some multiple of 32 values, then de
om-pression involves extra
ting groups of 32 b-bit values, and�nally pat
hing the result by de
oding a smaller number ofex
eptions. This pro
ess 
an be implemented extremely eÆ-
iently by providing, for ea
h value of b, an optimized methodfor extra
ting 32 b-bit values from b memory words. PFD
an be modi�ed and tuned in various ways by 
hoosing dif-ferent thresholds for the number of ex
eptions allowed, andby en
oding the ex
eptions in di�erent ways. We use somemodi�
ations to PFD proposed in [28℄, but also add in thispaper additional ones that a
hieves signi�
antly better per-forman
e in terms of both size and speed.Interpolative Coding: This is a 
oding te
hnique pro-posed in [17℄ that is ideal for the types of 
lustered or burstyterm o

urren
es that exist in real large texts (su
h as books).In fa
t, the goal of the do
ument reordering approa
h is to
reate more 
lustered, and thus more 
ompressible, term o
-
urren
es, and Interpolative Coding (IPC) has been shownto perform well in this 
ase [6, 7, 23, 24, 25℄.IPC di�ers from the other methods in an important way: Itdire
tly 
ompresses do
IDs, and not do
ID gaps. Given a setof do
IDs di < di+1 < : : : < dj where l < di and dj < r forsome bounding values l and r known to the de
oder, we �rsten
ode dm where m = (i + j)=2, then re
ursively 
ompressthe do
IDs di; : : : ; dm�1 using l and dm as bounding values,and then re
ursively 
ompress dm+1; : : : ; dj using dm and ras bounding values. Thus, we 
ompress the do
ID in the




enter, and then re
ursively the left and right half of thesequen
e. To en
ode dm, observe that dm > l+m� i (sin
ethere are m � i values di; : : : dm�1 between it and l) anddm < r � (j �m) (sin
e there are j �m values dm+1; : : : djbetween it and r). Thus, it suÆ
es to en
ode an integer inthe range [0; x℄ where x = r� l� j+ i� 2 that is then addedto l +m � i + 1 during de
oding; this 
an be done triviallyin dlog2(x+1)e bits, sin
e the de
oder knows the value of x.In areas of an inverted list where there are many do
umentsthat 
ontain the term, the value x will be mu
h smaller thanr� l. As a spe
ial 
ase, if we have to en
ode k do
IDs largerthan l and less than r where k = r � l � 1, then nothingneeds to be stored at all as we know that all do
IDs properlybetween l and r 
ontain the term. This also means thatIPC 
an use less than one bit per value for very dense termo

urren
es.Evaluation: Index 
ompression te
hniques are usuallyevaluated in terms of: (1) The 
ompression ratio, whi
h de-termines the amount of main memory needed for a memory-based index or the amount of disk traÆ
 for a disk-based in-dex. State-of-the-art systems typi
ally a
hieve 
ompressionratios of about 3 to 10 versus the naive 32-bit representation,while allowing extremely fast de
ompression during invertedlist traversals. (2) The de
ompression speed, typi
ally hun-dreds of millions of integers per se
ond, whi
h is 
ru
ial forquery throughput. In 
ontrast, 
ompression speed is some-what less 
riti
al, sin
e ea
h inverted list is 
ompressed onlyon
e during index building, and then de
ompressed manytimes during query pro
essing.We note that there are two di�erent ways to evaluate the
ompression ratio. We 
an 
onsider the total size of the in-dex; this models the amount of spa
e needed on disk, andalso the amount of main memory needed if the index is heldentirely in main memory during query pro
essing. Alter-natively, we 
an measure the 
ompressed size of the invertedlists asso
iated with an average query under some query load;this models the amount of data that has to be transferredfrom disk for ea
h query if the index is entirely on disk (andalso the amount of data that has to be moved from mainmemory to CPU as this 
an be
ome a bottlene
k in highlyoptimized systems). In reality, most systems 
a
he part ofthe index in memory, making a proper evaluation more 
om-pli
ated. We 
onsider both 
ases in our experiments, but �ndthat the relative ordering of the algorithms stays the same.
2.2 Document Reordering and Related IdeasSeveral papers have studied how to reorder do
uments forbetter 
ompression [7, 23, 25, 24, 6℄. In parti
ular, the ap-proa
hes in [7, 23, 25, 6℄ �rst perform some form of text
lustering on the 
olle
tion to �nd similar do
uments, andthen assign do
IDs by traversing the resulting graph of do
-ument similarities in a Depth-First-Sear
h [7℄ or TSP-likefashion. Subsequent work in [24℄ looked at a mu
h simplerapproa
h, assigning do
IDs alphabeti
ally a

ording to URL,and showed that this method basi
ally mat
hes the perfor-man
e of previous te
hniques based on text 
lustering. Notethat su
h an alphabeti
al ordering pla
es all do
uments fromthe same site, and same subdire
tory within a site, next toea
h other. This results in improved 
ompression as su
hdo
uments tend to have the same topi
s and use the samewriting style.We use alphabeti
al assignment of do
IDs in all our exper-iments, but our te
hniques work with any of the approa
hes.Our fo
us is not on �nding a better assignment of do
IDs, buton exploiting an existing assignment using optimized 
om-pression and query pro
essing te
hniques. In 
ontrast, previ-

