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Since their inception in 1979, the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work. LINZ 2003 will be already the 24th seminar
carrying on this tradition.

LINZ 2003 will deal with the use of Triangular Norms and Related Operators in Many-Valued
Logics and their applications. Though the basic results in the theory of t-norms go back to the Sixties,
there is an important growth of interest in the theoretical background of t-norms and related operators
(such as copulas, implications, uninorms, etc.) during the last years. Theory and applications of
t-norms and related operators influence each other, as can be seen not only in probabilistic metric
spaces, but also in many-valued logics, measure and integration theory, preference modeling, etc. For
practical purposes, the determination of an appropriate t-norm fitting the observed data becomes an
acute problem. The aim of the seminar is an intermediate and interactive exchange of recent results.
We expect that the presented talks will provide a comprehensive mathematical framework for the
theory and application of triangular norms and related operators.

Erich Peter Klement
Radko Mesiar

3



4



Program Committee

Radko Mesiar (Chairman), Bratislava, Slovakia
Dan Butnariu,Haifa, Israel
Didier Dubois,Toulouse, France
Lluis Godo,Barcelona, Spain
Siegfried Gottwald,Leipzig, Germany
Ulrich Höhle,Wuppertal, Germany
Erich Peter Klement,Linz, Austria
Wesley Kotzé,Grahamstown, South Africa
Daniele Mundici,Milano, Italy
Endre Pap,Novi Sad, Yugoslavia
Stephen E. Rodabaugh,Youngstown, OH, USA
Marc Roubens,Liège, Belgium
Lawrence N. Stout,Bloomington, IL, USA
Aldo Ventre,Napoli, Italy
Siegfried Weber,Mainz, Germany

Executive Committee

Erich Peter Klement
Ulrich Höhle
Stephen E. Rodabaugh
Siegfried Weber

Local Organizing Committee

Erich Peter Klement (Chairman), Fuzzy Logic Laboratorium Linz-Hagenberg
Ulrich Bodenhofer,Software Competence Center Hagenberg
Sabine Lumpi,Fuzzy Logic Laboratorium Linz-Hagenberg
Susanne Saminger,Fuzzy Logic Laboratorium Linz-Hagenberg

5



6



Contents

Enric Trillas
Ten years later: lessons from a polemics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Siegfried Gottwald
Universes of fuzzy sets—a survey of the different approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Petr Hájek
Embedding standard BL-algebras into non-commutative pseudo-BL-algebras. . . . . . . . . . . . . . . . . . 15

Ulrich Höhle
Group-like structures on M-valued sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Sándor Jenei
How to construct left-continuous triangular norms—state of the art 2002. . . . . . . . . . . . . . . . . . . . . . 18

Władysław Homenda
Triangular norms, uni- and nullnorms, balanced norms: the cases of the hierarchy of
iterative operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Andrea Mesiarová
Triangular subnorms and residual implications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Peter Viceník
Generalizations of some constructions of triangular norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

János Fodor, Bernard De Baets, Tomasa Calvo
Structure of uninorms with given continuous underlying t-norms and t-conorms. . . . . . . . . . . . . . . . 49

Glad Deschrijver, Etienne E. Kerre
The residuation principle for intuitionistic fuzzy t-norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Michał Baczýnski
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Ten years later: lessons from a polemics

ENRIC TRILLAS

Department of Artificial Intelligence
Technical University of Madrid

Madrid, Spain

E-mail: etrillas@fi.upm.es

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. In 1993, a first version (1) of (2) got a "best paper award" in the Conference of the 

American Association for Artificial Intelligence and created a remarkable excitement 

among the community of researchers in fuzzy logic. For example, in (3) one can find 

some of the correspondence between people working in the field and, specially, the report 

(4) on the subject.  

2. Paper (2) has, in fact, two parts. The first tries to show that the logical formula 

(p . q´)´ = q + p´. q´   (x) 

       forces fuzzy logic to collapse into classical bivaluate logic. The second tries to criticize 

some technological achievements of fuzzy logic.  

 

In 1994 the monthly journal IEEE-EXPERT devoted to the controversy a good part of one 

of its issues (5), with short papers writen by relevant researchers and with both pro and 

con arguments. In 1996, (6) and (7) appeared in the International Journal of Intelligent 

Systems, and in 2001 papers (8), (9) and (10) were published in the International Journal 

of Approximate Reasoning. Paper (6) tries to correct (2), and paper (7) considers the 

problem of logical equivalence, an important topic that is in the ground of (2). Paper (8) 

considers formula (x) in a very general fuzzy framework, and papers (9) and (10) are a 

continuation of the polemics in (4) now motivated by (8). 
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3. The talk will only consider three problems arising from the first part of (2), namely: 

• From where does (x) come as a "classical" logical law? 

•    Which theories of fuzzy sets admit  (x) as a law, and when can it be                

reached by mixing connectives? 

• When is there an implication   →   such that (x) can be rewriten as    

p   →   q = q + p .́ q  ́? 

 

It should be pointed out that the theoretical argument in the first part of (2) is, with numerical 

truth-values as it is done there, a triviality that says nothing on fuzzy logic, but that with fuzzy 

sets p and q, the question is not so trivial and formula (x) deserves to be reconsidered. In such 

a line, the talk will proceed through the following: 

 

 

CONTENTS 

 

Introduction.  Elkan´s paper and the 1993-94 excitement.  

1. What for Elkan´s theoretical result? 

2. 1996. The equivalence problem, and a long silence 

3. From where does Elkan´s formula come? 

4. Two problems: Law (L), and Implicative Reading (IR) 

5. L: The case of DeMorgan algebras 

6. L: The case of orthomodular lattices 

7. L: The case of standard theories of fuzzy sets 

8. IR: Contrasymmetry, and Dishkant arrow 

9. IR: The case of fuzzy logic with a single triplet (T, S, N) 

10. The interest of mixing connectives 

11. L: The cases of mixed connectives and non-standard theories of fuzzy sets.  

12. IR: The case of fuzzy logic with mixed connectives.  

Conclusion and open questions 
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Universes of fuzzy sets—a survey of the different approaches

SIEGFRIED GOTTWALD

Institute for Logic and Philosophy of Science
Leipzig University
Leipzig, Germany

E-mail: gottwald@uni-leipzig.de

Approaches toward the development of universes of fuzzy sets which are closed under the formation
of fuzzy subsets and which know set algebraic operations which are based upon t-norms (or something
similar), are intended to provide “closed worlds” for fuzzy set theories and to make precise in this way
the notion of fuzzy set of higher level.

The methods to attack this problem of the construction of a fuzzy analogue to the cumulative
universe of crisp sets fall essentially into three classes:

• approaches which try to form cumulative universes of fuzzy sets rather similar to the construc-
tion of the cumulative universe of sets via an transfinite iteration of the power set operation;

• approaches which intend to give axiomatizations of the theory of fuzzy sets;

• approaches which try to form cumulative universes of fuzzy sets rather similar to Boolean val-
ued models for classical set theory;

• approaches which intend to suitably generalize the categorical characterization of the category
SET of all sets and mappings to a similar characterization of some categoryFSET of all fuzzy
sets and of suitable mappings between them.

There is a wealth of such approaches. The most important ones shall be discussed, some recent results
and some possibilities for generalizations explained, and some open problems mentioned.
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Embedding standardBL-algebras into non-commutative
pseudo-BL-algebras

PETR HÁJEK

Institute of Computer Science
Academy of Sciences

Prague, Czech Republic

E-mail: hajek@cs.cas.cz

BL-algebras are algebras of truth functions of the basic fuzzy logicBL [5]. Each continuoust-norm
defines a standardBL-algebra (ort-algebra) on the real interval[0,1] (with its standard ordering). As
proved in [3],BL-tautologies (propositional formulas being tautologies over eachBL-algebra) are the
same ast-tautologies (standardBL-tautologies). Speaking algebraically, the variety ofBL-algebra is
generated by the class oft-algebras.

Di Nola, Georgescu and Iorgulescu [1, 2] introduced and studied pseudo-BL-algebras (briefly,
psBL-algebras), a generalization ofBL-algebras not assuming commutativity of the semigroup oper-
ation (truth function of conjunction). The corresponding propositional logic was established in [6, 7].

As shown in [4], there are no non-commutative standardpsBL-algebras, i.e.psBL-algebras whose
lattice reduct is the standard real interval[0,1].In [7] I gave an example of a non-commutativepsBL-
algebra on the “nonstandard” unit interval in which each standard element of[0,1] has continuum of
“infinitely near” non-standard elements;NS[0,1] is the set of pairs

{(0,y)| y∈ Re,y≥ 0}∪
{(x,y)| 0 < x < 1,y∈ Re}∪
{(1,y)| y∈ Re,y≤ 0}

with lexicographic order (standard elements being the pairs(x,0)). The example is a pseudo-MV-
algebra in the terminology of [1] and its standard elements form a standardBL-algebra (modulo the
representation ofx ∈ [0,1] by the pair(x,0)). I asked at the end of [7] if each standardBL-algebra
is embeddable in this way into a non-commutativepsBL-algebra on the non-standard unit interval
NS[0,1]. Our result is the following:

Theorem 1. For each continuous t-norm∗ having at least one non-idempotent element there is a non-
commutative psBL-algebraA on NS[0,1] whose reduct to[0,1] ∗ {0} is isomorphic to the standard
BL-algebra[0,1]∗ via the identification of x∈ [0,1] with the pair(x,0).
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Group-like structures on M-valued sets

ULRICH HÖHLE

Fachbereich Mathematik
Bergische Universität
Wuppertal, Germany

E-mail: hoehle@wmfa2.math.uni-wuppertal.de

Let M = (L,≤,∗) be aGL-algebra. Typical examples are complete Heyting algebras or continuous
t-norms on the real unit interval. Further, letM-SET be the category ofM-valued sets (cf. [3]). It
is not difficult to see thatM-SET is a monoidal category in which the unit object does not coincide
with the terminal object. The axioms of group-like structures onM-valued sets will make use of this
monoidal structure onM-SET. Among other things we are able to establish the following facts:

1. The axioms of group-like structures are preserved under the so-called tilde-construction which
assigns to eachM-valued set its singleton space (cf. [3]).

2. Fuzzy groups in the sense of J.M. Anthony and H. Sherwood are canonical subgroup-like struc-
tures (cf. [1]).

3. In the case of complete Heyting algebras separated presheaves of groups form a natural class of
group-like structures (in the case of lattices of open subsets see also [2]) .

4. Probabilistic normed spaces induces group-like structures in a natural way (cf. [5]).

Even though group-like structures are not group structures in the categorical sense ofM-SET, we are
convinced that these structres will play a non trivial role in algebraic theories based on nonclassical
logics.

References

[1] J.M. Anthony and H. Sherwood,Fuzzy groups redefined, J. Math. Anal. Appl.69 (1979), 123–
130.

[2] R. Godement,Topologie Algébrique et Théorie des Faisceaux, (Hermann, Paris 1964).

[3] U. Höhle,Classification of subsheaves of GL-algebras, in: S.R. Buss et al.,Logic Colloquium
’98, Lecture Notes in Logic13, 238–261 (Association for Symbolic Logic, A K Peters, Natick,
Massachusetts (USA) , 2000).

[4] A. Rosenfeld,Fuzzy groups, J. Math. Anal. Appl.35 (1971), 512–517.

[5] B. Schweizer and A. Sklar,Probabilistic Metric Spaces(North Holland, New York 1983).

[6] H. Sherwood,Products of fuzzy groups, Fuzzy Sets and Systems11 (1983), 79–89.

17



How to construct left-continuous triangular norms—state of the art
2002

SÁNDOR JENEI

Institute of Mathematics and Informatics
University of Pécs

Pécs, Hungary

E-mail: jenei@ttk.pte.hu

1 Introduction

Triangular norms (t-norms for short) play a crucial role in several fields of mathematics and AI. For
an exhaustive overview on t-norms we refer to [23]. Recently an increasing interest ofleft-continuous
t-norm based theories can be observed (see e.g. [3, 6, 7, 8, 9, 10, 21]. The condition of left-continuity
is a frequently cited property and plays a central role in all the fields that use t-norms. The role of
left-continuous t-norms with strong associated negations is even more relevant, since then the nega-
tion, which is associated to the t-norm is an involution, and hence one can define a t-conorm via the
de Morgan rule. In spite of their significance, the knowledge about left-continuous t-norms was rather
poor for a long time; there were no results in the literature where left-continuous t-norms stood as the
focus of interest. Moreover, until 1995 there were no known examples for left-continuous t-norms,
except for the standard class of continuous t-norms. Continuous t-norms have become well under-
stood from the famous and widely cited paper of Ling, as ordinal sums of continuous Archimedean
t-norms [25] and have been used in several applications. The poor knowledge about left-continuous
t-norms on one hand and the good understanding of continuous t-norms on the other hand result in
the use of continuous t-norms when left-continuity would be sufficient in theory. This very much
restricts the freedom of choice when the proper operation has to be found in the mathematical setting
in question. In other words, this makes modeling, e.g., in probabilistic metric spaces, in game theory,
in the theory of non-additive measures and integrals, in the theory of measure-free conditioning, in
fuzzy set theory, in fuzzy logic, in fuzzy control, in preference modeling and decision analysis, and in
artificial intelligence much less flexible.

In this paper we discuss in detail the presently existing construction methods which result in left-
continuous triangular norms. The methods are (together with their sources):

• annihilation [4, 15, 2] and [23] (Proposition 3.64)

• ordinal sum of t-subnorms [14, 12, 24],

• rotation contruction [17, 11],

• rotation-annihilation construction [18],

• embedding method [20, 9].
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An infinite number of left-continuous triangular norms can be generated with these constructions (and
with their combinations), which provides a tremendously wide spectrum of choice for e.g. logical
and set theoretical connectives in non-classical logic and in fuzzy theory. By using these methods
(consecutive combination of them is as well possible) an infinite number of new left-continuous t-
norms can be generated. Some of them has the additional advantage that the associated negation of
the resulted t-norm is strong, which may be useful in logical applications. The resulted operations
can be admitted into the attention of researchers of algebra, probabilistic metric spaces, non-classical
measures and integrals, non-classical logics, fuzzy theory and its applications.
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Figure 1: MinimumTM (left), productTP (center) and Łukasiewicz t-normsTL (right)
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Figure 2: The nilpotent minimumTM0 (left), a continuous t-norm (center) and its annihilationTJ

(right)
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Figure 3: TP0.5 andTL0.4 (left). A t-subnorm and a t-norm, which are ordinal sums of t-subnorms
(right).
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Figure 4:(TM )Rot and(TP)Rot (left), a t-norm with zero divisors and its rotation (right)

Figure 5: Geometrical explanation of the rotation-annihilation construction
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Figure 6: Rotations of ordinal sums
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Figure 7: T-norms generated by the rotation-annihilation construction
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Figure 8: Combination of rotation-annihilation and rotation
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Figure 9: Hájek t-norm(TP)〈+〉 (left), (TP)〈+,+〉 (center) and(TM )〈+〉 (right
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Figure 10:(Tos)〈+〉 (left), (TP)〈⊕x〉 (center) and(TP)〈⊕x,⊕x〉 (right)
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Figure 11:(TP)〈+,⊕x〉 (left) and(TP)〈⊕x,+〉 (right)

25



0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.2

0.4

0.6

0.8

1

Figure 12: A t-norm which is obtained via rotation of a mean (the 3Pi operator)
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Abstract

A new hierarchy of the fuzzy operators has been proposed in this paper. This interpretation
was based on the observation of non-symmetry of fuzzy operators as, for instance, triangular
norms. The starting point of this approach is based on the method of symmetrization relaying
on spreading out negative information from the point 0 to the interval[−1,0). Based on this
assumption, the normal and weak forms of balanced triangular norms are defined in the paper.
Relations between normal form of balanced triangular norms and uninorms and nullnorms are
studied. It is shown that balanced triangular norms, uni- and nullnorms are cases of generalized
operators, so called iterative triangular norms.

1 Preliminaries

The operators investigated in this paper relay on their axiomatic definitions and differences between
these definitions. Thus, in this Chapter definitions and selected properties of triangular norms, uni-
norms and nullnorms as well as balanced triangular norms are recalled. It is assumed that reader is
accustomed with basic knowledge of triangular norms, uni- and nullnorms and balanced triangular
norms.

1.1 Triangular norms - definition

Triangular norms, i.e. t-norms and t-conorms, in their classical meaning, are mappings from the
unit square[0,1]× [0,1] onto the unit interval[0,1] satisfying axioms of associativity, commutativity,
mononicity and boundary conditions (cf. [5, 7] for details), i.e.:

Definition 1. t-norms and t-conorms are mappingsp : [0,1]× [0,1]→ [0,1], wherep stands for both
t-norm and t-conorm, satisfying the following axioms:

1. p(a, p(b,c)) = p(p(a,b),c) associativity
2. p(a,b) = p(b,a) commutativity
3. p(a,b)≤ p(b,a) if a≤ c andb≤ d monotonicity
4. t(1,a) = a for a∈ [0,1] andb≤ d boundary condition for t-norm

s(0,a) = a for a∈ [0,1] andb≤ d boundary condition for t-conorm

27



t-norms and t-conorms are dual operations in the sense that for any given t-norm t, we have a dual
t-conorm s defined by the De Morgan formulas(a,b) = 1−t(1−a,1−b) and vice-versa, for any given
t-conorm s, we have a dual t-norm t defined by the De Morgan formulat(a,b) = 1− s(1−a,1−b).
Duality of triangular norms causes duality of their properties. Note that the max/min are pairs of dual
t-norms and t-conorms.

1.2 Uninorms and nullnorms

Uni-norms were introduced in [8] as a unification and generalization of the triangular norms. Defi-
nition of uninorms is derived from definition of triangular norms with boundary condition varieted.
Namely:

Definition 2. Uninorm is a mapping:u : [0,1]× [0,1]→ [0,1] satisfying the following axioms:

1., 2., 3. associativity, commutativity and monotonicity
4. (∃e∈ [0,1]) such that for allx∈ [0,1]u(x,e) = x identity element

It is clear that a t-norm is a special uninorm with identity elemente = 1 and a t-conorm s is a
special uninorm with identity elementa = 0.

The definition of nullnorms differs from the definition of uninorms in boundary condition:

Definition 3. Nullnorm is a mapping:u : [0,1]× [0,1]→ [0,1] satisfying the following axioms:

1., 2., 3. associativity, commutativity and monotonicity
4. (∃a∈ [0,1]) such that(∀x∈ [0,a])u(x,0) = 0 and(∀x∈ [a,1])u(x,1) = x

neutral element

Obviously, a t-norm is a special nullnorm with neutral elementa = 0 and a t-conorm s is a special
nullnorm with neutral elementa = 1. Assuming thatu is a uninorm with identity e and if v is defined
asv(x,y) = 1−u(1−x,1−y), thenv is a uninorm with identity 1−e. v is called the dual uninorm of
u. This fact shows that difference between uninorm and its dual analogue is only quantitative. This
means that they are similar from the perspective of global properties discussed in the paper. So that
duality will not be considered in the paper.

Assuming that u is a uninorm with identity e:

1. u(a,0) = 0 for all a≤ e andu(a,1) = 1 for all a≥ e
2. x≤ u(x,y)≤ y for all x≤ e ande≤ y
3. eitheru(0,1) = 0 oru(1,0) = 1

Uninorms generalize the concept of triangular norms. According to [2], assuming thatu is a
uninorm with identitye∈ (0,1), the mappingstu andsu are t-norm and t-conorm respectively:

tu(x,y) =
u(ex,ey)

e
and su(x,y) =

u(e+(1−e)x,e+(1−e)y)
1−e

(1)

or equivalently:

uu(x,y) = et(
x
e
,
y
e
) f or x,y∈ [0,e] and

uu(x,y) = e+(1−e)su(
x−e
1−e

,
y−e
1−e

) f or x,y∈ [e,1] (2)
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The isomorphic mappingh(x) = 2x−1 (and its inverseh−1(x) = (x+ 1)/2) ) transforms uninorms
and nullnorms into the interval[−1,1] with respective values of unit and neutral elements equal to
e= 2e−1 anda = 2a−1, respectively. It is easily seen that the isomorphic mappings:

h(x) =
{

(x−e)/e
(x−e)/(1−e)]

and h−1(x) =
{

e(x+1)/e
(1−e)x+e

f or

{
x∈ [0,e]
x∈ [e,1]

(3)

will transform uninorms (and nullnorm) to their symmetrized versions with unity and neutral elements
equal to 0.

Comment: nullnorms satisfy similar properties, cf. [5].

1.3 Balanced triangular norms in normal form

The definition of balanced triangular norms in normal form, as introduced in [3], is derived from the
definition of triangular norms. The domain of balanced triangular norms is extended to the square
[−1,1]× [−1,1]. Balanced triangular norms are identical with classical triangular norms on the unit
square[0,1]× [0,1] and satisfy axioms of associativity, commutativity and monotonicity on the whole
domain[−1,1]× [−1,1], boundary conditions are exactly the same as in case of classical triangular
norms. An extra symmetry axiom supplements the definition, also cf. [4]. Additional operator of
balanced negation is introduced.

Definition 4. Balanced operators are defined as follow:
Balanced negations is the mapping:

N : [−1,1]→ [−1,1] N(x) =−x

Balanced t-norms and t-conorms are mappings

P : [−1,1]× [−1,1]→ [−1,1]

satisfying the following axioms, whereP stands for both balance t-normT and t-conormS:

1., 2., 3. associativity, commutativity and monotonicity
4. T(1,a) = a, S(0,a) = a f or a∈ [0,1] boundary conditions
5. P(x,y) = N(P(N(x),N(y))) symmetry

Conclusion 5. Axiomatic definition of balanced t-norm and balanced t-conorm restricted to the unit
square[0,1]× [0,1] are equivalent to the classical t-norm and classical t-conorm, respectively.

Conclusion 6. Balanced t-norm and balanced t-conorm restricted to the square[−1,0]× [−1,0] are
isomorphic with the classical t-conorm and classical t-norm, respectively.

Conclusion 7. Balanced t-norm vanishes on the squares[−1,0]× [0,1] and[0,1]× [−1,0].

The above conclusions are obvious.

1.4 Balanced triangular norms in weak form

The weak system of the balanced triangular norms satisfies a collection of axioms of the normal
system except of the properties 1 and 3, i.e. axioms of associativity and monotonicity of the defintion
of balanced t-norm in normal form. The following sets of axioms defining balanced t-norm in its weak
form completes the definition.
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Definition 8. The weak form of balanced triangular norm, t-norm, satisfies the following set of ax-
ioms:
1. min(|T(a,T(b,c))|, |T(T(a,b),c)|)≤
|T(a,T(b,c))|, |T(T(a,b),c)| ≤
T(T(|a|, |b|), |c|) = T(|a|,T(|b|, |c|)) semi-associativity

2. T(a,b) = T(b,a) commutativity
3. T(a,b)≤ T(c,d) f or 0≤ a≤ c, 0≤ b≤ d semi-monotonicity
4. T(1,a) = a, S(0,a) = a f or a∈ [0,1] boundary conditions
5. P(x,y) = N(P(N(x),N(y))) symmetry

Comment: Balanced triangular norms in weak form satisfy Conclusion 1.1 and 1.2. However, Con-
clusion 1.3. is not satisfied.

2 Balanced triangular norms versus uninorms and nullnorms

The balanced t-conorms, as defined in the section 1.3, are special cases of uninorms in the sense of
the isomorphism defined in the formula 3. Amazingly, balanced triangular norms as well as uninorms
and nullnorms are similar products of two different paths of thinking, paths that begin in two dif-
ferent starting points. Detailed properties of balanced triangular norms and uninorms and nullnorms
might differ. Despite of this, the general meaning of balanced triangular norms and of uninorms and
nullnorms are the same in the sense of isomorphic mapping between them.

The definition of balanced t-conorm includes the symmetry axiom in addition to other axioms
that are common for uninorm and balanced t-conorm: associativity, commutativity, monotonicity and
boundary conditions. The extra restriction - i.e. the symmetry axiom - makes that not every uninorm is
isomorphic with a balanced t-conorm while every t-conorm is isomorphic with a uninorm. Precisely,
every balanced t-conorm is isomorphic with a set of uninorms that satisfy the symmetry axiom and
differ in the unit elements. Of course, any two uni-norms of such a set are isomorphic in the sense of
an isomorphism analogous to that defined in the formula 3. Two sets of uninorms related to any two
balanced t-conorms are disjoint assuming that respective balanced t-conorms are different. Moreover,
the set of uninorms that are not isomorphic with any balanced t-conorm and the sets of uninorms
related to balanced t-conorms partition the set of all uninorms, i.e. they create equivalence classes of
an equivalence relation. The same notes concerns balanced t-norms and nullnorms

The following propositions describe the characteristic of the set of all balanced t-conorms (bal-
anced t-norms in normal form) as a family of equivalence classes of the relation≈S (≈T , respectively)
defined on the set of all uninorms (nullnorms, respectively).

Proposition 9. Let U = {u : u is a uninorm}. Let us consider isomorphic mappings as defined in the
formula 3. Then, the pair(U,≈S) is an equivalence relation if for every two uninorms u and v, u≈S v
iff u and v are isomorphic with the same balanced t-conorm S or none of u and v is isomorphic with
any balanced t-conorm S.

Proposition 10. Let V = {v : v is a nullnorm}. Let us consider isomorphic mappings as defined in
the formula 3. Then, the pair(V,≈T) is an equivalence relation if for every two uninorms u and v,
u≈S v iff u and v are isomorphic with the same balanced t-norm T or none of u and v is isomorphic
with any balanced t-norm T.
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3 A hierarchy of balanced operators

In this Chapter the method of balanced extension of fuzzy operators is applied to uninorms. Compar-
ing relations between uninorms, balanced t-conorms and balanced uninorms (created with the method
of balanced extension), leads to a broader family of balanced operators, so called iterative norms.

3.1 Balanced uninorms

Definition 11. Balance uninorm is a mapping:U : [−1,1]× [−1,1]→ [−1,1] satisfying the following
axioms:

1., 2., 3. associativity, commutativity and monotonicity
4. (∃e∈ [0,1]) such that for allx∈ [0,1]u(x,e) = x identity element
5. U(x,y) = N(U(N(x),N(y))) symmetry

As in case of balanced triangular norms, the values of balanced uninorms on the squares[0,1]×
[0,1] and [−1,0]× [−1,0] are determined by the values of uninorm and symmetry principle. The
values of balanced uninorm on the squares[0,1]× [−1,0] and[−1,0]× [0,1] are unconstrained and
could be defined according to subjective aim of application.

Obviously, similar considerations are valid in case of nullnorms, though the values of balanced
nullnorms in the unconstrained area meet different type of border conditions.

Figure 13: The plot of iterative t-conorm based on the additive generator

3.2 A hierarchy of balanced operators

Balanced triangular norms are isomorphic with uninorms and nullnorms. Thus, the method of bal-
anced uninorms creation (i.e. immersion of classical uninorms in the extended space of fuzzy sets)
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could be replaced by running the process of double utilization of this method to a classical t-conorm.
The first stage of this process creates balanced t-conorm, then - after isomorphic transformation of
balanced t-conorm to the unipolar scale, i.e. to the respective uninorm - balanced uninorm could be
created.

In light of the idea of balanced extension of fuzzy sets, uninorm (as a fuzzy operator) could
be subjected to balanced extension method to produce balanced uninorm. This means that balanced
uninorm is a result of two iterations of balanced extension method applied to classical t-conorm. Thus,
balanced uninorm is a kind of balanced t-conorm of the higher rank. The process could be continued
creating next ranks of balanced t-conorms. It means that balanced triangular norms, uninorms and
nullnorms are products of the same process of iterative balanced extension method applied to classical
triangular norms. This property explains similarity between balanced triangular norms, on one hand,
and uninorms and nullnorms, on the other hand. The process of consecutive applications of balanced
extension method creates a hierarchy of balanced triangular norms. A new function, so called iterative
t-conorm, will be used as illustration of creation of balanced hierarchy.

