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Since their inception in 1979, the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work. LINZ 2003 will be already tH& S&minar

carrying on this tradition.

LINZ 2003 will deal with the use of Triangular Norms and Related Operators in Many-Valued
Logics and their applications. Though the basic results in the theory of t-norms go back to the Sixties,
there is an important growth of interest in the theoretical background of t-norms and related operators
(such as copulas, implications, uninorms, etc.) during the last years. Theory and applications of
t-norms and related operators influence each other, as can be seen not only in probabilistic metric
spaces, but also in many-valued logics, measure and integration theory, preference modeling, etc. For
practical purposes, the determination of an appropriate t-norm fitting the observed data becomes an
acute problem. The aim of the seminar is an intermediate and interactive exchange of recent results.
We expect that the presented talks will provide a comprehensive mathematical framework for the
theory and application of triangular norms and related operators.

Erich Peter Klement
Radko Mesiar
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Ten years later: lessons from a polemics

ENRIC TRILLAS

Department of Artificial Intelligence
Technical University of Madrid
Madrid, Spain

E-mail: etrillas@fi.upm.es

In 1993, a first version (1) of (2) got a "best paper award" in the Conference of the
American Association for Artificial Intelligence and created a remarkable excitement
among the community of researchers in fuzzy logic. For example, in (3) one can find
some of the correspondence between people working in the field and, specialy, the report

(4) on the subject.

Paper (2) has, in fact, two parts. The first tries to show that the logical formula
(P.q) =g+p.d
forces fuzzy logic to collapse into classical bivaluate logic. The second tries to criticize

some technological achievements of fuzzy logic.

In 1994 the monthly journal IEEE-EXPERT devoted to the controversy a good part of one
of its issues (5), with short papers writen by relevant researchers and with both pro and
con arguments. In 1996, (6) and (7) appeared in the International Journal of Intelligent
Systems, and in 2001 papers (8), (9) and (10) were published in the Internationa Journal
of Approximate Reasoning. Paper (6) tries to correct (2), and paper (7) considers the
problem of logical equivalence, an important topic that is in the ground of (2). Paper (8)
considers formula (%) in a very general fuzzy framework, and papers (9) and (10) are a

continuation of the polemicsin (4) now motivated by (8).
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3. Thetak will only consider three problems arising from the first part of (2), namely:

* From where does (x) come asa"classical" logical law?
*  Which theories of fuzzy sets admit (x) as alaw, and when can it be
reached by mixing connectives?

*  Whenisthereanimplication - such that (x) can be rewriten as

p - q=q+p.q ?

It should be pointed out that the theoretical argument in the first part of (2) is, with numerical
truth-values as it is done there, atriviality that says nothing on fuzzy logic, but that with fuzzy
sets p and g, the question is not so trivial and formula (x) deserves to be reconsidered. In such
aline, the talk will proceed through the following:

CONTENTS

Introduction. Elkan’s paper and the 1993-94 excitement.
What for Elkan’s theoretical result?

1996. The equivalence problem, and a long silence
From where does Elkan’s formula come?

Two problems: Law (L), and Implicative Reading (IR)
L: The case of DeMorgan algebras

L: The case of orthomodular lattices

L: The case of standard theories of fuzzy sets

IR: Contrasymmetry, and Dishkant arrow

© © N o g s~ w NP

IR: The case of fuzzy logic with a single triplet (T, S, N)

10. The interest of mixing connectives

11. L: The cases of mixed connectives and non-standard theories of fuzzy sets.
12. IR: The case of fuzzy logic with mixed connectives.

Conclusion and open guestions

12
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Universes of fuzzy sets—a survey of the different approaches

SIEGFRIED GOTTWALD

Institute for Logic and Philosophy of Science
Leipzig University
Leipzig, Germany

E-mail: gottwaldQuni-leipzig.de

Approaches toward the development of universes of fuzzy sets which are closed under the formation
of fuzzy subsets and which know set algebraic operations which are based upon t-norms (or something
similar), are intended to provide “closed worlds” for fuzzy set theories and to make precise in this way
the notion of fuzzy set of higher level.

The methods to attack this problem of the construction of a fuzzy analogue to the cumulative
universe of crisp sets fall essentially into three classes:

e approaches which try to form cumulative universes of fuzzy sets rather similar to the construc-
tion of the cumulative universe of sets via an transfinite iteration of the power set operation;

e approaches which intend to give axiomatizations of the theory of fuzzy sets;

e approaches which try to form cumulative universes of fuzzy sets rather similar to Boolean val-
ued models for classical set theory;

e approaches which intend to suitably generalize the categorical characterization of the category
SET of all sets and mappings to a similar characterization of some caté@ky of all fuzzy
sets and of suitable mappings between them.

There is a wealth of such approaches. The mostimportant ones shall be discussed, some recent results
and some possibilities for generalizations explained, and some open problems mentioned.
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Embedding standard BL-algebras into non-commutative
pseudoBL-algebras

PETR HAJEK

Institute of Computer Science
Academy of Sciences
Prague, Czech Republic

E-mail: hajek@cs.cas.cz

BL-algebras are algebras of truth functions of the basic fuzzy Bgif5]. Each continuougs-norm
defines a standaflL-algebra (ot-algebra) on the real intervf, 1] (with its standard ordering). As
proved in [3],BL-tautologies (propositional formulas being tautologies over &echlgebra) are the
same as-tautologies (standarlL-tautologies). Speaking algebraically, the varietyBafalgebra is
generated by the class bhlgebras.

Di Nola, Georgescu and lorgulescu [1, 2] introduced and studied p$uddgebras (briefly,
psBL-algebras), a generalization BL.-algebras not assuming commutativity of the semigroup oper-
ation (truth function of conjunction). The corresponding propositional logic was established in [6, 7].

As shown in [4], there are no non-commutative stange@L-algebras, i.epsBL-algebras whose
lattice reduct is the standard real inter{@l1].In [7] | gave an example of a non-commutatigeBL-
algebra on the “nonstandard” unit interval in which each standard elemétlbhas continuum of
“infinitely near” non-standard elementd S0, 1] is the set of pairs

{(0y)] yeRey>0}U
{(x,y)] 0O0<x<lyeReU

{(L,y)| yeRey<0}

with lexicographic order (standard elements being the g&iy). The example is a pseuddV -
algebra in the terminology of [1] and its standard elements form a staBlaadgebra (modulo the
representation of € [0,1] by the pair(x,0)). | asked at the end of [7] if each stand@Bd-algebra
is embeddable in this way into a non-commutatp&BLl-algebra on the non-standard unit interval
NSO, 1]. Our result is the following:

Theorem 1. For each continuous t-normhaving at least one non-idempotent element there is a non-
commutative psBL-algebr& on NS0, 1] whose reduct tg0, 1] = {0} is isomorphic to the standard
BL-algebral0, 1], via the identification of x [0, 1] with the pair(x,0).

15



References

[1] diNola A., Georgescu G., lorgulescu A.: PseWlo-algebras, Part | Mult. Val. Logic (to appear).

[2] diNola A., Georgescu G., lorgulescu A.: PseWloalgebras, Part Il. Mult. Val. Logic (to ap-
pear).

[3] Cignoli R., Esteva F., Godo L., Torrens A.: Basic fuzzy logic in the logic of contintowsms
and their residua. Soft computing 4 (2000), pp. 106-112.

[4] Flondor P., Georgescu G., lorgulescu A.: Pseudo-t-norms and pseudo-BL-algebras. Soft com-
puting 5 (2001), 355-371

[5] Hajek P.: Metamathematics of fuzzy logic. Kluwer 1998.

[6] Hajek P.: Fuzzy logics with non-commutative conjunction, Journal of Logic and Computation,
to appear.

[7]1 Hajek P.: Observations of non-commutative fuzzy logic. Soft computing (to appear)

[8] Hajek P.: Basic logic anBL-algebras. Soft computing 2 (1998), pp. 124-128.

16



Group-like structures on M-valued sets

ULRICH HOHLE

Fachbereich Mathematik
Bergische Universitat
Wuppertal, Germany

E-mail: hoehle@wmfa2.math.uni-wuppertal.de

Let M = (L,<,*) be aGL-algebra. Typical examples are complete Heyting algebras or continuous
t-norms on the real unit interval. Further, MtSET be the category oM-valued sets (cf. [3]). It

is not difficult to see thaM-SET is a monoidal category in which the unit object does not coincide
with the terminal object. The axioms of group-like structuresvbralued sets will make use of this
monoidal structure oM-SET. Among other things we are able to establish the following facts:

1. The axioms of group-like structures are preserved under the so-called tilde-construction which
assigns to eachl-valued set its singleton space (cf. [3]).

2. Fuzzy groups in the sense of J.M. Anthony and H. Sherwood are canonical subgroup-like struc-
tures (cf. [1]).

3. Inthe case of complete Heyting algebras separated presheaves of groups form a natural class of
group-like structures (in the case of lattices of open subsets see also [2]) .

4. Probabilistic normed spaces induces group-like structures in a natural way (cf. [5]).

Even though group-like structures are not group structures in the categorical séh<eEdf, we are
convinced that these structres will play a non trivial role in algebraic theories based on nonclassical
logics.
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How to construct left-continuous triangular norms—state of the art
2002

SANDOR JENEI

Institute of Mathematics and Informatics
University of Pécs
Pécs, Hungary

E-mail: jenei@ttk.pte.hu

1 Introduction

Triangular norms (t-norms for short) play a crucial role in several fields of mathematics and Al. For
an exhaustive overview on t-norms we refer to [23]. Recently an increasing intetefit@intinuous

t-norm based theories can be observed (see e.g. [3, 6, 7, 8, 9, 10, 21]. The condition of left-continuity
is a frequently cited property and plays a central role in all the fields that use t-norms. The role of
left-continuous t-norms with strong associated negations is even more relevant, since then the nega-
tion, which is associated to the t-norm is an involution, and hence one can define a t-conorm via the
de Morgan rule. In spite of their significance, the knowledge about left-continuous t-norms was rather
poor for a long time; there were no results in the literature where left-continuous t-norms stood as the
focus of interest. Moreover, until 1995 there were no known examples for left-continuous t-norms,
except for the standard class of continuous t-norms. Continuous t-norms have become well under-
stood from the famous and widely cited paper of Ling, as ordinal sums of continuous Archimedean
t-norms [25] and have been used in several applications. The poor knowledge about left-continuous
t-norms on one hand and the good understanding of continuous t-norms on the other hand result in
the use of continuous t-norms when left-continuity would be sufficient in theory. This very much
restricts the freedom of choice when the proper operation has to be found in the mathematical setting
in question. In other words, this makes modeling, e.g., in probabilistic metric spaces, in game theory,
in the theory of non-additive measures and integrals, in the theory of measure-free conditioning, in
fuzzy set theory, in fuzzy logic, in fuzzy control, in preference modeling and decision analysis, and in
artificial intelligence much less flexible.