ous work 
onsidered only a few standard te
hniques for do
ID
ompression, and did not 
onsider frequen
y 
ompression orquery pro
essing.Another related problem is the 
ompression of inverted in-dexes for ar
hival 
olle
tions, i.e., 
olle
tions that 
ontaindi�erent versions of do
uments over a period of time, withoften only minor 
hanges between versions. This problem hasre
ently re
eived some attention in the resear
h 
ommunity[11, 15, 29, 5℄, and the basi
 idea is also to exploit similaritybetween do
uments (or their versions). The te
hniques usedare di�erent, and more geared towards getting very large ben-e�ts for 
olle
tions with multiple very similar versions, as op-posed to the reordering approa
h here whi
h tries to exploitmore moderate levels of similarity. In future work, it wouldbe very interesting to 
ompare these di�erent approa
hes ondo
uments with di�erent degrees of similarity. For example,the alphabeti
al ordering used here 
ould be easily extendedto versioned 
olle
tions (by sorting �rst by URL and thenby version number), and 
ould in fa
t be seen as providingan alternative eÆ
ient implementation of the approa
h in [5℄that is based on merging 
onse
utive postings in a list.
2.3 Feasibility of Document ReorderingIR systems may assign do
IDs to do
uments in a numberof ways, e.g., at random, in the order they are 
rawled or in-dexed, or sometimes based on global measures of page quality(su
h as Pagerank [9℄) that 
an enable faster query pro
ess-ing through early termination. The do
ument reordering ap-proa
h in this paper and the previous work in [7, 23, 25, 6,24℄ assumes that we 
an modify this assignment of do
IDs tooptimize 
ompression. While this is a reasonable assumptionfor some systems, there are other 
ases where this is diÆ
ultor infeasible. We now dis
uss two 
ases, distributed indexstru
tures, and tiering and early termination te
hniques.Large-s
ale sear
h engines typi
ally partition their do
u-ment 
olle
tion over hundreds of nodes and then build a sep-arate index on ea
h node. If the assignment of do
umentsto nodes is done at random, then a lo
al reordering of do
-uments within a node might not give mu
h bene�t. On theother hand, if pages are assigned to nodes based on a host-level assignment or alphabeti
al range-partitioning, then wewould expe
t signi�
ant bene�ts. However, this might re-quire 
hanges in the ar
hite
ture and 
ould impa
t issuessu
h as load balan
ing.Do
ument ordering is also 
ompli
ated by the presen
e oftiering and other early termination me
hanisms, whi
h arewidely used in 
urrent engines. In a nutshell, these are te
h-niques that avoid a full traversal of the inverted lists for mostqueries through 
areful index layout, whi
h often involvessome reordering of the do
uments. In some approa
hes, su
has a do
ument-based tiering approa
h [21℄, or a partitioningof inverted lists into a small number of 
hunks [19, 16℄, re-ordering for better 
ompression 
an be applied within ea
htier or 
hunk. Other approa
hes may assign do
IDs based onPagerank [9℄ or other global do
ument s
ores mined from the
olle
tion [20℄, or use a di�erent ordering for ea
h list [13℄; inthese 
ases our approa
h may not apply.
2.4 Query Processing in Search EnginesQuery pro
essing in state-of-the-art systems involves a num-ber of phases su
h as query parsing, query rewriting, andthe 
omputation of 
omplex, often ma
hine-learned, rankingfun
tions that may use hundred of features. However, at thelower layer, all su
h systems rely on extremely fast a

ess toan inverted index to a
hieve the required query throughput.In parti
ular, for ea
h query the engine typi
ally needs to



traverse the inverted lists 
orresponding to the query termsin order to identify a limited set of promising do
uments that
an then be more fully s
ored in a subsequent phase. The
hallenge in this initial �ltering phase is that for large 
ol-le
tions, the inverted lists for many 
ommonly queried terms
an get very long. For example, for the TREC GOV2 
olle
-tion of 25:2 million web pages used in this paper, on averageea
h query involves lists with several million postings.Current systems typi
ally use a style of query pro
essing
alled do
ument-at-a-time (DAAT) query pro
essing, whereall inverted lists asso
iated with a query are opened for read-ing and then traversed in an interleaved fashion. This ap-proa
h has several advantages: (a) it performs extremely wellon the AND and WAND [10℄ style queries 
ommon in sear
hengines, (b) it enables a very simple and eÆ
ient interfa
e be-tween query pro
essing and the lower-level index de
ompres-sion me
hanism, and (
) it allows for additional performan
egains through forward skips in the inverted lists, assumingthat the postings in ea
h list are organized into blo
ks ofsome small size that 
an be independently de
ompressed.In our experiments, we use an optimized DAAT query pro-
essor developed in our group, and we organize ea
h invertedlist into blo
ks with a �xed number of postings. We 
hoose128 postings as our default blo
k size (shown to perform well,e.g., in [28℄), and keep for ea
h inverted list two separatearrays 
ontaining the last do
ID and size of ea
h blo
k inwords in (almost) un
ompressed form. This allows skippingof blo
ks during query pro
essing by sear
hing in the arrayof last do
IDs. All de
ompression is performed in terms ofblo
ks; to add another 
ompression method to our query pro-
essor it suÆ
es to supply a method for un
ompressing thedo
IDs of a blo
k, and one to un
ompress the frequen
ies. (Ablo
k 
onsists of all 128 do
IDs followed by all 128 frequen
yvalues.) This design is highly useful in Se
tion 7, where weuse several 
ompression te
hniques within the same index.One interesting result of our experiments is that reorder-ing of do
uments, in addition to improving 
ompression, alsospeeds up index traversal in a DAAT query pro
essor. In par-ti
ular, our query pro
essor (with no 
hanges in the software,and independent of 
ompression method) performs more andlarger forward skips during index a

ess in the reordered 
ase,and as a result de
ompresses less than half as many blo
ksper query as in the unordered 
ase. Note that this is relatedto, but di�erent from, re
ent work in [8, 12℄ that shows howto 
hoose an optimal set of forward pointers (basi
ally, howto 
hoose variable blo
k boundaries) for ea
h list based on ananalysis of the query load. Thus, we reorder do
uments whilekeeping blo
k sizes 
onstant, while [8, 12℄ modify blo
k sizeswhile keeping the ordering 
onstant; it would be interestingto see how the approa
hes work in 
ombination, and whetherthe reordering 
ould be improved by 
onsidering query loads.
2.5 The TREC GOV2 Data SetFor our experiments, we use the TREC GOV2 data setof 25:2 million web pages from the gov domain that is dis-tributed by the US National Institute of Standards and Te
h-nology (NIST) and used in the annual TREC 
ompetitions.This data is widely used for resear
h in the IR 
ommunity,thus allowing others to repli
ate our results. It is based on a2004 
rawl of the gov domain, and is also a

ompanied by aset of 100000 queries (the 2006 EÆ
ien
y Task Topi
s) thatwe use in our evaluation.While the data set does not represent a 
omplete snapshotof the gov domain at the time of the 
rawl, it nonetheless
ontains a fairly signi�
ant subset of it. This is importantsin
e our te
hniques perform best on \dense" data sets su
h