Definition 12. The iterative t-conorm is a functionSiter : R×R→ R

Siter(x,y) =


S(x−2k−2l ,y+2k−2l)

(x−2k−2l ,y+2k−2l) ∈ [−1,1]× [−1,1]
and k.l-integers

1+2l
(x−2k−2l ,y+2k−2l) ∈ [1,3]× [−1,1]
and k.l-integers

whereS is a balanced t-conorm.

Note: balanced t-conormS in the above definition could vary for different areas of the domain.
Thus, in this case, the formula looks like:

Siter(x,y) =


Sk,l (x−2k−2l ,y+2k−2l)

(x−2k−2l ,y+2k−2l) ∈ [−1,1]× [−1,1]
and k.l - integers

1+2l
(x−2k−2l ,y+2k−2l) ∈ [1,3]× [−1,1]
and k.l - integers

whereSk,l is a balanced t-conorm for all values of k and l.

Properties of iterative t-conorm are determined by balanced t-conorm. For instance, continuity
of iterative t-conormSiter is determined by continuity of basic balanced t-conorm. Iterative t-conorm
Siter may be non-continuous in all non-continuity points of balanced t-conorm and on the borders of
upper-left and bottom-down quarters of the domain squares growing values of balanced t-conorm S.
Iterative t-conormSiter is definitely non-continuous in upper-left and bottom-down vertexes of those
squares where balanced t-conorm S is increasing.

Example: since balanced t-conorm S based on the additive generatorfS(x) = x/(1− |x|) is non-
continuous in upper-left and bottom-down vertexes of its domain, the respective iterative t-conorm
Siter is also non-continuous in all such points. Specifically,Siter is a continuous function in its domain
except left-upper and right bottom vertexes of the squares{[−1+ 2k+ 2l ,1+ 2k+ 2l ]× [−1−2k+
2l ,1−2k+2l ] : k, l − integervalues}

The contour plot of the iterative triangular norm based on the above t-conormis shown in the
Figure 1.
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The Figure 2illustrate the process of creation of the hierarchy of balanced t-norms and balanced
t-conorms based on iterative triangular norms. Because balanced t-norm and balanced t-conorm of
any given rank have the square[−1,1]× [−1,1] as their domain, then a part of the iterative triangular
norm defined by respective squares displayed in the Figures 2 and 3 must be transformed in order to
satisfy the fuzzy operator domain and co-domain. For instance, a balanced t-conorm of the rank 2
described by the part of iterative triangular norm restricted to the square[−5,−1]× [−1,3] :

f un : [−5,−1]× [−1,3] f un(x,y) = Siter(x,y) (4)

must be transformed using the transformation:

tx : [−1,1]→ [−5,−1], tx(x) = 2x−3 and ty : [−1,1]→ [−1,3], ty(y) = 2y+1
t−1 : [−3,1]→ [−1,1], t−1(x) = (x+1)/2

(5)

what means that the balanced t-conorm of rank 2S(2) respective to the mapping fun is defined as
follow:

S(2) : [−1,1]× [−1,1]→ [−1,1],
S(2)(x,y) = (t−1◦Siter ◦ (tx, ty))(x,y) = t−1( f un(tx(x), ty(y)))

(6)

In other words, the graph of mapping fun included in the cube[−5,−1]× [−1,3]× [−3,1] has to be
squeezed to the cube[−1,1]× [−1,1]× [−1,1] in order to create balanced t-conorm of rank 2.

In the Figure 1 the balanced t-conorm of rank 2 is also marked as uninorm what should be in-
terpreted as rela-tion between balanced t-conorms and uninorms in terms of the Chapter 2. On the
other hand, slightly modified iterative t-conorms and t-norms could be used for creation a hierarchy of
balanced operators including all uni-norms and nullnorms. This issue, as a subject of potential subject
of investigation, is out of the scope of the aim of this paper. So then it will not be developed here.

Figure 14: The hierarchy of balanced t-conorms and balanced t-norms
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Figure 15: The structure of uniform iterative t-conorms and uniform iterative t-norms in weak form

In the Figure 3 uniform iterative triangular normsSiter andTiter are presented. Uniform norms are
based on weak balanced triangular norms. They do not have plain regions, i.e. squares of constant
values, as it is in case of ordinary iterative triangular norms based on balanced t-conorms:

Siter : R×R→ R,
Siter(x,y) = S(x−2k,y−2l), (x−2k,y−2l) ∈ [−1,1]× [−1,1], k.l − integers

(7)

Titer : R×R→ [−1,1],
Titer(x,y) = T(x−2k,y−2l), (x−2k,y−2l) ∈ [−1,1]× [−1,1], k.l − integers

(8)

4 Conclusions

Relations between different fuzzy operators: triangular norms, uninorms and nullnorms, balanced
triangular norms are studied in this paper. Dependencies between uninorms / nullnorms and balanced
triangular norms are investigated. The triangular norms, uninorms and nullnorms, balanced triangular
norms are subjected to a process of iterations of balanced transformation. The triangular norms,
uninorms and nullnorms, balanced triangular norms are placed in the broader hierarchy of iterative
operators.

Several topics were signalized in the paper: properties of weak systems of balanced fuzzy sets
and balanced triangular norms, properties of iterative triangular norms, relations between balanced
operators and iterative triangular norms and other fuzzy operators, applications of balanced systems
of fuzzy sets to practical aims. These topics are potential subjects of further studies.
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Triangular subnorms and residual implications
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1 Introduction

Triangular norms were introduced in [19], for an exhaustive overview see the monograph [13]. Appli-
cations of triangular norms in fuzzy logic, probabilistic metric spaces, etc., require the left-continuity
of the applied t-norm, see e.g. [13]. Recently, several new types of constructions of left-continuous
t-norms were introduced, see [11] for an overview. One of these methods is linked to the ordinal
sum of t-subnorms introduced in [10]. Note that due to [14], this method is the most general method
yielding a t-norm based on Clifford’s ordinal sum of semigroups [2].

Observe also that the structure and some constructions of t-subnorms (introduced in [8]) were
investigated first in [17], though several important facts about t-subnorms can be straightforwardly
derived from results of [13], Chapter 3.

The left-continuity of t-norms is crucial for the existence of the corresponding residual implica-
tions. The main aim of this paper is a discussion of these residual implications linked to t-norms
which are ordinal sums of semigroups. Recall that the structure of residual implications linked to con-
tinuous t-norms, i.e., to ordinal sums of continuous Archimedean t-norms, was studied in [3], where
also ordinal sums of residual implications were introduced, compare also [5].

The paper is organized as follows. The next section recalls some results about t-norms, t-subnorms
and their ordinal sums. In the third section, the structure of residual implications linked to ordinal
sums of left-continuous t-subnorms is studied. Finally, the residual operators related to t-subnorms
generated by continuous additive generators are investigated.

2 Triangular norms as ordinal sums of semigroups

Triangular norms as ordinal sums of semigroups in the sense of Clifford [2] have been investigated
in [14]. As observed there, these triangular norms can be expressed as ordinal sums of t-subnorms
introduced in [8, 10].

Definition 1. A mappingR : [0,1]2→ [0,1] is called a t-subnorm whenever it is commutative, asso-
ciative, non-decreasing and bounded by its arguments, i.e.,

R(x,y)≤ x for all x,y∈ [0,1]. (1)
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Evidently, each t-normT is also a t-subnorm. Moreover, for any t-normT and c ∈]0,1[, the
operationTc : [0,1]2→ [0,1] given by

Tc(x,y) =
T(cx,cy)

c
(2)

is a t-subnorm. Note also that because of the commutativity the boundary condition (1) is equivalent
to

R(x,y)≤min(x,y) for all x,y∈ [0,1]. (3)

Note that several notions introduced for t-norms can be directly introduced for t-subnorms, too,
and hence we will not define them explicitly. Examples of such notions and properties are: zero
divisors, strict monotonicity, Archimedean property, several types of continuities, etc.

Recall that due to [10, 13] each t-norm can be expressed as an ordinal sum of t-subnorms. We
present this result for left-continuous t-norms.

Theorem 2. A mapping T: [0,1]2→ [0,1] is a left-continuous t-norm if and only if there is a system
(]αk,βk[)k∈K of pairwise disjoint non-empty subintervals of [0,1] and a system of left-continuous t-
subnorms(Rk)k∈K such that if eitherβk = 1 for some k∈ K or βk = αk∗ for some k,k∗ ∈ K and Rk∗

has zero divisors then Rk is a t-norm, so that

T(x,y) =

{
αk +(βk−αk)Rk

(
x−αk

βk−αk
, y−αk

βk−αk

)
if x,y∈]αk,βk],

min(x,y) otherwise.
(4)

Observe that the problem of complete characterization of left-continuous t-subnorms is equivalent
to the complete characterization of left-continuous t-norms, and thus still unsolved. However, in some
special cases such a characterization is already known. Recall the characterization of continuous
Archimedean t-norms by means of additive generators [16], which are continuous strictly decreasing
from [0,1] to [0,∞] mappings with value 0 at argument 1 (this fact reflects the property of constant 1
which is neutral element of each t-norm).

Another well-known fact is the representation of continuous t-norms as ordinal sums with Archi-
medean summands, i.e., the representation in the form (4) where eachRk, k ∈ K , is a continuous
Archimedean t-norm [13, 16].

A similar representation holds for continuous t-subnorms.

Theorem 3 (Mesiarová [18]). A mapping R: [0,1]2→ [0,1] is a continuous t-subnorm but not a t-
norm if and only if there is a system(]αk,βk[)k∈K of pairwise disjoint non-empty open subintervals of
[0,1] and a system(Rk)k∈K such that there is k∗ ∈K , for whichβk∗ = 1 and Rk∗ is a continuous Archi-
medean t-subnorm, which is not a t-norm and for all k∈ K , k 6= k∗, Rk is a continuous Archimedean
t-norm, and

T(x,y) =

{
αk +(βk−αk)Rk

(
x−αk

βk−αk
, y−αk

βk−αk

)
if x,y∈]αk,βk],

min(x,y) otherwise.
(5)

However, a representation of continuous Archimedean t-subnorms is not yet known, in general.
Applying the results of Aczél [1] on associative functions, we have the following representation.
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Theorem 4 (Mesiarová [18]).A mapping R: [0,1]2→ [0,1] is a continuous strictly monotone Archi-
medean t-subnorm if and only if there is a continuous strictly decreasing mapping r: [0,1]→ [0,∞],
with r(0) = ∞, such that

R(x,y) = r−1(r(x)+ r(y)). (6)

Observe that representation (6) holds also for any strictly monotone (not necessarily continuous)
t-subnormR with no anomalous pair(a,b) ∈]0,1[2, i.e., sucha < b for which b > a > R(b,b) >
R(a,a) > R(b,b,b) . . . , see [4], in which caser need not be continuous.

Several other special representation theorems for specific types of continuous Archimedean t-
subnorms can be found in [18]. Note that while in the class of t-norms, the subclass of continuous
Archimedean t-norms coincides with the subclass of t-norms generated by continuous additive gen-
erators, this is no more true in the case of t-subnorms. For the sake of completeness recall that a
non-increasing mapping,t : [0,1]→ [0,∞] (r : [0,1]→ [0,∞]) is called an additive generator of a
t-normT (t-subnormR) whenever for allx,y∈ [0,1],

T(x,y) = t(−1)(t(x)+ t(y))
(

R(x,y) = r(−1)(r(x)+ r(y))
)

, (7)

wheret(−1) : [0,∞]→ [0,1] (and similarlyr(−1)) is the pseudo-inverse oft [12] defined by

t(−1)(u) = sup{x∈ [0,1] | t(u) > x}. (8)

Evidently, if t : [0,1]→ [0,∞] is an additive generator of a t-normT, then necessarilyt(1) = 0 and
t is strictly decreasing (as a consequence of the fact thatT(x,1) = x for all x∈ [0,1]).

However, an additive generatorr : [0,1]→ [0,∞] of a t-subnormRneed not fulfillr(1) = 0 neither
it is necessarily strictly decreasing.

Example 5. Vizualizations of the following t-subnorms are given in Figure 16.

(i) The mappingr : [0,1]→ [0,∞] given byr(x) =− ln x
2 is an additive generator of the t-subnorm

R : [0,1]2→ [0,1] given byR(x,y) = xy
2 .

Note thatR= (TP)0.5 , see expression (2), and thatR is a continuous strictly monotone Archi-
medean t-subnorm. Moreoverr(1) = ln2.

(ii) Let r : [0,1]→ [0,∞] be given byr(x) = max(1−x,a), a∈ [0, 1
2], i.e.,r(1) = aandr is not strictly

monotone whenevera 6= 0. However,r is an additive generator of the continuous Archimedean
t-subnormR : [0,1]2→ [0,1] with zero divisors given by

R(x,y) = max(0,min(x+y−1,x−a,y−a,1−2a)).

Note thatR= TL (the Łukasiewicz t-norm) ifa= 0, while R=W, W(x,y) = 0 for all x,y∈ [0,1],
if a = 1

2, the weakest t-subnorm.

(iii) Let r : [0,1]→ [0,∞] be given byr(x) = max(0,1−2x). Thenr is an additive generator of the
t-subnormR : [0,1]2→ [0,1] given by

R(x,y) = max(0,min(x+y− 1
2
,x,y,

1
2
)).

R is a continuous t-subnorm which is an ordinal sum(
〈0, 1

2,TL〉,〈12,1,W〉
)
, i.e.,R is not Archimedean.
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(iv) Let r : [0,1]→ [0,∞] be given byr(x) = min(1
2,1−x). Thenr is a continuous additive generator

of the non-continuous Archimedean t-subnormR : [0,1]2→ [0,1] given by

R(x,y) =

{
x+y−1 if x+y > 3

2,

0 otherwise.

Observe thatR is a left-continuous Archimedean t-subnorm. Recall that a non-continuous Archime-
dean t-norm cannot be left-continuous, see [15].
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Figure 16: T-subnorms from Example 5.

Though the class of continuous (left-continuous) Archimedean t-subnorms is not yet fully de-
scribed, and similarly the additive generators of continuous (left-continuous) t-subnorms are not yet
completely characterized, we have the following important result shown in [17].

Theorem 6. Each continuous non-decreasing mapping r: [0,1]→ [0,∞] is an additive generator of
some left-continuous t-subnorm R, i.e., R(x,y) = r(−1)(r(x)+ r(y)).

Note that the continuity of the left-continuous t-subnormR introduced in Theorem 6 is equivalent
to the strict monotonicity ofr on the interval[0, r(−1)(2r(1))], see [17].
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3 Residual implications and ordinal sum t-norms

Recall that, for a given left-continuous t-normT : [0,1]2→ [0,1], the corresponding residual implica-
tion IT : [0,1]2→ [0,1] is given by

IT(x,y) = sup{z∈ [0,1] | T(x,z)≤ y}. (9)

For more details about residual implications we recommend [5, 6, 13]. Note only thatT andIT
are linked by the so called adjunction property

T(x,y)≤ z iff x≤ IT(y,z), (10)

and that

T(x,y) = inf{z∈ [0,1] | IT(x,z)≥ y}. (11)

By means of (9), it is possible to define the residual operatorIR : [0,1]2→ [0,1] linked to a left-
continuous t-subnormR, as

IR(x,y) = sup{z∈ [0,1] | R(x,z)≤ y}, (12)

so that the adjunction property (10) and equality (11) hold forR andIR. Obviously, not all properties
of residual implications linked to t-norms remain valid for the residual operators linked to t-subnorms.
Namely, for any left-continuous t-normT we have

IT(x,y) = 1 iff x≤ y

and
IT(1,y) = y for all y∈ [0,1].

However, for the weakest t-subnormW (which is continuous) we have

IW(x,y) = 1 for all (x,y) ∈ [0,1]2.

Now, we turn our attention to left-continuous t-norms which are ordinal sums of semigroups, i.e.,
t-norms where the summands in their ordinal sum representation are left-continuous t-subnorms.

Theorem 7. Let T : [0,1]2→ [0,1] be a left-continuous t-norm with ordinal sum structure as given
in (4) and Theorem 2, i.e., T= (〈αk,βk,Rk〉)k∈K . Then the corresponding residual implication IT :
[0,1]2→ [0,1] is given by

IT(x,y) =


1 if x≤ y,

αk +(βk−αk) IRk

(
x−αk

βk−αk
, y−αk

βk−αk

)
if αk < y < x≤ βk,

y otherwise.

(13)

Observe that Theorem 7 applied to continuous t-norms implies the result of [3], see also [5].
Moreover, taking into account the fact thatITM(x,y) = y whenever 0≤ y < x≤ 1, representation (13)
can be understood as an ordinal sum of residual operators. Briefly, residuation of an ordinal sum is
just an ordinal sum of residual operators.
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Example 8. Let T : [0,1]2→ [0,1] be given by

T(x,y) =


0 if (x,y) ∈ [0, 1

2]2,
2xy−x−y+1 if (x,y) ∈]1

2,1]2,
min(x,y) otherwise.

This example was given in [20] :T is a (left-continuous) t-norm fulfilling the diagonal inequality
T(x,x) < x for all x ∈]0,1[ without being Archimedean. As already observed in [10],T is not an
ordinal sum of t-norms, but it is an ordinal sum of t-subnorms,T =

(
〈0, 1

2,W〉,〈12,1,TP〉
)
. Because of

Theorem 7, the corresponding residual implicationIT : [0,1]2→ [0,1] is given by

IT(x,y) =


1 if x≤ y,
1
2 if 0 < y < x≤ 1

2,
y+x−1
2x−1 if 1

2 < y < x≤ 1,

y otherwise.

4 Generated t-subnorms and residual operators

For a generated t-subnormR, the complete information aboutR is contained in its additive generator.
As we have seen in Theorem 6, the continuity of an additive generatorr implies the left-continuity
of the corresponding t-subnormR. Consequently, the residual operatorIR should be expressible by
means ofr.

Theorem 9. Let r : [0,1]→ [0,∞] be a continuous additive generator of the t-subnorm R: [0,1]2→
[0,1], i.e., R(x,y) = r(−1)(r(x)+ r(y)). Then the corresponding residual operator IR : [0,1]2→ [0,1]
is given by

IR(x,y) = r∗(r(y)− r(x)), (14)

where r∗ : [−∞,∞]→ [0,1] is an upper pseudo-inverse ofr̂ : [0,1]→ [−∞,∞], r̂(x) = r(x) for all
x∈ [0,1], given by [12, 21]

r∗(u) = sup{x∈ [0,1] | r(x)≥ u}. (15)

Remark 10. Note that for strictly monotone mappings, pseudo-inverses and upper pseudo-inverses
coincide. Moreover, ift : [0,1]→ [0,∞] is a (continuous) additive generator of a continuous Archime-
dean t-normT, i.e., if t is continuous, strictly monotone andt(1) = 0, thent∗(u) = t(−1)(max(0,u)) =
t−1(min(t(0),max(0,u))), and thusIT(x,y) = t−1(max(0, t(y)− t(x))), compare e.g. [3, 5].

Example 11. Keeping the notations of Example 5, we get the following residual operators, which are
visualized in Figure 17.

(i) r∗(u) = min(1,2e−u) andIR(x,y) = min(1, 2y
x ) with convention0

0 = 1.

(ii)

r∗(u) =

{
1 if u≤ a,

max(0,1−u) otherwise,
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and

IR(x,y) =

{
y+max(a,1−x) if y≤min(x−a,1−2a),
1 otherwise.

(iii)

r∗(u) =

{
1 if u≤ 0,

max(0, 1−u
2 ) otherwise,

and

IR(x,y) =

{
1 if min(x, 1

2)≤ y,

max(y,y+ 1
2−x) otherwise.

(iv)

r∗(u) =

{
min(1,1−u) if u≤ 1

2,

0 otherwise,

and

IR(x,y) =

{
min(1, 3

2−x) if y≤ 1
2,

min(1,1−x+y) otherwise.

In this caseR(x,y) is non-continuous and nilpotent andIR is continuous.
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Figure 17: Residual operators from Example 11.
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Remark 12. Based on Theorems 2 and 6, we can construct a left-continuous t-normT : [0,1]2→ [0,1]
as follows. For an arbitrary system(]αk,βk[)k∈K of non-empty pairwise disjoint open subintervals of
[0,1], choose an arbitrary system(rk)k∈K of non-increasing continuous mappingsrk : [αk,βk]→ [0,∞]
such that if eitherβk = 1 for somek∈K , or if βk = αk∗ for somek,k∗ ∈K andrk∗(βk∗) is finite, then
rk(βk) = 1 andrk is strictly monotone. Then it is suffices to put

T(x,y) =

{
r(−1)
k (rk(x)+ rk(y)) if (x,y) ∈]αk,βk]2,

min(x,y) otherwise.

Observe that following [12], the pseudo-inverser(−1)
k : [0,∞]→ [αk,βk]is given by

r(−1)
k (u) = sup{x∈ [αk,βk] | rk(x) > u}.

Then the corresponding residual implicationIT : [0,1]2→ [0,1]is given by

IT(x,y) =


1 if x≤ y,

r∗k(rk(y)− rk(x)) if αk < y < x≤ βk,

y otherwise,

where foru≥ 0,
r∗k(u) = sup{x∈ [αk,βk] | r(x)≥ u}.

5 Conclusion

Residual implications linked to the left-continuous ordinal sums of t-subnorms yielding a t-norm
were discussed. A new method to construct left-continuous t-norms and the corresponding residual
implications based on ordinal sums and additive generators was proposed, and thus some applications
in fuzzy logics, as well as in probabilistic metric spaces can be expected.
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In this paper we will generalize some constructions of triangular norms. First, we will put our attention
on the constructions of t-norms based on the transformation of a given t-norm by a pair of non-
decreasing functions. We will assume:

(C)


f ,g : [0,1]→ [0,1] be non-decreasing functions,
T : [0,1]2→ [0,1] be a t-norm,
Tf ,g : [0,1]2→ [0,1] be given by the folowing formula:

Tf ,g(x,y) =
{

g(T( f (x), f (y))) if max(x,y) < 1,
min(x,y) if max(x,y) = 1.

The conditions under which the functionTf ,g is a t-norm were discussed in [2], [4] and [7]. We
will use notationsf (t−) for limx→t− f (x), f (t+) for limx→t+ f (x) andR( f ) for the range of a function
f . Let us denote:

(1) g(T( f (x), f (y))≤min(x,y) for all x,y∈ [0,1).

(2) T( f (x), f (y)) ∈ R( f )∪ [0, f (0+)] for all x,y∈ [0,1).

(3) ∀x,y∈ [0,1) : T( f (x), f (y)) ∈ R( f )⇒ f (g(T( f (x), f (y)))) = T( f (x), f (y)).

(4) ∀x,y∈ [0,1) : T( f (x), f (y)) ∈ [0, f (0+)]\R( f )⇒ g(T( f (x), f (y))) = 0.

Theorem 1. Let (C). If (1-4) then Tf ,g is a t-norm.

A function g can be for instance a quasi-inverse of a non-decreasing functionf or the pseudo-
inverse of a non-decreasing functionf .

Definition 2. Let a,b,c,d ∈ [−∞,∞], a < b, c < d and let f : [a,b]→ [c,d] be a non-decreasing
function.

• A function f ∗ : [c,d]→ [a,b] such that∀y∈ [c,d] the following holds:

(i) y∈ R( f )⇒ f ∗(y) ∈ f−1({y}) = {x∈ [a,b] | f (x) = y},
(ii) y /∈ R( f )⇒ f ∗(y) = sup{x∈ [a,b] | f (x) < y}, (sup/0 = a),

is called aquasi-inverse of a non-decreasing function f.
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• A function f (−1) : [c,d]→ [a,b] defined∀y∈ [c,d] by formula:

f (−1)(y) = sup{x∈ [a,b] | f (x) < y},

(sup/0 = a), is called thepseudo-inverse of a non-decreasing function f .

If g = f ∗ then we have an immediate consequence of Theorem 1 (see [4]):

Corollary 3. Let (C) and g= f ∗. If (1-2) then Tf , f ∗ is a t-norm.

If g = f (−1) then we have an immediate consequence of Theorem 1 (see [4]):

Corollary 4. Let (C) and g= f (−1). If (2-3) then Tf , f (−1) is a t-norm.

We can observe that all these results contain the condition (2). We will introduce their general-
izations in the following sense: we omit the condition (2) and replace it by a new much more general
condition which covers even such cases, when the set

M = {t ∈ (0,1) | ∃x,y∈ [0,1) : T( f (x), f (y)) ∈ [ f (t−), f (t+)]\R( f )}

is an infinite set.

The second problem we will deal with is the folowing one: Under which conditions a strictly
decreasing functionf : [0,1]→ [0,∞], f (1) = 0, leads through the formula:

T(x,y) = f (−1)( f (x)+ f (y)) ∀x,y∈ [0,1],

where f (−1) is the pseudo-inverse of a non-increasing functionf ( f (−1)(y) = sup{x∈ [0,1] | f (x) >
y} for all y∈ [0,∞]; (sup/0 = 0)), to the associative functionT : [0,1]2→ [0,1].

The functionf is called aconjunctive additive generator of TandT is called thefunction gener-
ated by f, or briefly agenerated function.In the case of a t-normT we will say thatf is anadditive
generator of a t-norm T. Some sufficient conditions ensuring associativity of generated functions and
some properties of generated functions and their conjunctive additive generators can be found in [3],
[5] and [7].

In order to reformulate the above-mentioned problem of associativity of generated functions we
introduce the addition operation onR( f ) (see [10]):

Let
M = {A | ∃ f : [0,1]→ [0,∞] strictly monotone,R( f ) = A}.

Definition 5. Let A∈M .

• For all t ∈ [0,∞],
A∩ [sup(A∩ [0, t]), inf(A∩ [t,∞])]

(sup/0 = 0; inf /0 = ∞) is always a one-element set.

• A functionFA : [0,∞]→ A,

{FA(t)}= A∩ [sup(A∩ [0, t]), inf(A∩ [t,∞])]

is called thefunction given by A.
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• A binary operation⊕ : A×A→ A,

x⊕y = FA(x+y)

(+ is the usual addition on[0,∞]) is called theaddition operation on A.

The following result holds: Letf be a conjunctive additive generator ofT, R( f ) = A and let⊕ be
the addition operation onA. ThenT is a t-norm if and only if(A,⊕) is a semigroup. This result allow
us instead ofT and f study the operation⊕ onA.

In this part we will present some constructions of ranges of additive generators of t-norms and
we will show the characterization of all additive generators of t-norms which are left-continuous at
point 1. Further we will define so calledadditive representable semigroupsand we will explain the
relations between them and generated t-norms.

Finally, we will introduce the construction of weak additive generators of t-norms. The concept
of a weak additive generator of a t-norm was originally introduced by Jenei in [2]. The next definition
is its generalization covering the non-continuous case:

Definition 6. Let f : [0,1]→ [0,∞] be a non-increasing function,f (−1) : [0,∞]→ [0,1] be the pseudo-
inverse of a non-increasing functionf and letT : [0,1]2→ [0,1] be given by formula:

T(x,y) =
{

f (−1)( f (x)+ f (y)) if max(x,y) < 1,
min(x,y) if max(x,y) = 1 .

Then we will say thatf is aweak conjunctive additive generator of T.

We will introduce the construction of weak conjunctive additive generators of t-norms starting
from conjunctive additive generators of t-norms (see [9]).
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Uninorms were introduced by Yager and Rybalov [8] as a generalization of t-norms and t-conorms.
For uninorms, the neutral element is not forced to be either 0 or 1, but can be any value in the unit
interval.

T-norms do not allow low values to be compensated by high values, while t-conorms do not allow
high values to be compensated by low values. Uninorms may allow values separated by their neutral
element to be aggregated in a compensating way.

The structure of uninorms was studied by Fodoret al. [6]. The unit square (the domain of a
uninormU) is divided into four parts by the neutral elemente∈]0,1[. In the lower left square[0,e]2

there is an appropriately scaled t-norm, in the upper right square[e,1]2 there is a re-scaled t-conorm.
On the rest of the unit squareU can be defined in various ways (see [1, 2], and [3, 7] for the important
class of representable uninorms).