In this paper we discuss in detail the presently existing construction methods which result in left-
continuous triangular norms. The methods are (together with their sources):

e annihilation [4, 15, 2] and [23] (Proposition 3.64)
e ordinal sum of t-subnorms [14, 12, 24],

e rotation contruction [17, 11],

e rotation-annihilation construction [18],

e embedding method [20, 9].

18



An infinite number of left-continuous triangular norms can be generated with these constructions (and
with their combinations), which provides a tremendously wide spectrum of choice for e.g. logical
and set theoretical connectives in non-classical logic and in fuzzy theory. By using these methods
(consecutive combination of them is as well possible) an infinite number of new left-continuous t-
norms can be generated. Some of them has the additional advantage that the associated negation of
the resulted t-norm is strong, which may be useful in logical applications. The resulted operations
can be admitted into the attention of researchers of algebra, probabilistic metric spaces, non-classical
measures and integrals, non-classical logics, fuzzy theory and its applications.
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Abstract

A new hierarchy of the fuzzy operators has been proposed in this paper. This interpretation
was based on the observation of non-symmetry of fuzzy operators as, for instance, triangular
norms. The starting point of this approach is based on the method of symmetrization relaying
on spreading out negative information from the point O to the intdrval0). Based on this
assumption, the normal and weak forms of balanced triangular norms are defined in the paper.
Relations between normal form of balanced triangular norms and uninorms and nullnorms are
studied. It is shown that balanced triangular norms, uni- and nullnorms are cases of generalized
operators, so called iterative triangular norms.

1 Preliminaries

The operators investigated in this paper relay on their axiomatic definitions and differences between
these definitions. Thus, in this Chapter definitions and selected properties of triangular norms, uni-
norms and nullnorms as well as balanced triangular norms are recalled. It is assumed that reader is
accustomed with basic knowledge of triangular norms, uni- and nullnorms and balanced triangular
norms.

1.1 Triangular norms - definition

Triangular norms, i.e. t-norms and t-conorms, in their classical meaning, are mappings from the
unit squarg0, 1] x [0, 1] onto the unit interval0, 1] satisfying axioms of associativity, commutativity,
mononicity and boundary conditions (cf. [5, 7] for details), i.e.:

Definition 1. t-norms and t-conorms are mappings|0, 1] x [0,1] — [0, 1], wherep stands for both
t-norm and t-conorm, satisfying the following axioms:

1. p(a p(b,c)) = p(p(a,b),c) associativity
2. p(a,b)=p(b,a) commutativity
3. p(a,b) < p(b,a)ifa<candb<d monotonicity
4. t(l,a)=aforac[0,1]andb<d boundary condition for t-norm

s(0,a) =aforaec[0,1)andb<d boundary condition for t-conorm
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t-norms and t-conorms are dual operations in the sense that for any given t-norm t, we have a dual
t-conorm s defined by the De Morgan forms{a,b) = 1—-t(1—a, 1—b) and vice-versa, for any given
t-conorm s, we have a dual t-norm t defined by the De Morgan forifaeld) =1—s(1—a,1—Db).
Duality of triangular norms causes duality of their properties. Note that the max/min are pairs of dual
t-norms and t-conorms.

1.2 Uninorms and nullnorms

Uni-norms were introduced in [8] as a unification and generalization of the triangular norms. Defi-
nition of uninorms is derived from definition of triangular norms with boundary condition varieted.
Namely:

Definition 2. Uninorm is a mappingu : [0,1] x [0,1] — [0, 1] satisfying the following axioms:

1., 2.,3. associativity, commutativity and monotonicity
4. (Je€ [0,1]) such that for alk € [0, 1ju(x,e) = x identity element

It is clear that a t-norm is a special uninorm with identity elemest 1 and a t-conorm s is a
special uninorm with identity elemeat= 0.

The definition of nullnorms differs from the definition of uninorms in boundary condition:

Definition 3. Nullnorm is a mappingu : [0,1] x [0, 1] — [0, 1] satisfying the following axioms:

1., 2., 3. associativity, commutativity and monotonicity
4. (Ja € [0,1]) such thatVx € [0,a])u(x,0) = 0 and(Vx € [a, 1])u(x,1) = X
neutral element

Obviously, a t-norm is a special nullnorm with neutral elerreeat0 and a t-conorm s is a special
nullnorm with neutral elemerat= 1. Assuming thati is a uninorm with identity e and if v is defined
asv(x,y) =1—u(1—x,1—y), thenvis a uninorm with identity - e. vis called the dual uninorm of
u. This fact shows that difference between uninorm and its dual analogue is only quantitative. This
means that they are similar from the perspective of global properties discussed in the paper. So that
duality will not be considered in the paper.

Assuming that u is a uninorm with identity e:

1. u(a0)=0 foralla<e andu(a,1)=1foralla>e
2. x<u(xy) <y forallx<e ande<y
3. eitheru(0,1) =0 oru(1,0)=1
Uninorms generalize the concept of triangular norms. According to [2], assuming thad
uninorm with identitye € (0, 1), the mapping$, ands, are t-norm and t-conorm respectively:

_u(exey) ule+(1—ex.e+(1—e)y)

tU(X7 y) - e and %(X7 y) = 1_ e (1)
or equivalently:
uu(x,y):et(g,)é) for x,ye[0,¢ and
X—ey—e
Wixy) = et (1-es(;—oa—g) for xyelel @
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The isomorphic mapping(x) = 2x— 1 (and its inversdr—1(x) = (x+1)/2) ) transforms uninorms
and nullnorms into the interval-1, 1] with respective values of unit and neutral elements equal to
e=2e—1anda=2a-—1, respectively. Itis easily seen that the isomorphic mappings:

_J (x—¢)/e [ e(x+1)/e xe [0,€]
h(x)_{ (x—e)/(1-¢)] and Wl(x)_{ (1-—e)x+e for{ xe [e1] (3)

will transform uninorms (and nullnorm) to their symmetrized versions with unity and neutral elements
equal to 0.

Comment nullnorms satisfy similar properties, cf. [5].

1.3 Balanced triangular norms in normal form

The definition of balanced triangular norms in normal form, as introduced in [3], is derived from the
definition of triangular norms. The domain of balanced triangular norms is extended to the square
[—1,1] x [-1,1]. Balanced triangular norms are identical with classical triangular norms on the unit
squarg0, 1] x [0, 1] and satisfy axioms of associativity, commutativity and monotonicity on the whole
domain[—1,1] x [-1,1], boundary conditions are exactly the same as in case of classical triangular
norms. An extra symmetry axiom supplements the definition, also cf. [4]. Additional operator of
balanced negation is introduced.

Definition 4. Balanced operators are defined as follow:
Balanced negations is the mapping:

N:[-1,1] — [-1,1] N(X) = —x

Balanced t-norms and t-conorms are mappings
P:[-1,1] x[-1,1] — [-1,1]
satisfying the following axioms, wheife stands for both balance t-noffnand t-conorns

1.,2.,3. associativity, commutativity and monotonicity
4, T(l,a)=a, S0,a)=a for ac]0,1] boundary conditions
5. P(x,y) = N(P(N(x),N(y))) symmetry

Conclusion 5. Axiomatic definition of balanced t-norm and balanced t-conorm restricted to the unit
squarg0, 1] x [0,1] are equivalent to the classical t-norm and classical t-conorm, respectively.

Conclusion 6. Balanced t-norm and balanced t-conorm restricted to the squar@] x [—1,0] are
isomorphic with the classical t-conorm and classical t-norm, respectively.

Conclusion 7. Balanced t-norm vanishes on the squarek 0] x [0,1] and[0, 1] x [—1,0].

The above conclusions are obvious.

1.4 Balanced triangular norms in weak form

The weak system of the balanced triangular norms satisfies a collection of axioms of the normal
system except of the properties 1 and 3, i.e. axioms of associativity and monotonicity of the defintion
of balanced t-norm in normal form. The following sets of axioms defining balanced t-norm in its weak
form completes the definition.
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Definition 8. The weak form of balanced triangular norm, t-norm, satisfies the following set of ax-
ioms:
1. min(|T(aT(b,c)), IT( ( b),c)[) <

T(a,T(b,c))[,|T(T(ab),c)| <

)
T(T(|al,|b|),|c]) =T(al,T(|bl,|c|)) semi-associativity
2. T(a,b)=T(b,a) commutativity
3. T(ab)<T(c,d) for 0<a<c,0<b<d semi-monotonicity
4. T(l,agj=a, S0,a)=a for ac]0,1] boundary conditions
5. P(x.y) = N(P(N(x),N(¥))) symmetry

Comment Balanced triangular norms in weak form satisfy Conclusion 1.1 and 1.2. However, Con-
clusion 1.3. is not satisfied.

2 Balanced triangular norms versus uninorms and nullnorms

The balanced t-conorms, as defined in the section 1.3, are special cases of uninorms in the sense of
the isomorphism defined in the formula 3. Amazingly, balanced triangular norms as well as uninorms
and nullnorms are similar products of two different paths of thinking, paths that begin in two dif-
ferent starting points. Detailed properties of balanced triangular norms and uninorms and nullnorms
might differ. Despite of this, the general meaning of balanced triangular norms and of uninorms and
nullnorms are the same in the sense of isomorphic mapping between them.

The definition of balanced t-conorm includes the symmetry axiom in addition to other axioms
that are common for uninorm and balanced t-conorm: associativity, commutativity, monotonicity and
boundary conditions. The extra restriction - i.e. the symmetry axiom - makes that not every uninorm is
isomorphic with a balanced t-conorm while every t-conorm is isomorphic with a uninorm. Precisely,
every balanced t-conorm is isomorphic with a set of uninorms that satisfy the symmetry axiom and
differ in the unit elements. Of course, any two uni-norms of such a set are isomorphic in the sense of
an isomorphism analogous to that defined in the formula 3. Two sets of uninorms related to any two
balanced t-conorms are disjoint assuming that respective balanced t-conorms are different. Moreover,
the set of uninorms that are not isomorphic with any balanced t-conorm and the sets of uninorms
related to balanced t-conorms partition the set of all uninorms, i.e. they create equivalence classes of
an equivalence relation. The same notes concerns balanced t-norms and nullnorms

The following propositions describe the characteristic of the set of all balanced t-conorms (bal-
anced t-norms in normal form) as a family of equivalence classes of the reladiGar, respectively)
defined on the set of all uninorms (nullnorms, respectively).