as GOV2 that are based on a fairly deep 
rawl of a subsetof domains. In 
ontrast, a \sparse" set of 25:2 million pages
rawled at random from the many billions of pages on theweb would not bene�t as mu
h.
3. CONTRIBUTIONS OF THIS PAPERIn this paper, we study the problem of optimizing 
om-pression and query pro
essing performan
e given a suitableassignment of do
IDs. Previous work in [7, 23, 26, 6, 24℄fo
used on �nding a good do
ID assignment, and then eval-uated the assignment by 
ompressing do
IDs using standardte
hniques. In 
ontrast, we fo
us on how to best exploit agiven assignment by optimizing 
ompression and query pro-
essing te
hniques for this 
ase. Our 
ompression 
odes areavailable at http://
is.poly.edu/westlab/. Our main 
on-tributions are as follows:(1) We propose new versions of the PForDelta (PFD) ap-proa
h and 
ompare them with state-of-the-art te
h-niques in the literature as well as new variants that aretuned for both speed and 
ompression ratio. Our ex-perimental results show that our versions of PFD 
ana
hieve signi�
ant improvements in size and speed.(2) We look at the problem of optimizing the 
ompressionof frequen
y values under su
h assignments. Previouswork only 
onsidered do
IDs, but we show that frequen-
ies 
an also be 
ompressed signi�
antly better throughsuitable do
ID assignment. Our main 
ontribution hereis the appli
ation of transformations inspired by move-to-front 
oding to improve the 
ompressibility of fre-quen
y values.(3) We study the impa
t of do
ID reordering on overallindex size and query throughput on the TREC GOV2data set of 25:2 million web pages. We observe a redu
-tion in minimum index size by about 50% over the 
aseof a random do
ID ordering, resulting in a minimalsize of about 3:45 GB for a full-text index of the en-tire 
olle
tion. We also show that the do
ID reorderingleads to signi�
ant improvements in query throughputon 
onjun
tive queries for do
ument-at-a-time (DAAT)query pro
essors by redu
ing the number of randomseeks in the index, in addition to any bene�ts obtainedvia the redu
tion in index size.(4) The various 
ompression te
hniques studied by us showa trade-o� between speed and 
ompression ratio. Thus,the te
hniques that a
hieve the smallest size are mu
hslower than the fastest ones, whi
h in turn result in alarger index size. This motivates us to study hybridindex organizations that apply di�erent 
ompressions
hemes to di�erent lists. We set up a formal opti-mization problem and show that by sele
ting a suitable
ompression s
heme for ea
h list based on an analysisof a query log, we 
an simultaneously a
hieve almostoptimal size and speed.
4. DOCID COMPRESSIONIn this se
tion, we perform a detailed study of 
ompressionte
hniques for do
IDs. In parti
ular, we �rst study distribu-tions of do
IDs on TREC GOV2 data set, and then dis
ussstate-of-the-art 
ompression methods and propose our newalgorithms, and �nally we evaluate all these methods throughsome preliminary experiments.
4.1 Distributions of DocIDsThe performan
e of a 
ompression method depends on thedata distribution it is applied to. For inverted index 
ompres-



sion, 
ompression is best when there are many small numbers.The optimized assignment of do
IDs is intended to in
reasethe number of small numbers and thus improve 
ompressionperforman
e. In Figure 1, we show a histograms of d-gapsfor the TREC GOV2 data set under three di�erent order-ings of do
uments: original, whi
h we get from the oÆ
ialTREC GOV2 data set; sorted, where do
IDs are re-assignedby us after we sort their URLs, as in [24℄; and random, wheredo
IDs are assigned at random.From Figure 1 we 
an see that the sorted ordering resultsin more small gaps than the other two kinds of indexes, sug-gesting a higher 
ompression ratio. In addition, the d-gapsfor the original ordering have a similar histogram as thosefor the random ordering, suggesting that the 
ompressionmethods will very likely have a similar performan
e. Fur-thermore, we analyze individual inverted lists and �nd thatsu
h a reordering results in more 
lusters (not shown in theFigure 1), i.e., sequen
es of 
onse
utive small d-gaps.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

Log2(gap)

P
e
rc

e
n

ta
g

e
 o

f 
g

a
p

s
 (

d
o

c
ID

s
)

sorted

original

random

Figure 1: Histograms of d-gaps for inverted lists 
orre-sponding to 1000 random queries on the TREV GOV2data set, under three di�erent orderings: original, sortedand random. The x-axis is the number of bits required torepresent d-gaps in binary, and the y-axis is the per
ent-age of su
h d-gaps. (Thus, the �rst point is for 1-gaps,the se
ond for 2-gaps, the third for 3-gaps plus 4-gaps,and so on.)
4.2 Optimizing PForDelta compressionWe now des
ribe two modi�
ations to PFD that a
hievesigni�
ant improvements over the versions in [31, 14, 28℄.Re
all that the implementations of PFD in previous worken
ode a blo
k of 128 value by �rst allo
ating 128 b-bit slots,and then for those 90% of the values less than 2b dire
tlystoring them in their 
orresponding slots. For ea
h valuelarger than 2b, 
alled a ex
eption, we store an o�set valuein the ex
eption's 
orresponding slot indi
ating the distan
efrom the 
urrent ex
eption to the next one, and the a
tualvalue of the ex
eption in some additional spa
e after the 128b-bit slots. One disadvantage of su
h a 
ode stru
ture is thatwhen two 
onse
utive ex
eptions have a distan
e of morethan 2b, we have to use more than one o�set to represent thedistan
e, by for
ing additional ex
eptions in between thesetwo ex
eptions. We 
annot solve this problem by simplyin
reasing b sin
e this would waste lots of bits on 90% ofvalues; but if we de
rease bmore ex
eptions will be produ
ed.This means in parti
ular that this version of PFD 
annotpro�tably use any values of b less than b = 3, but this 
aseis very important in the reordered 
ase.To over
ome this problem, we present a new 
ode stru
-ture for PFD by storing the o�set values and parts of theex
eptions in two separate arrays (while we still maintain128 b-bit slots). In parti
ular, for an ex
eption, we store itslower b bits, instead of the o�set to the next ex
eption, in its
orresponding slot, while we store the higher over
ow bitsand the o�set in two separate arrays. These two arrays 
an

be further 
ompressed by any 
ompression method, and we�nd that S16 is parti
ularly suitable for this. We 
all thisapproa
h NewPFD.Our se
ond improvement is in the sele
tion of the b valuefor ea
h blo
k. As it turns out, sele
ting a 
onstant thresholdfor the number of ex
eptions does not give the best tradeo�between size and speed. Instead, we model the sele
tion ofthe b for ea
h blo
k as an optimization problem similar tothat in Se
tion 7. Thus, we initially assign the b with thesmallest 
ompressed size to ea
h blo
k, and then in
reasespeed as desired by sele
ting a blo
k that gives us the mosttime savings per in
rease in size, and 
hange the b of thatblo
k. We 
all this OptPFD. We note here that for a giventarget speed, we 
an easily derive simple global rules aboutthe 
hoi
e of b, instead of running the iterative optimizationabove. Thus this version 
an be very eÆ
iently implementedeven on very large 
olle
tions.
4.3 Optimizing other methodsWe now present a few minor optimizations of some othermethods that we used in our experimental evaluation.GammaDi�: This is a variation of Gamma 
oding that,for a given integer x, en
odes the unary part of the Gamma
ode (that is, 1+blogx
) as the di�eren
e between 1+blogx
and the number of bits required to represent the average ofall gaps in the list. The motivation for GammaDi� is thatwhen do
IDs are 
lustered, the di�eren
es between d-gapsand their expe
ted average gap may be mu
h smaller thanthe gaps themselves.S16-128: As S9 and S16 only have 9 or 16 possible 
asesfor en
oding numbers, sometimes they have to 
hoose a waste-ful 
ase when a better one might exist. Now suppose we havea sequen
e of numbers 
onsisting mainly of small values. Inthis 
ase, a version of S16 
alled S16-128 
an do slightly bet-ter by providing more 
ases for small numbers and fewer forlarger numbers.Optimized IPC: Re
all that the key step of interpolative
oding (IPC) is to en
ode a number x in the range < lo; hi >,where lo and hi are respe
tively the lowest and highest possi-ble values of x. The original IPC en
odes the o�set o = x�lousing a b-bit number, where b = dre and r = hi � lo + 1 isthe number of possible values of the o�set. This wastes bitsif r is not a power of 2. We 
an do better by using a tri
kfrom Golomb 
oding to en
ode o as follows: If o < 2b � r,use b�1 bits to represent o, otherwise use b bits to represento + 2b � r. (This te
hnique was already des
ribed for IPCin [27℄.) In addition, before we apply the above optimiza-tion, we transform the range of values in su
h a way that theshorter 
odes are applied to values in the middle of the range,sin
e su
h values are more likely even in a highly 
lusteredlist. Also, while IPC is usually 
onsidered as a list-orientedmethod, meaning it starts by en
oding the median of the en-tire list, we apply it to blo
ks of a 
ertain size. As it turnsout, this also improves 
ompression if we 
hoose a good blo
ksize. In parti
ular, blo
k sizes of the form 2b � 1 appear towork best, and thus we 
hoose blo
ks of 127 values for ourimplementation.
4.4 Preliminary ExperimentsBefore presenting our results, we des
ribe our experimentalsetup, whi
h we also use in later se
tions. For the data set,we used the TREC GOV2 data set. We then sele
ted 1000random queries from the supplied query logs; these queries
ontain 2171 unique terms. All experiments were performedon a single 
ore of a 2.66GHz Intel(R) Core(TM)2 Duo CPUwith 8GB of memory.