In this talk we reveal the structure of uninorms with fixed continuous underlying t-norm and t-
conorm (for more details see [4, 5]).
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Intuitionistic fuzzy sets defined by Atanassov in 1983 [1] form an extension of fuzzy sets. While
fuzzy sets give only a degree of membership, and the degree of non-membership equals one minus
the degree of membership, intuitionistic fuzzy sets give both a degree of membership and a degree
of non-membership that are more or less independent: the only condition is that the sum of the two
degrees is smaller than or equal to 1. Formally, an intuitionistic fuzzy setA in a universeU is defined
asA = {(u,µA(u),νA(u)) | u∈U}, whereµA andνA areU − [0,1] mappings giving the membership
degree and non-membership degree ofu in A respectively, and whereµA(u)+νA(u)≤ 1, for allu∈U .

Deschrijver and Kerre [4] have shown that intuitionistic fuzzy sets can also be seen asL-fuzzy sets
in the sense of Goguen [6]. Consider the setL∗ and the operation≤L∗ defined by :

L∗ = {(x1,x2) | (x1,x2) ∈ [0,1]2 andx1 +x2≤ 1},

(x1,x2)≤L∗ (y1,y2)⇔ x1≤ y1 andx2≥ y2, ∀(x1,x2),(y1,y2) ∈ L∗.

Then(L∗,≤L∗) is a complete lattice [4]. We denote its units by 0L∗ = (0,1) and 1L∗ = (1,0). From now
on, we will assume that ifx∈ L∗, thenx1 andx2 denote respectively the first and second component
of x, i.e. x = (x1,x2). It is easily seen that with every intuitionistic fuzzy setA corresponds anL∗-
fuzzy set, i.e. a mappingA : U → L∗ : u 7→ (µA(u),νA(u)). We will also use in the sequel the set
D = {x | x∈ L∗ andx1 +x2 = 1}.

Using the lattice(L∗,≤L∗), Deschrijver, Cornelis and Kerre have extended the notion of triangular
norm to the intuitionistic fuzzy case [2, 3]. An intuitionistic fuzzy triangular norm is a commutative,
associative, increasing(L∗)2−L∗ mappingT satisfyingT (1L∗ ,x) = x, for all x ∈ L∗. Intuitionistic
fuzzy t-norms can be constructed using t-norms and t-conorms on[0,1] in the following way. LetT
be a t-norm andSa t-conorm, then the dual t-normS∗ of S is defined byS∗(a,b) = 1−S(1−a,1−b),
for all a,b∈ [0,1]. If for all a,b∈ [0,1], T(a,b)≤ S∗(a,b), then the mappingT defined byT (x,y) =
(T(x1,y1),S(x2,y2)), for all x,y∈ L∗, is an intuitionistic fuzzy t-norm. We call an intuitionistic fuzzy
t-normT for which such a t-normT and t-conormSexist t-representable. Not all intuitionistic fuzzy
t-norms are t-representable, e.g.TW(x,y) = (max(0,x1 + y1−1),min(1,x2 + 1− y1,y2 + 1− x1)) is
not t-representable.

An intuitionistic fuzzy t-normT satisfies the residuation principle if and only if, for allx,y,z∈ L∗,
T (x,y)≤L∗ z⇔ y≤L∗ IT (x,z), whereIT denotes the residual implicator generated byT , defined as,
for x,y∈ L∗, IT (x,y) = sup{γ | γ ∈ L∗ andT (x,γ)≤L∗ y}.

In the fuzzy case, the residuation principle is equivalent to left-continuity of the t-norm[5]. The
intuitionistic fuzzy counterpart of left-continuity is intuitionistic fuzzy left-continuity, defined as fol-

51



lows. LetF be an arbitraryL∗− L∗ mapping anda ∈ L∗, thenF is called intuitionistic fuzzy left-
continuous ina iff

(∀ε > 0)(∃δ > 0)(∀x∈ L∗)((d(a,x) < δ andx≤L∗ a)⇒ d(F(x),F(a)) < ε),

whered denotes the Euclidean or Hamming distance ofR2 restricted toL∗.

Let T be an intuitionistic fuzzy t-norm. ThenT satisfies the residuation principle if and only if
supz∈Z T (x,z) = T (x,supz∈Z z), for all x∈ L∗ and all∅⊂ Z⊆ L∗. Only in the case of t-representable
intuitionistic fuzzy t-norms the last property is equivalent to intuitionistic fuzzy left-continuity. So
we have that a t-representable intuitionistic fuzzy t-normT satisfies the residuation principle if and
only if T is intuitionistic fuzzy left-continuous, but in general we only have that ifT satisfies the
residuation principle thenT is intuitionistic fuzzy left-continuous [2].

In general a characterization of intuitionistic fuzzy t-norms satisfying the residuation principle has
not yet been established. However, we have the following cases.

For the first representation theorem we will use the following possible properties of an intuition-
istic fuzzy t-normT :

(P.1) T (x,x) <L∗ x, for all x∈ L∗ \{0L∗ ,1L∗};

(P.2) there existx,y∈ L∗ such thatx1 andy1 are non-zero and such thatT (x,y) = 0L∗ .

Deschrijver, Cornelis and Kerre have proven that ifT is an(L∗)2−L∗ mapping, then the following
are equivalent [2]:

(i) T is a continuous intuitionistic fuzzyt-norm satisfying the residuation principle, the properties
(P.1) and (P.2),IT (D,D)⊆ D andT ((0,0),(0,0)) = 0L∗ ;

(ii ) there exists a continuous increasing permutationϕ of [0,1] such that, for allx,y∈ L∗,

T (x,y) = (ϕ−1(max(0,ϕ(x1)+ϕ(y1)−1)),
1−ϕ−1(max(0,ϕ(x1)+ϕ(1−y2)−1,ϕ(y1)+ϕ(1−x2)−1)));

(iii ) there exists a continuous increasing permutationΦ of L∗ such thatT = Φ−1◦TW ◦ (Φ×Φ).

A more general class of intuitionistic fuzzy t-norms that satisfy the residuation principle is the fol-
lowing. LetT be an intuitionistic fuzzy t-norm such that, for allx∈ D, y2 ∈ [0,1], pr2T (x,(0,y2)) =
pr2T (x,(1− y2,y2)). ThenT satisfies the residuation principle if and only if there exist two left-
continuous t-normsT1 andT2 on [0,1] such that, for allx,y∈ L∗,

T (x,y) = (T1(x1,y1),min{1−T2(1− pr2T ((0,0),(0,0)),
T2(1−x2,1−y2)),1−T2(x1,1−y2),1−T2(y1,1−x2)}),

andT2(x1,y1)= T1(x1,y1) as soon asT2(x1,y1)> T2(1−pr2T ((0,0),(0,0)), T2(x1,y1)), andT1(x1,y1)≤
T2(x1,y1) else, for allx1,y1 ∈ [0,1].

In the case thatT (D,D) ⊆ D, we have the following. LetT be an intuitionistic fuzzy t-norm
satisfying the residuation principle such thatT (D,D) ⊆ D, T1 be the[0,1]2− [0,1] mapping de-
fined byT1(x1,y1) = pr1T ((x1,1−x1),(y1,1−y1)), for all x1,y1 ∈ [0,1], andN1(x1) = sup{y1 | y1 ∈
[0,1] andT1(x1,y1) = 0}. Assume that range(N1) = [0,1], and

pr2T ((0,0),(y1,1−y1)) = 1⇔ y1 = 0, ∀y1 ∈ [0,1].
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Then, for allx,y∈ L∗,

T (x,y) = (T1(x1,y1),min{1−T1(1− pr2T ((0,0),(0,0)),T1(1−x2,1−y2)),
1−T1(1−y2,x1),1−T1(1−x2,y1)}).
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Abstract

The aim of this paper is to present recent results from the theory of intuitionistic fuzzy opera-
tors. Besides the known facts we show the characterization theorems for two classes of intuition-
istic fuzzy implications:S -implications andR -implications. Based on these characterizations we
find the minimal assumptions in the theorem which is dual to the classical Smets-Magrez Theo-
rem: the characterization of the Łukasiewicz implication. Some open problems are presented at
the end of the paper.

1 Preliminaries

Intuitionistic fuzzy sets were introduced by Atanassov in 1983 in the following way.

Definition 1 ([1]). An intuitionistic fuzzy setA in a universeX is an object

A = {(x,µA(x),νA(x) : x∈ X}, (1)

where functionsµA : X→ [0,1], νA : X→ [0,1] are called, respectively, the membership degree and
the non-membership degree. They satisfy the conditionµA(x)+νA(x)≤ 1 for all x∈ X.

This family can be seen asL-fuzzy set in the sense of Goguen. We use in this paper the following
notation presented by Cornelis et al. [6]:

L = {(x1,x2) ∈ [0,1]2 : x1 +x2≤ 1},
(x1,x2)≤L (y1,y2)⇐⇒ x1≤ y1∧x2≤ y2, (x1,x2),(y1,y2) ∈ L.

It can be easily proved that(L,≤L) is a complete lattice with units 0l = (0,1) and 1L = (1,0). This
lattice is not linear.

Like in the fuzzy set theory we can consider the generalizations of classical logical connectives
to the latticeL. In last years many papers are dedicated to investigations of these operations. Here
we present some results from this theory and we show new facts connecting with intuitionistic fuzzy
implications.

Since many characterizations theorem use the increasing bijections, we state now the important
result, which shows the dependence between increasing bijections onL and on the unit interval.
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Theorem 2 ([6]). A functionΦ : L → L is an increasing bijection if, and only if, there exists an
increasing bijectionϕ : [0,1]→ [0,1] such that

Φ(x) = (ϕ(x1),1−ϕ(1−x2)), x = (x1,x2) ∈ L. (2)

Now we present the definitions of fuzzy intuitionistic operators and we recall main results con-
nected with them.

Definition 3. A function N : L→ L is called an intuitionistic fuzzy negation (shortlyIF negation) if
it is decreasing and satisfiesN (0L) = 1L, N (1L) = 0L. If, in addition,N is an involution, i.e.,

N (N (x)) = x, x∈ L, (3)

thenN is called a strongIF negation.

The characterization of strongIF negations was first investigated by Bustince et al. [2]. The next
result was obtained by Cornelis et al.

Theorem 4 ([4]). A functionN : L→ L is a strong IF negation if, and only if, there exists a strong
negation N: [0,1]→ [0,1] such that

N (x) = (N(1−x2),1−N(x1)), x = (x1,x2) ∈ L. (4)

The definition of intuitionistic fuzzyt-norms andt-conorms are similar to the classical.

Definition 5. A function T : L2→ L is called an intuitionistic fuzzy triangular norm (shortlyIF t-
norm) if it is commutative, associative and increasing operation with the neutral element equal 1L.
A function S : L2→ L is called an intuitionistic fuzzy triangular conorm (shortlyIF t-conorm)if it is
commutative, associative and increasing operation with the neutral element equal 0L.

The definitions of the algebraic properties (e.g. Archimedean, nilpotentIF t -norm) are dual to
the classical case (see [8]), so we do not remind them. One of the most important theorems in the
classical theory is the representation of continuous, Archimedeant-norms (see [8], Theorem 5.1).
Unfortunately, we have not yet the similar result forIF t -norms. But for some class oft-norms (and
t-conorms) we have the representation.

Theorem 6 (Cornelis et al. [6]). A functionT : L2→ L is a continuous, Archimedean, nilpotent IF
t-norm which satisfies

sup
z∈Z

T (x,z) = T (x,sup
z∈Z

z), x∈ L, Z⊂ L (5)

if, and only if, there exist an increasing bijectionΦ : L→ L such thatT is conjugate with the IF
t-normTW, i.e.,

T (x,y) =Φ−1(TW(Φ(x),Φ(y))) = (ϕ−1(max(0,ϕ(x1)+ϕ(y1)−1)),

1−ϕ−1(max(0,ϕ(x1)+ϕ(1−y2)−1,ϕ(y1)+ϕ(1−x2)−1))) (6)

for all x = (x1,x2),y = (y1,y2) ∈ L with some increasing bijectionϕ : [0,1]→ [0,1].
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Theorem 7 (Cornelis et al. [6]). A functionS : L2→ L is a continuous, Archimedean, nilpotent IF
t-conorm which satisfies

inf
z∈Z

S(x,z) = S(x, inf
z∈Z

z), x∈ L, Z⊂ L (7)

if, and only if, there exist an increasing bijectionΦ : L→ L such thatS is conjugate with the IF
t-conormSW, i.e.,

S(x,y) =Φ−1(TW(Φ(x),Φ(y))) = (ϕ−1(min(1,ϕ(1−x2)+ϕ(y1),ϕ(1−y2)+ϕ(x1))),

1−ϕ−1(min(1,ϕ(1−x2)+ϕ(1−y2)))) (8)

for all x = (x1,x2),y = (y1,y2) ∈ L with some increasing bijectionϕ : [0,1]→ [0,1].

2 Intuitionistic fuzzy implication

The definition of the implication is based on the notation from fuzzy set theory introduced by Fodor,
Roubens [7].

Definition 8. A function I : L2→ L is called an intuitionistic fuzzy implication (shortlyIF implica-
tion) if it is monotonic with respect to both variables (separately) and fulfills the border conditions

I(0L,0L) = I(0L,1L) = I(1L,1L) = 1L, I(1L,0L) = 0L. (9)

The set of all intuitionistic fuzzy implications is denoted byIFI .

Now we introduce two important classes ofIF implications which are the generalizations from
the fuzzy logic.

Definition 9. Let S : L2 → L be anIF t -conorm andN : L → L be anIF negation. A function
I∫ ,N : L2→ L defined by formula

IS ,N (x,y) = S(N (x),y), x,y∈ L (10)

is called anIF S -implication.

The characterization of this family of functions was investigated by Bustinice et al. [3], but their
main result was not correct. Our result is the following.

Theorem 10. A functionI : L2→ L is an IF S -implication based on strong IF negationN if, and
only if I ∈ IFI satisfies conditions

I (1,x) = x, x∈ L,

I (x,I (y,z)) = I (y,I (x,z)), z,y,z∈ L,

I (I (x,0),0) = x, x∈ L.

Definition 11. Let T : L2→ L be anIF t -norm which satisfies (5). A functionIT : L2→ L defined by
formula

IT (x,y) = min{t ∈ L : T (x, t)≤ y}, x,y∈ L (11)

is called anIF R -implication.
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Theorem 12. A functionI : L2→ L is an IF R -implication if, and only ifI satisfies conditions

I (x,I (y,z)) = I (y,I (x,z)), z,y,z∈ L, (12)

I (x,y) = 1⇐⇒ x≤ y, z,y∈ L, (13)

inf
z∈Z

I (x,z) = I (x, inf
z∈Z

z), x∈ L, Z⊂ L, (14)

I (D,D)⊂ D, where D= {x∈ L : x1 +x2 = 1}. (15)

3 Characterization of the intuitionistic Łukasiewicz implication

It is well known that the Łukasiewicz implicationIŁK = min(1−x+y,1) is the only continuous fuzzy
implication (up to a conjugation) which is anS-implication and anR-implication (cf. [9]). It is a great
surprise that for theIF implications exists the analogous theorem obtained by Cornelis et al. [5]. Here
we want to investigate deeper their result and we want to reduce the needless axioms. As a result we
obtain the following theorem.

Theorem 13. A functionI : L2→ L is continuous and satisfies conditions(12), (13) and (14) if, and
only if there exist an increasing bijectionΦ : L→ L such thatI is conjugate with the IF Łukasiewicz
implicationILK , i.e.,

I (x,y) =Φ−1(ILK(Φ(x),Φ(y))) =

(ϕ−1(min(1,1−ϕ(x1)+ϕ(y1),1−ϕ(1−x2)+ϕ(1−y2))),

1−ϕ−1(1−max(0,ϕ(x1)−ϕ(1−y2)))) (16)

for all x = (x1,x2),y = (y1,y2) ∈ L with some increasing bijectionϕ : [0,1]→ [0,1].

We will in full paper present the examples that these axioms are independent and minimal one.

4 Open problems

Problem 14. An IF t -norm T is calledt-representable if there exist at-norm T and at-conormS
such thatT (x,y) = (T(x1,y1),S(x2,y2)), x = (x1,x2),y = (y1,y2) ∈ L. What is the characterization of
t-representableIF t -norm?

The analogous problem can be written forIF t -conorms. AnIF t -conormS is calledt-representable
if there exist at-normT and at-conormSsuch thatS(x,y) = (S(x1,y1),T(x2,y2)), x = (x1,x2),y =
(y1,y2) ∈ L.

Problem 15. What is the characterization oft-representableIF S -implication, i.e., whenIF t -conorm
S in Definition 9 ist-representable?

Problem 16. What is the characterization oft-representableIF R -implication, i.e., whenIF t -norm
T in Definition 11 ist-representable?
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1 Introduction

Type-2 fuzzy sets were introduced by Zadeh [12], extending the notion of ordinary fuzzy sets. In [6],
[3], [4], [7], [8], [9], and [10] are discussions of both theoretical and practical aspects of type-2 fuzzy
sets. We give here a treatment of the mathematical basics of type-2 fuzzy sets that is uncluttered and
which uses only standard mathematical notation. One feature is a treatment of t-norms for type-2 sets.

A fuzzy subsetA of a setS is a mappingA : S→ [0,1]. Operations on the setMap(S, [0,1]) of
all such fuzzy subsets ofScome pointwise from operations on[0,1]. Common operations on[0,1] of
interest in fuzzy theory are∧, ∨, and′ given by

x∧y = min{x,y}
x∨y = max{x,y}

x′ = 1−x

The constants 0 and 1 are generally considered as part of the algebraic structure, technically being
nullary operations. So the algebra basic to fuzzy set theory is([0,1],∨,∧,′ ,0,1). There are operations
on [0,1] other than these three that are of special interest in fuzzy matters, such as t-norms and t-
conorms.

Interval valued fuzzy setsare mappings of a setS into the algebra([0,1][2],∨,∧,′ ,0,1), where

[0,1][2] = {(a,b) : a,b∈ [0,1],a≤ b}
(a,b)∨ (c,d) = (a∨c,b∨d)
(a,b)∧ (c,d) = (a∧c,b∧d)

(a,b)′ = (b′,a′)
0 = (0,0)
1 = (1,1)

The fundamental mathematical properties of this algebra may be found in [1]. Also, t-norms and
t-conorms are defined for this algebra, and a theory presented there.

The situation for type-2 fuzzy sets is the same except that fuzzy subsets of type-2 are mappings
into a more complicated object than[0,1], namely intoMap([0,1], [0,1]), the set of all functions from
[0,1] to [0,1]. Again, operations on type-2 fuzzy sets, that is, on elements ofMap(S,Map([0,1], [0,1])),
will come point-wise from operations onMap([0,1], [0,1]). Operations are put onMap([0,1], [0,1])

59



using operations on both the domain and the range of a function inMap([0,1], [0,1]), which are both
[0,1]. This is where the difficulty of type-2 fuzzy sets lies.

We will put operations onMap([0,1], [0,1]) that are of interest in type-2 fuzzy set theory, and
develop some of their algebraic properties. Many of these results are known, but our treatment seems
simpler and less computational than those heretofore. It follows a systematic pattern, putting this topic
in the framework of algebras and their subalgebras. And befitting this meeting, we will emphasize
t-norms and t-conorms for this algebra.

2 Type-2 Fuzzy Sets

From now on, denote the unit interval[0,1] simply byI .

Definition 1. Let Sbe a set. Atype-2 fuzzy subset ofS is a mappingA : S→Map(I , I).

So for a setS, the set of all type-2 fuzzy subsets ofS is Map(S,Map(I , I)). We will look at some
operations onMap(I , I) commonly defined for type-2 sets. To make the following two definitions,
we use the two operations∧ and∨ on the range and the operation∨ on the domain for the first
and the operation∧ on the domain for the second. Such operations on functions are typically called
convolutions.

Definition 2. Let f andg be inMap(I , I).

( f tg)(x) =
∨

y∨z=x ( f (y)∧g(z))

( f ug)(x) =
∨

y∧z=x ( f (y)∧g(z))

We will denote the convolution of the unary operationx′ = 1− x on the domain of elements of
Map(I , I) by ∗. The formula for it is

f ∗(x) =
∨

y′=x f (y) = f (x′).

For f ∈ Map(I , I), f ′ denotes the function given byf ′(x) = ( f (x))′ . Denote by1 the element of
Map(I , I) defined by1(x) = 0 for all x 6= 1, and1(1) = 1. Denote by0 the map defined by0(x) = 0
for all x 6= 0, and0(0) = 1. These elements ofMap(I , I) can be considered nullary operations, and
can be gotten by convolution of the nullary operations 1 and 0 onI .

2.1 The Algebra(Map(I , I),t,u,∗ ,0,1)

At this point, we have the algebra(Map(I , I),t,u,∗ ,0,1) with the operationst, u, ∗, 0, and1 gotten
by convolution using the corresponding operations on the domain, and∨ and∧ on the image. This is
the basic algebra for type-2 fuzzy set theory.

The elements ofMap(I , I) have point-wise operations on them coming from operations on the
rangeI . Although we are interested in the algebra(Map(I , I),t,u,∗ ,0,1), the setMap(I , I) does
have the operations∨, ∧, ′, 0, 1 on it and is a Kleene algebra under these operations. In particular, it
is a lattice with order given byf ≤ g if f = f ∧g, or equivalently, ifg= f ∨g. We are at liberty to use
these operations in deriving properties of the algebra(Map(I , I),t,u,∗ ,0,1), and in fact one of our
main purposes is to express the operationst andu in terms of the simpler pointwise operations. We
define two auxiliary unary operations for exactly that purpose.
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Definition 3. For f ∈Map(I , I), let f L and f R be the elements ofMap(I , I) defined by

f L(x) = ∨y≤x f (y)

f R(x) = ∨y≥x f (y)

The following theorem expresses the convolution operationst andu directly in terms of pointwise
operations in two alternate forms.

Theorem 4. The following hold.

f tg =
(

f ∧gL)∨ (
f L∧g

)
= ( f ∨g)∧

(
f L∧gL)

f ug =
(

f ∧gR)
∨

(
f R∧g

)
= ( f ∨g)∧

(
f R∧gR)

Using these unary operations, the basic algebraic properties of the algebra
(Map(I , I),t,u,∗ ,0,1) may be derived rather easily, avoiding more complicated computations with
convolutions.

2.2 Two Order Relations

Even though the algebra(Map(I , I),t,u,∗ ,0,1) is not a lattice under the operationst andu, these
operations have the requisite properties to define partial orders.

Definition 5. f v g if f ug = f ; f � g if f tg = g.

Proposition 6. The pointwise criteria forv and� are these:

1. f v g if and only if fR∧g≤ f ≤ gR.

2. f � g if and only if f∧gL ≤ g≤ f L.

In general, these two partial orders are not the same, but do coincide for some special subalgebras
of (Map(I , I),t,u,∗ ,0,1).

3 Subalgebras of Type-2 Fuzzy Sets

For a∈ [0,1], let a be its characteristic function. That is,a(x) = 1 if x = a and is 0 otherwise.

Theorem 7. The mapping a→ a is an isomorphism from the algebra([0,1],∨,∧,′ ,0,1) to the sub-
algebra of(Map(I , I),t,u,∗ ,0,1) of functions of the forma. The mapping(a,b)→ aL ∧ bR is an
isomorphism from the algebra([0,1][2],∨,∧,′ ,0,1) to the subalgebra of(Map(I , I),t,u,∗ ,0,1) of
elements of the formaL∧bR.
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This fully legitimizes the claim that type-2 fuzzy sets are generalizations of type-1 and of interval-
valued fuzzy sets. But(Map(I , I),t,u,∗ ,0,1) contains many other subalgebras of interest, and these
are investigated. The subalgebra of normal convex functions is one of special interest. A functionf
in Map(I , I) is normal if f RL = 1, and is convex iff = f R∧ f L.

Theorem 8. The subalgebra of(Map(I , I),t,u,∗ ,0,1) of convex normal functions is a De Morgan
algebra.

4 T-norms for Type-2 Fuzzy Sets

The operations onMap(I , I) resulting from convolutions of t-norms and t-conorms on[0,1], we call
type-2 t-norms, and type-2 t-conorms.

Definition 9. Let4 be a t-norm, andf andg be elements ofMap(I , I).

( f Ng)(x) =
∨

y4z=x
f (y)∧g(z)

The convolutionH for a t-conorms5 on [0,1] is defined similarly.

We assume throughout that the t-norms and t-conorms on[0,1] are continuous. Of special
interest is the interaction of t-norms with the other algebraic operations onMap(I , I). Here are some
typical results.

Proposition 10. The following hold.

1. ( f Ng)R = f RNgR

2. ( f Ng)L = f L NgL

3. ( f Hg)R = f RHgR

4. ( f Hg)L = f L HgL

Theorem 11. The distributive laws

f N (guh) = ( fNg) u ( fNh) f N (gth) = ( fNg) t ( fNh)
f H (guh) = ( fHg) u ( fHh) f H (gth) = ( fHg) t ( fHh)

hold if and only if f is convex.

Corollary 12. If f is convex and gv h, then

f Ngv f Nh

f Hgv f Hh

If f is convex and g� h, then

f Ng� f Nh

f Hg� f Hh
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4.1 T-Norms on the Subalgebra of Characteristic Functions of Points

As we have seen, a copy of the algebra([0,1],∨,∧,′ ,0,1) is contained in the algebra(Map(I , I),t,u,∗ ,0,1) ,
namely the characteristic functionsa for a∈ [0,1]. The formula

(aNb)(x) =
∨

y4z=x
a(y)∧b(z)

says thataNb is the characteristic function ofa4b, as it should be. This implies the following.

Theorem 13.For any t-norm4, the mapping a→a is an isomorphism from the algebra([0,1],∨,∧,4,′ ,0,1)
onto the subalgebra of(Map(I , I),t,u,N,∗ ,0,1) of characteristic functions of points.

4.2 T-Norms on the Subalgebra of Characteristic Functions of Intervals

In [1], t-norms were defined on the set[0,1][2], and the requirements resulted in exactly that t-norms
were calculated coordinatewise on the endpoints of the intervals. That is, t-norms on[0,1][2] were of
the form

(a,b)4 (c,d) = (a4b,c4d)

where4 is a t-norm on[0,1]. Consider the subalgebra of(Map(I , I),t,u,N,∗ ,0,1) of functions of
the formaL ∧bR with a≤ b, or equivalently of the characteristic functions of closed intervals[a,b].
From the formula (

aL∧bR)
N

(
cL∧dR)

(x) =
∨

y4z=x

(
aL∧bR)

(y)∧
(
cL∧dR)

(z)

it follows that (
aL∧bR)

N
(
cL∧dR)

=
(
aL NcL)∧ (

bRNdR)
So t-norms on this subalgebra are calculated coordinatewise on the endpoints of the intervals. This
results in the following.

Theorem 14. The mapping (a,b) → aL ∧ bR is an isomorphism from the algebra
([0,1][2],∨,∧,4,′ ,0,1) onto the subalgebra of(Map(I , I),t,u,N,∗ ,0,1) of characteristic functions
of closed intervals.
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In the recent book [1] we examine in a systematic way different defects of properties in Sets Theory,
Topology, Measure Theory, Real Function Theory, Complex Analysis, Functional Analysis, Algebra,
Geometry, Number Theory in a classical or fuzzy context. A discussion on the defects of properties
of triangular norms is also initiated in [1], starting from an idea in the paper [4] where the defect of
associativity of a binary operation on[0,1] is introduced.

Our purpose is to continue the study of t-norms (and t-conorms) that have not the properties of
idempotency, complementarity or distributivity. The deviations from these properties can be evaluated
introducing the following global defects of properties:

• defect of idempotency of the t-normT

dID (T) = sup{x−T (x,x) ;x∈ [0,1]}

• defect of complementarity of the t-normT

dC (T) = sup{T (x,1−x) ;x∈ [0,1]}

• defect of distributivity ofF with respect toG (F andG t-norms or t-conorms)

dDIS(F,G) = sup{|F (x,G(y,z))−G(F (x,y) ,F (x,z))| ;x,y,z∈ [0,1]} .