Proposition 9. LetU = {u : uis a uninorn}. Let us consider isomorphic mappings as defined in the
formula 3. Then, the paifU,~s) is an equivalence relation if for every two uninorms u and agv

iff u and v are isomorphic with the same balanced t-conorm S or none of u and v is isomorphic with
any balanced t-conorm S.

Proposition 10. Let V= {v : vis anullnorn}. Let us consider isomorphic mappings as defined in
the formula 3. Then, the paiV,~7) is an equivalence relation if for every two uninorms u and v,
u=gV iff u and v are isomorphic with the same balanced t-norm T or none of u and v is isomorphic
with any balanced t-norm T.
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3 A hierarchy of balanced operators

In this Chapter the method of balanced extension of fuzzy operators is applied to uninorms. Compar-
ing relations between uninorms, balanced t-conorms and balanced uninorms (created with the method
of balanced extension), leads to a broader family of balanced operators, so called iterative norms.

3.1 Balanced uninorms

Definition 11. Balance uninormis a mappinth: [-1,1] x [-1,1] — [—1, 1] satisfying the following
axioms:

1., 2.,3. associativity, commutativity and monotonicity

4. (Je€ [0,1]) such that for alk € [0, 1]u(x,e) = x identity element

5. U (x,y) = N(U(N(x),N(y))) symmetry

As in case of balanced triangular norms, the values of balanced uninorms on the $guares
[0,1] and [—1,0] x [—1,0] are determined by the values of uninorm and symmetry principle. The
values of balanced uninorm on the squdf®e4] x [—1,0] and[—1,0] x [0, 1] are unconstrained and
could be defined according to subjective aim of application.

Obviously, similar considerations are valid in case of nullnorms, though the values of balanced
nullnorms in the unconstrained area meet different type of border conditions.

Figure 13: The plot of iterative t-conorm based on the additive generator

3.2 A hierarchy of balanced operators

Balanced triangular norms are isomorphic with uninorms and nullnorms. Thus, the method of bal-
anced uninorms creation (i.e. immersion of classical uninorms in the extended space of fuzzy sets)
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could be replaced by running the process of double utilization of this method to a classical t-conorm.
The first stage of this process creates balanced t-conorm, then - after isomorphic transformation of
balanced t-conorm to the unipolar scale, i.e. to the respective uninorm - balanced uninorm could be
created.

In light of the idea of balanced extension of fuzzy sets, uninorm (as a fuzzy operator) could
be subjected to balanced extension method to produce balanced uninorm. This means that balanced
uninorm is a result of two iterations of balanced extension method applied to classical t-conorm. Thus,
balanced uninorm is a kind of balanced t-conorm of the higher rank. The process could be continued
creating next ranks of balanced t-conorms. It means that balanced triangular norms, uninorms and
nullnorms are products of the same process of iterative balanced extension method applied to classical
triangular norms. This property explains similarity between balanced triangular norms, on one hand,
and uninorms and nullnorms, on the other hand. The process of consecutive applications of balanced
extension method creates a hierarchy of balanced triangular norms. A new function, so called iterative
t-conorm, will be used as illustration of creation of balanced hierarchy.

Definition 12. The iterative t-conorm is a functidier : Rx R— R

Con _ (x—2k—2I,y+2k—2l) e [-1,1] x [-1,1]
Sx—2k=2l,y+2%-2) and k.l-integers

Stel’(xvy):

(x—2k—2I,y+2k—2l) € [1,3] x [-1,1]

1+2 and k.-integers

whereSis a balanced t-conorm.

Note: balanced t-conori8in the above definition could vary for different areas of the domain.
Thus, in this case, the formula looks like:

L - (x—2k—20,y+2k—20) € [-1,1] x [-1,1]
Sc(x=2k=2Ly+2k=2)  ng k) - integers

Ster(X,y) =

(Xx—2k—20,y+2k—21) € [1,3] x [-1,1]

1+2 and k.l - integers

where& is a balanced t-conorm for all values of k and .

Properties of iterative t-conorm are determined by balanced t-conorm. For instance, continuity
of iterative t-conorne, is determined by continuity of basic balanced t-conorm. Iterative t-conorm
Ster may be non-continuous in all non-continuity points of balanced t-conorm and on the borders of
upper-left and bottom-down quarters of the domain squares growing values of balanced t-conorm S.
Iterative t-conornie, is definitely non-continuous in upper-left and bottom-down vertexes of those
squares where balanced t-conorm S is increasing.

Example: since balanced t-conorm S based on the additive genefgbtor= x/(1— |x|) is non-
continuous in upper-left and bottom-down vertexes of its domain, the respective iterative t-conorm
Ster iS also non-continuous in all such points. Specificéiy; is a continuous function in its domain
except left-upper and right bottom vertexes of the squéreg + 2k + 21,1+ 2k + 2I] x [-1— 2k +
21,1—2k+2l]: k,I — integervalue$

The contour plot of the iterative triangular norm based on the above t-conormis shown in the
Figure 1.
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The Figure 2illustrate the process of creation of the hierarchy of balanced t-norms and balanced
t-conorms based on iterative triangular norms. Because balanced t-norm and balanced t-conorm of
any given rank have the squdrel, 1] x [—1,1] as their domain, then a part of the iterative triangular
norm defined by respective squares displayed in the Figures 2 and 3 must be transformed in order to
satisfy the fuzzy operator domain and co-domain. For instance, a balanced t-conorm of the rank 2
described by the part of iterative triangular norm restricted to the squéte-1] x [—1,3] :

fun:[-5—-1x[-1,3]  fun(x,y) = Ster(X,y) (4)

must be transformed using the transformation:

te:[—1,1] — [-5-1],tx(x) =2x—3 and ty:[-1,1] — [-1,3],t,(y) =2y +1
g

TR - LI R = (D)2 ®)

what means that the balanced t-conorm of rar&?2respective to the mapping fun is defined as
follow:

S?:[-1,1 x[-1,1] — [-1,1),
S2(xy) = (t o Ster © (te.ty)) (%,y) =t~ (Fun(tx(x), ty(y)))

In other words, the graph of mapping fun included in the cube —1] x [—1, 3] x [—3,1] has to be
squeezed to the cupe 1,1] x [-1,1] x [-1,1] in order to create balanced t-conorm of rank 2.

(6)

In the Figure 1 the balanced t-conorm of rank 2 is also marked as uninorm what should be in-
terpreted as rela-tion between balanced t-conorms and uninorms in terms of the Chapter 2. On the
other hand, slightly modified iterative t-conorms and t-norms could be used for creation a hierarchy of
balanced operators including all uni-norms and nullnorms. This issue, as a subject of potential subject
of investigation, is out of the scope of the aim of this paper. So then it will not be developed here.
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Figure 14: The hierarchy of balanced t-conorms and balanced t-norms
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balanced t-conorm of mnk 5

halanced t-norm of mnk 3

»

balanced t-nom
of rani 1,
nullnorm

halanced t-conomn of mnk

# ‘ balanced t-norm of rank 4

tnomm J balanced t-norm of rank 2,
talanced t-conormofrank 2, balanced t-nonm of rank 4 balanced nullnorm
balanced uninorm

Figure 15: The structure of uniform iterative t-conorms and uniform iterative t-norms in weak form

In the Figure 3 uniform iterative triangular norr8g, and T, are presented. Uniform norms are
based on weak balanced triangular norms. They do not have plain regions, i.e. squares of constant
values, as itis in case of ordinary iterative triangular norms based on balanced t-conorms:

Ster RX R—) R, (7)
Ster(X,y) = S(x—2k,y—2), (x—2ky—2)e[-1,1] x[-1,1], k| — integers

-nterRX R—>[—1,1]7 (8)
Tier(X,y) =T(x—2k,y—2l), (x—2k,y—2) € [-1,1] x[-1,1], k| — integers

4 Conclusions

Relations between different fuzzy operators: triangular norms, uninorms and nullnorms, balanced

triangular norms are studied in this paper. Dependencies between uninorms / nullnorms and balanced
triangular norms are investigated. The triangular norms, uninorms and nullnorms, balanced triangular

norms are subjected to a process of iterations of balanced transformation. The triangular norms,

uninorms and nullnorms, balanced triangular norms are placed in the broader hierarchy of iterative

operators.

Several topics were signalized in the paper: properties of weak systems of balanced fuzzy sets
and balanced triangular norms, properties of iterative triangular norms, relations between balanced
operators and iterative triangular norms and other fuzzy operators, applications of balanced systems
of fuzzy sets to practical aims. These topics are potential subjects of further studies.
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1 Introduction

Triangular norms were introduced in [19], for an exhaustive overview see the monograph [13]. Appli-

cations of triangular norms in fuzzy logic, probabilistic metric spaces, etc., require the left-continuity

of the applied t-norm, see e.g. [13]. Recently, several new types of constructions of left-continuous
t-norms were introduced, see [11] for an overview. One of these methods is linked to the ordinal
sum of t-subnorms introduced in [10]. Note that due to [14], this method is the most general method
yielding a t-norm based on Clifford’s ordinal sum of semigroups [2].

Observe also that the structure and some constructions of t-subnorms (introduced in [8]) were
investigated first in [17], though several important facts about t-subnorms can be straightforwardly
derived from results of [13], Chapter 3.

The left-continuity of t-norms is crucial for the existence of the corresponding residual implica-
tions. The main aim of this paper is a discussion of these residual implications linked to t-norms
which are ordinal sums of semigroups. Recall that the structure of residual implications linked to con-
tinuous t-norms, i.e., to ordinal sums of continuous Archimedean t-norms, was studied in [3], where
also ordinal sums of residual implications were introduced, compare also [5].

The paper is organized as follows. The next section recalls some results about t-norms, t-subnorms
and their ordinal sums. In the third section, the structure of residual implications linked to ordinal
sums of left-continuous t-subnorms is studied. Finally, the residual operators related to t-subnorms
generated by continuous additive generators are investigated.

2 Triangular norms as ordinal sums of semigroups

Triangular norms as ordinal sums of semigroups in the sense of Clifford [2] have been investigated
in [14]. As observed there, these triangular norms can be expressed as ordinal sums of t-subnorms
introduced in [8, 10].

Definition 1. A mappingR: [0,1]?> — [0,1] is called a t-subnorm whenever it is commutative, asso-
ciative, non-decreasing and bounded by its arguments, i.e.,

R(x,y) <x  forallx,ye[0,1]. (1)
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Evidently, each t-nornT is also a t-subnorm. Moreover, for any t-noffnand c €]0, 1], the
operationT, : [0,1]% — [0,1] given by

T(cxcy)

TC (X7 y) = c

(2)
is a t-subnorm. Note also that because of the commutativity the boundary condition (1) is equivalent
to

R(X,y) < min(x,y) for all x,y € [0,1]. 3)

Note that several notions introduced for t-norms can be directly introduced for t-subnorms, too,
and hence we will not define them explicitly. Examples of such notions and properties are: zero
divisors, strict monotonicity, Archimedean property, several types of continuities, etc.