sorted original randomlist-IPC w/o opt 0.95 2.70 2.83list-IPC 0.88 2.46 2.57blo
k-IPC 0.85 2.40 2.51Table 1: Compressed size in MB/query for do
IDs us-ing a basi
 list-wise IPC (without optimizations), a list-wise version with all other optimizations enabled, and itsblo
k-wise version, under the original, sorted, and ran-dom orderings.In Table 1, we 
ompare the original IPC, whi
h is list-wise,with its improved version with our various optimizations andits blo
k-wise version with our optimizations, on the GOV2data set under the original, sorted, and random orderings.From Table 1, we 
an observe the following: First, all IPCalgorithms work signi�
antly better on the d-gaps under thesorted ordering than under the other two orderings; se
ond,both list-wise and blo
k-wise IPC with our optimizations aremu
h better the original IPC, but blo
k-wise IPC with ouroptimizations a
hieves the best 
ompression.
1.2

1.4

1.6

1.8

2

2.2

2.4

900 1000 1100 1200 1300 1400
Decompression Speed (million ints/sec)

C
o

m
p

re
s

s
e

d
 S

iz
e

 (
M

B
/q

u
e

ry
)

PFD

NewPFD

OptPFDFigure 2: Compressed size in MB/query versus de
om-pression speed in million integers per se
ond for do
IDs,using PFD, NewPFD, and OptPFD under the sorted or-dering. The points from left to right for PFD and New-PFD 
orrespond to the following per
entages of ex
ep-tions: 5%, 8%, 10%, 20%, and 30%. For OptPFD, the points
orrespond to di�erent target speeds for the optimizationand their 
orresponding sizes.Compared to IPC, the main advantage of PFD is thatde
oding is very fast. In Figure 2, we show the trade-o�sbetween de
ompression speed and 
ompressed size for PFD,NewPFD, and OptPFD as introdu
ed above. From Figure 2,we see that OptPFD 
an always a
hieve a mu
h smaller
ompressed size for a given de
oding speed than the othermethod. Thus, 
hoosing b not based on a global thresholdon ex
eptions, but based on a global target speed, a
hieves amu
h better trade-o� than the naive global threshold used inPFD and NewPFD. While OptPFD is still worse than IPC interms of 
ompressed size, de
ompression is mu
h faster thanfor any version of IPC (as we will show later). We also ranexperiments under the original do
ument ordering, and ob-served slightly smaller but still signi�
ant gains for OptPFDover PFD and NewPFD, while PFD and newPFD were over-all similar in performan
e.In Figure 3, we 
ompare the average 
ompressed size perquery of the do
IDs for most of the state-of-the-art invertedindex 
ompression methods on the TREC GOV2 data setunder the original, sorted, and random orderings. For ea
hdata set, we show results of twelve 
ompression methods:

0

1

2

3

4

5

IP
C s9 s1

6

s1
6-

12
8

O
ptP

FD

en
tr
opy

va
r-
byt

e
ric

e

gam
m

aD
iff

ric
eV

T

gam
m

a

del
ta

C
o

m
p

re
s
s
e
d

 S
iz

e
 (

M
B

/q
u

e
ry

)

sorted

original

random

Figure 3: Compressed size in MB/query for do
IDs us-ing twelve methods, under the original, sorted, and ran-dom orderings.var-byte, S9, S16, S16-128, OptPFD, Delta 
oding, Gamma
oding, GammaDi�, Ri
e 
oding, a variant of Ri
e 
oding
alled Ri
eVT des
ribed in [27, 18℄ whi
h essentially pro-motes the impli
it probabilities of small gaps, the blo
k-wiseinterpolative 
oding with our above optimizations, and en-tropy, whi
h uses the global frequen
y distribution of the
ompressed integers. For OptPFD, we 
hose a setting thatminimizes the 
ompressed size.From Figure 3, we make the following observations: First,just as Figure 1 suggested, many 
ompression methods 
ana
hieve a mu
h better 
ompression ratio on the d-gaps underthe sorted ordering than under the other two orderings; se
-ond, all 
ompression methods on d-gaps under the originalordering a
hieve similar performan
es with those under therandom orderings; third, IPC a
hieves the best 
ompressionperforman
e among all methods; fourth, OptPFD is quite
ompetitive with all other methods (even with IPC, althoughit is slightly worse than IPC in terms of size). One disadvan-tage of IPC is that its de
ompression is slow. In 
ontrast, allother methods to the left of the entropy method are fairlyfast, and mu
h faster than those further to the right.
5. FREQUENCY COMPRESSIONFrequen
y values tend to be quite small, and unlike do
IDs,they are not in sorted order. In this se
tion, we �rst dis
ussthe e�e
t of do
ID reordering on frequen
ies, and then pro-pose more e�e
tive 
ompression algorithms. In parti
ular, weshow that reordered frequen
ies 
an be transformed in su
ha way that their entropy is lowered signi�
antly, leading tobetter 
ompression.
5.1 Effect of Reordering on FrequenciesFrequen
y values by themselves are not 
hanged at all byreordering, and thus reassigning do
ID by sorting URLs doesnot a�e
t the distribution of frequen
ies. However, su
h anordering results in more lo
al 
lusters of similar values. This
an be shown by 
omparing the 
ompressed size of 
ontext-sensitive and 
ontext-free methods. The former methods,whi
h in
lude IPC, S9, S16, and OptPFD, exploit the neigh-bor information to en
ode a number, while the latter meth-ods, su
h as gamma or delta 
oding, en
ode ea
h numberindependently, resulting in no 
hange in 
ompression afterreordering.In Figure 4, we display the 
ompressed size of the fre-quen
y data under state-of-the-art 
ompression methods onthe TREC GOV2 data set, using original, sorted, and ran-dom orderings. From Figure 4, we see exa
tly what wewould expe
t: The 
ontext-sensitive methods (all methodsto the left of entropy) get better 
ompression results underthe sorted ordering than under the other orderings, while