It is obvious that the values of defects are equal to 0 if and only if the respective properties
are verified. The defects are calculated for the important families of Frank ((Tλ)λ∈[0,+∞]), Yager

(
(
Tλ)

λ∈[0,+∞]), Hamacher and Sugeno-Weber t-norms and the basic t-normsTM = T0,TP = T1,TL =
T∞,TW = T0. For example,

dID (Tλ) =


logλ

√
λ+1
2 , if λ ∈ (0,1)∪ (1,+∞)

0, if λ = 0
1
4, if λ = 1
1
2, if λ = +∞

and

dDIS(TM,TP) = dDIS(TP,TP) = dDIS(TL,TP) = dDIS(TW,TP) =
1
4
.
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The above introduced defects are studied in connection with: the dual of a t-norm, the order
between t-norms, the reverse of a t-norm, the ordinal sum of a family of t-norms, the properties of
Archimedean and strict t-norm, t-norms with threshold, well-founded t-norms, nearly Frank t-norms
(see [3]). Partly, the proved properties are generalizations of results already obtained. Thus, the
property

dDIS(ST1,T2) = dDIS(T1,ST2) ,

whereST denotes the dual t-conorm of t-normT, can be considered as a generalization of the result
proved in [5]: ifT is distributive with respect toST thenST is distributive with respect toT. Also, the
property

dDIS(T,ST)≥ dID (T) = dID (ST)≥ 0,

is a generalization of the result in the same paper [5]: ifT is distributive with respect toST thenT and
ST are idempotent.

Some methods to improve the properties of complementarity and distributivity of t-norms are
proposed. Thus, ifTϕ is a ϕ-transform of a t-normT relative to a standard generatorϕ (that is
Tϕ (x,y) = ϕ−1(T (ϕ(x) ,ϕ(y))) ,∀x,y∈ [0,1], whereϕ : [0,1]→ [0,1] is an increasing automorphism
with ϕ(x)+ϕ(1−x) = 1,∀x∈ [0,1] - see e.g. [6]) then

dC
(
Tϕ

)
= ϕ−1(dC (T)) .

Choosing the generatorϕ such thatϕ−1(dC (T)) < dC (T) we obtain a t-norm with a better property
of complementarity. Also, ifT,T ′ are two t-norms andTϕ,T ′ϕ are t-norms generated by the pseudo-

automorphismϕ (that isTϕ (x,y) = ϕ[−1] (T (ϕ(x) ,ϕ(y))), T ′ϕ (x,y) = ϕ[−1] (T ′ (ϕ(x) ,ϕ(y))) if x,y∈
[0,1) andTϕ (x,y) = T ′ϕ (x,y) = min(x,y) if max(x,y) = 1, whereϕ : [0,1]→ [0,1] is a non-decreasing

continuous function withϕ(0) = 0,ϕ(1) = 1 andϕ[−1] is a quasi-inverse ofϕ - see [2]) andϕ[−1] is a
k-contraction,k∈ (0,1), then

dDIS
(
Tϕ,T ′ϕ

)
≤ kdDIS

(
T,T ′

)
,

therefore we obtain t-norms with a better property of distributivity.

Open problems relative to above introduced defects and to other defects of the binary operations
constructed by using triangular norms are formulated (the calculus of the defect of associativity of the
reverse of a triangular norm, for example). Different defects of properties of t-norms as future themes
of research are introduced . As examples, let us consider

• defect of continuous Archimedean t-norm

dA(T) = sup
{

lim
n→∞

dn(x) ;x∈ [0,1)
}

,

whered is the diagonal ofT anddn is the composition ofn copies ofd

• defect of self-reversibility of the t-normT

dR(T) = sup{T (x,y)−max{0,x+y−1+T (1−x,1−y)} ;x,y∈ [0,1]}

• defect of Frank t-norm ofT

dF (T) = sup{|T (x,y)+ST (x,y)−x−y| ;x,y∈ [0,1]} .
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Finally, some possible applications are presented. As example, if we define the defect of vertical
⊕-additivity of the integral

∫ ⊕ by

sup

{
sup

{∣∣∣∣∫ ⊕ fA�dm⊕
∫ ⊕

fAC�dm−
∫ ⊕

f �dm

∣∣∣∣ ;A∈ A
}

; f ∈ F
}

,

where fM (x) = f (x) if x∈M, fM (x) = 0 if x /∈M,⊕ is a continuous t-conorm,� is a left continuous
t-norm andm is a⊕-additive fuzzy measure, then an estimation of the defect of vertical⊕-additivity
by defect of distributivity of� with respect to⊕ can be given.
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Abstract

Theoretical advances in modelling aggregation of information produced a wide range of ag-
gregation operators, applicable to almost every practical problem. The most important classes
of aggregation operators include triangular norms, uninorms, generalised means and OWA op-
erators. With such a variety, an important practical problem has emerged: how to fit the pa-
rameters/weights of these families of aggregation operators to observed data? How to estimate
quantitatively whether a given class of operators is suitable as a model in a given practical setting?

Aggregation operators are rather special classes of functions, and thus they require specialised
regression techniques, which would enforce important theoretical properties, like commutativity
or associativity. My presentation will address this issue in detail, and will discuss various re-
gression methods applicable specifically to t-norms, uninorms and generalised means. I will also
demonstrate software implementing these regression techniques, which would allow practitioners
to paste their data and obtain optimal parameters of the chosen family of operators.

1 Fitting triangular norms

Characterisation theorems (see [4, 7]) provide a way to represent continuous Archimedian t-norms and
conorms through their additive generators. Importantly, convergence of a sequence of additive gen-
erators is equivalent to convergence of the corresponding sequence of t-norms [4], Ch.8. This result
provides a way of fitting t-norms to observation data through the approximation of their additive gen-
erators. The additive generator is modelled with a monotone linear spline, and spline coefficients are
found by solving a rectangular system of linear equations, subject to non-negativity of the variables.
This is a classical problem of non-negative least squares [5], for which fast and robust algorithms are
available [3]. There are some technical issues related to non-uniqueness of the additive generators
(which are defined up to a positive multiplier), and strict t-norms, which cannot be uniquely identified
from the data in on the whole of their domain.

An important class of t-norms that are copulas can also be modelled using additive generators, be-
cause of the characterisation theorem [4, 7] that relates copulas to the convexity of additive generators.
Thus, additional restrictions are imposed on spline coefficients, which guarantee its convexity.

2 Fitting uninorms

Uninorms behave like t-norms on one part of the domain and like t-conorms on the other. The tech-
nique of approximation additive generators can be extended to representable uninorms. For a fixed
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neutral elemente (which is the zero of the additive generator), it is a straightforward adaptation of
the above method of monotone splines, now with one additional linear restriction ate. However, the
neutral element itself can also be found from the data. To this end, an optimisation problem is solved
to find the global optimum ofe, in which for every intermediate value ofe , spline coefficients are
computed using the non-negative least squares method of [3].

3 Fitting generalised means

Quasiarithmetic means also possess additive generators, whose sum is now weighted [1, 2]. Similarly
to t-norms and uninorms, one can fit generators to the data, by computing coefficients of a linear
monotone spline. The technique is practically the same as the one employed for t-norms, with cor-
responding weighting of the components of the matrix of the constrained system of linear equations.
However, if not only the generator, but the weights of the (generalised) mean need to be found from
the data, the problem becomes more complicated. There are two sets of variables in the regression
problem: the weights and the spline coefficients. Since for a fixed vector of weights, spline coeffi-
cients are found though a non-negative linear least squares problem, one can separate variables: at the
outer level the global optimisation problem with respect to weights is solved, and at the inner level
(i.e., for every fixed vector of weights) spline coefficients are computed.

A particular instance of this technique, generalised quasilinear means, in which generators are
power functions, was discussed in [2]. However the global nature of the optimisation problem was
not recognised.

4 Extensions

Similarity of representation of t-norms, uninorms and means through the univariate generator func-
tions prompts one to consider these operators in one framework, as instances of the same class of
functions satisfying∑n

i=1aig(xi) = g(y) In case of t-norms and uninorms, all weightsai = 1, for means
ai = 1/n, for generalised means∑ai = 1. Condition∑ai = n is used to introduce degrees of impor-
tance of arguments into t-norms ([1], Eq.(34)). Intermediate cases result from a weaker restriction
ai ≥ 0.

Given the generator functiong explicitly, the weightsai can be determined from the data using
non-negative least squares procedure. Otherwise, both the generator (i.e., its spline coefficients) and
the weights can be found from data in a manner used for generalised means, with one less restriction.

Further, commutativity of the aggregation operator can be ensured by ordering the arguments xi
in decreasing order, like it is done in OWA operators (these are so-called pseudo-OWA [6], Eq.(17)).
The usual OWA operator becomes a special case ofg(x) = x. No changes to the regression procedure
are necessary, except the reordering of arguments in the observation data.
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The talk will include two different topics which are somewhat related to each other. These topics are
described in Sections 1 and 2.

1 On the relationship between the rotation construction and Abelian
groups

We call the construction of extending the operation from the positive cone of an ordered group into the
whole group symmetrization. The aim of this section is twofold. First, the rotation construction [8] –
a method, which is a much less understood than symmetrization – shall be related to symmetrization,
thus providing a better understanding of the rotation-construction. In fact, the rotation-construction is
described as a kind of semi-symmetrization. Second, the symmetrization of t-conorms (and t-norms)
is defined analogously. We shall symmetrize t-conorms on[1

2,1] in order to obtain operations on
[0,1]. The subclass of t-conorms shall be characterized which results in associative operations via
symmetrization. In fact, associativity of such an operation, which is constructed from a t-conorm by
symmetrization, is equivalent to that it is a uninorm. In addition, a characterization is given for those
t-conorms in terms of a set of equations.

The results are illustrated by three-dimensional plots.

1.1 Rotation versus symmetrization

Standing assumption:Unless otherwise specified, throughout the paper we fix an arbitrary strong
negation′, and denote its (unique) fixed point byt. Further, we denoteI−= [0, t[, I+ = [t,1], I−= [0, t]
andI+ =]t,1]. We shall consider the following properties:

(A1) Commutativity x∗◦y = y∗◦x
(A2) Associativity x∗◦(y∗◦z) = (x∗◦y)∗◦z
(A3) Monotonicity x∗◦y≤ x∗◦z whenevery≤ z
(A4) Con junctive nature x∗◦y≤min(x,y).

The rotation construction and the rotation-annihilation construction for t-norms were introduced in [8]
and [9], respectively. Their a far-leading generalization to the setting of partially-ordered semigroups
is in [6]. These general results applying to our topic and by using the terminology of the present paper
are quoted in Theorems 1 and 8.
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Theorem 1. (Rotation) Let ∗◦ be a left-continuous operation on[t,1] satisfying (A1), (A2) and (A3).
Define∗◦r (of type[0,1]× [0,1]→ [0,1]) by

x∗◦r y =


x∗◦y if x,y∈ I+
(x→∗◦y′)′ if x ∈ I+ and y∈ I−
(y→∗◦x′)′ if x ∈ I− and y∈ I+
0 if x,y∈ I−

(1)

∗◦r is a left-continuous rotation invariant operation satisfying (A1), (A2) and (A3) if and only if either

C1. x∗◦y = 0 impliesmin(x,y) = 0 or

C2. there exists c∈]0,1] such that x∗◦y = 0 iff x,y≤ c.

In addition,∗◦r satisfies (A4) if and only if∗◦ satisfies (A4).

By applying Theorem 1 to t-conorms (which always satisfy conditionC1) we obtain:

Corollary 2. Let⊕ be a left-continuous t-conorm on[t,1]. The operation⊕r (of type[0,1]× [0,1]→
[0,1]) given by

xrot⊕y =


x⊕y if x,y∈ I+
(x→⊕y′)′ if x ∈ I+ and y∈ I−
(y→⊕x′)′ if x ∈ I− and y∈ I+
0 if x,y∈ I−

(2)

is a left-continuous, rotation invariant operation satisfying (A1), (A2) and (A3).

Since taking the dual operation preserves properties (A1), (A2) and (A3), we proceed as follows: By
taking the dual operation� of ⊕ with respect to′ (that is, the de Morgan identityx� y = (x′⊕y′)′

holds) we deduce the following statement from Corollary 2:

Corollary 3. Let� be a right-continuous t-norm on[0, t]. The operation�r (of type[0,1]× [0,1]→
[0,1]) given by

x�r y =


1 if x,y∈ I+

(y←�x′)′ if x ∈ I+ and y∈ I−

(x←�y′)′ if x ∈ I− and y∈ I+

x�y if x,y∈ I−

(3)

is a left-continuous, rotation invariant operation satisfying (A1), (A2) and (A3).

Still assuming that⊕ and� are duals, (which is equivalent tox→⊕y = (x′←�y′)′, as it is easy to
verify) we obtain that the operation in (3) is equal to

x(⊕d)
r y =


1 if x,y∈ I+

y′→⊕x if x∈ I+ andy∈ I−

x′→⊕y if x∈ I− andy∈ I+

(x′⊕y′)′ if x,y∈ I−

(4)

Since the operation� is dual to⊕ (in notation,�=⊕d) it is not confusing to denote�r by (⊕d)
r .

At this point, we are ready to define thesymmetrizationof ⊕. One may call the operation defined in
(5) the symmetrization of� as well (in notation�s).
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Definition 4. Let⊕ be a left-continuous t-conorm on[t,1]. Let⊕r and(⊕d)
r be defined by (2) and

(4), respectively. Define the binary operation⊕r on [0,1] by

x⊕sy =
{

xrot⊕y if x,y∈ I+ or (x∈ I+, y∈ I−, x≤ y′) or (x∈ I−, y∈ I+, x≤ y′)
x(⊕d)

r y if x,y∈ I− or (x∈ I+, y∈ I−, x > y′) or (x∈ I−, y∈ I+, x > y′)
(5)

In a more detailed form:

x⊕sy =



x⊕y if x,y∈ I+

(x→⊕y′)′ if x∈ I+ andy∈ I− andx≤ y′

y′→⊕x if x∈ I+ andy∈ I− andx > y′

(y→⊕x′)′ if x∈ I− andy∈ I+ andx≤ y′

x′→⊕y if x∈ I− andy∈ I+ andx > y′

(x′⊕y′)′ if x,y∈ I−

(6)

(5) points out that rotation can be considered as a kind of semi-symmetrization. In order to illustrate
it with a figure, letx′ = 1−x. Denote by�P the product t-norm on[0, 1

2], by⊕P its dual t-conorm on
[1
2,1]. Figure 18 shows the relation between the rotation- and the symmetrization constructions.
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Figure 18:(⊕P)r (left), its dual(�P)r (center), and(⊕P)s (right).

Lemma 5. ⊕s is a uninorm iff it is associative.

1.2 Symmetrizing t-conorms

Theorem 6. Let⊕ be a left-continuous t-conorm.⊕s is associative if and only if one of the following
is true:

1. ⊕ is isomorphic to the dual of the product t-norm.

2. ⊕ is isomorphic to the dual of the minimum t-norm.

3. ⊕ is isomorphic to the dual of an ordinal sum with summands all being product t-norms.

Example 7. Let x′ = 1−x. At the first row of Figure 19 the rotation of the maximum t-conorm (left),
its dual (center), and the symmetrization of the maximum t-conorm. In the bottom row and in Figure
18 an example is depicted in the same style corresponding to items 3 and 1 in Theorem 6, respectively.
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Figure 19: Illustration for items 2 and 3 of Theorem 6, see Example 7

2 Partially compensative associative operators by rotation and rotation-
annihilation

2.1 Associativity versus compensation

Many authors have tried to find operators that are associative and compensative at the same time.
As pointed out in [3] uninorms admit partial compensation (that is, at least on some subdomain of
[0,1]2 they have compensative nature). We shall point out in this talk that associativity and compen-
sative nature can not be satisfied simultaneously. In fact, the proper definition on the diagonal and
its neighborhood is problematic. As a way out, the rotation construction and the rotation-annihilation
construction, in their most general forms [6], allow us to define wide families of associative aggre-
gation operations, which admit partial compensation. Thus, the here-defined operators are similar to
uninorms, a class which is being investigated intensively in the literature. The method is illustrated
with several 3D plots.

However, partial compensation is possible. We say thatM is compensativeon a subsetX of
[0,1]2, if for (x,y) ∈ X, min(x,y) ≤ M(x,y) ≤ max(x,y), andstrictly compensativeif for (x,y) ∈ X,
min(x,y) < M(x,y) < max(x,y).

Dombi has introduced a class of aggregative operators [1]. A remarkable member of this family
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is

M(x,y) =
xy

xy+(1−x)(1−y)
(7)

called “Three Pi” operator after Yager. This class of aggregative operators is a special class of the
so-called uninorms. Uninorms were introduced in [12]. They generalize the notions of t-norms and
t-conorms by allowing the neutral elemente to lay in the open unit interval]0,1[. A first description of
the structure of uninorms is in [3]. It has turned out that a subclass of uninorms, called representable
uninorms, coincides with the class of aggregative operators of Dombi. Further, any uninormU has
an underlying t-normT and t-conormS acting on the subdomains[0,e]× [0,e], and[e,1]× [e,1] of
[0,1]2, respectively. Therefore, compensation is possible only on the remaining subdomains

[0,e]× [e,1] and [e,1]× [0,e] (8)

and in fact, any uninorm is compensative on that subdomain.

Moreover, any member of the class ofrepresentableuninorms is strictly compensative on those
subdomains. Fodor et. al. [2] have recently characterized all the possible uninorm operationsM acting
on [0,e]× [e,1]∪ [e,1]× [0,e], provided that the underlying t-normT and t-conormSare both continu-
ous. The result says, among others, thatM has strictly compensative nature only on those subdomains
[a,b]× [c,d] of [0,e]× [e,1] (and, of course, symmetrically) where[a,b] and[c,d] correspond tostrict
summands in the ordinal sum representation ofT andS, respectively (see Fig. 20).

Thus, representable uninorms are the best candidates of uninorms in terms of compensability.

Our aim in this section is to introduce a new class of operators, which – similar to uninorms – admits
partial compensation. We shall achieve this goal by using a generalization of the rotation construc-
tion [8] and the rotation-annihilation construction [9] for t-norms. The properties of the introduced
operators will be discussed and several illustrative examples will be given.

Theorem 8. (Rotation-annihilation) Let ′ be a strong negation, t its unique fixed point, d∈]t,1[ and

define a strong negation by Nd (x) = x·(d−d′)+d′ ′−d′

d−d′ . Let M be a left-continuous operation on[0,1]
satisfying (A1), (A2) and (A3).

C1. If x,y > 0 implies M(x,y) > 0 then let M2 be a left-continuous t-subnorm which admits the
rotation invariance property w.r.t. Nd. Further, let I− = [0,d′[, I0 = [d′,d] and I+ =]d,1].

C2. If there are x,y > 0 such that M(x,y) = 0 then let M2 be a left-continuous t-norm which admits
the rotation invariance property w.r.t. Nd (equivalently, let M2 be a left-continuous t-norm with
associated negation Nd). Further, let I− = [0,d′], I0 =]d′,d[ and I+ = [d,1].

Let M3 be the linear transformation of M1 into [d,1], M4 be the linear transformation of M2 into [d′,d]
and M5 be the annihilation of M4 given by

M5(x,y) =
{

0 if x,y∈ [d′,d] and x≤ y′

M4(x,y) if x,y∈ [d′,d] and x> y′
.
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Define Mra : [0,1]× [0,1]→ [0,1] by

Mra (x,y) =



M3(x,y) if x,y∈ I+

IM3 (x,y′)′ if x ∈ I+, y∈ I−

IM3 (y,x′)′ if x ∈ I−, y∈ I+

0 if x,y∈ I−

M5(x,y) if x,y∈ I0

y if x∈ I+ and y∈ I0

x if x∈ I0 and y∈ I+

0 if x ∈ I− and y∈ I0

0 if x ∈ I0 and y∈ I−

, (9)

Then Mra is a left-continuous rotation invariant operation satisfying (A1), (A2) and (A3), and called
therotation-annihilationof M and M2.

In addition, Mra satisfies (A4) if and only if M satisfies (A4).
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t

0 1

1

M1

N(x)
t

t
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1

M1

M2

N (x)d

d

d

Figure 20: Strictly compensative domains of a uninorm (dark grey) with strict summandsA (left).
Illustration for the rotation construction (center) and for the rotation-annihilation construction (right)

2.2 Operators by rotation

The last assertion of Theorem 1 points out, that willing to construct compensative operators, t-
subnorms (and hence also t-norms) are not suitable to play the role ofM.

2.2.1 Rotations of t-conorms and t-superconorms

By observing that conditionC1 is always satisfied by any t-superconorm (hence also by any t-conorm),
we obtain that any t-superconorm (hence also any t-conorm) can play the role ofM in Theorem 1. We
shall investigate the compensative nature of the resulted operator.

Theorem 9. Let ′ be a strong negation, t its unique fixed point and S be a left-continuous t-superconorm.
Thenmin≤ Sr ≤maxholds on the domains[0, t]×]t,1] and]t,1]× [0, t].
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Figure 21:(SM )rot (left), (SP)rot (right) and(SL )rot (bottom)

Example 10. Let x′ = 1−x. The rotations of the three basic conorms given bySM (x,y) = max(x,y),
SP(x,y) = 1− (1−x)(1−y) andSL (x,y) = min(1,x+y−1) are plotted in Figure 21.

Further, letSbe the t-conorm defined by the following two summands:

S= {([0.15,0.45],SP),([0.55,0.85],SL )}

Sand its rotation are plotted in Figure 22.
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Figure 22:S, see Example 10 (left),SP0.7 (center) andSL0.3 (right)

Example 11. Consider the following two family t-superconorms: Letε be any real number from[0,1]
and define

SPε(x,y) = 1− ε(1−x)(1−y), SL ε(x,y) = min(1,x+y+ ε).
SL0 andSP1 are equal toSL , the Łukasiewicz t-conorm andSP, the product t-conorm, respectively. Let
x′ = 1−x. Two members from these families are plotted together with their rotations in Figure 23.

2.2.2 Rotations of uninorms

Taking into account Theorem 1 we see that not every uninorm is suitable for playing the role ofM.
The uninorms that can be rotated (i.e. those, which result in associative operation via rotation) are
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Figure 23: The rotations of the t-norms in Figure 22, respectively

precisely the class of uninorms such that their underlying t-norm admits one of conditionsC1andC2.

Theorem 12. Let ′ be a strong negation, t its unique fixed point and U be a left-continuous uninorm
with neutral element e. Let U1 be the linear transformation of U into[t,1] and denote the image of e
under this linear transformation by e∗. Then

1. the rotation Urot of a uninorm U is a uninorm with neutral element e∗.

2. min≤Urot ≤maxholds on the domains[0,e∗]×]e∗,1] and]e∗,1]× [0,e∗].

Example 13. Let x′ = 1−x. The “Three Pi” operation defined in (7) and its rotation are presented in
Figure 24.
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Figure 24: “Three Pi” and its rotation (left), see Example 13.U and its rotation (right), see Example
14

Example 14. Let x′ = 1−x. Figure 24 shows the uninorm defined below together with its rotation.

U(x,y) =
{

min(x,y) if max(x,y)≤ 1
2,

max(x,y) otherwise.
(10)

Remark 15. Since uninorms have an underlying t-norm, this method – as a by-product – results in a
new method for constructing left-continuous (and non-continuous) t-norms.
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2.3 Operators by rotation-annihilation

The last assertion of Theorem 8 points out, that willing to construct compensative operators, t-
subnorms (and hence also t-norms) are not suitable to play the role ofM1.

Standing assumption:Throughout this sectionM2 will be an operation chosen as in Theorem 8 (de-
pending on the zero values ofM1), we change the operationM1 only.

Theorem 16. Let ′ be a strong negation, t its unique fixed point, d∈]t,1[. Let Mra be the rotation-
annihilation of a left-continuous t-superconorm and M2. Thenmin≤Mra ≤maxholds on the domains
[0,d]×]d,1] and]d,1]× [0,d].

Theorem 17. Let ′ be a strong negation, t its unique fixed point, d∈]t,1[. Let U be a a left-continuous
uninorm with neutral element e and denote by e∗ the image of e under the increasing linear trans-
formation which maps[0,1] onto [d,1]. Let Mra be the rotation-annihilation of U and M2. Then
min≤Mra ≤maxholds on the domains[0,e∗]×]e∗,1] and]e∗,1]× [0,e∗].
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Figure 25: Rotation of t-superconorms and uninorms (left), rotation-annihilations of t-superconorms
SandM2 and uninormsU andM2 (right). The compensative parts of the domains are highlighted

Example 18. Let x′ = 1− x, d = 2
3. The dual ofSL (called the Łukasiewicz t-norm) is defined by

TL (x,y) = min(0,x+y−1). Three operators, which are results of rotation-annihilation withM1 being
a t-conorm are in Figure 26.
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Figure 26: Rotation-annihilations ofSM andTL (left), SP andTL (right) andSL andTL (bottom), see
Example 18
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Example 19. For ε ∈ [0,1] the rotation-invariant t-subnorm, which is dual toSL ε is defined byTL ε =
min(0,x+y−1− ε). Let x′ = 1−x, d = 2

3. Two operators, which are results of rotation-annihilation
with M1 being a uninorm are in Figure 27.
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Figure 27: Rotation-annihilations of “Three Pi” andTL0.3 (left), U (defined in (10)) andTL (right), see
Example 19

Remark 20. From Figures 21, 22 and 26 one may have the intuition that the obtained operations do
have neutral elements, and thus they are uninorms. Indeed, the elementt (which is 1

2 in Figures 21 and
22) seems to be neutral when rotating t-conorms; and the elementd (which is 2

3 in Figure 26) seems to
be neutral when applying the rotation-annihilation construction with a t-conorm andM2. But taking
into account that the obtained operations are always left-continuous (or by checking this conjecture
in formulas (1) and (9)), one immediately see that it is not the case. However, denoting byε a small
positive real number,t + ε (d + ε, respectively) behavealmost like neutral elements, as it is easy to
see. The smallerε is the more the elementt + ε (d+ ε, respectively) behave as neutral elements do.
That is, the obtained operations have an “almostneutral” element, which may be interesting from the
application viewpoint.

Example 21. Finally, we present an example in order to emphasize that the here-introduced methods
can be used iteratively. Consider the operation in the rightmost operation of Figure 24. On the left
of Figure 28 the rotation of it can be seen. Consider the operation, which is on the left-hand side of
Figure 27. Use it as a summand on[0.05,1] in an ordinal sum (in order to obtain an operation without
zero divisors). Its rotation can be seen on right of Figure 28. On the bottom of Figure 28 the rotation
of the rotation of the Three Pi operation is presented.

Keywords: Aggregation, Compensation, Associativity, Uninorm, Rotation, Rotation-annihilation
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Figure 28: The operations of Example 21
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1 Introduction

The concept of domination has been introduced in the framework of probabilistic metric spaces [8, 7]
when constructing Cartesian products of such spaces. In the framework of t-norms, domination is
also needed when building fuzzy equivalence (ordering) relations from already given corresponding
fuzzy relations. The crucial point during this process is the preservation of theT-transitivity of the
underlying given fuzzy relations. Note that related problems of preserving special properties were
also investigated in the framework of pseudo-additive measures ([5, 4]).

Standard aggregation of fuzzy equivalence (ordering) relations preservingT-transitivity is done
either be means ofT or TM (x,y) = min(x,y). Both of them, i.e.T itself andTM , trivially dominate the
considered t-normT. Staying in the framework of t-norms, in fact any t-normT∗ dominatingT can
be applied to preserveT-transitivity, i.e. ifR1,R2 are twoT-transitive, binary relations on a universe
X, then alsoT∗(R1,R2) has this property (see [3, 1]).

In several applications, other types of aggregation processes preserving
T-transitivity are required (e.g. [2]). Especially different weights (degrees of importance) of input
fuzzy equivalence (ordering) relations cannot be properly modelled by the aggregation with t-norms,
because of their commutativity. Therefore, generalT-transitivity-preserving aggregation operators
have to be considered and the concept of domination in the framework of aggregation operators had
to be introduced (see [6]). We will briefly recall the definition of domination of aggregation operators
and some basic results.