Recall that due to [10, 13] each t-norm can be expressed as an ordinal sum of t-subnorms. We
present this result for left-continuous t-norms.

Theorem 2. A mapping T: [0,1]? — [0, 1] is a left-continuous t-norm if and only if there is a system
(Jok, Bk[)ke « Of pairwise disjoint non-empty subintervals of [0,1] and a system of left-continuous t-
subnorms(Rk)k6K such that if eitheBx = 1 for some ke K or Bk = ay for some kk* € X and R

has zero divisors thenfs a t-norm, so that

T(xy) = {ak+(Bk—Gk)Rk (é(kio&kk, é:j((xkk) if X,y €]a, By, @

min(x,y) otherwise.

Observe that the problem of complete characterization of left-continuous t-subnorms is equivalent
to the complete characterization of left-continuous t-norms, and thus still unsolved. However, in some
special cases such a characterization is already known. Recall the characterization of continuous
Archimedean t-norms by means of additive generators [16], which are continuous strictly decreasing
from [0,1] to [0, ] mappings with value 0 at argument 1 (this fact reflects the property of constant 1
which is neutral element of each t-norm).

Another well-known fact is the representation of continuous t-norms as ordinal sums with Archi-
medean summands, i.e., the representation in the form (4) whereRgakhe X, is a continuous
Archimedean t-norm [13, 16].

A similar representation holds for continuous t-subnorms.

Theorem 3 (Mesiarova [18]). A mapping R [0,1]2 — [0,1] is a continuous t-subnorm but not a t-
norm if and only if there is a systefu, Bk[) « Of pairwise disjoint non-empty open subintervals of
[0,1] and a systen(Ry),. 4 such that there is’ke X, for whichfx- = 1 and R is a continuous Archi-
medean t-subnorm, which is not a t-norm and for adl K, k # k*, Rx is a continuous Archimedean
t-norm, and

Txy) = {ak+(Bk_ak)Rk(f;(k(xakk’Fioc(xkk> if X,y €]o, B, ©

min(x,y) otherwise.

However, a representation of continuous Archimedean t-subnorms is not yet known, in general.
Applying the results of Aczél [1] on associative functions, we have the following representation.
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Theorem 4 (Mesiarova [18]). A mapping R [0, 1]2 — [0, 1] is a continuous strictly monotone Archi-
medean t-subnorm if and only if there is a continuous strictly decreasing mappi@glf — [0, o],
with r(0) = o, such that

R(X,Y) =~ H(r(x) +r(y)). (6)
Observe that representation (6) holds also for any strictly monotone (not necessarily continuous)

t-subnormR with no anomalous paifa,b) €]0,1[?, i.e., sucha < b for which b > a > R(b,b) >
R(a,a) > R(b,b,b)..., see [4], in which caseneed not be continuous.

Several other special representation theorems for specific types of continuous Archimedean t-
subnorms can be found in [18]. Note that while in the class of t-norms, the subclass of continuous
Archimedean t-norms coincides with the subclass of t-norms generated by continuous additive gen-
erators, this is no more true in the case of t-subnorms. For the sake of completeness recall that a
non-increasing mappind,: [0,1] — [0,0] (r : [0,1] — [0,]) is called an additive generator of a
t-normT (t-subnormR) whenever for alk,y € [0, 1],

T00y) =t +1(y) (Roy) =100 +1(y) (7)

wheret(-V : [0, 0] — [0,1] (and similarlyr(-) is the pseudo-inverse b{12] defined by

tY(u) = sup{x € [0,1] | t(u) > x}. (8)
Evidently, ift : [0,1] — [0, ] is an additive generator of a t-noffm then necessaril(1) = 0 and
t is strictly decreasing (as a consequence of the facflthatl) = x for all x € [0, 1]).

However, an additive generator [0, 1] — [0, ] of a t-subnornR need not fulfillr (1) = 0 neither
it is necessatrily strictly decreasing.

Example 5. Vizualizations of the following t-subnorms are given in Figure 16.
() The mapping : [0,1] — [0, ] given byr(x) = —In 3 is an additive generator of the t-subnorm
R:[0,1]? — [0,1] given byR(x,y) = ¥.

Note thatR = (Tp), 5, S€€ expression (2), and tHais a continuous strictly monotone Archi-
medean t-subnorm. Moreovefl) = In2.

(i) Letr:[0,1] — [0, ] be given by (x) = max(1—x,a),a€ [0, 3], i.e.,r(1) =aandr is not strictly
monotone whenevex = 0. However,r is an additive generator of the continuous Archimedean
t-subnormR: [0,1]? — [0, 1] with zero divisors given by

R(x,y) = max0,min(x+y—1,x—a,y—a,1—2a)).

Note thatR=T, (the tukasiewicz t-norm) i&a = 0, while R=W, W(x,y) =0 for allx,y € [0, 1],
if a= 3, the weakest t-subnorm.

(i) Letr:[0,1] — [0,0] be given byr(x) = max0,1— 2x). Thenr is an additive generator of the
t-subnormR: [0,1]% — [0, 1] given by

. 1 1
R(Xay) = maX(O,mln(X—l—y— §>X>y7 é))

Ris a continuous t-subnorm which is an ordinal sum
((0,3,T).(3,1,W)), i.e.,Ris not Archimedean.
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(iv) Letr:[0,1] — [0,o] be given byr (x) = min(1,1—x). Thenr is a continuous additive generator
of the non-continuous Archimedean t-subnd®m|0, 12 — [0, 1] given by

Rixy) = X+y—1 ifx+y> 3,
Y0 otherwise.

Observe thaR is a left-continuous Archimedean t-subnorm. Recall that a non-continuous Archime-
dean t-norm cannot be left-continuous, see [15].

0.8

0.6
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04 guusstiun
0
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Figure 16: T-subnorms from Example 5.

Though the class of continuous (left-continuous) Archimedean t-subnorms is not yet fully de-
scribed, and similarly the additive generators of continuous (left-continuous) t-subnorms are not yet
completely characterized, we have the following important result shown in [17].

Theorem 6. Each continuous non-decreasing mapping@, 1] — [0, ] is an additive generator of
some left-continuous t-subnormite., Rx,y) = r=9(r(x) +r(y)).

Note that the continuity of the left-continuous t-subndrimtroduced in Theorem 6 is equivalent
to the strict monotonicity of on the interval0,r(~Y(2r(1))], see [17].
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3 Residual implications and ordinal sum t-norms
Recall that, for a given left-continuous t-noifit [0, 1]2 — [0, 1], the corresponding residual implica-
tion It : [0,1]? — [0,1] is given by

IT(x,y) =sup{z€ [0,1] | T(x,2) <y}. (9)

For more details about residual implications we recommend [5, 6, 13]. Note only thadl |+
are linked by the so called adjunction property

Ty)<z it x<hky2), (10)

and that

T(x,y) =inf{ze [0,1] | IT(X,2) > V}. (11)

By means of (9), it is possible to define the residual operiatof0,1]?> — [0,1] linked to a left-
continuous t-subnorR, as

Ir(X,Y) =sup{z€ [0,1] | R(x,2) <y}, (12)

so that the adjunction property (10) and equality (11) holdR@andlg. Obviously, not all properties
of residual implications linked to t-norms remain valid for the residual operators linked to t-subnorms.
Namely, for any left-continuous t-norih we have

IT(x,y)=1 iff x<y

and
Ir(Ly)=y  forall y€[0,1].

However, for the weakest t-subnokii (which is continuous) we have

wxy)=1 foral (xy)el[0,1>

Now, we turn our attention to left-continuous t-norms which are ordinal sums of semigroups, i.e.,
t-norms where the summands in their ordinal sum representation are left-continuous t-subnorms.

Theorem 7. Let T: [0,1]?> — [0, 1] be a left-continuous t-norm with ordinal sum structure as given
in (4) and Theorem 2, i.e., & ({0, Bk, Rq))ke « - Then the corresponding residual implication |
[0,1]2 — [0,1] is given by

1 ifx <y,
IT(X,y) = { Ok + (Bk — 0) IR, (é(k__oékw é’k__%kk) if e <y <X < By, (13)
y otherwise.

Observe that Theorem 7 applied to continuous t-norms implies the result of [3], see also [5].
Moreover, taking into account the fact tHa} (x,y) = y whenever X y < x < 1, representation (13)
can be understood as an ordinal sum of residual operators. Briefly, residuation of an ordinal sum is
just an ordinal sum of residual operators.
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Example 8. Let T : [0,1]? — [0,1] be given by

0 if (x,y) € [0,3]%,
T(xy)=q2y—x—y+1 if (xy) €31
min(x,y) otherwise.

This example was given in [20]T is a (left-continuous) t-norm fulfilling the diagonal inequality
T(x,X) < x for all x €]0,1] without being Archimedean. As already observed in [I0]is not an
ordinal sum of t-norms, but it is an ordinal sum of t-subnorms; ((O, %,W>, (%, 1, Tp>) . Because of
Theorem 7, the corresponding residual implicatipn [0,1]% — [0, 1] is given by

1 if x <y,

1 : 1

5 ifo<y<x<s
IT(x,y) = 2 - 27
T(%) el ifloy<x<i,

y otherwise.

4 Generated t-subnorms and residual operators

For a generated t-subnom) the complete information abo&is contained in its additive generator.
As we have seen in Theorem 6, the continuity of an additive generatoplies the left-continuity
of the corresponding t-subnorf Consequently, the residual operatgrshould be expressible by
means of.

Theorem 9. Let r: [0,1] — [0,] be a continuous additive generator of the t-subnorm@®1]? —
0,1], i.e., Rx,y) = rV(r(x) +r(y)). Then the corresponding residual operatgr: 1[0, 1] — [0, 1]
is given by

IROGY) =T7(r(y) =1 (X)), (14)

where f : [~ 0] — [0,1] is an upper pseudo-inverse bf [0,1] — [—oo, 0], F(X) = r(x) for all
x € [0,1], given by [12, 21]
r*(u) = sup{x € [0,1] | r(x) > u}. (15)

Remark 10. Note that for strictly monotone mappings, pseudo-inverses and upper pseudo-inverses
coincide. Moreover, if : [0,1] — [0, ] is a (continuous) additive generator of a continuous Archime-
dean t-nornT, i.e., ift is continuous, strictly monotone and) = 0, thent*(u) =t(-Y (max(0,u)) =
t~1(min(t(0),max0,u))), and thudt (x,y) = t~1(max(0,t(y) —t(x))), compare e.g. [3, 5].