0

1

2

3

4

5

IP
C s9 s1

6

s1
6-

12
8

O
ptP

FD

en
tr
opy

vb
yt

e
ric

e

gam
m

aD
iff

ric
eV

T

gam
m

a

del
ta

C
o

m
p

re
s

s
e

d
 S

iz
e

 (
M

B
/q

u
e

ry
)

sorted

original

random

Figure 4: Compressed size in MB/query for frequen
iesusing twelve methods, under the original, sorted, and ran-dom orderings.the other methods get the same results under all three order-ings. We also noti
e that for the 
ontext-sensitive methods,
ompression under the original ordering has very similar per-forman
e with that under the random ordering. As before,IPC a
hieves the best 
ompression performan
e.However, none of the existing methods takes advantage ofthe lo
al 
lusters 
reated by the sorted ordering to furtherredu
e 
ompressed size. In the following, we show that un-der su
h an ordering, the 
ontext information of frequen
ies
an be further exploited to redu
e frequen
y values and thussigni�
antly improve 
ompression.
5.2 New AlgorithmsThe basi
 idea is that we exploit the 
ontext informationof frequen
ies to transform them into even smaller values,using one of the following two te
hniques: a version of Move-To-Front 
oding (MTF) [4℄, and a method we 
all Mostly-Likely-Next (MLN). More pre
isely, we propose to performa transformation on the frequen
y values before 
ompressingthem with other 
ompressors.Move-To-Front (MTF): The MTF [4℄ transform is usedas an important part of Burrows-Wheeler transform-based
ompression [27℄. Its basi
 idea is that, as long as a numberhas been seen lately, it will be represented by an index thatis likely to be smaller than its own value, in a separate in-dex array whose �rst element is always the number we justsaw. For example, given a list of numbers [5; 5; 5; 3; 2; 2℄, andassuming that all numbers are in the range [1,5℄, we keep aseparate index array whi
h is initialized as < 1; 2; 3; 4; 5 >.We �rst en
ode the �rst number 5 as its index in the indexarray, whi
h is the same as own value 5, and then move 5to the front of the index array su
h that next time when wemeet 5 again we will en
ode it as the index in the index array,whi
h is 1, instead of the real value 5. From then on, when-ever we meet a value, we en
ode it as its index in the indexarray and move it to the front of the index array. Therefore,the original list 
ould be en
oded as < 5; 1; 1; 4; 4; 1 >. Fromthe example we 
an see that MTF works well espe
ially whenthere is a 
luster of numbers of the same value.We experimented with several MTF-based me
hanisms forprepro
essing frequen
y values. While the basi
 MTF versiona
hieved some bene�ts, we found that other variants that donot dire
tly teleport the last used element to the �rst slotin the array a
tually performed better. In the end, meth-ods that move the last used value from its 
urrent positioni to a position su
h as i=2 or 2i=3 a
hieved overall best per-forman
e in our experiments. We also note that MTF mayslow down the speed of de
ompression, espe
ially when therange of values is large, sin
e we have to do exa
tly the samemove-to-front operations for all numbers to be de
oded.Most-Likely-Next (MLN): An alternative 
alled MLN

is also used to transform numbers to smaller values, but 
anover
ome some problems of MTF. In a nutshell, MLN usesa table that stores for ea
h value (within some limited range[0 : : : Q�1℄) whi
h values are most likely to follow. Thus, forQ = 16, MLN would rely on a 16�16 array, pre
omputed forea
h list, that lists in position (i; j) the (j + 1)th most likelyvalue to follow a value of i. Conversely, when applying MLN,we repla
e ea
h value with its rank in the array indexed bythe value of its prede
essor. (For values � Q, no tranforma-tion is applied.) Thus, MLN needs to store an array for ea
hlist. However, in our experiments, MLN outperformed thebest version of MTF in terms of both size and de
ompres-sion speed. Both MTF and MLN result in signi�
ant runsof 1 values in the transformed set of frequen
ies, sin
e manyfrequen
y values under the ordered list are followed by moreo

urren
es of the same value.
5.3 Experimental ResultsWe start by 
omparing the performan
e of our PForDeltavariants, PFD, NewPFD, and OptPFD, on frequen
y val-ues under sorted do
ument ordering. The results are shownin Figure 5, where we see that again OptPFD signi�
antlyoutperforms the other two versions in terms of the trade-o�between de
oding speed and size.

1.5

1.7

1.9

2.1

2.3

700 800 900 1000 1100 1200 1300 1400

PFD

NewPFD

OptPFDFigure 5: Compressed size in MB/query versus de
om-pression speed in million integers per se
ond for frequen-
ies, using PFD, NewPFD and OptPFD, under sortedordering.In Table 2, we 
ompare the average 
ompressed sizes of thefrequen
y data per query on the TRECGOV2 data set, underthe original, sorted, and random orderings. We use three dif-ferent versions ea
h for list-oriented and blo
k-oriented IPC:The best version from before, a version that uses MTF, andone that uses MLN. list blo
ksorted orig rand sorted orig randIPC 1.26 1.65 1.71 1.21 1.59 1.65IPC-MTF 0.93 1.65 1.75 0.89 1.59 1.69IPC-MLN 0.92 1.58 1.65 0.89 1.52 1.59Table 2: Compressed size in MB/query for frequen
ies,under the original, sorted, and random orderings, usingIPC, IPC with MTF, and IPC with MLN, for list- andblo
k-oriented methods.From Table 2 we make the following observations: First,as with do
IDs, IPC performs mu
h better under sorted or-dering than under the original and random orderings, andthe blo
k-wise versions always perform better than their list-wise 
ounterparts; se
ond, for frequen
ies under the sortedordering, the versions with MTF and MLN are mu
h betterthan the one without them; third, IPC with MLN slightlyoutperforms IPC with MTF.