2 Domination of aggregation operators

Definition 1. Consider ann-ary aggregation operatorA(n) : [0,1]n→ [0,1] and anm-ary aggregation
operatorB(m) : [0,1]m→ [0,1]. We say thatA(n) dominatesB(m) (A(n)� B(m)) if, for all xi j ∈ [0,1]
with i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, the following property holds:

B(m)
(
A(n)(x11, . . . ,x1n), . . . ,A(n)(xm1, . . . ,xmn)

)
(1)

≤ A(n)
(
B(m)(x11, . . . ,xm1), . . . ,B(m)(x1n, . . . ,xmn)

)
.
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Note that if eithern or mor both are equal to 1, because of the boundary condition of aggregation
operators,A(n)� B(m) is trivially fulfilled for any two aggregation operatorsA,B.

Definition 2. Let A andB be aggregation operators. We say thatA dominatesB (A � B), if A(n)
dominatesB(m) for all n,m∈ N.

Note that, if two aggregation operatorsA andB are both acting on some closed intervalI = [a,b]⊆
[−∞,∞], then the property of domination can be easily adapted by requiring that the Inequality (1)
must hold for all argumentsxi j from the intervalI and for alln,m∈ N.

We will briefly mention some basic results concerning isomorphic aggregation operators and ag-
gregation operators which are associative.

Consider an aggregation operatorA :
⋃

n∈N [a,b]n→ [a,b] on [a,b] and a monotone bijectionϕ :
[c,d]→ [a,b]. The operatorAϕ :

⋃
n∈N [c,d]n→ [c,d] defined by

Aϕ(x1, . . . ,xn) = ϕ−1(A(ϕ(x1), . . . ,ϕ(xn))
)

is an aggregation operator on[c,d], which is isomorphic toA.

Proposition 3. Consider two aggregation operatorsA andB both acting on[a,b].

(i) A� B if and only ifAϕ� Bϕ for all non-decreasing bijectionsϕ : [c,d]→ [a,b] .

(ii) A� B if and only ifBϕ� Aϕ for all non-increasing bijectionsϕ : [c,d]→ [a,b] .

Proposition 4. LetA,B be two aggregation operators. Then the following holds:

(i) If B is associative andA(n)� B(2) for all n ∈ N, thenA� B.

(ii) If A is associative andA(2)� B(m) for all m∈ N, thenA� B.

3 Domination of continuous Archimedean
t-norms

Next we concentrate on the domination of an aggregation operator over a continuous Archimedean
t-norm, which turns out to be closely related to subadditive aggregation operators ([6], compare
also [5]).

Definition 5. A function F : [0,c]n→ [0,c] is subadditiveon [0,c], if the following inequality holds
for all xi ,yi ∈ [0,c] with xi +yi ∈ [0,c]:

F(x1 +y1, . . . ,xn +yn)≤ F(x1, . . . ,xn)+F(y1, . . . ,yn).

An aggregation operatorA :
⋃

n∈N [0,c]n→ [0,c] acting on[0,c] is subadditive, if all n-ary operations
A(n) : [0,c]n→ [0,c] are subadditive on[0,c].

If we want to show that an aggregation operatorA dominates the Łukasiewicz t-normTL (A �
TL ) it is equivalent to prove that the Łukasiewicz t-conormSL dominates the dual aggregation op-
eratorAd (SL � Ad) because of the isomorphism property (see Proposition 3), i.e., for arbitrary
x1, . . . ,xn,y1, . . . ,yn ∈ [0,1], the following inequality must hold

SL (Ad(x1, . . . ,xn),Ad(y1, . . . ,yn))≥ Ad(SL (x1,y1), . . . ,SL (xn,yn))
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being equivalent to

min(Ad(x1, . . . ,xn)+Ad(y1, . . . ,yn),1)≥ Ad(min(x1 +y1,1), . . . ,min(xn +yn,1)).

Furthermore, the last inequality can be rewritten in the following form

Ad(x1, . . . ,xn)+Ad(y1, . . . ,yn)≥ Ad(min(x1 +y1,1), . . . ,min(xn +yn,1)).

If xi +yi ≤ 1 for all i ∈ {1, . . . ,n}, then we can derive that

Ad(x1, . . . ,xn)+Ad(y1, . . . ,yn)≥ Ad(x1 +y1, . . . ,xn +yn)

expressing thatAd is a subadditive function on[0,1]. The sufficiency of the subadditivity ofAd to
ensureSL � Ad follows easily from the monotonicity ofAd.

If we are looking for some aggregation operatorA :
⋃

n∈N[0,1]n→ [0,1] which dominates the
product t-normTP we can apply once again Proposition 3, i.e.,A� TP and thereforeAϕ� (TP)ϕ for
some strictly decreasing bijectionϕ : [0,∞]→ [0,1]. If we choose the bijectionϕ by

ϕ : [0,∞]→ [0,1],ϕ(x) = exp(−x),

we get that
(TP)ϕ(x,y) = ϕ−1(ϕ(x) ·ϕ(y)) =− log(exp(−x) ·exp(−y)) = x+y

such that an aggregation operatorA dominatesTP if and only if its isomorphic transformationAϕ is
dominated by the sum, which means in fact that the isomorphic aggregation operatorAϕ is subadditive
on [0,∞] (and thus concave).

In order to get an impression which aggregation operators are possible candidates for dominating a
continuous Archimedean t-norm and therefore whose isomorphic transformations are subadditive we
will consider certain types of aggregation operators, e.g. aggregation operators with neutral element
0 and OWA operators generated by some quantifier function.
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In this paper we consider t-norms on countable bounded chains. After some general 
preliminaries, we focus our attention on t-norms defined on C = {0,1,2,...,n}, 
C = {0,1,2,...,n,...,+∞} and C = {-∞,...,-n,...,-1,0,1,...,n,...,+∞} respectively. 
Representation theorems for divisible t-norms on C = {0,1,2,...,n,...,+∞} and 
C = {-∞,...,-n,...,-1,0,1,...,n,...,+∞} are obtained.  
 
After preliminaries, some of the main results are described below 
 
 
1.- Preliminaries 
 
A t-norm T on a bounded chain (C , ≤ , 0 , 1) (a linear ordered set with minimum 0 and 
maximum 1), is a binary operation on C such that for all x,y,z∈C the following axioms are 
satisfied: 
 
(T1) T(x,y) = T(y,x) 
(T2) T(T(x,y),z) = T(x,T(y,z)) 
(T3) T(x,y) ≤ T(x,z)  whenever  y ≤ z 
(T4) T(x,1) = x 
 
A t-norm T on a bounded chain C is divisible if the following condition holds: 
 
(DIV) For all x,y∈C with x ≤ y there is z∈C such that x = T(y,z)  
 
A t-norm T on a bounded chain C is archimedean if the following condition holds: 
 
(AR) For all x,y∈C – {0,1} there exist m∈N such that x(m) < y    
 
Similarly, the concept of t-conorm can be introduced in the usual way. For a t-conorm S, 
the DIV and AR conditions are:  
 
(DIV)  For all x,y∈C with x ≤ y there is z∈C such that y = S(x,z)  
 
(AR) For all x,y∈C – {0,1} there exist m∈N such that x(m) > y    
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2.-  t-norms on C = {0,1,2,...,n-1,n} 
 
A t-norm T on a finite chain C = {0,1,2,...,n-1,n} is called discrete (see [1], [3], [4]). In this 
case, the divisibility condition can be characterized by means of the Lipschitz property:  
T(x,y) – T(z,y) ≤ x – z  whenever  x ≥ z.  
The class of divisible discrete t-norms has been characterized by Mayor and Torrens 1993 
([5]). In this paper they prove that there is a unique archimedean divisible t-norm: TL(x,y) = 
max(x + y – n , 0) , and any not archimedean divisible t-norm is an (non trivial) ordinal sum 
of archimedean divisible t-norms. More precisely: 
 
 
Theorem 1 
Let n∈N and C = {0,1,2,...,n-1,n} be a finite chain with n+1 elements. A t-norm T on C is 
divisible if and only if there exists a set  I = {0 = a0 < a1 <  ... < ap < ap+1 = n} ⊂ C  with p ≥ 
0 such that  
 

 
Remark 1 
Let us denote by T I the t-norm described in this theorem. Observe that I is the set of         
idempotent elements of T I 

In case p = 0  that is  I = {0,n}, then  T I = TL 
In case p = n – 1 that is  I = C, then T I = TM  ,  TM(x,y) = min(x,y) 
 

Corollary 1 
The correspondance  I → T I is a bijection. There are 2n - 1 divisible discrete t-norms on         
a finite chain of n + 1 elements. 
 
 
Let N be the only strong negation (non-increasing and involutive function) on  
C = {0,1,2,...,n-1,n}, that is  N(x) = n – x for all x in C. For any t-norm T on C we consider 
the so-called N-dual of T: T*(x,y) = N(T(N(x),N(y)))  for all x,y in C. T* is a t-conorm. 
Analogously, given any t-conorm S on C its N-dual is defined by  
S*(x,y) = N(S(N(x),N(y))). S* is a t-norm on C. Obviously, (T*)* = T and (S*)* = S. 
Given a pair (T,S) where T is a t-norm and S a t-conorm, we call this pair a dual pair when 
T* = S (or S* = T). 
Observe that given a dual pair (T,S) then we have: T is divisible (archimedean) if and only 
if S is divisible (archimedean).  



 ∈+−++
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otherwiseyxmin
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yxT iiiii
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Corollary 2 
Let n∈N and C = {0,1,2,...,n-1,n} be a finite chain with n+1 elements. A t-conorm S on C is 
divisible if and only if there exists a set  I = {0 = a0 < a1 <  ... < ap < ap+1 = n} ⊂ C  with p ≥ 
0 such that  
 
 

 
 
Remark 2 
Let us denote by S I the t-norm described in this theorem. Observe that I is the set of         
idempotent elements of S I 

In case p = 0  that is  I = {0,n}, then  S I = SL:  SL(x,y) = min(x+y , n). This t-conorm is the 
only one which is divisible and archimedean. 
In case p = n – 1 that is  I = C, then S I = SM:  SM(x,y) = max(x,y) 
There are  2n - 1 divisible discrete t-conorms on a finite chain of n + 1 elements. 
 
 
A nice relation between Frank’s equation ([2]) and the condition of divisibility for discrete 
t-norms and t-conorms is given by the following 
 
Theorem 2 
A pair (T,S) where T is a t-norm and S a t-conorm on C = {0,1,2,...,n-1,n} is a solution of 
the functional equation  T(x,y) + S(x,y) = x + y   , x,y∈C   if and only if  T and S are 
divisible with the same set of idempotent elements. 
 
Remark 3 
a)  The number of solutions (T,S) of the Frank’s equation related to C = {0,1,2,...,n-1,n} is     
2n-1 

b)  A solution (T I , S I) of the Frank’s equation  is a dual pair if and only if  N(I) = I. There 
is  2[n/2]  dual pairs which are solutions of this equation. 
 
 
 
3.-  t-norms on C = {0,1,2, ... , n , ... , +f}  
 
Theorem 3 
a) There does not exist any divisible archimedean t-norm on C 
b) S(x,y) = x + y  is the only divisible archimedean t-conorm on C 
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Theorem 4 
a) A t-norm T on C = {0,1,2, ... , n , ... , +∞} is divisible if and only if there exist an 

infinite set  I = {0 = a0 < a1 < a2 < ... < +∞} of elements of C such that  
 

b) A t-conorm S on C = {0,1,2, ... , n , ... , +∞} is divisible if and only if one of the 
following conditions hold:  

b.1)  there exists an infinite set I = {0 = a0 < a1 < a2 < ... < +∞}} of elements of C such that  

or 

b.2)  there exists an finite set I = {0 = a0 < a1 < a2 < ... < ap < +∞}  of elements of C such 
that  

 

Remark 4. 
a) Let us denote by T I  and S I the t-norm and t-conorm described as in theorem 4. 

Observe that I is the set of idempotent elements of T I and  S I. In case I = C, T I = TM 
and S I = SM. In case I = {0,+∞},  S I(x,y) = x + y  the only archimedean divisible  
t-conorm on C. 

b) There are uncountably many divisible t-norms and t-conorms on  
C = {0,1,2, ... , n , ... , +∞} 

c) There are no dual pairs (T,S) on C (there is no any strong negation on C). 
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4.-  t-norms on C = {-f,...,-n,...,-1,0,1,...,n,...,+f} 
 
Theorem 5 
a)  There does not exist any divisible archimedean t-norm on C 
b) There does not exist any divisible archimedean t-conorm on C 

 
Similar representation theorem for this case can be also stated 
 
 
Theorem 6 
a)  A t-norm T on C = {-∞,...,-n,...,-1,0,1, ... , n , ... , +∞} is divisible if and only if one of 
the following conditions hold: 
 
a.1)  There exists an infinite set  I = { -∞ < a1 < a2 <  ... < +∞ } of elements of C such that  
 

or 

 
a.2)  There exists an infinite set  I = {-∞ < ... a-1 < a0 < a1 < a2 <  ... < +∞} of elements of C 
such that  

 

b)  A t-conorm S on C = {-∞,...,-n,...,-1,0,1, ... , n , ... , +∞} is divisible if and only if one of 
the following conditions hold:  

b.1)  there exists an infinite set I = {-∞ < ... a-1 < a0 < a1 <  ... < +∞} of elements of C such 
that  
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or 

b.2)  there exists an infinite set  I = {-∞  < ...  a-2 < a-1 < a0 < +∞}  of elements of C such 
that  
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Copulas are functions which join or couple multivariate distribution functions to their one-dimensional
margins. In the bivariate case, they share properties with triangular norms, e.g., they map[0,1]2 to
[0,1], satisfy certain boundary conditions, are increasing in each place, etc.

Their importance in statistical modeling is primarily a consequence of Sklar’s Theorem (1959):
Let H be a two-dimensional distribution function with marginal distribution functionsF andG. Then
there exists a copulaC such thatH(x,y) = C(F(x),G(y)). Conversely, for any distribution functions
F andG and any copulaC, the functionH defined above is a two-dimensional distribution function
with marginsF andG. Furthermore, ifF andG are continuous,C is unique.

In this talk we present an overview of some of the most important properties and applications of
copulas. Of particular interest will be the class of Archimedean copulas, which are also triangular
norms. As we shall illustrate, it is easy to construct a great variety of such copulas, and members of
the class have pleasing statistical properties.

In statistical modeling, dependence is often of more interest than independence, and many de-
scriptions and measures of dependence are "distribution-free" or "scale-invariant," in that they remain
unchanged under strictly increasing transformations of random variables. As Schweizer and Wolff
(1981) noted, ". . . it is precisely the copula which captures [such] properties of joint distributions."
Consequently, many scale-invariant (i.e., nonparametric) properties and measures of association are
expressible in terms of copulas.

With the aid of copulas, we shall explore the relationships among dependence concepts such as
concordance, quadrant dependence, and likelihood ratio dependence, and measures of association
such as the population versions of Spearman’s rho, Kendall’s tau, and Gini’s gamma. The problem
of finding best-possible bounds on certain sets of copulas leads toquasi-copulas, and we shall con-
sider briefly some of their properties and applications, including some recent results on the class of
multivariate Archimedean quasi-copulas.
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1 Introduction

We will discuss some properties of and some relationships between important classes of copulas. First,
we show that the both the strict and the non-strict Archimedean copulas form dense subclasses of the
class of associative copulas. Next, we characterize copulas, which are invariant under the construction
of survival copulas, and some related classes of copulas. Finally, we present an application of copulas
in aggregation theory. Full details of these results can be found in [9, 10, 11], for basic references
about copulas see [14, 17].

2 Uniform approximation of associative copulas

The setX = [0,1][0,1]2 of all functions from the unit square[0,1]2 into the unit interval[0,1], will
be equipped with the topologyT∞ induced by the metricd∞ : X 2 −→ [0,∞] given by d∞( f ,g) =
sup

{
| f (x,y)−g(x,y)|

∣∣ (x,y) ∈ [0,1]2
}

(corresponding to the uniform convergence).

The class of associative copulas, i.e., of all 1-Lipschitz t-norms [8, 13] is a compact subset ofX
(observe that this is not true for the class of all continuous t-norms).

The main result of this part can be formulated as follows (for the proof and more details see [9]):

96



Theorem 1. The setCa of all associative copulas is the closure of both the setCs of all strict copulas
and the setCns of all non-strict Archimedean copulas.

This means in particular that each associative copula can be approximated with arbitrary precision
by some strict as well as by some non-strict Archimedean copula. Notice thatCs andCns are disjoint
sets whose union, i.e., the set of Archimedean copulas, is a proper subset ofCa.

Taking into account the results of [8, Section 8.2] (compare also [7]), the convergence of Archime-
dean copulas is strongly related to the convergence of their corresponding generators. To be precise,
a sequence(Cn)n∈N of Archimedean copulas with generators(ϕn)n∈N converges to an Archimedean
copulaC with generatorϕ if and only if there is a sequence of positive constants(cn)n∈N such that
for eachx∈ ]0,1] we have lim

n→∞
cn ·ϕn(x) = ϕ(x).

Given two copulasC andD, consider their∗-product C∗D : [0,1]2−→ [0,1] introduced in [2] by

C∗D(x,y) =
∫ 1

0

∂C(x, t)
∂t

· ∂D(t,y)
∂t

dt.

The functionC ∗D is well-defined since the partial derivatives exist almost everywhere, and it is
always a copula, i.e., the∗-product is an operation on the setC of all copulas. Moreover,(C ,∗) is
a non-commutative semigroup whose annihilator is the productTP and whose neutral element is the
minimumTM [12].

As a consequence of Theorem 1 and [2, Theorem 2.3], for each associative copulaC and for each
copulaD there are sequences of Archimedean and strict and non-strict Archimedean copulas(Cn)n∈N ,
respectively, such that the sequences(Cn)n∈N and(Cn ∗D)n∈N converge uniformly toC andC∗D,
respectively.

3 Invariant copulas

For a given copulaC, the corresponding survival copula (which has natural applications in reliability
theory) is given by

Ĉ(x,y) = x+y−1+C(1−x,1−y). (1)

It is straightforward that the operator ˆ is involutive. Two other important involutive operators on the
class of all copulas correspond toC0,1 andC1,0 (see also [3, 8]) given by, respectively,

C0,1(x,y) = x−C(x,1−y), (2)

C1,0(x,y) = y−C(1−x,y). (3)

We also shall writeC0,0 = C andC1,1 = Ĉ for each copulaC.

Denote byC the class of all copulas, byT the class of all associative copulas (i.e., the class of
all copulas which are also t-norms), and byS the class of all commutative (i.e., symmetric) copulas.
Moreover, letT be the convex hull ofT . Then obviously the following strict inclusions hold:

T ⊂ T ⊂ S ⊂ C .

Furthermore, for each pair(i, j) ∈ {0,1}2 let Ci, j be the class of all copulas which are invariant under
the corresponding involutive transformation, i.e.,

Ci, j = {C∈ C |Ci, j = C}.

It is trivial that C0,0 = C .
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Theorem 2. Let C∈ C be a copula and(i, j) ∈ {0,1}2. Then we have C∈ Ci, j if and only if there is
a D∈ C such that D(i, j) = C, where

D(i, j) =
D+Di, j

2
.

Denote byC ∗ the set of all copulas which are invariant under (1)–(3), i.e.,

C ∗ = C0,1∩C1,0∩C1,1.

Theorem 3. Let C be a copula. Then we have C∈ C ∗ if and only if there is a copula D∈ C such that
D∗ = C, where

D∗ =
D+D0,1 +D1,0 +D1,1

4
.

Two prominent members ofC ∗ are the productTP and the copulaK given byK = TM +TL
2 . The

importance of Frank t-norms [4] is also exemplified by the following result concerning associative
survival copulas.

Proposition 4. Let C be an associative copula. Then we have C∈C1,1 if and only if there is aλ∈ [0,∞]
such that C= TF

λ or if C is an ordinal sum of Frank t-norms of the form

C = (〈ak,bk,T
F

λk
〉)k∈K ,

where for each k∈ K there is a k′ ∈ K such thatλk = λk′ and ak +bk′ = bk +ak′ = 1.

However, the only associative copula which is invariant under (2) or (3) is the productTP.

Full details and proofs of the results in this section are contained in [10].

4 Aggregation based on copulas

Let X be a non-empty index set andf : X −→ [0,1] the input system to be aggregated. Let(X,A ,m)
be a fuzzy measure space, i.e.,A is aσ-algebra of subsets ofX (in the case of a finite setX we usually
takeA = 2X), andm: A −→ [0,1] a fuzzy measure as introduced in [18], thus satisfyingm( /0) = 0,
m(X) = 1 andm(A)≤m(B) wheneverA⊆ B. Denote byL(A) the set of allA-measurable functions
from X to [0,1].

Definition 5. Consider two fuzzy measure spaces(X,A ,m) and(]0,1[2 ,B(]0,1[2),µ). The functional
Mm,µ : L(A)−→ [0,1] given by

Mm,µ( f ) = µ(Dm, f ),

will be called(m,µ)-aggregation operator, where

Dm, f = {(x,y) ∈ ]0,1[2 | y < m({ f ≥ x})}.

Special fuzzy measuresµ imply reasonable properties of the(m,µ)-aggregation operatorMm,µ:

Proposition 6. Let C: [0,1]2−→ [0,1] be a copula and denote by µC the unique probability measure
on(]0,1[2 ,B(]0,1[2)) with µC(]0,x[× ]0,y[) =C(x,y) for all (x,y)∈ ]0,1[2. Then, for each fuzzy mea-
sure space(X,A ,m), the(m,µC)-aggregation operator Mm,µC is an idempotent aggregation operator
and we have Mm,µC(lA) = m(A) for all A ∈ A .
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Note that such a copula-based approach to aggregation was originally proposed in [5] (see also
[6]) for the Frank family of t-norms (see, e.g., [4, 8]). Depending on the choice of the copulaC, we
obtain some well-known types of integrals.

Example 7. Keeping the notations of Proposition 6, we obtain the following special cases:

(i) If C equals the standard productTP, i.e.,µTP is the Lebesgue measure onB(]0,1[2), thenMm,µTP

is just the Choquet integral with respect tom (see [1, 15]).

If, in addition, m is a σ-additive measure on(X,A), thenMm,µTP
coincides with the classical

Lebesgue integral with respect tom, and forX = {1,2, . . . ,n} we obtain a weighted mean.

If X = {1,2, . . . ,n} and if m is a symmetric fuzzy measure on(X,2X) thenMm,µTP
is an OWA

operator [19].
(ii) If C equals the minimumTM then

µTM (A) = λ({x∈ ]0,1[ | (x,x) ∈ A}),

andMm,µTM
equals the Sugeno integral (see [18] and also [15]).

If X = {1,2, . . . ,n} and ifm is a symmetric fuzzy measure on(X,2X) thenMm,µTM
is an WOWM

(weighted ordered weighted maximum) operator [16].
(iii) If C equals the Łukasiewicz t-normTL then

µTL (A) = λ({x∈ ]0,1[ | (x,1−x) ∈ A}),

and if the index setX is finite, thenMm,µTL
is the so-called opposite Sugeno integral [5].

Concerning dual aggregation operators we obtain the following result:

Proposition 8. Let X be a finite set. Keeping the notations and hypotheses of Proposition 6, we have

Md
m,µC

= Mmd,µĈ
. (4)

Observe that if a copulaC coincides with its survival copulâC, then a special form of (4) holds,
namely,Md

m,µC
= Mmd,µC

. All copulas with the propertyC= Ĉ were characterized in [10]. In particular,
because of Proposition 4 (see also [4]) an associative copulaC coincides with its survival copulâC
if and only if C is either a member of the family of Frank t-norms(TF

λ )λ∈[0,∞] or if C is a symmetric
ordinal sum of Frank t-norms [8, 10]. Because ofTF

0 = TM , TF
1 = TP, andTF

∞ = TL , for all Sugeno,
Choquet and opposite Sugeno integrals we have (forX finite)(∫

X
f dm

)d
=

∫
X

f dmd.
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T-norms and copulas in fuzzy preference modelling

BERNARD DE BAETS

Department of Applied Mathematics, Biometrics and Process Control
Ghent University
Gent, Belgium

E-mail: Bernard.DeBaets@rug.ac.be

This contribution is organized in two major parts. The aim of the first part is to revise the axiomatic
construction of (additive) fuzzy preference structures and is the result of a joint collaboration with
J. Fodor. We first introduce the notion of a generator triplet consisting of a preference, indifference
and incomparability generator, suitable for constructing fuzzy preference structures from a given fuzzy
preference relation. We then show that such a triplet is uniquely determined by a symmetric indiffer-
ence generatori located between the Łukasiewicz t-norm and the minimum operator. The main results
concern the link with the axiomatic framework of Fodor and Roubens. We introduce the notion of a
monotone generator triplet and show that such a triplet is characterized by an increasing 1-Lipschitz
indifference generator (such as a commutative copula, for instance). Further characterizations concern
that case thati is an ordinal sum of Frank t-norms, and finally, the case thati is a Frank t-norm, which
corresponds to the fact that the generator triplet is determined by t-norms only (in fact, by two Frank
t-norms with reciprocal parameters).

The second part consists of a study of the transitivity of a reciprocal representation of fuzzy pref-
erence structures without incomparability and is the result of a joint collaboration with H. De Meyer
and S. Jenei. For a reciprocal relationQ on a set of alternativesA, we introduce the concept of cycle-
transitivity which is based upon the ordering of the degreesQ(a,b), Q(b,c) andQ(c,a), for all triplets
(a,b,c) ∈ A3. Each type of cycle-transitivity is determined by an upper boundU ; there is also an
associated dual lower bound. We investigate suitable upper bounds and introduce the notion of a self-
dual upper bound. We show that cycle-transitivity generalizes stochastic transitivity. Also, we show
that under very mild conditions, fuzzy transitivity (i.e.C-transitivity, with C a conjunctor) can be
translated into cycle-transitivity. For a commutative copulaC, for instance,C-transitivity is equivalent
to cycle-transitivity with as upper bound the dual ofC and as lower bound the corresponding survival
copula. In the more familiar context of t-norms, this means for instance thatT-transitivity with T a
Frank t-norm, is equivalent to cycle-transitivity with as upper bound its dual t-conorm and as lower
bound the Frank t-normT itself.
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The role of copulas in discrete and continuous dice models
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We first introduce the notion of a discrete dice model as a framework for describing a class of proba-
bilistic relations (or equivalently, a class of reciprocal relations). The transitivity of the probabilistic
relation generated by such a dice model is a special type of cycle-transitivity that is situated between
moderate stochastic transitivity or product-transitivity on the one side, and Łukasiewicz-transitivity
on the other side, and which we call dice-transitivity.

The discrete dice model can be regarded as a consistent way of mutually comparing random vari-
ables from a given collection of independent discrete random variables that are uniformly distributed
on discrete number sets. This interpretation allows to extend the dice model so that arbitrary, not
necessarily independent, discrete or absolutely continuous random variables can be compared. It is
shown that then-copula expressing the joint cumulative distribution (c.d.f.) of the collection of ran-
dom variables (generalized dice) as a function of the univariate marginal c.d.f.’s, plays a key role in
the determination of the transitivity of the probabilistic relation generated by the collection. When
the copula is the product copula (P-copula), the random variables are independent and for arbitrary
marginal c.d.f.’s, the transitivity of the generated probabilistic relation is at least dice-transitive. When
the copula is the min-copula (M-copula), the generated probabilistic relation is at least Łukasiewicz-
transitive, and when the copula for bivariate marginals is the Łukasiewicz copula (W-copula), then the
generated probabilistic relation is at least moderately stochastic transitive.

Moreover, if the marginal distributions are restricted to normal distributions, then theW-copula
and theP-copula yield probabilistic relations that are moderately stochastic transitive, whereas the
M-copula yields probabilistic relations that are weakly stochastic transitive. This is also the type tran-
sitivity obtained when the joint c.d.f. is the standard multivariate normal distribution with covariance
matrix Σ.

Finally, we discuss some interesting features of the discrete models obtained by considering re-
spectively theM-copula orW-copula in combination with discrete uniform marginal c.d.f.’s (theP-
copula combined with discrete uniform marginal c.d.f.’s yields the classical dice model).