Example 11. Keeping the notations of Example 5, we get the following residual operators, which are
visualized in Figure 17.

(i) r*(u) =min(1,2e"Y) andlr(x,y) = min(1, %’) with convention% =1
(ii)
. 1 ifu<a,
rr(u) = .
max(0,1—u) otherwise,
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and

(iii)

and

(iv)

and

IR(X7y) = 1

()=

y+max@a,1—x)

if y<min(x—a,1—2a),
otherwise.

ifu<o,

max0, 15Y) otherwise,

IR(va) = !

if min(x, ) <y,

maxy,y+ 3 —X) otherwise.

() = min(1,1-u) ifu<i,

0

Ir(X,Y) =

min(1,3 —X)

otherwise,

ify<3,

min(1,1—-x+y) otherwise.

In this caseR(x,y) is non-continuous and nilpotent ahglis continuous.

Y
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Figure 17: Residual operators from Example 11.
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Remark 12. Based on Theorems 2 and 6, we can construct a left-continuous tThoj@nl]2 — [0, 1]

as follows. For an arbitrary systejuo, Bk[)c 5 Of non-empty pairwise disjoint open subintervals of
[0,1], choose an arbitrary systefrk),. 4 of non-increasing continuous mappings [0, Bx] — [0, ]
such that if eitheBy = 1 for somek € X, or if Bk = o for somek, k* € K andr-(Bk-) is finite, then
rk(Bk) = 1 andry is strictly monotone. Then it is suffices to put

i+ ) if (xy) €lo B,
T(X7 y) - . .
min(x,y) otherwise.
Observe that following [12], the pseudo-inveréél) 1 [0,00] — [ak, Bk]is given by

(-1

re (u) =sup{xe o, By | r«(x) > u}.

Then the corresponding residual implicatigrt [0,1]% — [0, 1]is given by

1 if x<vy,
IT(X,y) = € ri(re(y) —ri(x)) i o <y < x< B,
y otherwise,

where foru > 0,
re(u) = sup{x € [ak,Bx] | r(x) > u}.

5 Conclusion

Residual implications linked to the left-continuous ordinal sums of t-subnorms yielding a t-norm
were discussed. A new method to construct left-continuous t-norms and the corresponding residual
implications based on ordinal sums and additive generators was proposed, and thus some applications
in fuzzy logics, as well as in probabilistic metric spaces can be expected.
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Generalizations of some constructions of triangular norms
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In this paper we will generalize some constructions of triangular norms. First, we will put our attention
on the constructions of t-norms based on the transformation of a given t-norm by a pair of non-
decreasing functions. We will assume:

f,g: [0, 1} — [0,1] be non-decreasing functions,
T :[0,1]2 — [0,1] be a t-norm,
(C){ Ttg:[0,1]2— [0,1] be given by the folowing formula:

_ ) 9T (F(x), f(y))) if max(x,y) <1,
Trg(xy) = { min(x,y) if max(x,y) = 1.

The conditions under which the functidi g is a t-norm were discussed in [2], [4] and [7]. We
will use notationsf (t_) for limy_;- f(x), f(t;) for limy_+ f(X) andR(f) for the range of a function
f. Let us denote:

(1) 9(T(f(x), f(y)) <min(x,y) for all x,y € [0,1).

(2) T(f(x), f(y)) e R(F)UIO, f(0;)] forall x,y € 0,1).

(3) ¥xy€[0,1): T(f(x), f(y)) € R(F) = f(9(T(f(x), f(¥)))) = T(f(x), f(y)).

(4) ¥xy€[0,1): T(f(x), f(y)) € [0, F(01)]\R(f) = g(T (f(x), f(y))) =O.
Theorem 1. Let (C). If (1-4) then Tg is a t-norm.

A function g can be for instance a quasi-inverse of a non-decreasing funtt@rthe pseudo-
inverse of a non-decreasing functién

Definition 2. Leta,b,c,d € [—o,»], a<b, c<dand letf : [ab] — [c,d] be a non-decreasing
function.

e Afunction f*: [c,d] — [a,b] such thatvy € [c,d] the following holds:

() YER(T) = f*(y) € T ({y}) = {xe [a,b] | f(x) =y},
(i) y¢ R(f) = f*(y) =sup{xe [a,b] | f(x) <y}, (supd = a),

is called aguasi-inverse of a non-decreasing functian f
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e Afunction (= : [c,d] — [a,b] definedvy € [c,d] by formula:

fD(y) = sup{x e [a,b] | f(x) <V},

(supd = a), is called thepseudo-inverse of a non-decreasing function f.

If g= f* then we have an immediate consequence of Theorem 1 (see [4]):

Corollary 3. Let (C) and g= f*. If (1-2) then F ;- is a t-norm.

If g= (-1 then we have an immediate consequence of Theorem 1 (see [4]):

Corollary 4. Let (C) and g= f(-Y. If (2-3) then T ¢y is at-norm.

We can observe that all these results contain the condition (2). We will introduce their general-
izations in the following sense: we omit the condition (2) and replace it by a new much more general
condition which covers even such cases, when the set

M={te(0,1)[3xye[0,1):T(f(x),f(y)) € [f(t-), fF(ts)]\R()}
is an infinite set.

The second problem we will deal with is the folowing one: Under which conditions a strictly
decreasing functioff : [0,1] — [0,], f(1) =0, leads through the formula:

Ty = OV +y)  Wxye[01],

where f (-1 is the pseudo-inverse of a non-increasing functioff (- (y) = sup{x € [0,1] | f(x) >
y} for all y € [0, ]; (supd = 0)), to the associative functich: [0,1]? — [0, 1].

The functionf is called aconjunctive additive generator of andT is called thefunction gener-
ated by f or briefly agenerated functionin the case of a t-norr we will say thatf is anadditive
generator of a t-norm TSome sufficient conditions ensuring associativity of generated functions and
some properties of generated functions and their conjunctive additive generators can be found in [3],
[5] and [7].

In order to reformulate the above-mentioned problem of associativity of generated functions we
introduce the addition operation &t f) (see [10]):

Let
M = {A|3f :]0,1] — [0,] strictly monotoneR(f) = A}.

Definition 5. LetAe M.

e Forallt € [0,],
AN [sugAN[0,t]),inf(AN[t,c0])]

(supd = 0; inf0 = ) is always a one-element set.
e AfunctionFa : [0,00] — A,
{Fa(t)} = AN [SUBAN[Ot]), inf(AN [t,e])]

is called thefunction given by A
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e Abinary operation : Ax A — A,
XPy= FA(Xer)

(+ is the usual addition of®, «]) is called theaddition operation on A

The following result holds: Lef be a conjunctive additive generatorifR(f) = Aand let® be
the addition operation oA. ThenT is a t-norm if and only if A, @) is a semigroup. This result allow
us instead ofl andf study the operatiom onA.

In this part we will present some constructions of ranges of additive generators of t-norms and
we will show the characterization of all additive generators of t-norms which are left-continuous at
point 1L Further we will define so calleddditive representable semigrou@nd we will explain the
relations between them and generated t-norms.

Finally, we will introduce the construction of weak additive generators of t-norms. The concept
of a weak additive generator of a t-norm was originally introduced by Jenei in [2]. The next definition
is its generalization covering the non-continuous case:

Definition 6. Let f : [0,1] — [0, ] be a non-increasing functiof{~Y : [0, ] — [0, 1] be the pseudo-
inverse of a non-increasing functidrand letT : [0,1]% — [0, 1] be given by formula:

fEU(F(x) + F(y)) if max(x,y) < 1,
min(x,y) if max(x,y)=1.

Txy) - {
Then we will say thaf is aweak conjunctive additive generator of T

We will introduce the construction of weak conjunctive additive generators of t-norms starting
from conjunctive additive generators of t-norms (see [9]).
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Uninorms were introduced by Yager and Rybalov [8] as a generalization of t-norms and t-conorms.
For uninorms, the neutral element is not forced to be either O or 1, but can be any value in the unit
interval.

T-norms do not allow low values to be compensated by high values, while t-conorms do not allow
high values to be compensated by low values. Uninorms may allow values separated by their neutral
element to be aggregated in a compensating way.

The structure of uninorms was studied by Foéobmal. [6]. The unit square (the domain of a
uninormU) is divided into four parts by the neutral element]0,1[. In the lower left squaré0, €]?
there is an appropriately scaled t-norm, in the upper right sqestl there is a re-scaled t-conorm.
On the rest of the unit squakkcan be defined in various ways (see [1, 2], and [3, 7] for the important
class of representable uninorms).

In this talk we reveal the structure of uninorms with fixed continuous underlying t-norm and t-
conorm (for more details see [4, 5]).
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Intuitionistic fuzzy sets defined by Atanassov in 1983 [1] form an extension of fuzzy sets. While
fuzzy sets give only a degree of membership, and the degree of non-membership equals one minus
the degree of membership, intuitionistic fuzzy sets give both a degree of membership and a degree
of non-membership that are more or less independent: the only condition is that the sum of the two
degrees is smaller than or equal to 1. Formally, an intuitionistic fuzzg set universeJ is defined

asA = {(u,pa(u),va(u)) |ue U}, wherepa andva areU — [0, 1] mappings giving the membership
degree and non-membership degrea iof A respectively, and whelg (u) +va(u) <1, forallue U.

Deschrijver and Kerre [4] have shown that intuitionistic fuzzy sets can also be sednzs/ sets
in the sense of Goguen [6]. Consider thelseand the operatior - defined by :

L* = {(X1,%2) | (X1,%2) € [0,1]? andxq +xp < 1},
(X1, %) <t+ (Y1,¥2) © X1 < y1andxy >ya,  V(X1,X2), (y1,Y2) € L*.

Then(L*, <.~) is a complete lattice [4]. We denote its units hy & (0,1) and - = (1,0). From now

on, we will assume that ik € L*, thenx; andx, denote respectively the first and second component
of x, i.e. x= (X1,%2). It is easily seen that with every intuitionistic fuzzy getorresponds ah*-
fuzzy set, i.e. a mapping:U — L*: u— (pa(u),va(u)). We will also use in the sequel the set
D = {x|xeL* andxs +x2 = 1}.