basi
 MTF MLNblo
k IPC 1.21 0.89 0.89s9 1.65 1.53 1.52s16 1.57 1.44 1.43s16-128 1.50 1.38 1.37NewPFD 1.88 1.73 1.72OptPFD 1.63 1.43 1.31entropy 1.45 1.13 1.14var-byte 4.63 4.63 4.63ri
e 1.88 1.70 1.69gammaDi� 2.16 1.80 1.79ri
eVT 1.72 1.44 1.43gamma 1.64 1.52 1.28Table 3: Compressed size in MB/query for frequen
iesunder sorted do
ument ordering.Both MTF and MLN 
an also be applied to the other al-gorithms to get better 
ompression ratios. From Table 3, weobserve the following: First, the entropy is greatly redu
edby either MTF or MLN; se
ond, all methods ex
ept var-byteimprove over their basi
 versions, no matter whether theyuse MTF or MLN; third, MLN is usually better and nevermu
h worse than MTF. We also tried MTF and MLN trans-formations of d-gaps for do
IDs, but there was no bene�t.
6. QUERY PROCESSING PERFORMANCEIn previous se
tions, we studied the 
ompression ratios ofvarious te
hniques on random queries, but did not 
onsiderde
ompression speed, total index size, and query pro
essingperforman
e. In this se
tion, we study these issues in detail.We start out with de
ompression speed. In the experi-ments, we used the optimized de
ompression methods from[28℄ for var-byte, Ri
e 
oding, S9, and S16, and S16-128, New-PFD with �xed threshold 10% for ex
eptions, OptPFD withminimum 
ompressed size, and the best blo
k-wise version ofIPC. (We did not try to implement optimized de
ompressorsfor gammaDi�, ri
eVT, gamma, and delta 
oding, as thesemethods are known to be relatively slow.) In Table 4 wegive for ea
h method the de
oding speed in millions of inte-gers de
oded per se
ond for three 
ases: De
ompression ofdo
IDs, and de
ompression of frequen
ies with and withoutMLN transformation. do
ID freq freq-MLNvar-byte 637 729 273s9 748 846 269s16 691 898 267s16-128 498 550 245NewPFD 1055 1120 298OptPFD 1102 1034 212ri
e 489 404 199IPC 55 51 52Table 4: De
oding speeds in millions of integers de
odedper se
ond, for do
IDs, frequen
ies, and frequen
ies withMLN transformation.The results in Table 4 are overall not surprising. NewPFDand OptPFD are the fastest te
hniques, though S9, S16, S16-128, and var-byte are also quite eÆ
ient. In 
ontrast, IPC ismu
h slower. Adding MLN slows down the faster methodssigni�
antly, but does not impa
t slow methods su
h as IPCmu
h. We note that additional in
reases in speed 
an beobtained for OptPFD by trading o� size versus speed.Next, we look at total index size. For this, we built blo
k-wise 
ompressed indexes for three methods that we believeprovide the most interesting trade-o�s between de
ompres-sion speed and 
ompressed size: IPC, NewPFD, and OptPFD.We 
ompare ordered and unordered indexes, and for orderedindexes we provide numbers both with and without MLN.The results are shown in Table 5. We see very signi�
antimprovements in index size through do
ument reordering.The best 
ompression is obtained with IPC, using MLN

for frequen
ies, whi
h results in a total index size of around3:45 GB. This 
ompares to an index size of about 3:88 GB forthe smallest size under OptPFD, using sorted do
ID orderingand MLN for frequen
ies. In fa
t, even without MLN (whi
has shown earlier slows down OPTPFD signi�
antly) we 
anobtain an index size only slightly larger than 4 GB. In 
on-trast, NewPFD results in mu
h larger index sizes, of 5.5 GBand more, showing the bene�t of OptPFD over NewPFD.We note that many other sizes between 4 GB and 5.5 GB
an be obtained by trading o� size versus speed in OptPFD(though even the smallest size results in fairly fast de
oding).However, note that even NewPFD is mu
h better than thebest unordered results, and that all the ordered indexes 
anbe 
ompletely held in main memory given realisti
 memorysizes of 4 to 6 GB. sorted originalIPC New Opt IPC New Optdo
ID 2617 3746 2853 5365 6122 5903freq 1142 2027 1255 1363 2307 1653total 3759 5773 4108 6728 8429 7556f+MLN 834 1844 1023 { { {total 3451 5590 3876 { { {Table 5: Compressed index size in MB for the en-tire TREC GOV2 data set, for IPC, NewPFD with 10%threshold on ex
eptions, and OptPFD optimized for min-imal index size. For the sorted 
ase, we provide numbersfor frequen
ies and total index sizes with and withoutMLN.Another interesting observation is that the ratio of fre-quen
y data to do
ID data is mu
h smaller than in our pre-vious experiments. The reason is that when looking at totalindex size, we in
lude a large amount of data in shorter (butnot very short) lists, while our query-based measurementsare skewed towards longer lists. In shorter lists, d-gaps arelarger while frequen
y values tend to be smaller, 
ompared tolonger lists. The bene�ts of OptPFD over NewPFD for 
om-pressed size also tend to be larger on these lists, parti
ularlyfor frequen
ies.Next, we look at query pro
essing speed for interse
tion-based queries using BM25 ranking. Table 6 shows queryperforman
e for an index 
ompressed with OptPFD (but noMLN for frequen
ies) using ordered and unordered do
IDassignments, under the assumption that all index data is inmain memory. Somewhat surprisingly, the ordered index isabout twi
e as fast as the unordered one! Note that this isnot due to savings in disk a

esses, as all the data is in mainmemory, and also not due to 
hanges in de
ompression speed,as the ordering has only a moderate impa
t on the speed ofOptPFD. Instead, as shown in Table 6, this is mainly due tothe ordered index de
oding mu
h fewer blo
ks of data thanthe unordered one. sorted originalrunning time (ms/query) 6.15 12.08num of do
IDs de
oded (million/query) 0.71 1.53num of freqs de
oded (million/query) 0.53 1.04Table 6: Running time and number of de
oded do
IDsand frequen
ies for OptPFD on the GOV2 data set.In fa
t, this in
rease in speed 
an be explained in a sim-ple and intuitive way. Consider the shortest list in a query.Under DAAT query pro
essing, almost all of the shortest listwill be de
ompressed, and most do
IDs in this list will gen-erate a lookup into the next longer list. If the do
IDs in theshortest list are 
lustered, then more of these lookups willhit the same blo
k of the next longer list, while other blo
ksdo not get hit at all and do not have to be de
ompressed.(Informally, if we throw enough balls uniformly at random



into n bins we will hit almost all bins, but if our throws are
lustered in 
ertain areas, then many more balls are neededto hit most bins.) A formal analysis of this phenomenon is
ompli
ated dependen
ies between terms and queries withmore than two terms, and we leave this for future work.Finally, we also give query pro
essing speeds for other 
om-pression methods, in parti
ular IPC and NewPFD, with andwithout do
ID reordering. Note that the number of de
om-pressed blo
ks per query does not 
hange, as all methods usethe same blo
ks of 128 postings. As we see in Table 7, wealso get signi�
ant improvements in query pro
essing speedfor the other methods by using ordered indexes. However,the method a
hieving the best 
ompression, IPC, is mu
hslower than the faster methods. NewPFD is even faster thanOptPFD, but as shown in Table 5, the index size is mu
hlarger. Moreover, the same speed at lower index size 
ouldbe obtained by trading size for speed within OptPFD (notshown here). sorted originalIPC 29.44 59.18NewPFD 4.98 9.74OptPFD 6.15 12.08Table 7: Running times in ms per query for IPC (withMLN), NewPFD, and OptPFD.
7. MIXED-COMPRESSION INDEXESIn previous se
tions, we have seen that using reordered in-dex stru
tures results in signi�
ant improvements in indexsize and query pro
essing speed. However, the best methodin terms of size, IPC, whi
h outperforms all other methodsby a signi�
ant margin, is fairly slow and 
an de
ompressonly about 50 million integers per se
ond. The fastest meth-ods, PForDelta and its variants, i.e., PFD, NewPFD andOptPFD, are around 20 times faster, but produ
e a largerindex (though the index size for PForDelta under reordereddo
IDs is still better than for the best method without re-ordering). Thus, there is a trade-o� between size and speedamong the di�erent methods.This motivates the question of whether we 
an get a bettertrade-o� by 
ombining di�erent 
ompression methods in thesame index. Our index setup 
an easily a