Keywords: copulas, dice model, probabilistic relation, stochastic transitivity,T-transitivity.
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On fuzzy type theory
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Abstract

In the paper, the formal type theory is generalized to fuzzy one. The structure of truth values
is assumed to be the Łukasiewicz algebra since the formulation of FTT based on it can be done
in a most elegant way. Some properties of theories of fuzzy type theory are demonstrated and the
completeness saying that each consistent theory has a frame model is proved. We will follow the
way of the development of the classical type theory as elaborated especially by A. Church and L.
Henkin.

1 Syntax and Semantics of Fuzzy Type Theory

In this paper, we present the formal system of FTT. Because of the limited space and complicated
technical character, we have omitted most proofs. The complete paper with full proofs can be obtained
from the author upon request.

1.1 Basic syntactical elements

1.1.1 Types

Let ε,o be distinct objects. The set of types is the smallest setTypessatisfying:

(i) ε,o∈ Types,

(ii) If α,β ∈ Typesthen(αβ) ∈ Types.

The typeε represents elements ando truth values.

1.1.2 Primitive symbols

(i) Variablesxα, . . . whereα ∈ Types.

(ii) Special constantscα, . . . whereα ∈ Types. We will consider the following concrete special
constants:E(oα)α for everyα ∈ TypesandC(oo)o.

(iii) Auxiliary symbols:λ, brackets.
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1.1.3 Formulas

The setFormα is a set of formulas of typeα ∈ Types, which is the smallest set satisfying:

(i) xα ∈ Formα andcα ∈ Formα,

(ii) if B∈ Formβα andA∈ Formα then(BA) ∈ Formβ,

(iii) if A∈ Formβ thenλxα A∈ Formβα,

If A∈ Formα is a formula of the typeα ∈ Typesthen we will writeAα.

1.2 Semantics

1.2.1 Truth values

We will work with the structure of truth values forming the Łukasiewicz MV-algebra

LŁ = 〈[0,1],⊗,⊕,¬,0,1〉 (1)

wherea⊗b = 0∨ (a+b−1) is Łukasiewicz conjunction,a⊕b = 1∧ (a+b) is Łukasiewicz disjunc-
tion, a→ b = ¬a⊕b = 1∧ (1−a+b) is implication and¬a = 1−a is negation (a,b∈ [0,1]). We,
furthermore, work with thebiresiduationoperationa↔ b = (a→ b)∧ (b→ a).

1.2.2 Frame

Let D be a set of objects andL be a set of truth values. Aframebased onD,L is a family(Mα)α∈Types
of sets where

(i) Mε = D is a set of objects andMo = L is a set of truth values,

(ii) For each typeγ = βα, Mγ is a set of functionsMγ ⊆MMα
β specified below.

1.2.3 Fuzzy equality

Thefuzzy equalityonMα is a binary fuzzy relation=α⊂∼Mα×Mα, i.e. a function

=α: Mα×Mα→ L.

To stress thatmα =α m′α holds in some degreec∈ L we will write [mα =α m′α].

The fuzzy equality is supposed to be reflexive[mα =α mα] = 1, symmetric[mα =α m′α] = [m′α =α
mα], and⊗-transitive

[mα =α m′α]⊗ [m′α =α m′′α]≤ [mα =α m′′α], mα,m′α,m′′α ∈Mα.
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1.2.4 Extensional functions

Let F : Mα1 × ·· · ×Mαn → Mβ be a function. We say that it is extensional w.r.t fuzzy equalities
=α1, . . . ,=αn, =β if there are natural numbersq1, . . . ,qn≥ 1 such that

[mα1 =α1 m′α1
]q1 ⊗ ·· · ⊗ [mαn =αn m′αn

]qn ≤ [F(mα1, . . . ,mαn) =β F(m′α1
, . . . ,m′αn

)] (2)

holds for allmαi ,m
′
αi
∈Mαi , i = 1, . . . ,n.

Lemma 1. Let=β be an extensional fuzzy equality. Then the function=βα: MMα
β ×MMα

β → L defined
by

[mβα =βα m′βα] =
∧

mα∈Mα

[mβα(mα) =β m′βα(m′α)] (3)

for every mβα,m′βα ∈MMα
β is an extensional fuzzy equality.

1.2.5 Frame model

Let (Mα)α∈Typesbe a frame. Then the frame model is a tuple

I = 〈(Mα,=α)α∈Types,L〉 (4)

where:

(i) TheL is the Łukasiewicz MV-algebra, where its supportL = Mo.

(ii) The=α is a fuzzy equality onMα where=o is↔, =ε⊂∼Mε×Mε is an extensional fuzzy equality
onMε and otherwise=α is the fuzzy equality (3).

(iii) If α 6= o,ε then each functionF ∈Mα is extensional.

1.2.6 Basic definitions

(a) Equivalence≡ := λxα(λyαE(oα)α yα)xα.

(b) Conjunction∧∧∧ := λxo(λyoC(oo)oyo)xo.

1.2.7 Interpretation

Given a frame modelI , the interpretationI of all formulas is the assignment of meaning to them.

An assignmentp to the variables overI is a function on variables such thatp(xα) ∈Mα for every
typeα ∈ Types. The set of all assignments overI be denoted by Asg(I ).

(i) If xα is a variable thenIp(xα) = p(xα).

(ii) If cα is a constant thenIp(cα) is some element fromMα. If α 6= o,ε thenp(cα) is an extensional
function. As a special caseIp(E(oα)α)(m′)(m) = [m=α m′] ∈ L andIp(C(oo)o)(a)(b) = a∧b
for all a,b∈ L.

(iii) The interpretation of the formulaBβαAα of typeβ is Ip(BβαAα) = Ip(Bβα)(Ip(Aα)).
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(iv) The interpretation of the formulaλxα Aβ of typeβα is the function

Ip(λxα Aβ) = F : Mα→{Ip′(Aβ) | p′ ∈ Asg(I )}

such thatF(mα) = Ip′(Aβ) for some assignmentp′ such thatp′(xα) = mα and p′(yγ) = p(yγ)
for all yγ 6= xα (i.e. p′ differs from p only in the variablexα) and the functionF is extensional
w.r.t “=α” and “=β”.

Let us denote the set of assignmentsp′ due to Item (iv) by Asg(Ip).

Lemma 2. For everyα ∈ Types and every assignment p,Ip(Aα) ∈Mα holds true.

1.2.8 Further definitions

(a) Representation of truth> := (λxoxo≡ λxoxo) and falsity⊥ := (λxoxo≡ λxo>).

(b) Negation¬¬¬ := λxo(⊥≡ xo).

(c) Implication⇒⇒⇒ := λxo(λyo((xo∧∧∧yo)≡ xo)).

(d) Special connectives:∨∨∨ := λxo(λyo((xo⇒⇒⇒ yo)⇒⇒⇒ yo)), (disjunction), &&& := λxo(λyo(¬¬¬(xo⇒⇒⇒
¬¬¬yo))), (strong (Łukasiewicz) conjunction),∇∇∇ := λxo(λyo(¬¬¬(¬¬¬Ao&&&¬¬¬Bo))) (strong (Łukasiewicz)
disjunction).

(e) Quantifiers:(∀xα)Ao := (λxα Ao≡ λxα>) and(∃xα)Ao := ¬¬¬(∀xα)¬¬¬Ao.

As a special case,An := A&&& · · ·&&& A︸ ︷︷ ︸
n−times

.

Lemma 3. Let Ao,Bo ∈ Formo. Then for every assignment p∈ Asg(I )

(a) Ip(>) = 1, Ip(⊥) = 0.

(b) Ip(¬¬¬Ao) = Ip(Ao)→ 0

(c) Ip(Ao∨∨∨Bo) = Ip(Ao)∨ Ip(Bo)

(d) Ip(Ao⇒⇒⇒ Bo) = Ip(Ao)→ Ip(Bo)

(e) Ip(Ao&&& Bo) = Ip(Ao)⊗ Ip(Bo)

(f) Ip(Ao∇∇∇Bo) = Ip(Ao)⊕ Ip(Bo)

(g) Ip((∀xα)Ao) =
∧

mα=p′(xα)∈Mα
p′∈Asg(Ip)

Ip′(Ao)

(h) Ip((∃xα)Ao) =
∨

mα=p′(xα)∈Mα
p′∈Asg(Ip)

Ip′(Ao)

1.2.9 Axioms

(FT1). (xα ≡ yα)q⇒⇒⇒ ( fβα xα ≡ fβα yα) for someq≥ 1.

(FT2). (∀xα)( fβα xα ≡ gβα xα)≡ ( fβα ≡ gβα)

(FT3). (λxαBβ)Aα ≡Cβ

whereCβ is obtained fromBβ by replacing all substitutable occurrences ofxα in it by Aα.
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(FT4). (Ao≡>)≡ Ao

(FT5). (Ao∨∨∨Bo)≡ (Bo∨∨∨Ao)

(FT6). Ao∧∧∧Bo≡ Bo∧∧∧Ao

(FT7). Ao∧∧∧>≡ Ao

(FT8). (Ao∧∧∧Bo)∧∧∧Co≡ Ao∧∧∧ (Bo∧∧∧Co)

(FT9). (Ao⇒⇒⇒ (Bo⇒⇒⇒Co))⇒⇒⇒ (Bo⇒⇒⇒ (Ao⇒⇒⇒Co)

(FT10). (¬¬¬Bo⇒⇒⇒¬¬¬Ao)≡ (Ao⇒⇒⇒ Bo)

(FT11). (∀xα)(Ao⇒⇒⇒ Bo)⇒⇒⇒ (Ao⇒⇒⇒ (∀xα)Bo)

1.2.10 Inference rule and provability

The following is an inference rule in FTT.

(R)
Let Aα ≡ A′α and B∈ Formo. Then we infer B′ where B′ comes form B by replacing one
occurrence of Aα, which is not preceded byλ, by A′α.

The concept of provability and proof are defined in the same way as in classical logic. A theoryT
over FTT is a set of formulas of typeo, i.e. T ⊂ Formo. If A∈ Formo and it is provable inT then we
write T ` A, as usual.

Lemma 4. (a) For every interpretationI and assignment p,Ip(FTi) = 1 where i= 1, . . . ,11.

(b) The inference rule (R) is sound, i.e.Ip(Aα ≡ A′α)⊗ Ip(B)≤ Ip(B′).

Corollary 5 (Soundness).The fuzzy type theory is sound, i.e. the following holds for every theory T :
If T ` Ao thenIp(Ao) = 1 holds for every assignment p∈ Asg and every frame modelI .

2 Special properties of FFT

Theorem 6. The following is provable in FTT.

(a) If ` Ao and` Ao≡ Bo then` Bo.

(b) ` Aα ≡ Aα, α ∈ Types.

(c) ` >.

(d) If ` Aα ≡ Bα then` Bα ≡ Aα.

(e) If ` Aα ≡ Bα and` Bα ≡Cα then` Aα ≡Cα.

(f) ` Ao iff ` Ao≡>.

Theorem 7 (Logical rules). (a) If ` Ao and` Ao⇒⇒⇒ Bo then` Bo.

(b) If ` Ao then` (∀xα)Ao.
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Theorem 8. (a) ` (Ao⇒⇒⇒ Bo)⇒⇒⇒ ((Bo⇒⇒⇒Co)⇒⇒⇒ (Ao⇒⇒⇒Co))

(b) ` Ao∧∧∧Ao≡ Ao

(c) ` Ao⇒⇒⇒ (Bo⇒⇒⇒ Ao)

(d) ` (¬¬¬Ao)≡ (Ao⇒⇒⇒⊥),

(e) `¬¬¬¬¬¬Ao≡ Ao.

(f) ` (xβ ≡ yβ)q1⇒⇒⇒ (( fαβ ≡ gαβ)q2⇒⇒⇒ ( fαβ xβ ≡ gαβ yβ)) for some q1,q2≥ 1.

Theorem 9 (Substitution axioms). (a) ` (∀xα)Bo⇒⇒⇒Co,

(b) `Co⇒⇒⇒ (∃xα)Bo.

where Co is obtained from Bo by substitution of some formula Aα substitutable to it for all free
occurrences of xα.

It follows from the previous presentation that FTT contains the formal system of predicate Łukasiewicz
logic and hence, all its theorems also provable in FTT.

3 Theories in FTT

If T be a theory andA∈ Formo a formula the byT ∪{A} is a theory whose set of special axioms is
extended byA.

Theorem 10 (Deduction theorem).Let T be a theory, A∈ Formo a formula. Then T∪{A} ` B iff
there is n≥ 1 such that T̀ An⇒⇒⇒ B holds for every formula B∈ Formo.

A theory T is contradictoryif T ` ⊥. Otherwise it isconsistent. A theoryT is completeif for
every two formulasAo,Bo eitherT ` Ao⇒⇒⇒ Bo or T ` Bo⇒⇒⇒ Ao. A theoryT is maximal consistentif
each its extensionT ′, T ′ ⊃ T is inconsistent.

Theorem 11. Every consistent theory T can be extended to a maximal consistent theoryT which is
complete.

3.1 Syntactic model of FTT and completeness

Let T be a consistent complete theory. We define the equivalence on the set of all formulas as follows:

Aα ∼ Bα⇔ T ` Aα ≡ Bα.

The equivalence class of a formulaAα of type α will be denoted by|Aα|. Furthermore, we put
Mα = {|Aα| | Aα ∈ Formα}, for all α ∈ Types. If α 6= o,ε then

Mβα = {mβα |mβα : Mα→Mβ}

wheremβα = |Aβα| for someAβα ∈ Formβα andmβα(|Bα|) = |AβαBα| for everyBα ∈ Formα. We may
define the operations on the setMo using logical connectives as usual. Then we obtain the following
theorem.
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Theorem 12. The algebra
LT = 〈Mo,⊗,⊕,¬,1,0〉 (5)

is a locally finite, linearly ordered MV-algebra.

Now we will consider the embedding

h : LT → LŁ . (6)

Recall thath preserves all suprema and infima existing inLT (see also [4], Lemma 5.4.23).

To define fuzzy equality, we put[|Aα| =α |Bα|] = h(|Aα ≡ Bα|) for all α ∈ Typeswhereh is the
embedding. It can be proved that this is an extensional fuzzy equality onMα and it has the properties
discussed above.

The syntactic frame model is the tuple

I S = 〈(Mα,=α)α∈Types,LŁ〉 (7)

whereMo = [0,1] and for allα ∈ Types−{o}, Mα are the sets.

The assignmentp of elements to variables is the following:p(xo) = h(|Ao|) andp(xα) = |Aα| for
α 6= o where|Aα| ∈Mα. We put:

(i) If xα is a variable thenI S
p(xα) = p(xα).

(ii) If cα, α 6= o is a constant thenI S
p(cα) is some element fromMα. As a special case,I S

p(co) is
element fromh(LT). The interpretationI S

p(E(oα)α) is the fuzzy equality depending on the type
α andI S

p(C(oo)o) is the meet operation∧ onh(LT).

(iii) Interpretation of the formulaBβαAα is I S
p(BβαAα) = I S

p(Bβα)(Ip(Aα)).

(iv) The interpretation of the formulaλxα Aβ of typeβα is the function

I S
p(λxα Aβ) = F : Mα→{IS

p′(Aβ) | p′ ∈ Asg(I S)}

such thatF(|Aα|) = I S
p′(Aβ) = |(λxα Aβ)Aα| for some assignmentp′ which differs fromp only

in the variablexα.

Lemma 13. For all α ∈ Types

[|Aα|=α |Bα|] = h(|Aα ≡ Bα|) = I S
p(Aα ≡ Bα). (8)

Lemma 14. Each function mβα = |Cβα| ∈Mβα is extensional w.r.t.=α and=β.

Theorem 15. A theory T is consistent iff it has a modelI .

4 Conclusion

This paper is focused on further development of the ideas of fuzzy logic towards more general frame-
work, which is the type theory. Our motivation stems especially from linguistics since fuzzy set
theory presents itself first of all as mathematical theory enabling to master parts of natural language
semantics, namely when vagueness is prevailing. Since natural language is much more complex
phenomenon than predicate first-order logic (classical or fuzzy), we are convinced that higher order
logical calculus is necessary.
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[9] Novák, V., Perfilieva I. and J. Mǒckǒr (1999). Mathematical Principles of Fuzzy Logic.
Kluwer, Boston/Dordrecht.

110



Varieties generated by t-norms

GURAM BEZHANISHVILI , MAI GEHRKE, JOHN HARDING, CAROL L. WALKER ,
ELBERT A. WALKER

New Mexico State University
Las Cruces (NM), USA

E-mail: hardy@nmsu.edu

We are concerned with the varietyT of algebras of type(2,2,2,0,0) generated by the algebra(I,◦),
whereI = ([0,1],∧,∨,0,1) is the unit interval with minimum and maximum determined by the usual
order and.◦ 6= ∧ is a continuous t-norm. We have shown that a strict t-norm and a nilpotent t-norm,
and in fact any continuous t-norm except minimum, generate the same variety. Moreover, this variety
is not generated by any finite algebra [1,2]. However, we have not determined whether or not there is
a finite set of equations that determines this variety.

In an attempt to answer this question, we consider the varietyE of algebras of type(2,2,2,0,0)
consisting of all commutative, lattice-ordered monoids(L,◦). By this we mean

• L = (L,∧,∨,0,1) is a bounded, distributive lattice

• (L,◦,1) is a commutative semigroup with identity

• The semigroup operation◦ distributes over both meet and join.

The varietyE is determined by a finite set of equations—namely, the equations that define a
bounded, distributive lattice, together with the equations that define a commutative semigroup with
identity and the equations that say◦ distributes over both meet and join. ClearlyE contains the variety
generated by an algebra(I,◦) for any t-norm◦, in particular,T ⊆ E .

An algebra is subdirectly irreducible if for every subdirect product embeddingA⊆∏iAi , at least
one of the projections is one-to-one, hence an isomorphism. An equivalent condition is that there
is a pair of elements(a,b) with a 6= b that are not separated by any homomorphism that is not an
embedding, that is, every homomorphismf from A to another algebra is either one-to-one or satisfies
f (a) = f (b). Another way to say this is that(a,b) belongs to every nontrivial congruence ofA. A va-
riety is generated by its subdirectly irreducible algebras, and identifying these subdirectly irreducible
algebras is key to understanding the variety.

Proposition 1. A subdirectly irreducible algebra(L,◦) in E has a unique atom a that lies beneath
every nonzero element ofL, and the pair(0,a) belongs to every nontrivial congruence.

A nonempty subsetI of L is an ideal of L if for every x∈ I , y∈ L, y≤ x impliesy∈ I , and for
everyx,y∈ I , x∨ y∈ I . An idealI of L is prime if x∧ y∈ I impliesx∈ I or y∈ I . For x∈ L, I an
ideal of L, (I : x) = {y∈ L : xy∈ I}. For I = {0}, this is called theannihilator of x, and we write
({0} : x) = (0 : x).
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Lemma 2. The following hold for elements x,y∈ L and idealsI⊆ L.

1. (I : x∨y) = (I : x)∩ (I : y)

2. (I : x∧y) = (I : x)∪ (I : y) if I is prime.

3. y(I : xy)⊆ (I : x)⊆ (I : x◦y)

From this it follows quickly that ifx≤ y then(I : x)⊇ (I : y).

Proposition 3. Let I be a prime ideal ofL. The relation on(L,◦) defined by

x∼= y if and only if (I : x) = (I : y)

is a congruence.

To prove this proposition we need to show that if(I : x) = (I : y), then for anyz∈ L,

(I : (x∨z)) = (I : (y∨z))
(I : (x∧z)) = (I : (y∧z))

(I : z◦x) = (I : z◦y)

which is straight forward. The following theorem gives a useful characterization of the subdirectly
irreducible algebras inE .

Theorem 4. An algebra(L,◦) is subdirectly irreducible if and only if(L,◦) has a unique atom that
lies below every nonzero element ofL and the annihilators{(0 : x) : x∈ L} are distinct.

Theorem 5. If an algebra(L,◦) in E is subdirectly irreducible, then(L,◦) is a chain. A finite chain
is subdirectly irreducible inE if and only if the residualη(x) =

∨
{y∈ L : y◦x = 0} is an involution.

Every subvariety ofE is generated by its finite members. The problem of showing thatT = E (or
T 6= E) is thus reduced to identifying which finite chains are subdirectly irreducible inE , and then
showing whether or not these subdirectly irreducibles are generated by(I,◦).

Every finite cyclic algebra inE is subdirectly irreducible. These can be realized as subalgebras of
the Łukasiewicz (bounded product) t-norm, hence belong toT .

Another example of a subdirectly irreducible algebra inE is the four element chain

• 1
|
• e
|
• a
|
• 0

with the multiplicatione◦e= eande◦a= a◦a= 0. This algebra can be obtained as a homomorphic
image of an ultrapower of(I,◦), with ◦ a nilpotent t-norm, thus also belongs to T.
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Information about preference and uncertainty in decision problems cannot always be quantified in a
simple way, but only qualitative evaluations can sometimes be attained. As a consequence, the topic
of qualitative decision theory is a natural one to consider: can we make efficient decision on the basis
of qualitative information?

Giving up the quantification of utility and uncertainty has lead to give up expected utility (EU)
criterion as well — the principe of qualitative decision [3, 2] making is to model uncertainty by an
ordinal plausibility relation on events and preference by aweak orderon consequences of decisions.
In [3] two qualitative criteria based on possibility theory, an optimistic and a pessimistic one, whose
definitions only require a (finite) completely ordered scale for utility and uncertainty are proposed.
Let S be a set of states,X a set of consequence andXS the set of possible acts (in decision under
uncertainty, an act is a functionf : S 7→ X):

Definition 1 (Possibilistic utilities). Let L = [0L,1L] be a finite ordinal scale ,n : L→ L the order
reversing function of L,π : S→ L a possibility distribution onSandµ : X→ L a utility function onX.

• < S,X,L,π,µ> will be called a qualitative possibisitic utility model (QPU-model)

• the optimistic possibilistic utility off is:
UOPT,π,µ( f ) = maxs∈Smin(π(s),µ( f (s)))

• pessimisitic utility of f is : UPES,π,µ( f ) = mins∈Smax(n(π(s)),µ( f (s)))

• �OPT,π,µ and�PES,π,µ are classically defined fromUOPT,π,µ andUPES,π,µ

These criteria proved to be not efficient enough, in the sense that they fail to satisfy the principle
of strict Pareto dominance:∀s,µ( f (s))≥ µ(g(s)) and∃s∗,π(s∗) > 0 andµ( f (s∗)) > µ(g(s∗)) does not
imply f �OPT,π,µ g nor f �PES,π,µ g

This drawback is not observed within expected utility theory since the followingSure-Thing Prin-
ciple (STP) [5] insures that identical consequences do not influence the relative preference between
two events.

STP:∀ f ,g,h,h′, f Ah� gAh⇔ f Ah′ � gAh′
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So, the question is whether it is possible or not to reconciliate possibilistic criteria and efficiency.
The answer seems to be no: in [4] it is shown that the possibilistic criteria cannot obey the STP, except
in a very particular case: when the actual state of the world is known, i.e. when there is no uncertainty
at all! So, we cannot both stay in the pure QPU framework and satisfy the Pareto principle. The idea
is then to try to cope with this problem by proposingrefinementsof the possibilistic criteria that obey
the Sure Thing Principle. Formally:

Definition 2 (Refinement).�′ refines� iff ∀ f ,g∈ XS, f � g⇒ f �′ g.

Since we are looking for weak orders it is natural to think of refinements based on expected utility.
Concerning the optimistic utility criterion, we obtain the following result:

Theorem 3. Let< S,X,L,π,µ> be a possibilistic model based on a scale L= (α0 = 0L < α1 < .. . <
αk = 1L) . The functionχ : L→ [0,1] defined by:

• χ(0L) = 0, χ(αi) = v
N2k−i , i = 1, . . . ,k

• v = (∑i=1,...,k
ni

N2k−i )−1

is such that:

• χ◦π is a probability distribution

• �EU,χ◦π,χ◦µ refines�OPT,π,µ

• χ◦π (resp.χ◦µ ) andπ (resp. µ) are ordinaly equivalent

So for any< S,X,L,π,µ> we are able to propose an EU model that refines the former. This model
is thus perfectly compatible with the optimistic qualitative utility and more decisive than it. Moreover,
since it is based on expected utility it satisfies the Sure Thing Principle as well as Pareto dominance
and does not use other information than the original one - it is unbiased. Moreover, it can be shown
that, if we do not accept to introduce a bias in the EU-refinement, it is unique, up to an isomorphism.

When considering the pessimistic qualitative model, the same kind of result can be obtained. First
of all, notice that�PES,π,µ and�OPT,π,µ are dual relations:

Proposition 4. Let< S,X,L,π,µ> be a QPU model. It holds that:
∀ f ,g∈ XS, f �PES,π,µ g⇔ g�OPT,π,µ′ f , where µ′ = n◦µ

This gives rise to the following definition of pessimistic EU-refinement:

Theorem 5. Let< S,X,L,π,µ> be a QPU model andχ : L→ [0,1] be the transformation of L w.r.t.
π identified Theorem 3. Let p= χ◦π and u′ = χ(1L)−χ◦n◦µ; it holds that:

• �EU,p,u′ is a refinement of�PES,π,µ

• p (resp. u′ ) andπ (resp. µ) are ordinaly equivalent

• any unbiased EU-refinement of�PES,π,µ is ordinally equivalent to�EU,p,u′
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So, if < S,X,L,π,µ > a QPU model, it is always possible to build a probabilistic transformation
χ using Theorem 3, and thus a probabilityp = χ ◦ π and two utility functionsu = χ ◦ µ andu′ =
χ(1)−χ◦n◦µ that define the unbiased EU-refinements of the optimistic and pessimistic utility criteria
respectively.

This proves an important result for bridging qualitative possibilistic decision theory and expected
utility theory: we have shown than any optimistic or pessimistic QPU model can be refined by a EU
model. So, (i) possibilistic decision criteria are compatible with the classical expected utility criterion
and (ii) choosing a EU model is advantageous, since it leads to a EU-refinement of the original rule
(thus, a more decisive criterion) and it allows to satisfy the STP and the principle of Pareto.

But this does not mean that qualitativeness and ordinality are given up. For instance, in both cases,
the probability measures are "big-stepped probabilities", i.e. satisfy1 :

∀s∈ S,P({s}) > P({s′,P({s′}) < P({s})})

States are clustered in ordinal classes and any state of one class is more plausible that any event
built on the lower classes. Although probabilistic and based on additive manipulations of utilities,
these new criteria remain ordinal (it is actually possible to show they generalize well known ordinal
weighted means, namely the leximin and leximax procedures.) And this is very natural: since we
come from an ordinal model and do not accept any bias, we go to another (probabilistic but) ordinal
model, in which the numbers only encode orders of magnitude.

The result of the present research can be viewed in a more general perspective: the optimistic and
pessimistic utilities are not limited to decision under uncertainty and can be view as general maximin
and minimax procedures (used for instance in multi criteria decision making, voting theory, etc) : we
have shown that they can be refined by a classical weighted sum, when the strict Pareto principle is
required. This raises a new question: can we extend this principle to any other instance of Sugeno
integral [7] ? this is the topic of the second part of the present presentation.
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Part I has shown that prioritized maximin and minimax aggregations can be refined by a classical
weighted sum, as soon as the strict consistency with the Pareto principle is required. It can thus be
asked if the same question can be solved for discrete Sugeno integrals [3] since prioritized minimum
and maximum are special cases of fuzzy integrals.

The first result is negative. One basic reason why prioritized maximin and minimax aggrega-
tions can be refined by a weighted average with fixed weights is that these operations do not violate
independence (the sure thing principle) in a drastic way. Indeed the ordering relations induced by
UOPT,π,µ( f ) andUPESS,π,µ( f ) satisfy a weaker independence condition:

WSTP:∀ f ,g,h,h′, f Ah� gAh⇒ f Ah′ � gAh′.

So modifying two acts by altering their common consequences never results in a strong preference
reversal. On the contrary such a preference reversal is clearly possible for Sugeno integral because
for a fuzzy measureγ and three setsA,B,C, whereC is disjoint from bothA andB, one may have
γ(A) > γ(B) andγ(B∪C) > γ(A∪C). This feature makes it impossible to refine rankings of acts in-
duced by Sugeno integrals by means of another functional which satisfies the sure thing principle.In
particular, a Sugeno integral with respect to a given fuzzy measure cannot be presented by an expected
utility with respect to a single probability distribution.