Using the latticgL*, <, - ), Deschrijver, Cornelis and Kerre have extended the notion of triangular
norm to the intuitionistic fuzzy case [2, 3]. An intuitionistic fuzzy triangular norm is a commutative,
associative, increasing.*)?> — L* mapping7 satisfying7 (1.-,X) = x, for all x € L*. Intuitionistic
fuzzy t-norms can be constructed using t-norms and t-conorni@, dhin the following way. LetT
be a t-norm an&a t-conorm, then the dual t-nor8i of Sis defined byS*(a,b) =1—-§1—a,1—b),
for all a,b € [0,1]. If for all a,b € [0,1], T(a,b) < S*(a,b), then the mapping defined by7 (x,y) =
(T(X1,¥1),S(X2,Y2)), for all x,y € L*, is an intuitionistic fuzzy t-norm. We call an intuitionistic fuzzy
t-norm ‘7 for which such a t-nornT and t-conorn$ exist t-representable. Not all intuitionistic fuzzy
t-norms are t-representable, e@y(X,y) = (max0,x; +y1 — 1), min(1,xo + 1 —y1,y2+1—x1)) is
not t-representable.

An intuitionistic fuzzy t-norm7 satisfies the residuation principle if and only if, foraly,z< L*,
T(xy) <p- z&y <_- I7(x,2), whereI; denotes the residual implicator generatedZ/hydefined as,
forx,y e L*, Ir(xy) =sup{y|ye L* andT(x,y) <r- y}.

In the fuzzy case, the residuation principle is equivalent to left-continuity of the t-norm[5]. The
intuitionistic fuzzy counterpart of left-continuity is intuitionistic fuzzy left-continuity, defined as fol-
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lows. LetF be an arbitrant* — L* mapping anda € L*, thenF is called intuitionistic fuzzy left-
continuous ireiff

(Ve > 0)(3d> 0)(Vx € L*)((d(a,x) < dandx <.- a) = d(F(x),F(a)) <€),

whered denotes the Euclidean or Hamming distanc®&®festricted td_*.

Let 7 be an intuitionistic fuzzy t-norm. Thef@ satisfies the residuation principle if and only if
SUp,z 7 (X,2) = 7 (X,Sup,, 2), forallx e L* and allo € Z C L*. Only in the case of t-representable
intuitionistic fuzzy t-norms the last property is equivalent to intuitionistic fuzzy left-continuity. So
we have that a t-representable intuitionistic fuzzy t-nafnsatisfies the residuation principle if and
only if 7 is intuitionistic fuzzy left-continuous, but in general we only have thal iGatisfies the
residuation principle theff is intuitionistic fuzzy left-continuous [2].

In general a characterization of intuitionistic fuzzy t-norms satisfying the residuation principle has
not yet been established. However, we have the following cases.

For the first representation theorem we will use the following possible properties of an intuition-
istic fuzzy t-norm<":
(P.1) T(x,x) <p- x, forall x € L*\ {0+, 1.+ };
(P.2) there exisk,y € L* such that; andy; are non-zero and such tha{x,y) = 0.

Deschrijver, Cornelis and Kerre have proven thaf is an(L*)? — L* mapping, then the following
are equivalent [2]:

(i) 7 is a continuous intuitionistic fuzzynorm satisfying the residuation principle, the properties
(P.1) and (P.2)/,(D,D) C D and 7 ((0,0),(0,0)) = O;

(if) there exists a continuous increasing permutagiatf [0, 1] such that, for alk,y € L*,

T(xy) = (¢ H(max0,¢(xa)+(y1) 1)),
1— ¢~ (max(0,¢(x1) + (1 —y2) —1,0(y1) +$(1—x2) —1)));

(iii) there exists a continuous increasing permutadiaof L* such thatl = ®~1o Ty o (® x ).

A more general class of intuitionistic fuzzy t-norms that satisfy the residuation principle is the fol-
lowing. Let7” be an intuitionistic fuzzy t-norm such that, for &le D, y, € [0,1], pra7 (x, (0,y2)) =
pr27 (X, (1—Y2,y2)). ThenT satisfies the residuation principle if and only if there exist two left-
continuous t-norm3; andT, on [0, 1] such that, for alk,y € L*,

{I(va) = (Tl(xlvyl)’min{liTZ(li prZ{I((Ov O)v (07 O))a
To(1—x2,1-Y2)),1—To(x1,1—Y2),1— Ta(y1,1—X2) }),
andTz(X1,y1) = Ta(x1, Y1) as soon a$z(xq,y1) > T2(1— pr27((0,0),(0,0)), Ta(xa,y1)), andTy(Xa,y1) <
To(x1,y1) else, for allxg,y; € [0,1].

In the case thaf (D,D) C D, we have the following. LetZ be an intuitionistic fuzzy t-norm
satisfying the residuation principle such that{D,D) C D, T; be the[0,1]?> — [0,1] mapping de-
fined byTi(x1,y1) = pri7 ((x1,1—xa), (y1,1—y1)), for allxs,y1 € [0,1], andNy (x1) = sup{y1 | y1 €
[0,1] andTi(x1,y1) = O}. Assume that rang8l;) = [0, 1], and

pra7((0,0),(y1,1-y1)) =1<y1=0, Vy1€[0,1].
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Then, for allx,y € L*,

T(va) - (Tl(xl7yl)7min{1_Tl(l_prZT((QO)?(070))ﬂT1(1_X271_y2))7
1-Ti(1=y2,%1),1—=Ta(1—X2,y1)}).
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Abstract

The aim of this paper is to present recent results from the theory of intuitionistic fuzzy opera-
tors. Besides the known facts we show the characterization theorems for two classes of intuition-
istic fuzzy implications:S-implications andR -implications. Based on these characterizations we
find the minimal assumptions in the theorem which is dual to the classical Smets-Magrez Theo-
rem: the characterization of the tukasiewicz implication. Some open problems are presented at
the end of the paper.

1 Preliminaries

Intuitionistic fuzzy sets were introduced by Atanassov in 1983 in the following way.

Definition 1 ([1]). An intuitionistic fuzzy sefA in a universeX is an object
A:{(XauA(X)aVA(X) :XEX}a 1)

where functiongia: X — [0,1], va: X — [0,1] are called, respectively, the membership degree and
the non-membership degree. They satisfy the condtigr) +va(x) < 1 for all x € X.

This family can be seen asfuzzy set in the sense of Goguen. We use in this paper the following
notation presented by Cornelis et al. [6]:

L= {(x1,%) € [0,1]?: xg + %2 < 1},

It can be easily proved that, <, ) is a complete lattice with units 6= (0,1) and 1 = (1,0). This
lattice is not linear.

Like in the fuzzy set theory we can consider the generalizations of classical logical connectives
to the latticeL. In last years many papers are dedicated to investigations of these operations. Here
we present some results from this theory and we show new facts connecting with intuitionistic fuzzy
implications.

Since many characterizations theorem use the increasing bijections, we state now the important
result, which shows the dependence between increasing bijectidnarmhon the unit interval.
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Theorem 2 ([6]). A function®: L — L is an increasing bijection if, and only if, there exists an
increasing bijectiond : [0,1] — [0, 1] such that

P(x) = (9(x2),1-d(1-x2)), X = (X1, %) € L. )
Now we present the definitions of fuzzy intuitionistic operators and we recall main results con-
nected with them.

Definition 3. A function A\': L — L is called an intuitionistic fuzzy negation (shortly negation) if
it is decreasing and satisfi@g(0.) = 1., A[(1L) = O.. If, in addition, /\( is an involution, i.e.,

N(N(X)) =X, xeL, (3)

then4( is called a strongF negation.

The characterization of strong negations was first investigated by Bustince et al. [2]. The next
result was obtained by Cornelis et al.

Theorem 4 ([4]). A functionA: L — L is a strong IF negation if, and only if, there exists a strong
negation N [0,1] — [0, 1] such that

AN (X) = (N(1—x%2),1—N(x1)), X = (X1,X2) € L. 4)

The definition of intuitionistic fuzzy-norms and-conorms are similar to the classical.

Definition 5. A function 7: L? — L is called an intuitionistic fuzzy triangular norm (shortf t-
norm) if it is commutative, associative and increasing operation with the neutral element gqual 1
A function §: L? — L is called an intuitionistic fuzzy triangular conorm (short#y t-conorm)if it is
commutative, associative and increasing operation with the neutral element gqual 0

The definitions of the algebraic properties (e.g. Archimedean, nilpdfetinorm) are dual to
the classical case (see [8]), so we do not remind them. One of the most important theorems in the
classical theory is the representation of continuous, Archimeteanms (see [8], Theorem 5.1).
Unfortunately, we have not yet the similar result frt-norms. But for some class ¢fnorms (and
t-conorms) we have the representation.

Theorem 6 (Cornelis et al. [6]). A functionZ : L2 — L is a continuous, Archimedean, nilpotent IF
t-norm which satisfies

sup7 (x,z) = T (x,supz), xel, ZcCL (5)

zeZ zeZ

if, and only if, there exist an increasing bijectieh: L — L such that7 is conjugate with the IF
t-norm 4y, i.e.,

T (x,y) =0~ H T (P(x), D(y))) = (¢~ (max(0, ¢ (x1) +d(y1) — 1)),
1—¢7H(max(0,0(x1) + (1 -y2) — L,¢(y2) + $(1—x2) — 1)) (6)

for all x = (x1,X%2),y = (Y1,¥2) € L with some increasing bijectiop: [0,1] — [0, 1].
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Theorem 7 (Cornelis et al. [6]). A function$: L? — L is a continuous, Archimedean, nilpotent IF
t-conorm which satisfies

;2;5(x,2)25(x,;2£z), XxelL, ZcL (7)

if, and only if, there exist an increasing bijectiah: L — L such thats is conjugate with the IF
t-conormsy, i.e.,

S(xY) =0~ H( T (P(X), @(y))) = (¢~ H(min(L,d(1—x2) +d(y2), §(1—y2) +¢(x1))),
1—¢~H(min(L,0(1—xe) +0(1-y2)))) (8)

for all x = (x1,X2),y = (Y1,¥2) € L with some increasing bijectiop: [0,1] — [0, 1].

2 Intuitionistic fuzzy implication
The definition of the implication is based on the notation from fuzzy set theory introduced by Fodor,
Roubens [7].

Definition 8. A function I': L? — L is called an intuitionistic fuzzy implication (shortl§ implica-
tion) if it is monotonic with respect to both variables (separately) and fulfills the border conditions

1(0L,00) = 1(0L, 1) = 1 (1,1) = 1y, 1(1.,0,) = 0. 9)

The set of all intuitionistic fuzzy implications is denoted I5yl .

Now we introduce two important classes|6f implications which are the generalizations from
the fuzzy logic.

Definition 9. Let S: L2 — L be anlF t-conorm andA(: L — L be anlF negation. A function
I; 5o L? — L defined by formula

s ac(%,Y) = S(N(X),Y), xyel (10)

is called anlF S-implication.

The characterization of this family of functions was investigated by Bustinice et al. [3], but their
main result was not correct. Our result is the following.