omodate di�erent
ompressors within the same index (or even the same list), asall 
ompression is performed in a blo
k-wise fashion. More-over, from studies on inverted index 
a
hing, we know thatdi�erent parts of the index have very di�erent a

ess frequen-
ies; e.g., in [28℄ more than 90% of all index a

esses 
an beserved from a 
a
he of 30% of the index size. Thus, we 
ouldexploit this highly skewed a

ess pattern, by 
ompressing fre-quently a

essed inverted lists using a very fast method, andother lists using a slower method that gives better 
ompres-sion. Our goal is for the resulting index to have both sizeand speed 
lose to the best a
hieved by any method.More formally, we are interested in the following problems:Problem 1: Given a limit t on the average time for pro-
essing a query, and a set of available 
ompression methods,sele
t for ea
h inverted list a 
ompression method su
h thatthe overall index size is minimized, while satisfying the timelimit t.Problem 1': Given a limit t on the average time for pro-
essing a query, a limit b on the amount of I/O bandwidth (inMB/s) that is available, a 
a
hing poli
y P that uses somemain memory to 
a
he index data, and a set of available 
om-pression methods, sele
t for ea
h inverted list a 
ompressionmethod su
h that the total amount of main memory that hasto be available for 
a
hing is minimized, while satisfying thelimits on t and b.

In the �rst problem, we are looking at a main-memory res-ident index, and our goal is to minimize the amount of mem-ory we need to provide, given a (feasible) time 
onstraint.Our hope is that by relaxing the time 
onstraint very slightlyversus the minimum, we 
an very substantially de
rease thememory requirement. The se
ond problem looks at an indexthat is partially 
a
hed in memory (a very 
ommon setup inpra
ti
e), and the goal is to minimize the amount of memorythat needs to be provided for 
a
hing to assure that the avail-able I/O-bandwidth does not be
ome the main bottlene
k ofthe system. Note that the �rst problem is the spe
ial 
ase ofthe se
ond where b = 0, i.e., no disk a

ess is allowed. Also,there are obviously many other ways to set up these opti-mization problems, in
luding duals of the above, or setupsthat model the sear
h ar
hite
ture in more detail.Due to spa
e 
onstraints, we fo
us on Problem 1. Theproblem is obviously NP-Complete due to its relationship toBin Pa
king, but we would expe
t a very good approximationvia simple greedy approa
hes in this 
ase. In parti
ular, wetake the following approa
h:(a) Sele
t a suÆ
iently large query tra
e. For ea
h avail-able 
ompression method, build an index and issue thequeries against this index.(b) For ea
h inverted list Iw for a term w, and ea
h 
om-pression method 
, measure the following: (i) s
(w),the 
ompressed size of list Iw under method 
, and (ii)t
(w), the total amount of time spent de
ompressingthe list using method 
 over the given query log.(
) Initially, assign to ea
h inverted list the 
ompressionmethod that gives the smallest size.(d) Now repeatedly greedily sele
t a list Iw and 
hange its
ompression method to a faster but less spa
e-eÆ
ientmethod, until the time 
onstraint is satis�ed. In par-ti
ular, in ea
h step, 
hoose the list Iw that minimizes(s
0(w)� s 
(w))=(t
(w)� t
0) over all w and all meth-ods 
0 6= 
 where 
 is the 
ompression method 
urrentlyused for Iw. In other words, 
hoose the list and 
om-pression method that gives you the smallest in
rease inindex size per time saved.1We note that query pro
essing time in our setup 
onsists ofthe time for de
ompression and the times for other tasks su
has interse
tion and s
ore 
omputation, and that the latterare independent of the 
ompression methods used (sin
e allmethods use the same blo
k size for de
ompression). Thus,we 
an easily 
he
k if the time 
onstraint is satis�ed in (d)without reexe
uting the query tra
e. Also, for best results itis useful to treat the frequen
ies and do
IDs of a list sepa-rately, as most queries de
ompress fewer frequen
y data thando
ID data.We implemented the above method, and ran it on 99000of the 100000 queries on the TREC GOV2 data set, leavingthe other 1000 for testing the performan
e of the resulting
on�guration. In Figure 6, we show results for a hybrid in-dex 
ombining IPC and OptPFD. As shown, while IPC re-quires about 29 ms per query, we 
an get less than 12 mswith almost the same size by using a hybrid index. We alsonote the version of OptPFD that we used only minimizes
ompressed size, and that a better overall tradeo� than theone in the �gure 
ould be a
hieved by sele
ting di�erent set-tings for OptPFD. (In fa
t, this hybrid index optimization1We assume here that both enumerator and denominator arestri
tly positive.



problem motivated the optimization problem underlying thesize/speed tradeo� for OptPFD in Figure 2.)
0

5

10

15

20

25

30

35

3400 3500 3600 3700 3800 3900 4000 4100 4200

Compressed Size (MB)

Q
u

e
ry

 S
p

e
e
d

 (
m

s
)