However it makes sense to try and refine a Sugeno integral-based ordering by means of a Choquet
integral[2][1]. Indeed the expression of a Sugeno integral and of a discrete Choquet integral are
similar. Moreover while Choquet integrals are additive for comonotonic acts, Sugeno integrals are
both maxitive and minitive for comonotonic acts — recall that two actsf ,g are comonotonic iff there
exists a single permutationσ on the states ofS that rearrange the values of bothµ( f ) andµ(g) in non
decreasing order, i.e. such that:

µ( f (sσ(1)))≤ µ( f (sσ(2)))≤ ·· · ≤ µ( f (sσ(n)))

and
µ(g(sσ(1)))≤ µ(g(sσ(2)))≤ ·· · ≤ µ(g(sσ(n)))
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A Sugeno integral serving as a preference functional to evaluate actf is of the form:

SUGγ,µ( f ) = max
i=1,n

min(γ(Aσ
i ),µ( f (sσ(i))))

whereγ is a monotonic set function ranging on a finite chainL (a qualitative fuzzy measure),µ a
utility function taking its values on the sameL, σ is a permutation rearranging the valuesµ( f (s)) in
non-decreasing order, andAσ

i = {sσ(i), . . . ,sσ(n)}

Similarly a Choquet integral reads:

Chν,µ( f ) = ∑
s∈S

(ν(Aσ
i )−ν(Aσ

i+1))×u( f (sσ(i)))

whereν is a numerical fuzzy measure andu a numerical utility function.

Now, consider a set of actsFσ that share the same permutationσ (i.e. a set of comonotonic acts).
For any of these acts, the expression of the Sugeno integral comes down to a prioritized maximum (an
optimistic utility) with respect to a possibility distributionπσ(sσ(i)) = γ(Aσ

i )

∀ f ∈ Fσ : SUGγ,µ( f ) = max
s∈S

min(πσ(s),µ( f (s)))

So the results of Part I apply when restricted to comonotonic acts : the restriction of�SUGγ,µ to
anyFσ can be refined without bias by an expected utility based on a big-stepped probabilitypσ and a
big-stepped utility functionu:

∀ f ∈ Fσ : EUpσ,u( f ) = ∑
s∈S

pσ(s)×u( f (s))

The point is that one will get different probability and utility measures for the differentFσ
2 The

idea is then to consider that the differentpσ are the projections of a common "big-stepped fuzzy mea-
sure"ν such that:

∀Fσ, pσ(sσ(i)) = ν(Aσ
i )−ν(Aσ

i+1)

In this context,EUpσ,u is the restriction toFσ of the Choquet integralChν,u( f ). We have shown that
the previous system of equation is always consistent. Moreover, according to Part I, we know that:
whateverFσ, Chν,u = EU(pσ,u) defines an unbiased refinement ofSUGγ,µ = UOPT,γ,µ. This suggests
that, for anyγ : 2S→ L, µ : X→ L, there exists a fuzzy measureν on 2S and a utility functionu in X
such that, whateverf ,g∈ XS:

SUGγ,µ( f ) > SUGγ,µ(g)⇒Chν,µ′( f ) > Chν,µ′(g)

Moreover, for any permutationσ of the elements in Spσ(sσ(i)) must be a big-stepped probability. As

2But all theFσ can share the sameu, which depend onL but not onσ.
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a consequence, when all states have distinct confidence valuesν(A), the big-stepped fuzzy measure is
such that:

∀A⊆ S,ν(A) > 2×ν(B)

for all proper subsetsB of A. A general definition of such measure by a necessary and sufficient con-
dition is a topic for further research.

Finally, we would like to suggest that an alternative approach to refine the Sugeno integral by a
Choquet integral may start from the expression of Sugeno integral involving all subsets ofS:

SUGγ,µ( f ) = max
A⊆S

min(γ(A),min
s∈A

µ( f (s)))

and the corresponding expression of the Choquet integral in terms of the Moebius transformmγ of γ:

Chγ,µ( f ) = ∑
A⊆S

mγ(A)×min
s∈A

µ( f (s))

Further research shall also include a deeper exploration of this alternative refinement and the
exploration of the relationship between the two approaches, in particular of the the relationships be-
tween big-stepped fuzzy measures and (big-stepped) belief functions (i.e. Choquet utilities that rely
on a positive and big-steppedm) ?
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There are two most fundamental relational concepts in mathematics which accompany mathemati-
cians as well as computer scientists and engineers throughout their life in science—equivalence rela-
tions(reflexive, symmetric, and transitive relations) and(partial) orderings(reflexive, antisymmetric,
and transitive relations).

It is not surprising that, within the early gold rush of fuzzification of virtually any classical math-
ematical concept, these two fundamental types of relations did not have to await the introduction of
their fuzzy counterparts for a long time [22].

Fuzzy equivalence relations are now well-accepted concepts for expressing equivalence/equality
in vague environments [8, 13, 16, 18, 20, 21] (in contrast to Zadeh’s original definition, now with
the additional degree of freedom that the conjunction in transitivity may be modeled by an arbitrary
triangular norm [15]).

In the meantime, fuzzy equivalence relations have turned out to be helpful tools in various disci-
plines, in particular, as soon as the interpretation of fuzzy sets, partitions, and controllers [16, 21, 10,
14] is concerned. More direct practical applications have emerged in flexible query systems [12, 17]
and fuzzy databases in general [19].

Fuzzy (partial) orderings have been introduced more or less in parallel with fuzzy equivalence
relations [22], however, they have never played a significant role in real-world applications.

This paper advocates a “similarity-based” generalization of fuzzy orderings, however, not from
the pure mathematical viewpoint of logic or algebra (for what we would like to refer to the extensive
studies in [2, 3, 5, 11]). Instead, we attempt to demonstrate the potential for applications by means
of considering comprehensive overviews of four case studies. Those are flexible query systems [7],
ordering-based modifiers [1, 9], and orderings of fuzzy sets [4]. Finally, we also discuss the inter-
pretability property, for which orderings of fuzzy sets are of fundamental importance [6].
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Abstract

We give here a discussion of a fuzzy function which is given by a system of fuzzy relation
equations. We demonstrate, how problems of interpolation and approximation of fuzzy functions
are connected with solvability of systems of fuzzy relation equations. First we explain the gen-
eral framework, and later on we prove some particular results related to the problem of the best
approximation.
Key words: system of fuzzy relation equations, solvability and approximate solvability of a fuzzy
relation equation system, fuzzy function, interpolation and approximation of fuzzy functions

1 Introduction

We will concern with a problem of fuzzy functions representation by a solution to a system of fuzzy
relation equations. In order to introduce this stuff we need an algebra of fuzzy logic operations. We
choose a BL-algebra which has been introduced by Hájek in [5] and which in a certain sense general-
izes boolean algebra. This appears in the extension of the set of boolean operations by two semigroup
operations which constitute so called adjoined couple. The following definition summarizes defini-
tions originally introduced in [5].

Definition 1. A BL-algebrais an algebra

L = 〈L,∨,∧,∗,→,0,1〉

with four binary operations and two constants such that

(i) (L,∨,∧,0,1) is a lattice with0 and1 as the least and greatest elements w.r.t. the lattice ordering,

(ii) (L,∗,1) is a commutative semigroup with unit1, such that the multiplication∗ is associative,
commutative and 1∗x = x for all x∈ L,

(iii) ∗ and→ form an adjoint pair, i.e.
z≤ (x→ y) iff x∗z≤ y for all x,y,z∈ L,
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(iv) and moreover, for allx,y∈ L
x∗(x→ y) = x∧y,
(x→ y)∨ (y→ x) = 1.

Another two operations ofL : unary¬ and binary↔ can be defined by

¬¬¬x = x→ 0,

x↔ y = (x→ y)∧ (y→ x).

The following properties will be widely used in the sequel:

x≤ y⇔ (x→ y) = 1,

x↔ y = 1⇔ x = y.

Note that if a lattice(L,∨,∧,0,1) is given, then BL-algebra is completely defined by the choice
of multiplication operation∗. In particular,L = [0,1] and∗ is known as at-norm.

Let us fix some BL-algebraL with a supportL and takeX andY as arbitrary universes. Denote
F (X) a set of all fuzzy subsets ofX, i.e. a set of all functions{A : X→ L}. A system of fuzzy relation
equations

Ai ◦R= Bi , 1≤ i ≤ n, (1)

whereAi ∈ F (X),Bi ∈ F (Y) and R∈ F (X ×Y) and ‘◦’ is the sup-*-composition, is considered
with respect to unknown fuzzy relationR. Very often system (1) is connected with applications like
fuzzy control, identification of fuzzy systems, prediction of fuzzy systems, decision-making, etc.
Such systems arise in the process of formalization of some list of linguistic IF–THEN rules, which
well recommends itself as an approximating instrument for continuous dependencies. Because a
solution of (1) may not exist in general, the problem to investigate necessary and sufficient, or also
only sufficient conditions for solvability arises. This problem has been widely studied in the literature,
and some nice theoretical results have been obtained. Let us point out some of them: Sanchez [12],
Perf-Tonis [11], Gavalec [1] with necessary and sufficient conditions, Gottwald [2], Klawonn [8] with
sufficient conditions.

Of course, all of these results have practical importance only in the the case when the universes
of discourseX andY are finite. In the case when these universes of discourse are infinite, however,
those results can be systematized and considered in the light of a new topic which isfuzzy functions
and their representations.

In the present paper we will introduce the problem of solvability of fuzzy relation equations in a
new framework as the problem of interpolation and approximation of a fuzzy function.

2 Interpolation and approximation of a fuzzy function

The notion of a fuzzy function is not well established in the literature. Imprecisely, it has been used
to mean the often so called fuzzy systems. Precisely this notion was defined e.g. in Klawonn’s paper
[8] where it has been introduced with respect to two similarity relations on the universes for the
independent and the dependent variables.

Trying to be as much as possible close to the classical case we give the following definition.
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Definition 2. Let F (X),F (Y) be the classes of all fuzzy subsets of universes of discourseX andY.
A (perhaps multivalued) mappingf from F (X) into F (Y) is called afuzzy functionif for any fuzzy
subsetsA,A′ ∈ F (X) and for fuzzy subsetsB,B′ ∈ F (Y) which aref -related withA,A′, respectively,
the following holds true

A = A′→ B = B′. (2)

Example 3. Any fuzzy relationR∈ F (X×Y) determines via sup-*-composition a fuzzy function,
defined as the mappingfR from F (X) to F (Y) which is described by

fR(A)(y) = (A◦R)(y) =
∨
x∈X

(A(x)∗R(x,y)).

In this example, fuzzy setfR(A) = A◦R is the value of fuzzy functionfR determined byR in the
“fuzzy point” determined byA.

Nor Definition 2, neither the above given Example do not provide us with a way, how a fuzzy
function can be constructed, and that is why, the problem of construction (e.g. representation by a
formula) is of a primary importance.

Very often a fuzzy function is described partially by a list of fuzzy IF–THEN rules

IF x is Ai THEN y is Bi , i = 1, . . . ,n,

whereAi ∈F (X),Bi ∈F (Y). This description gives only a partially fixed mapping procedureAi→Bi .
Thus the problem of the completion for the “missing points” appears. The natural requirement for such
a completion is that it should agree with the original data.

This leads us to the problem known asinterpolationproblem.

Definition 4. Let a list of original data, consisting of ordered pairs of fuzzy sets(Ai ,Bi), i = 1, . . . ,n,
be given. A fuzzy functionf defined onF (X) interpolatesthese data if

f (Ai) = Bi , i = 1, . . . ,n. (3)

We will also call f an interpolating fuzzy function.

As a side remark we mention that, even supposing the existence of an interpolating fuzzy function,
it is usually not unique. The solution of the interpolation problem without reference to any directly
specified class of interpolating functions is essentially arbitrary, even in a classical case. That is the
reason why in classical mathematics the interpolation problem is solved usually in a predetermined
class of “simple” functions, e.g. in the (or: some) class of polynomials.

We will consider a solution to the fuzzy interpolation problem in the class of fuzzy functionsFR

represented by fuzzy relations. It is easy to see that a fuzzy relationR represents an interpolating
fuzzy function with respect to the given data(Ai ,Bi), i = 1, . . . ,n, if and only if R is a solution of the
corresponding system (1) of relation equations.

2.1 Approximate solutions and their approximation quality

The restriction of interpolating functions to the classFR may, however, create a new problem: that of
the existence of an interpolating function within this restricted class. Then the problem of interpolation
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becomes intertwined with the problem of approximation. And this means here to find insideFR a
function which “suitably approximates” the fuzzy function one intended to interpolate.

Besides a set of approximating objects one needs to estimate theirquality, and to rank the approx-
imating objects accordingly. One possibility is measuring some kind of “distance” or “similarity”
between an object fromFR and the particular object which is to be approximated.

As we have mentioned at the beginning, a system (1) of relation equations is not always solvable.
In this situation, being again interested in a completing of a partial function given by pairs(Ai ,Bi), we
have to break the requirement of agreement with the original data. This leads us to the definition of
the notion of an approximate solution to the system (1). We also consider this approximate solution
as an approximating fuzzy function with respect to the given data(Ai ,Bi), i = 1, . . . ,n.

Two things have to be specified for this approximation problem: an approximating space and a
quality of approximation.

Let us fix the original set of argument-value pairs(Ai ,Bi), i = 1, . . . ,n, and consider the following
approximating space of all fuzzy relations onX×Y

R = {R∈ F (X×Y). (4)

An evaluation of a quality of approximation come from a comparison of the intended valuesBi

and those ones realized byR, i.e. from an index

δ(R) =
n∧

i=1

∧
y∈Y

(Bi(y)↔ (Ai ◦R)(y)). (5)

Let us remark thatδ(R) is essentially the solution degree introduced by Gottwald, cf. [3].

Being equipped with this measureδ(R) for the quality of an approximationR we may compare
two different approximate solution saying thatR1 ∈ R is better thanR2 ∈ R if

δ(R2)≤ δ(R1).

It is easy to see that in this way we have introduced a preorder on the setR defined in (4).

In the previous studies on systems of fuzzy relation equations, two types of approximate solutions
have played a prominent role, without having been tied with a clearly chosen approximation space:
the MA-relationRMA =

⋃n
i=1(Ai×Bi) of Mamdani/Assilian, and the S-relation̂R=

⋂n
i=1(Ai �Bi) first

considered by Sanchez. In forming these relations two particular typesA×B,A�B of fuzzy relations,
each determined by a pair(A,B) of fuzzy sets, are used which are defined by the membership functions

A×B(x,y) = A(x) ∗ B(y) , (6)

A�B(x,y) = A(x) → B(y) . (7)

We called these fuzzy relationspseudo-solutionsin IPMU02 and shall follow this usage here.

However, in this paper we will consider two other, more specified approximation spaces which
are subspaces ofR :

Rl = {R∈ F (X×Y) : Ai ◦R= Ci , 1≤ i ≤ n,

for some C1, . . . ,Cn ∈ F (Y) such that Ci ⊆ Bi} (8)
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and

Ru = {R∈ F (X×Y) : Ai ◦R= Ci , 1≤ i ≤ n,

for some C1, . . . ,Cn ∈ F (Y) such that Ci ⊇ Bi}. (9)

In discussions later on which use these approximation spaces we will not only refer to their el-
ements, we will also refer to the (solvable) systems of relation equations which determine these el-
ements. Then we will denote the systems which determine the elements ofRl as*l-approximating
systems, and those which determine the elements ofRu as*u-approximating systems.

In the literature on fuzzy relation equations the following rankings for approximation quality have
been used:

• the solution degreesδ(R) of Gottwald (or the difference between these solution degrees and the
solvability degree);

• the preordering between solutionsR′ of systemsAi ◦R= B′i which satisfyB′i ⊆Bi for all 1≤ i ≤
n, given by

R′ 5W R′′ iff B′i ⊆ B′′i ⊆ Bi , 1≤ i ≤ n, (10)

which was implicitly used by Wu [13] and later on by Klir/Yuan [6, 7].

Of course, this last mentioned preordering could, and should be defined more general e.g. w.r.t. a
similarity degreeE for fuzzy sets as

R′ 6E R′′ iff E(B′i ,Bi)≤ E(B′′i ,Bi), 1≤ i ≤ n, (11)

or in a similar way w.r.t. a metric in the class of all fuzzy sets.

2.2 Optimal approximations

Having some “quality index” available to evaluate the quality of particular approximations allows to
(somehow) compare different approximations.

This, however, is usually not sufficient. One likes to know more, viz. something likebest possible
approximations. And this can be understood as the search for (suitably) extremal elements among the
approximating objects, of course extremal w.r.t. some ranking induced by the previously mentioned
quality indices.

Looking again at our standard examples the situation was that

• in Gottwald’s approach through solution and solvability degrees the best possible approxima-
tions had not been discussed explicitly;

• in Wu’s approach only the best possible approximations in sense of the preordering (10) have
been considered.

For the general situation we shall use the following terminology.

Definition 5. Suppose that a rankingρ is given for the approximating objects. An approximating
objectϕ ∈ R is ρ-optimal iff there does not exists inR an approximating object which is ranked
higher thanϕ.
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3 Some optimality considerations

The problem arises immediately whether the two standard pseudo-solutionsR̂ andRMA are optimal
approximate solutions for suitable approximation spaces. For the S-pseudo-solutionR̂ such an opti-
mality was shown in [6, 7] w.r.t. the approximation setRl and a ranking similar to (10).

We show thatR̂ is even an optimal approximate solution in the approximation setRl equipped
with the ranking (11).

Proposition 6. The fuzzy relation̂R is always an optimal approximate solution inRl under the ranking
(11).

Proof. We know, e.g. from [4], that one always hasAi ◦ R̂⊆ Bi for the fuzzy relation

R̂=
n⋂

i=1

Ai �Bi .

Now consider a family of fuzzy setsCi with Ai ◦ R̂⊆ Ci ⊆ Bi for all i = 1, . . . ,n and such that the
system

Ai ◦R= Ci (12)

of relation equations is solvable. LetŜbe its maximal solution

Ŝ=
n⋂

i=1

Ai �Ci .

FromCi ⊆ Bi we have immediatelyAi �Ci ⊆ Ai �Bi and thuŝS⊆ R̂. This gives

Ci = Ai ◦ Ŝ⊆ Ai ◦ R̂⊆Ci

and thus
Ai ◦ R̂= Ci .

That means that no system (12) withAi ◦R̂⊂Ci ⊆Bi for some 1≤ i ≤ n is solvable, i.e.̂R is an optimal
approximate solution.

For the MA-pseudo-solution the situation is different.

Proposition 7. There exist systems(1) of relation equations for which their MA-pseudo-solution RMA

is an approximate solution in the approximation setRu which, however, is not optimal in this set under
the ranking (11).

Proof. Let us consider the following system of relation equations with input-output data

A1 = (.5,1, .5,0) , B1 = (.5,1,0,0) ,
A2 = (0, .5,1, .5) , B2 = (0,0, .5,1) .

Then we have immediately

A1×B1 =


.5 .5 0 0
.5 1 0 0
.5 .5 0 0
0 0 0 0

 A2×B2 =


0 0 0 0
0 0 .5 .5
0 0 .5 1
0 0 .5 .5


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and therefore

RMA = (A1×B1)∪ (A2×B2) =


.5 .5 0 0
.5 1 .5 .5
.5 .5 .5 1
0 0 .5 .5


This gives

A1◦RMA = (.5,1, .5, .5) , A2◦RMA = (.5, .5, .5,1) .

To see the non-optimality ofRMA consider the following modificationT of RMA given by

T =


.5 0 0 0
0 1 0 0
0 0 0 1
0 0 .5 0


Then we find

A1◦T = (.5,1,0, .5) and A2◦T = (0, .5, .5,1) ,

and hence see that the fuzzy relationT solves the system

A1◦R = (.5,1,0, .5) ,
A2◦R = (0, .5, .5,1)

of fuzzy relation equations. And this system is a strongly better *u-approximating system w.r.t. the
initial system as is the *u-approximating system

A1◦R = (.5,1, .5, .5) ,
A2◦R = (.5, .5, .5,1)

which hasRMA as its solution.

A closer inspection of the proof of Proposition 6 shows that the crucial difference of the previous
optimality result forR̂ to the present situation ofRMA is that in the former case the solvable approxi-
mating system has its own (largest) solutionŜ. But in the present situation a solvable approximating
system may fail to have his MA-pseudo-solutionRMA as a solution.

However, this remark leads us to a partial optimality result w.r.t. the MA-pseudo-solution.

Definition 8. Let us call a system(1) of relation equationsMA-solvableiff its MA-pseudo-solution
RMA is a solution of this system.

Then we have the following result.

Proposition 9. If a system(1) of relation equations has an MA-solvable *u-approximating system

R′′Ai = B∗i , i = 1, . . . ,n (13)

such that for the MA-pseudo-solution RMA of (1) one has

Bi j B∗i j Ai ◦RMA , i = 1, . . . ,n,

then one has
B∗i = Ai ◦RMA for all i = 1, . . . ,n.
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Proof. Let R∗MA =
⋃n

i=1Ai ×B∗i be the MA-(pseudo-)solution of (13). Then one has because of the
monotonic dependency of the MA-pseudo-solution from the (input and) output data

RMA ⊆ R∗MA

and therefore for eachi = 1, . . . ,n

B∗i ⊆ Ai ◦RMA ⊆ Ai ◦R∗MA = B∗i ,

which just meansB∗i = Ai ◦RMA .

Corollary 10. If all input sets of(1) are normal then the system

Ai ◦R= Ai ◦RMA , i = 1, . . . ,n, (14)

is the smallest MA-solvable *u-supersystem for(1).

Proof. From the normality of the input sets one hasBi ⊆ Ai ◦RMA for all i = 1, . . . ,n. So a smaller
MA-solvable *u-supersystem(13) would have to satisfyBi j B∗i j Ai ◦R for all i = 1, . . . ,n. But then
it coincides with(14).

Corollary 11. Let R̂ be the S-pseudo-solution of(1) and suppose that the modified system

Ai ◦R= Ai ◦ R̂, i = 1, . . . ,n, (15)

is MA-solvable. Then the iterated pseudo-solution RMA [R̂[Bk]′′Ak], introduced in[4], is an optimal
*l-approximate solution of(1).

Proof. Assume that (15) is MA-solvable. Then its MA-solution is by construction of the system (16)
exactly the iterated pseudo-solutionRMA [R̂[Bk]′′Ak] of (1).

Therefore one has

Ai ◦RMA [R̂[Bk]′′Ak] = Ai ◦ R̂j Bi , i = 1, . . . ,n.

Now Proposition 6, i.e. the optimality of̂R as a *u-approximate solution yields immediately the opti-
mality of RMA [R̂[Bk]′′Ak].

This last Proposition can be further generalized. To do this assume thatS is somepseudo-solution
strategy, i.e. some mapping from the class of families(Ai ,Bi)1≤i≤n of input-output data pairs into the
class of fuzzy relations, which yields for any given system(1) of relation equations anS-pseudo-
solutionRS. Of course the system(1) will be calledS-solvableiff RS is a solution of the system
(1).

Definition 12. We shall say that theS-pseudo-solutionRS depends isotonically(w.r.t. inclusion) on
the output data of the system(1) of relation equations iff the condition

if Bi j B′i for all i = 1, . . . ,n then RS j R′S.

holds true for theS-pseudo-solutionsRS of the system(1) andR′S of an “output-modified” system
R′′Ai = Ai ◦R= B′i , i = 1, . . . ,n.
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Definition 13. Furthermore we understand by anS-optimal *u-approximate solution of the system
(1) theS-pseudo-solution of anS-solvable *u-approximating system of(1) which has the additional
property that no strongly better *u-approximating system of(1) is S-solvable.

Proposition 14. Suppose that theS-pseudo-solution depends isotonically(w.r.t. inclusion) on the
output data of the systems of relation equations. Assume furthermore that for theS-pseudo-solution
RS of (1) one always has Bi j Ai ◦RS (or that one always has Ai ◦RS j Bi) for all i = 1, . . . ,n. Then
theS-pseudo-solution RS of (1) is anS-optimal *u-approximate(or: *l-approximate) solution of the
system(1).

Proof. We discuss only the *u-approximating case, the other one is treated similarly.

Consider anS-solvable system

Ai ◦R= B∗i , i = 1, . . . ,n (16)

with S-pseudo-solutionR∗S which satisfies for theS-pseudo-solutionRS of (1) the inclusion relations

Bi j B∗i j Ai ◦RS , i = 1, . . . ,n.

Then one has
Ai ◦R∗S = B∗i j Ai ◦RS j Ai ◦R∗S , i = 1, . . . ,n,

and hence the relationship
B∗i = Ai ◦RS for all i = 1, . . . ,n.

It is immediately clear that Corollary 10 is the particular case of the MA-pseudo-solution strategy.
But also Proposition 6 is a particular case of this Proposition: the case of the S-pseudo-solution
strategy (having in mind that S-solvability and solvability are equivalent notions).

4 Concluding remarks

A notion of a fuzzy function as a mapping between universes of fuzzy sets with a uniqueness property
has been introduced. In this setting, a precise and approximate solutions to a system of fuzzy relation
equations are considered as the interpolating and approximating fuzzy functions with respect to a
given data. We recall the necessary and sufficient conditions of solvability of a system of fuzzy
relation equations and concentrated on a problem of approximate solvability. First we explained the
general framework, and later on we proved some particular results related to the problem of the best
approximation in different approximation spaces.

References

[1] Gavalec, M. (2001): Solvability and Unique Solvability of max-min Fuzzy Equations.Fuzzy
Sets Systems124No 3, 385–394.

[2] Gottwald, S. (1993):Fuzzy Sets and Fuzzy Logic.The Foundations of Application – from a
Mathematical Point of View. Vieweg: Braunschweig/Wiesbaden and Teknea: Toulouse.

131



[3] Gottwald, S. (2000): Generalised solvability behaviour for systems of fuzzy equations. In:Dis-
covering the World with Fuzzy Logic(V. Novák, I. Perfilieva eds.) Advances in Soft Computing,
Physica-Verlag: Heidelberg 2000, 401–430.

[4] Gottwald, S., Novák, V. and I. Perfilieva (2002): Fuzzy control and t-norm-based fuzzy logic.
Some recent results. In:Proc. 9th Internat. Conf. IPMU 2002, vol. 2, ESIA – Université de
Savoie: Annecy 2002, 1087–1094.

[5] Hájek P. (1998)Metamathematics of fuzzy logic, Kluwer, Dordrecht.

[6] Klir, G. and B. Yuan (1994): Approximate solutions of systems of fuzzy relation equations.
In: FUZZ-IEEE ’94.Proc. 3rd Internat. Conf. Fuzzy Systems, June 26-29, 1994, Orlando/FL,
1452–1457.

[7] Klir, G. and B. Yuan (1995):Fuzzy Sets and Fuzzy Logic.Theory and Applications. Prentice
Hall: Upper Saddle River.

[8] Klawonn, F. (2001): Fuzzy points, fuzzy relations and fuzzy functions. In:Discovering the
World with Fuzzy Logic(V. Novák, I. Perfilieva eds.) Advances in Soft Computing, Physica-
Verlag: Heidelberg 2000, 431–453.