Theorem 10. A function: L? — L is an IF S-implication based on strong IF negatio if, and
only if I € IFI satisfies conditions

I(1,x) =X, xelkL,
I(x,1(y,2)) = I( I( 2)); zy,zel,
I1(1(x,0),0) = xeL.

Definition 11. Let 7: L? — L be anlF t-norm which satisfies (5). A functiofy : L?> — L defined by
formula
Ir(x,y)=min{t e L: T(x,t) <y}, X,yelL (11)

is called anF R -implication.
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Theorem 12. A function/: L? — L is an IF ® -implication if, and only ifI satisfies conditions

I(x,1(y,2)) = 1(y, 1(x,2)), zyzel, (12)

I(Xy) =1<=x<Y, zyel, (13)
;2;10(’ 2) = I(x,;r;;z), xel, ZcClL, (14)
I(D,D) C D, where D= {xe€ L:x;+x = 1}. (15)

3 Characterization of the intuitionistic Lukasiewicz implication

It is well known that the Lukasiewicz implicatidak = min(1—x+Y,1) is the only continuous fuzzy
implication (up to a conjugation) which is &implication and arR-implication (cf. [9]). Itis a great
surprise that for thé implications exists the analogous theorem obtained by Cornelis et al. [5]. Here
we want to investigate deeper their result and we want to reduce the needless axioms. As a result we
obtain the following theorem.

Theorem 13. A functionl: L? — L is continuous and satisfies conditiofi®), (13) and (14) f, and
only if there exist an increasing bijectiah: L — L such thatl is conjugate with the IF Lukasiewicz
implication I g, i.e.,

I(x,y) =0 Ik (P(x), D(y))) =
(@ H(min(L,1—¢(xa) + d(y2), 1— d(1—x2) + 9 (1—¥2))),
1—-¢ 1 (1—max0,¢(x2) — d(1—y2)))) (16)

for all x = (x1,X%2),y = (Y1,¥2) € L with some increasing bijectiop: [0,1] — [0, 1].

We will in full paper present the examples that these axioms are independent and minimal one.

4 Open problems

Problem 14. An IF t-norm 7 is calledt-representable if there existtanorm T and at-conormS
such thatZ (x,y) = (T (X1, Y1), S(X2,¥2)), X = (X1,X2),Y = (Y1,¥2) € L. What is the characterization of
t-representablé- t-norm?

The analogous problem can be writtenliet-conorms. AF t-conorms is calledt-representable
if there exist a-normT and at-conormS such that§(x,y) = (S(x1,¥1), T (X2,¥2)), X = (X1,X2),y =

(ylayZ) € L.

Problem 15. What is the characterization bfepresentablé= S-implication, i.e., whenF t-conorm
S in Definition 9 ist-representable?

Problem 16. What is the characterization bfrepresentablé= R -implication, i.e., wherF t-norm
T in Definition 11 ist-representable?
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1 Introduction

Type-2 fuzzy sets were introduced by Zadeh [12], extending the notion of ordinary fuzzy sets. In [6],
[3], [4], [7], [8], [9], and [10] are discussions of both theoretical and practical aspects of type-2 fuzzy
sets. We give here a treatment of the mathematical basics of type-2 fuzzy sets that is uncluttered and
which uses only standard mathematical notation. One feature is a treatment of t-norms for type-2 sets.

A fuzzy subsetA of a setSis a mappingA: S— [0,1]. Operations on the sélap(S,[0,1]) of
all such fuzzy subsets &come pointwise from operations ¢@ 1. Common operations g, 1] of
interest in fuzzy theory are, Vv, and’ given by

XAY=min{x,y}
XVy=max{x,y}
X =1-x
The constants 0 and 1 are generally considered as part of the algebraic structure, technically being
nullary operations. So the algebra basic to fuzzy set thedf,i&], v, A,’,0,1). There are operations

on [0,1] other than these three that are of special interest in fuzzy matters, such as t-norms and t-
conorms.

Interval valued fuzzy setsare mappings of a s&into the algebrd[0,1]?,v,A,0,1), where

0,1)@ = {(a,b):a,be[0,1],a< b}
(a,b)Vv(c,d)=(avc,bvd)
(a,b) A (c,d) = (aAnc,bAd)
(ab)' = (b,a)
0=(0,0)
1=(1,1)

The fundamental mathematical properties of this algebra may be found in [1]. Also, t-norms and
t-conorms are defined for this algebra, and a theory presented there.

0,
1

The situation for type-2 fuzzy sets is the same except that fuzzy subsets of type-2 are mappings
into a more complicated object thg 1], namely intoMap([0, 1], [0, 1]), the set of all functions from
[0,1] to [0, 1]. Again, operations on type-2 fuzzy sets, thatis, on elemeaqi(S Map([0, 1], [0,1])),
will come point-wise from operations arlap([0, 1], [0,1]). Operations are put odap([0,1],[0,1])
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using operations on both the domain and the range of a functibtaio([0, 1], [0, 1]), which are both
[0,1]. This is where the difficulty of type-2 fuzzy sets lies.

We will put operations oMap([0,1],[0,1]) that are of interest in type-2 fuzzy set theory, and
develop some of their algebraic properties. Many of these results are known, but our treatment seems
simpler and less computational than those heretofore. It follows a systematic pattern, putting this topic
in the framework of algebras and their subalgebras. And befitting this meeting, we will emphasize
t-norms and t-conorms for this algebra.

2 Type-2 Fuzzy Sets

From now on, denote the unit interv@l 1] simply byl.

Definition 1. Let Sbe a set. Aype-2 fuzzy subset ofSis a mappingA: S— Map(l,1).

So for a sef, the set of all type-2 fuzzy subsets®fs Map(S, Map(l,1)). We will look at some
operations orMap(l,1) commonly defined for type-2 sets. To make the following two definitions,
we use the two operations and vV on the range and the operatianon the domain for the first
and the operation. on the domain for the second. Such operations on functions are typically called
convolutions

Definition 2. Let f andg be inMap(l,1).

(FU9) () = Vyvzx (f(¥) A0(2)
(F719) () = Vynzx (F(¥) A 0(2))

We will denote the convolution of the unary operatién= 1 — x on the domain of elements of
Map(l,!) by *. The formula for it is

() = Vyf(y) = f(X).

For f € Map(l,1), f’ denotes the function given b¥/(x) = (f(x))’. Denote byl the element of
Map(l,1) defined byl(x) = O for all x # 1, and1(1) = 1. Denote by0 the map defined b@(x) =0

for all x # 0, and0(0) = 1. These elements dflap(l,l) can be considered nullary operations, and
can be gotten by convolution of the nullary operations 1 and 0 on

2.1 The Algebra(Map(l,1),L,M,*,0,1)

At this point, we have the algeb(Map(l,1),,,*,0,1) with the operations!, 1, *, 0, and1 gotten
by convolution using the corresponding operations on the domainy amdi A on the image. This is
the basic algebra for type-2 fuzzy set theory.

The elements oMap(l,1) have point-wise operations on them coming from operations on the
rangel. Although we are interested in the algejMap(l,l),1,,*,0,1), the setMap(l,l) does
have the operationg, A,’, 0, 1 on it and is a Kleene algebra under these operations. In particular, it
is a lattice with order given by < gif f = f Ag, or equivalently, ifg= f v g. We are at liberty to use
these operations in deriving properties of the algébtap(l,1),L,,*,0,1), and in fact one of our
main purposes is to express the operatiorandr in terms of the simpler pointwise operations. We
define two auxiliary unary operations for exactly that purpose.
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Definition 3. For f € Map(l, 1), let f- and fR be the elements dflap(l, 1) defined by

fE () = Vy=xf(y)
) = vy (y)

The following theorem expresses the convolution operatioasd directly in terms of pointwise
operations in two alternate forms.

Theorem 4. The following hold.
fug=(fAg) Vv (ftag)
=(fvg A (f-rgh)

frig=(fAg¥) v (fRAQ)
= (fvg) A (FRAQR)

Using these wunary operations, the basic algebraic properties of the algebra
(Map(l,1),u,m,*,0,1) may be derived rather easily, avoiding more complicated computations with
convolutions.

2.2 Two Order Relations

Even though the algebr@ap(l,1),,m,*,0,1) is not a lattice under the operationsandri, these
operations have the requisite properties to define partial orders.

Definition 5. f Cgif frg=f; f <gif fug=ag.

Proposition 6. The pointwise criteria fo— and < are these:

1. fCgifandonlyif RAg< f <gX

2. f <gifandonlyif fAg- <g< fb.

In general, these two partial orders are not the same, but do coincide for some special subalgebras
of (Map(l,I),u,m,*,0,1).

3 Subalgebras of Type-2 Fuzzy Sets

Forac [0,1], leta be its characteristic function. That &(x) = 1 if x=aand is 0 otherwise.

Theorem 7. The mapping a- a is an isomorphism from the algeb(£0,1],Vv,A,’,0,1) to the sub-
algebra of (Map(l,1),L,M,*,0,1) of functions of the forna. The mappinga,b) — a- AbR is an
isomorphism from the algebrgO, 1][2],\/,/\,’,0, 1) to the subalgebra ofMap(l,I),,m,*,0,1) of
elements of the form- A bR.
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This fully legitimizes the claim that type-2 fuzzy sets are generalizations of type-1 and of interval-
valued fuzzy sets. ButMap(l,I),L,M,*,0,1) contains many other subalgebras of interest, and these
are investigated. The subalgebra of normal convex functions is one of special interest. A fdnction
in Map(l,1) is normal if Rt = 1, and is convex iff = fRA fb.

Theorem 8. The subalgebra ofMap(l,1),L,M,*,0,1) of convex normal functions is a De Morgan
algebra.

4  T-norms for Type-2 Fuzzy Sets
The operations oMap(l, 1) resulting from convolutions of t-norms and t-conorms[0ri], we call
type-2 t-norms, and type-2 t-conorms.

Definition 9. Let A be a t-norm, and andg be elements ofap(l,1).

(fagg(x)= V f(y)rg(2)

yAzZ=X

The convolutionv for a t-conormsy on [0,1] is defined similarly.

We assume throughout that the t-norms and t-conorms o0, 1] are continuous Of special
interest is the interaction of t-norms with the other algebraic operationdaypil,|). Here are some
typical results.

Proposition 10. The following hold.

1. (fag)R=fRagR
2. (fagt=flag
3. (fvg)R=fRy R
4. (fvg)t=flvg

Theorem 11. The distributive laws

fA(gnh)=(fag) 1 (fah) fA(guh)=(fag) U (fah)
fv(grnh)=(fvg)r(fvh) fv(guh)=(fvg) U (fvh)

hold if and only if f is convex.
Corollary 12. If f is convex and ¢ h, then

fagC fAh
fvgC fvh

If f is convex and ¢x h, then

fag=<fah
fvg=<fvh
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4.1 T-Norms on the Subalgebra of Characteristic Functions of Points

As we have seen, a copy of the algeffal],V,A,’,0,1) is contained in the algebtMap(l,1),L,M,*,0,1),
namely the characteristic functioador a € [0, 1]. The formula

(aab)(x)= V a(y)Ab(z)
YAZ=X

says that A b is the characteristic function @A b, as it should be. This implies the following.