Figure 6: Total index size in MB versus pro
essing speedper query in millise
onds, for a hybrid index involvingOptPFD and IPC. The leftmost point is for pure IPCand the rightmost for pure OptPFD.
8. CONCLUSIONSIn this paper, we have studied 
ompression and query pro-
essing in inverted indexes with optimized do
ument order-ing. Previous work has fo
used on �nding do
ument order-ings that minimize index size under standard 
ompressions
hemes. In 
ontrast, we fo
us on how to tune 
ompressions
hemes and maximize query througput given a good order-ing. Our experimental results show signi�
ant bene�ts in
ompressed index size and query throughput.Our work motivates several interested open questions. First,we showed that query pro
essing bene�ts from more eÆ
ientskipping in reordered indexes. This was a natural side prod-u
t of reordering, but additional improvements might be pos-sible by 
ombining reordering with the ideas in [8, 12℄ forsele
ting blo
k boundaries in 
ompressed indexes.Se
ond, as mentioned in Subse
tion 2.2, there is an inter-esting relationship between 
ompression of reordered indexesand eÆ
ient indexing of ar
hival 
olle
tions. We are 
ur-rently investigating how to apply the ideas in this paper toar
hival 
olle
tions. We are also looking at performan
e op-timizations that allow faster de
ompression of interpolated
odes, and at how to �nd do
ument orderings that are bet-ter than the alphabeti
al ordering studied in [24℄ and usedby us in this paper.A
knowledgements: This resear
h was partially sup-ported by NSF Grant IIS-0803605, and by a grant fromGoogle.
9. REFERENCES[1℄ V. Anh and A. Mo�at. Index 
ompression using �xed binary
odewords. In Pro
. of the 15th Int. Australasian DatabaseConferen
e, pages 61{67, 2004.[2℄ V. Anh and A. Mo�at. Inverted index 
ompression usingword-aligned binary 
odes. Information Retrieval, 8(1):151{166,Jan. 2005.[3℄ V. Anh and A. Mo�at. Improved word-aligned binary
ompression for text indexing. IEEE Transa
tions onKnowledge and Data Engineering, 18(6):857{861, 2006.[4℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A lo
ally adaptivedata 
ompression s
heme. Communi
ations of the ACM, 29(4),O
t. 1986.[5℄ K. Berberi
h, S. Bedathur, T. Neumann, and G. Weikum. Atime ma
hine for text sear
h. In Pro
. of the 30th Annual Int.ACM SIGIR Conf. on Resear
h and Development inInformation Retrieval, pages 519{526, 2007.[6℄ R. Blan
o and A. Barreiro. Do
ument identi�er reassignmentthrough dimensionality redu
tion. In Pro
. of the 27thEuropean Conf. on Information Retrieval, pages 375{387, 2005.

[7℄ D. Blandford and G. Blello
h. Index 
ompression throughdo
ument reordering. In Pro
. of the Data CompressionConferen
e, pages 342{351, 2002.[8℄ P. Boldi and S. Vigna. Compressed perfe
t embedded skip listsfor qui
k inverted-index lookups. In Pro
. of the 12th Int. Conf.on String Pro
essing and Information Retrieval, 2005.[9℄ S. Brin and L. Page. The anatomy of a large-s
ale hypertextualweb sear
h engine. In Pro
. of the Seventh World Wide WebConferen
e, 1998.[10℄ A. Broder, D. Carmel, M. Hers
ovi
i, A. So�er, and J. Zien.EÆ
ient query evaluation using a two-level retrieval pro
ess. InPro
. of the 12th Int. Conf. on Information and KnowledgeManagement, pages 426{434, November 2003.[11℄ A. Broder, N. Eiron, M. Fontoura, M. Hers
ovi
i, R. Lempel,J. M
Pherson, R. Qi, and E. Shekita. Indexing shared 
ontent ininformation retrieval systems. In Pro
. of the 10th Int. Conf.on Extending Database Te
hnology, pages 313{330, 2006.[12℄ F. Chieri
hetti, S. Lattanzi, F. Mari, and A. Pan
onesi. Onpla
ing skips optimally in expe
tation. In Pro
. of the Int.Conf. on Web Sear
h and Data Mining, pages 15{24, 2008.[13℄ R. Fagin. Combining fuzzy information: an overview. SIGMODRe
ord, 31(2):109{118, June 2002.[14℄ S. Heman. Super-s
alar database 
ompression between RAMand CPU-
a
he. MS Thesis, Centrum voor Wiskunde enInformati
a, Amsterdam, Netherlands, July 2005.[15℄ M. Hers
ovi
i, R. Lempel, and S. Yogev. EÆ
ient indexing ofversioned do
ument sequen
es. In Pro
. of the 29th EuropeanConf. on Information Retrieval, 2007.[16℄ X. Long and T. Suel. Optimized query exe
ution in large sear
hengines with global page ordering. In Pro
. of the 29th Int.Conf. on Very Large Data Bases, pages 129{140, 2003.[17℄ A. Mo�at and L. Stuiver. Binary interpolative 
oding fore�e
tive index 
ompression. Information Retrieval, 3(1):25{47,2000.[18℄ A. Mo�at and J. Zobel. Parameterised 
ompression for sparsebitmaps. In Pro
. of the 15th Annual Int. ACM SIGIR Conf.on Resear
h and Development in Information Retrieval, pages274{285, 1992.[19℄ M. Persin, J. Zobel, and R. Sa
ks-Davis. Filtered do
umentretrieval with frequen
y-sorted indexes. J. of the Ameri
anSo
iety for Information S
ien
e, 47(10):749{764, 1996.[20℄ M. Ri
hardson, A. Prakash, and E. Brill. Beyond pagerank:ma
hine learning for stati
 ranking. In Pro
. of the 15th Int.World Wide Web Conferen
e, 2006.[21℄ K. Risvik, Y. Aasheim, and M. Lidal. Multi-tier ar
hite
ture forweb sear
h engines. In First Latin Ameri
an Web Congress,pages 132{143, 2003.[22℄ F. S
holer, H. Williams, J. Yiannis, and J. Zobel. Compressionof inverted indexes for fast query evaluation. In Pro
. of the25th Annual SIGIR Conf. on Resear
h and Development inInformation Retrieval, pages 222{229, Aug. 2002.[23℄ W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted �le
ompression through do
ument identi�er reassignment. Inf.Pro
essing and Management, 39(1):117{131, 2003.[24℄ F. Silvestri. Sorting out the do
ument identi�er assignmentproblem. In Pro
. of 29th European Conf. on InformationRetrieval, pages 101{112, 2007.[25℄ F. Silvestri, S. Orlando, and R. Perego. Assigning identi�ers todo
uments to enhan
e the 
lustering property of fulltextindexes. In Pro
. of the 27th Annual Int. ACM SIGIRConferen
e on Resear
h and Development in InformationRetrieval, pages 305{312, 2004.[26℄ F. Silvestri, R. Perego, and S. Orlando. Assigning do
umentidenti�ers to enhan
e 
ompressibility of web sear
h engineindexes. In Pro
. of the 19th ACM Symp. on AppliedComputing, pages 600{605, 2004.[27℄ I. H. Witten, A. Mo�at, and T. C. Bell. Managing Gigabytes:Compressing and Indexing Do
uments and Images. MorganKaufmann, se
ond edition, 1999.[28℄ J. Zhang, X. Long, and T. Suel. Performan
e of 
ompressedinverted list 
a
hing in sear
h engines. In Pro
. of the 17th Int.World Wide Web Conferen
e, April 2008.[29℄ J. Zhang and T. Suel. EÆ
ient sear
h in large textual 
olle
tionwith redundan
y. In Pro
. of the 16th Int. World Wide WebConferen
e, 2007.[30℄ J. Zobel and A. Mo�at. Inverted �les for text sear
h engines.ACM Computing Surveys, 38(2), 2006.[31℄ M. Zukowski, S. Heman, N. Nes, and P. Bon
z. Super-s
alarRAM-CPU 
a
he 
ompression. In Pro
. of the Int. Conf. onData Engineering, 2006.