[9] Mamdani, A./Assilian, S. (1975): An experiment in linguistic synthesis with a fuzzy logic
controller.Internat. J. Man-Machine Studies7, 1–13.
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In this paper we introduce the notion of the compatible extension of a fuzzy relation and we prove
an extension theorem for fuzzy relations. Our result generalizes to fuzzy set theory an extension
theorem proved by Duggan for crisp relations. We also obtain fuzzy versions of some theorems of
Szpilrajn, Hansson and Suzumura. A classical Szpilrajn theorem asserts that any strict partial order
is a subrelation of a strict linear order. Later this result lead to a wide range of extension theorems.
Hansson proved that every preorder can be extended to a total preorder. Suzumura refined Hansson’s
result by proving that a relation has a total and transitive compatible extension if and only if it is
transitive-consistent. A very general extension theorem was proved by Duggan. Duggan’s result
generalizes all the known extension theorems and some new interesting follow from it. Zadeh proved
a fuzzy form of the Szpilrajn’s theorem. This paper is another contribution to this problem following
Duggan’s trend. LetX be a non-empty set. Afuzzy relationonX is a functionR : X2→ [0,1]. If R,Q
are two fuzzy relations onX, thenR⊆Q means thatR(x,y)≤Q(x,y) for anyx,y∈X; in this caseQ is
called anextensionof R. A fuzzy relationR is transitiveif R(x,y)∧R(y,z)≤ R(x,z) for all x,y,z∈ X.
The transitive closure T(R) of a fuzzy relationR is the intersection of all transitive fuzzy relations
includingR. For any fuzzy relationR let us define the fuzzy relationPR by PR(x,y) = R(x,y)∧¬R(y,x).
Let R,Q be two fuzzy relations onX. Q is said to be acompatible extensionof R if R⊆ Q and
PR⊆ PQ. A classR of fuzzy relations onX is closed upwardif for any totally ordered family{Ri}i∈I

of fuzzy relations inR , we have
⋃
i∈I

Ri ∈ R . A fuzzy relationR is total if for any x 6= y we have

R(x,y)∨R(y,x) > 0. A classR of fuzzy relations onX is arc-receptiveif for any x 6= y and for any
transitive fuzzy relationR∈ R , R(y,x) = 0 impliesT(R[x,y]) ∈ R .

The following result is a generalization of Duggans’s extension theorem:

Theorem 1. Let R be a closed upward and arc-receptive class of fuzzy relations on X. For any
transitive fuzzy relation R∈ R there exists a total and transitive fuzzy relation R∗ ∈ R such that R∗ is
a compatible extension of R.

A relationR is transitive-consistent(consistent in Suzumura terminology) if for any integern≥ 2
and for anyz1, . . . ,zn ∈ X, (z1,z2) ∈ PR and(z2,z3), . . . ,
(zn−1,zn) ∈ R implies (zn,z1) 6∈ R. In [1] it was proved thatR is transitive-consistent if and only if
PR⊆PT(R). Any transitive relation is transitive-consistent. Suzumura’s theorem [2] asserts that a crisp
relation has a total and transitive compatible extension if and only if it is transitive-consistent. We
give a fuzzy generalization of this result.

Theorem 2. For a fuzzy relation R on X the following are equivalent:
(i) R has a total and transitive compatible extension Q; (ii) R has a transitive compatible extension Q;
(iii) R is transitive-consistent.

Keywords:Fuzzy relation; Compatible extension; Transitive-consistent
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1 Introduction

Triangular norms are, on the one hand, special semigroups and, on the other hand, solutions of some
functional equations [1, 8, 15, 16]. This mixture quite often requires new approaches to answer
questions about the nature of triangular norms. There are some problems which were stated some time
ago and remained unsolved for years. An example for this is the question whether the domination is a
transitive relation on the class of t-norms (this problem was posed by B. Schweizer and A. Sklar [16]).
Recall that a t-normT1 dominates a t-normT2 (in symbolsT1� T2) if for all x,y,u,v∈ [0,1]

T1(T2(x,y),T2(u,v))≥ T2(T1(x,u),T1(y,v)). (1)

Obviously, we haveTM �T andT�T for each t-normT, and thatT1�T2 impliesT1≥T2 (therefore
the relation� is reflexive and antisymmetric).

The aim of this note is to recall some well-known problems of the past (which have been solved
meanwhile) and to state several problems which are open and have not been posed so far for a wider
audience. Some of the solved problems were already mentioned in the monographs [8, 16] and in a
special note devoted to open problems [11].
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2 Some solved problems

Solved Problem 1.Suppose that an Archimedean t-normT has a continuous diagonal. IsT neces-
sarily continuous?

This problem goes back to [16], and it can be easily transformed to the case of an arbitrary t-norm
with continuous diagonal. A negative answer was given by G. M. Krause [10], for a more detailed
discussion of this topic see [8, Appendix B] and [18, 12].

Solved Problem 2. Let T be a cancellative t-norm which is continuous in the point(1,1). Is T
necessarily continuous?

This problem was posed by E. Pap in [11]. A negative answer was given by M. Budinčevíc and
M. S. Kurilić [2]. Moreover, there are non-continuous cancellative t-norms which are left-continuous
[17], see also [8, Example 2.29(ii)]. On the other hand, for an Archimedean t-norm its left-continuity is
equivalent to its continuity [9], and for a cancellative Archimedean t-norm its continuity is equivalent
with its continuity in the point(1,1) [5]. Therefore all counterexamples regarding this problem are
necessarily non-Archimedean.

Solved Problem 3.Can each (continuous) function in

D = {δ ∈ [0,1][0,1] | δ is non-decreasing andδ≤ id[0,1] andδ(1) = 1}.

be extended to a t-norm, i.e., do we haveD = {δT | T is a t-norm} (compare [7])?

Here the functionδT : [0,1]−→ [0,1] denotes the diagonal section of a t-normT given byδT(x) =
T(x,x).

This problem was stated in [8, Remark 7.20], and a negative answer was given by A. Mesiarová
[13] showing that the functionδ : [0,1]−→ [0,1] given by

δ(x) =


x
2 if x∈ [0,0.5] ,
0.25 if x∈ ]0.5,0.75] ,
3x−2 otherwise,

cannot be the diagonal of a t-norm, although we haveδ ∈D.

Solved Problem 4.Let T be a continuous t-norm on[0,1]2 (i.e., a an Abelian semigroup operation
T : [0,1]2× [0,1]2 −→ [0,1]2 with neutral element(1,1) which is non-decreasing with respect to the
product order on[0,1]2). Is T necessarily the Cartesian product of two t-norms on[0,1]?

This problem was stated in [3], and a counterexample was provided by S. Jenei and B. De Baets
[6].

3 Some open problems

Open Problem 5. Let T be a continuous Archimedean t-norm with additive generatort : [0,1] −→
[0,∞] anda∈ ]0,0.5[. Prove or disprove that

T(max(x−a,0),min(x+a,1))≤ T(x,x)

holds for allx∈ [0,1] if and only if t is convex.
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This problem has been posed by J. Fodor. Note that a positive solution of this problem would
induce a new characterization of associative copulas.

Open Problem 6. Let T be a conditionally cancellative (left-continuous) t-norm which is continuous
in the point(1,1). Is T necessarily continuous?

A t-norm T satisfies the conditional cancellation law ifT(x,y) = T(x,z) > 0 impliesy = z [8,
Definition 2.9]. Note that, for t-norms without zero divisors, this is exactly the solved problem 2.

Open Problem 7. Characterize all continuous (Archimedean) t-normsT such that the restriction of
T to Q2 is a binary operation on[0,1]∩Q.

This problem was inspired by some work of S. Jenei and F. Montagna on the extension of t-norms.

Open Problem 8. (i) Characterize all strictly decreasing functionst : [0,1]−→ [0,∞] with t(1) = 0
such that the operationT : [0,1]2−→ [0,1] given by

T(x,y) = t(−1)(t(x)+ t(y)) (2)

is a t-norm, where the pseudo-inverset(−1) : [0,∞]−→ [0,1] is given by

t(−1)(u) = sup{x∈ [0,1] | t(x) > u}.

(ii) Characterize all strictly decreasing functionst : [0,1] −→ [0,∞] with t(1) = 0 such that the op-
erationT : [0,1]2 −→ [0,1] given by (2) is a t-norm and such that for alln > 2 and for all
x1,x2, . . . ,xn ∈ [0,1] we have

T(x1,x2, . . . ,xn) = t(−1)
( n

∑
i=1

t(xi)
)
. (3)

Note that each t-normT induced by some functiont satisfying (2) and (3) is necessarily Archi-
medean. However, there are non-Archimedean t-normsT induced by functions satisfying (2) only
[19].

Open Problem 9. For a given pair of a t-normT and its dual t-conormS, characterize all binary
aggregation operatorsA : [0,1]2−→ [0,1] such thatA� T andS� A, where the domination relation
� is given by (1).

Recall that a functionA : [0,1]2 −→ [0,1] is called a (binary) aggregation operator if it is nonde-
creasing and satisfiesA(0,0) = 0 andA(1,1) = 1 (for details concerning domination see [14]).

Also the dual problem of characterizing, for a given binary aggregation operatorA, all t-normsT
such thatA� T andS� A holds, whereS is the t-conorm dual toT, is of interest.

Open Problem 10. Given a binary aggregation operatorA : [0,1]2 −→ [0,1], characterize all pairs
(T,S) of a t-normT and a t-conormSsuch that for all(x,y) ∈ [0,1]2 we have

A(T(x,y),S(x,y)) = A(x,y). (4)

Clearly, in the case whereA equals the arithmetic mean, (4) is just the Frank functional equation
which was completely solved in [4]. In the caseA = TP this problem was recently solved by G. Mayor.

Another modification of the Frank functional equation was proposed by J. Fodor: For a given
t-norm T0 and a given t-conormS0, characterize all t-normsT and t-conormsS such that for all
(x,y) ∈ [0,1]2 we have

T(x,y)+S(x,y) = T0(x,y)+S0(x,y).
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1 Introduction

It is often the case in practice that one has to deal with bounded bipolar scales instead of the usual
[0,1] interval. Bipolar scales are symmetric around a central point, theneutral value, usually denoted
by 0, and can be either of numerical nature (an interval ofR containing 0), or of ordinal nature (only
order matters): see a construction of an ordinal bipolar scale in [1, 3, 2]. Bipolar scales are bounded
if there exist a least and a greatest element (denoted for example -1 and 1). Values above the neutral
value 0 (positive values) are considered as attractive, good, while those under 0 are considered as
repulsive, bad, etc.

There are psychological evidences that human behaviour reflects bipolarity, and behaviours in e.g.
decision differ when utilities or scores are positive or negative. The well-known Cumulative Prospect
Theory (CPT) model [9] is a powerful bipolar model, where a Choquet integral is used to aggregate
the positive utilities and negative utilities separately, and two capacitiesν1,ν2 are used, one for the
positive part, the other for the negative part.

The question is now to produce a panoply of aggregation operators for the bipolar case, extending
those already known for the unipolar case[0,1], while possibly imposing some structural properties.
We address here 3 topics, described below. This can be seen as first steps in this direction.

2 Symmetric pseudo-additions and multiplications

The aim is to define pseudo-additions and pseudo-multiplications, say on[−1,1], so as to get a struc-
ture close to a ring, or an Abelian group, if only one operation is considered. A natural starting point
seems to take t-norms and t-conorms on[0,1], and get them symmetrized.

We show that if the t-conorm is nilpotent, then there is no way to build even a group. If the
t-conorm is strict, then a group can be obtained, and in this case the symmetrized t-conorm corre-
sponds to a uninorm rescaled on[−1,1]. However, one cannot obtain a ring anyway (at least with our
assumptions) [4].

We show that these results are closely related to the theory of ordered Abelian groups and Hölder
theorem [8].
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3 Symmetric operations on symmetric ordinal scales

The aim is the same than in Section 2, and can be seen as the case where the t-conorm and t-norm is the
max and min operators. We define a symmetric maximum∨©, and a symmetric minimum∧©, in such
a way that the structure is as close as possible to a ring. In fact, it is shown that imposing a symmetric
element prevents the symmetric maximum to be associative. In order to cope with non associativity,
we propose various rules of computation, which define unambiguously the value of expressions such
that ∨©i∈I ai , and study in detail the properties of the rules [2].

4 Bi-capacities

It is known that, with discrete universes, the Choquet integral can be seen as a general family of
aggregation operators. If the underlying scale is bipolar, the Choquet integral extends usually in 2
ways: the symmetric integral (or Šipoš integral), and the asymmetric integral (see [7] for propserties).
A more general way is to consider the CPT model. Yet, more general extensions can be done, where
there is a real interconnection between positive and negative parts. This is achieved through the
concept ofbi-capacities[6, 5], which code the value taken by the integral for functions being 1 on
some subsetA, and -1 on some subsetB. The Choquet integral w.r.t a bi-capacity generalizes the
CPT model, and can be interpreted, as the Choquet integral, with the help of the Shapley value, and
interaction indices.

Key words: t-norm, uninorm, ordered group, bipolar scale, capacity, Choquet integral
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The motivation for our investigations is coming from integration theory.
The definition for the Lebesgue-Integral of simple functions uses an addition, a multiplication, a dis-
tributive law and a measure.
To avoid the additivity of the measure the Choquet-Integral requires only an isotone set function which
disappears at the empty set (a so-called fuzzy measure), but a difference is needed now.

To define a more general integral it thus seems naturally to consider a fuzzy measure and three gener-
alized functions defined on an arbitrary interval
[A,B] , −∞≤ A < B≤ ∞ :

a pseudo-addition, a pseudo-multiplication and a pseudo-difference,
which are connected by an appropriate distributive law so that the
three operations are fitting.

So there are two steps :

First the interaction of fitting pseudo-additions and pseudo-multiplications connected by a distributiv-
ity law has to be investigated.

Then - in a second step - one has to choose an appropriate pseudo-difference to define an integral
satisfying desirable properties.

Let us start with some remarks :

We assume that a pseudoaddition is essentially a t-conorm on[A,B] but a pseudo-multiplication is
only an isotone function which is continuous on(A,B]2 (neither associativity nor commutativity is
required).

The usual one-sided distributivity is a rather strong property so that the class of fitting pseudo-
multiplications is very restricted (for example, the usual (bounded) addition and (bounded) multi-
plication are not fitting operations).
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We can offer a weak distributive law for which extensive classes of pseudo-additions and pseudo-
multiplications are fitting. Actually, we use 2 different pseudo-additions to introduce one-sided dis-
tributivity laws (here we only give the left-distributivity law) :

Definition 1. Let∆, : [A,B]2→ [A,B] be pseudo-additions with
generator sets
{km : [a∆

m,b∆
m]→ [0,∞] |m∈ K∆} and{hl : [al ,bl ]→ [0,∞] | l ∈ K } .

Moreover, letD∆ := {b∆
m : m∈ K∆}

and let� : [A,B]2→ [A,B] be pseudo-multiplicaton.

Then� satisfies the weak left-distributivity law with respect to(∆, ) iff a∆b /∈D∆ implies(a∆b)�
x = (a�x) (b�x) for all a,b,x∈ (A,B].

This means that the usual distributivity law holds
if a∆b /∈D∆ is no right endpoint of an "archimedean" interval[a∆

m,b∆
m].

(By "usual left- (or right-) distributivity" we mean the equations
(a∆b)�x = (a�x) (b�x) (or a� (x∆y) = (a�x) (a�y)) are satisfied
for all x,y,a,b∈ (A,B]).

Using additional axioms like the existence of a one-sided unit we investigate the structure of the
pseudo-multiplication (and its influence on the ordinal-sum-structure of the pseudo-addition) and the
possibility of a representation of the pseudo-multiplication by generators of the pseudoaddition.

We present the following special case of a more general result (Suprisingly a similar result holds
in the case of the validity of a one-sided "usual" left distributivity law).

Theorem 2. Let∆, : [A,B]2→ [A,B] be pseudo-additions,
let � : [A,B]2→ [A,B] be a pseudo-multiplication which satisfies the weak left-distributivity law with
respect to(∆, ) and let� have a right unit
(that is, there is ane∈ (A,b] such thata�e= a for all a∈ (A,B]).
(I) Then we have
(a) ∆ = .
(b) If � has a left unit
(that is, there is añe∈ (A,b] such that̃e�a = a for all a∈ (A,B])
then∆ has one of the following structures

Max

Max

Max

nonstrict

strict
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(II) For all m∈K∆, l ∈K there is a monotonic increasing, continuous functiongm,l : (A,b]→ [0,∞]
with the property

∧
a∈(a∆

m,b∆
m]

∧
x∈(A,B]

[ a�x∈ (al ,bl ]→ a�x = h(−1)
l (km(a) ·gm,l (x)) ].

Theorem 2 has rather weak assumptions. In the literature rather often� is assumed to be a uni-norm
or a t-norm, but the above result shows that neither associativity nor commutativity is needed. In
contrary, in many cases we get that� is automatically associative and commutative.

Note that the structure of the pseudo-addition in Theorem 2 reduces to an ordinal sum with at
most 2 "archimedean intervals". This explains why in all existing examples in the literature at most 2
"archimedean intervals" were chosen (see [1]).

Moreover, we can give representations of fitting pseudo-multiplications in all "archimedean inter-
vals" using the generators of the pseudo-addition.
>From this result we get - for example - very easily a recent result of Klement, Mesiar and Pap con-
cerning t-norms and t-conorms which satisfy a restricted distributive law (see [2]).

Concerning the second step we define - like proposed by Murofushi and Sugeno (see [4]) -
a mapping−∆ : [A,B]2 → [A,B] to be pseudo-difference with respect to a pseudo-addition∆ iff
a−∆ b := in f{c∈ [A,B] : b∆c≥ a}.

But here we have no restriction to archimedean pseudo-additions.
Fortunately this pseudo-difference is very compatible with the weak left- and right-distributivity law.

Our integral definition for measurable functionsf is based on the fuzzy-t-conorm integral of
Murofushi and Sugeno ( see [4]). To define an integral we need only two continuous t-conorms, a
fitting pseudo-multiplication and an arbitrary fuzzy-measureµ.
But of course, if we want to prove the theorem of monotone convergence, we need thatµ is continuous
from below.
The usual results concerning integrals like monotonicity and commonotone additivity are presented
(rather often the proof for the monotonicity of a "fuzzy" integral has gaps, we will point out that the
proof for the monotonicity is not trivial).

Further the fuzzy-measure can be decomposed into "fuzzy-measure components" fitting to the
ordinal structure of the pseudo-addition and pseudo-multiplication, so that we have in each "archime-
dean interval" a nice representation with the generators of the pseudo-addition and pseudo-multiplication.

Finally a characterization result for the integral can be represented which is similar to a result of
Benvenuti and Mesiar (see [1]).

Theorem 3. Let(X,A) be a measurable space.
Further, let∆, : [0,B]2→ [0,B] be pseudo-additions and
let � : [0,B]2→ [0,B] be a pseudo-multiplication satisfying the usual left- and right-distributivity and
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having a left-unit̃eand having 0 as neutral element
(that isa = 0 orx = 0 impliesa�x = 0 for all a,x∈ [0,B]).

Moreover letF : { f : X→ [0,B] | f measurable} and
let I : F → [0,B] be a function.

Then there exists a-decomposable fuzzy measureµ : A → [0,B]
(that is,U ∩V = /0 impliesµ(U ∪V) = µ(U) µ(V))
which is continuous from below satisfying

∧
f∈F

I( f ) =
∫

f dµ

(where
∫

is our fuzzy integral) iff

1. I is monotonic increasing,

2. I is continuous from below,

3. I is decomposable (U ∩V = /0 impliesI(ẽ1U∪V) = I(ẽ1U) I(1V)),

4. I is weakly homogeneous (I(a1M) = a� I(ẽ1M)),

5. I is additive for commonotone functionsf ,g

(if f (x) < f (x) impliesg(x)≤ g(y) thenI( f ∆g) = I( f ) I(g)).
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Decision-making in fuzzy logic control with the degree of coincidence
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In control theory and also in theory of approximate reasoning, introduced by Zadeh in [14], much of
the knowledge of system behavior and system control can be stated in the form of if-then rules. The
Fuzzy Logic Control, FLC has been carried out searching for different mathematical models in order
to supply these rules. In most sources it was suggested to represent an

if x is A then y is B

rule in the form of fuzzy implication (shortlyImp(A,B), relation (shortlyR(A,B)), or simply as a
connection (for example as a t-norm,T(A,B)) between the so called rule premise:x is A, and rule
consequence:y is B. Let x be from universeX, y from universeY, and letx and y be linguistic
variables. Fuzzy subsetA of X is characterized by its membership functionµA : X→ [0,1]. The most
significant differences between the models of FLC-s lie in the definition of this connection, relation
or implication.

The other important part of the FLC is the inference mechanism. One of the widely used methods
is the Generalized Modus Ponens (GMP), in which the main point is, that the inferencey is B′ is
obtained when the propositions are:

- the ith rule from the rule system ofn rules: if x is Ai then y is Bi ,

- and the system inputx is A′.

GMP represents the real influences of the implication or connection choice on the inference mecha-
nisms in fuzzy systems [4], [13]. Usually the general rule consequence for one rule from a rule system
is obtained by

B′(y) = sup
x∈X

(T(A′(x), Imp(A(x),B(y))).

In this field we can find the new results for left-continuous t-norms in [1]. The connectionImp(A,B)
is generally defined, and specially it can be some t-norm, too.

In engineering applications the Mamdani implication is widely used. The Mamdani GMP with
Mamdani implication inference rule says, that the membership function of the consequenceB′ is
defined by

B′(y) = sup
x∈X

(min(A′(x),min(A(x),B(y)))

or generally
B′(y) = sup

x∈X
(T(A′(x),T(A(x),B(y))), (1)
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whereT is a left-continuous t-norm. Thus we obtain from (1)

B′(y) = T(sup
x∈X

(T(A′(x),A(x)),B(y)).

Generally speaking, the consequence (rule output) is given with a fuzzy setB′(y), which is derived
from rule consequenceB(y), as a cut of theB(y). This cut, supx∈X T(A′(x),A(x)), is the generalized
degree of firing level of the rule [13], considering actual rule base inputA′(x), and usually depends on
the covering overA(x) andA′(x). But first of all it depends on the sup of the membership function of
T(A′(x),A(x)).

The FLC rule base output is constructed as a crisp value calculated with a defuzzification model,
from rule base output. Rule base output is an aggregation of all rule consequencesB′i(y) in rule base.
A t-conormS is usually used as an aggregation operator

yout = S(B′n,S(B′n−1,S(...,S(B′2,B
′
1)))).

In system control, however, intuitively one would expect: let’s make the powerful coincidence be-
tween fuzzy sets stronger, and the weak coincidence even weaker. The family of evolutionary opera-
tors ([9]), and the family of distance-based operators ([8]), satisfy that properties, but the covering over
A(x) andA′(x) is not really reflected by the sup of the membership function of theTmax

e (A′(x),A(x))
(Tmax

e is the maximum distance based operator). Hence, and because of the non-continuity of the
distance-based operators, it was unreasonable to use the classical degree of firing, to give expression
for the coincidence of the rule premise (fuzzy setA), and system input (fuzzy setA′). Therefore a De-
gree of Coincidence (Doc) for those fuzzy sets has been initiated. It is nothing else, but the proportion
of area under membership function of the distance-based intersection of those fuzzy sets, and the area
under membership function of their union (using max as the fuzzy union)

Doc=
∫

XTmax
e (A′(x),A(x))dx∫

X max(A′(x),A(x))dx
.

This definition has two advantages:

- it considers the width of coincidence ofA andA′, and not only the ”height”, the sup, and

- the rule output is weighted with a measure of coincidence ofA andA′ in each rule ([10]).

The rule output fuzzy setB′ is achieved as a cut of rule consequenceB with Doc

B′(y) = Tmin
e (B(y),Doc) or B′(y) = Tmax

e (B(y),Doc).

It is easy to prove thatDoc∈ [0,1], andDoc= 1 if A andA′ cover each other, which impliesB′ (y) =
B(y), andDoc= 0 if A andA′ have no point of contact, which impliesB′ (y) = 0.

The FLC rule base output is constructed as above explained. The output is constructed as a crisp
value calculated from rule base output, which is an aggregation of all rule consequencesB′i(y) in rule
base. For aggregation, distance based operatorsSmin

e or Smax
e can be used.

We can see the justification for this line of reasoning in the simulations of a simple dynamic
system, using distance based operator-pairsTmin

e ,Smin
e or Tmax

e ,Smax
e [12].
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An additional possibility is if the cutB′i(y) of the rule consequenceBi(y) is calculated from the
expression ([11])

Doc=
∫
YB′ (y)dy∫
YB(y)dy

.

Based on this fact, we have for triangular membership functionsA(x) ,A′ (x) , B(y) that

B′(y) = max(B(y),1−
√

1−Doc).

TheB′(y) is obtained as a weighted fuzzy set, and the weight parameter (Doc) depends on
∫

XTmax
e (A′(x),A(x))dx.

It is a measure related to the area under membership functionTmax
e (A′(x),A(x)), and it is a non-

additive measure related to t-norm and t-conorm (in the domain and in the range) in the spirit as it can
be found in [2] and [5],[6],[7]. Using this fact a connection betweenDoc type of inference mechanism
and generalized fuzzy measures and integrals has been investigated.

The further steps are the investigation of measure-properties of different degrees of firing types
used by FLC, and the use of the other types of fuzzy integrals from the pseudo-analysis in decision-
making by FLC.
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Abstract

Fuzzy measures (T-measures) onT-tribes are a fuzzification of measures onσ-algebras. They
were characterized recently in [4]. Here we investigate the convex structure of probabilityT-
measures (T-states).
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Let T be a fixed strict triangular norm (t-norm), i.e., a binary operationT : [0,1]2→ [0,1] which is
commutative, associative, continuous, strictly increasing (except for the boundary of the domain) and
satisfies the boundary conditionT(a,1) = a for all a∈ [0,1] (see [9, 16]). AT-tribe is a collectionT of
fuzzy subsets which contains the empty set and which is closed under the standard fuzzy complement
and (the pointwise application of) the triangular normT (extended to countably many arguments).
The notion of aT-tribe was introduced by Butnariu and Klement [5, 6] as a generalization of aσ-
algebra of subsets of a set. Further, they introduced the notion ofT-measure as a generalization of a
σ-additive measure on aσ-algebra (hereS: [0,1]→ [0,1] denotes the triangular conorm dual toT, i.e.,
S(a,b) = 1−T(1−a,1−b)): A functionm: T →R is called aT-measureiff it satisfies the following
axioms:

m(0) = 0,

m(T(A,B))+m(S(A,B)) = m(A)+m(B),

An↗ A =⇒m(An)→m(A),

where the symbol↗ denotes monotone increasing convergence. The notion ofT-measure is not
only a natural generalization of a classical measure. It is also the base of successful applications in
game theory. Many deep mathematical results, including a generalization of Liapunoff Theorem, were
proved in [1, 2, 6]. An overview of fuzzy measures can be found in [7].

Thestrict Frank triangular norms Ts, s∈ (0,∞) (see [8]) are t-norms of the form

Ts(a,b) = logs

(
1+

(sa−1)(sb−1)
s−1

)
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for s∈ (0,∞)\{1} or
T1(a,b) = a·b

(the product t-norm) fors= 1.

A characterization of monotonicT-measures for a Frank triangular normT has been presented in
[6] and completed in [13]:

Theorem 1. Let T be a strict Frank triangular norm and letT be a T-tribe. Then the set C(T ) of all
crispelements ofT (i.e., those attaining only values0,1) is a σ-algebra. Each T-measure µ onT is
of the form

µ(A) = ν(A−1((0,1]))+
∫

Adλ,

whereν, λ are (classical) measures on C(T ) (up to the standard identification of sets with their
characteristic functions).

In [15], the latter theorem was extended to a more general case of so-callednearly Frank t-norms
(see [12, 14]). On the other hand, for all other t-normsT the general form of aT-measure reduces to

µ(A) = ν(A−1((0,1])),

whereν is a (classical) measure onC(T ). These results were obtained under an additional assumption
of monotonicity of theT-measure in question; nevertheless, an independent generalization in [3] (for
Frank t-norms) and [4] (for the general case) show that the characterization of nonmonotonicT-
measures remains essentially the same.

We tried to compare probability measures (called alsostates) on σ-algebras andprobability T -
measures(called alsoT-states) on T-tribes. They form convex sets. In many cases the space of
all T-states is affinely homeomorphic to the state space of someσ-algebra. This correspondence is
canonical in the case when the t-normT is not nearly Frank; thenT-states on aT-tribeT are uniquely
determined by their restriction to theσ-algebraC(T ). A less trivial correspondence is obtained for
Frank and nearly Frank t-norms where the above restriction is not injective. Still in many cases (e.g.,
for semigenerated tribesintroduced in [11]) theT-state space is affinely homeomorphic to the state
space of someσ-algebra (different fromC(T )).
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