Theorem 13. For any t-normA\, the mapping a- ais an isomorphism from the algeb{f, 1], vV, A, A,/ ,0,1)
onto the subalgebra dMap(l,1),,11, A,*,0,1) of characteristic functions of points.

4.2 T-Norms on the Subalgebra of Characteristic Functions of Intervals

In [1], t-norms were defined on the g6t1]1?, and the requirements resulted in exactly that t-norms
were calculated coordinatewise on the endpoints of the intervals. That is, t-nof@gjéh were of
the form

(a,b) A(c,d) = (aAb,cAd)

whereA is a t-norm on0, 1]. Consider the subalgebra @¥lap(l,1),L,1, o,*,0,1) of functions of
the forma" A bR with a < b, or equivalently of the characteristic functions of closed inter{als|.
From the formula

(@ AbR) A (AdR) ()= V (a-ADR)(y)A(c-AdR) (2)
YyAZ=X

it follows that
(a-ADR) & (cEAdR) = (a-ach) A (bR adR)

So t-norms on this subalgebra are calculated coordinatewise on the endpoints of the intervals. This
results in the following.

Theorem 14. The mapping (a,b) — a- A bR is an isomorphism from the algebra
(0,114, v, A, A ,0,1) onto the subalgebra aqMap(l,1),L,1, 4,*,0,1) of characteristic functions
of closed intervals.
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In the recent book [1] we examine in a systematic way different defects of properties in Sets Theory,
Topology, Measure Theory, Real Function Theory, Complex Analysis, Functional Analysis, Algebra,
Geometry, Number Theory in a classical or fuzzy context. A discussion on the defects of properties
of triangular norms is also initiated in [1], starting from an idea in the paper [4] where the defect of
associativity of a binary operation ¢@, 1] is introduced.

Our purpose is to continue the study of t-norms (and t-conorms) that have not the properties of
idempotency, complementarity or distributivity. The deviations from these properties can be evaluated
introducing the following global defects of properties:

e defect of idempotency of the t-norin
dp (T) =sup{x—T(x,x);x € [0,1]}
e defect of complementarity of the t-norin

de (T) =sup{T (x,1—x);x€ [0,1]}

e defect of distributivity ofF with respect tdG (F andG t-norms or t-conorms)

dois(F,G) = sup{|F (x,G(y,2)) — G(F (x,y),F (x,2))|;%,y,z€ [0,1]}.

It is obvious that the values of defects are equal to O if and only if the respective properties
are verified. The defects are calculated for the important families of Fr(élakkg[oﬁw]), Yager

((Tx)xe[o‘w])’ Hamacher and Sugeno-Weber t-norms and the basic t-nffmsTy, Tp = T1, T, =
T, Tw = TO. For example,

logy, YA if A € (0,1) U (1, +0)

o[
1 if A = +oo
and
dpis(Tv, Te) = dpis(Tp, Te) = dpis (T, Te) = dois (Tw, Tp) = %
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The above introduced defects are studied in connection with: the dual of a t-norm, the order
between t-norms, the reverse of a t-norm, the ordinal sum of a family of t-norms, the properties of
Archimedean and strict t-norm, t-norms with threshold, well-founded t-norms, nearly Frank t-norms
(see [3]). Partly, the proved properties are generalizations of results already obtained. Thus, the

property
dpis(Sr, T2) = dois(T1, Sry)

whereSr denotes the dual t-conorm of t-noffi) can be considered as a generalization of the result
proved in [5]: if T is distributive with respect t8r thenSy is distributive with respect td. Also, the
property

dpis(T,Sr) > dip (T) =dip (Sr) >0,
is a generalization of the result in the same paper [5]: ig distributive with respect t& thenT and
Sr are idempotent.

Some methods to improve the properties of complementarity and distributivity of t-norms are
proposed. Thus, ifly is a ¢-transform of a t-norni relative to a standard generatbr(that is
To (%Y) =0T (d(X),d(y))),VxYy € [0,1], wherep : [0,1] — [0,1] is an increasing automorphism
with ¢ (x) +¢ (1—x) = 1,¥x € [0,1] - see e.g. [6]) then

de (Tp) =67 (e (T)).

Choosing the generatgrsuch thath— (dc (T)) < dc (T) we obtain a t-norm with a better property
of complementarity. Also, iff, T’ are two t-norms ana‘q,,Tq; are t-norms generated by the pseudo-

automorphism (that isTy (x,y) = 011 (T (0 (%),0 ())), T4 (x.y) = 01U (T (6 (%), (¥))) if X,y €
0,1) andTy (x,y) = Tg (X,y) = min(x,y) if max(x,y) = 1, wherep : [0,1] — [0, 1] is a non-decreasing
continuous function witp (0) = 0,¢ (1) = 1 and¢!~¥ is a quasi-inverse df - see [2]) andp[~V is a
k-contractionk € (0, 1), then

dois (Tp, Ty) < kdois (T, T'),

therefore we obtain t-norms with a better property of distributivity.

Open problems relative to above introduced defects and to other defects of the binary operations
constructed by using triangular norms are formulated (the calculus of the defect of associativity of the
reverse of a triangular norm, for example). Different defects of properties of t-norms as future themes
of research are introduced . As examples, let us consider

e defect of continuous Archimedean t-norm
da(T) = sup{ lim d" (x);x € [0, 1)} :

n—oo

whered is the diagonal off andd" is the composition ofi copies ofd
e defect of self-reversibility of the t-norfm

dr(T) =sup{T (x,y) —max{0,x+y—1+T(1—x,1—-y)};x,y€[0,1]}

e defect of Frank t-norm of
dr (T) =sup{|T (x,y) +Sr (X,y) —x—=Y|;x,y € [0,1]}.
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Finally, some possible applications are presented. As example, if we define the defect of vertical
@-additivity of the integral/© by

& ® &
sup{sup{‘/ fA®dm€B/ fAc@dm—/ f@dm‘;Aeﬂ};fef},

wherefy (X) = f (x) if xe M, fu (x) =0 if x¢ M, & is a continuous t-conorng, is a left continuous
t-norm andmis a@-additive fuzzy measure, then an estimation of the defect of vertieadlditivity
by defect of distributivity of> with respect tad can be given.
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In multicriteria decision making (MDM), the crucial process of combining numerical values into
a single one is known as aggregation. In mathematical terms, an aggregation operator can be de-
cribed as a sequence of real functions defined on a n-dimensional domain D™ C R", for some interval
D C R and for every n € N. Such operators can be roughly divided into three classes: the con-
junctive, the disjunctive and the averaging. The most common families belonging to the first two
types are respectively triangular norms and conorms. The aggregators most properly used in MDM
are the averaging, also called compensative, because they are always comprised between minimum
and mazimum. Generally, they are demanded to satisfy some basic properties as continuity, com-
mutativity, i.e. indifference to the ordering of the arguments, non decreasing monotonicity. What
is frequently observed in the literature is that the requested properties characterize every single
aggregation function, treating the number n of the arguments not as a variable, but as a static
parameter. Rare are the cases of operators which dynamically change their behavior as we add
elements to the aggregation (see, for instance, consistency in [5]). Furtherly, in many papers, it
is clearly decribed the role of a neutral element, that is an element which has no influence on the
result of the aggregation. However, this subject is related almost exclusively to the uninorms, which
belong to the family of logical connectives (see, for a different kind of approach, self-identity in [5,7]).

In my talk, I'm interested to introduce a class of operators which possess a neutral element and
loose idempotency, usually considered a ”natural” requirement, equivalent to compensativity for
monotone operators. I will show explicitly that these two simultaneous requests cause an interesting
sensitivity to the addition of arguments. Particularly, I will consider two new classes of aggregators
in which it occurs respectively a partial and total lackness of idempotency.

In the first case, the operators will be called finitely non idempotent and their properties will be
investigated in order to prove that they can be seen as an extension of the classical quasi arithmetic
means. In particular, T will present a representation theorem of an important subclass of such
aggregators, through a definition of a new concept, the k-decomponibility, which is a weakening of
decomponibility.

In the second case, [ will formulate the axioms for an aggregator, called absolutely non idempotent,
entirely composed of non idempotent functions. Also in this case I will present the main properties
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and an interesting link to a theoretical aspect such as the non monotonicity of a generalized mizture
operator (see [2]), which can be considered a generalization of an ordered weighted averaging operator
(OWA) [4]. Here it will be important to provide some concrete examples, since explicit examples
of such operators are not present in literature and the properties they have to satisfy are really not
easy to combine. Moreover, I will give a general procedure to build a general class of such operators.

Finally I will try to explain the characteristics of such operators through a very simple application
in which the elements to aggregate are to be intended as degrees of preference in fuzzy sense.
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Abstract

Theoretical advances in modelling aggregation of information produced a wide range of ag-
gregation operators, applicable to almost every practical problem. The most important classes
of aggregation operators include triangular norms, uninorms, generalised means and OWA op-
erators. With such a variety, an important practical problem has emerged: how to fit the pa-
rameters/weights of these families of aggregation operators to observed data? How to estimate
guantitatively whether a given class of operators is suitable as a model in a given practical setting?

Aggregation operators are rather special classes of functions, and thus they require specialised
regression techniques, which would enforce important theoretical properties, like commutativity
or associativity. My presentation will address this issue in detail, and will discuss various re-
gression methods applicable specifically to t-norms, uninorms and generalised means. | will also
demonstrate software implementing these regression techniques, which would allow practitioners
to paste their data and obtain optimal parameters of the chosen family of operators.

1 Fitting triangular norms

Characterisation theorems (see [4, 7]) provide a way to represent continuous Archimedian t-norms and
conorms through their additive generators. Importantly, convergence of a sequence of additive gen-
erators is equivalent to convergence of the corresponding sequence of t-norms [4], Ch.8. This result
provides a way of fitting t-norms to observation data through the approximation of their additive gen-
erators. The additive generator is modelled with a monotone linear spline, and spline coefficients are
found by solving a rectangular system of linear equations, subject to non-negativity of the variables.
This is a classical problem of non-negative least squares [5], for which fast and robust algorithms are
available [3]. There are some technical issues related to non-uniqueness of the additive generators
(which are defined up to a positive multiplier), and strict t-norms, which cannot be uniquely identified
from the data in on the whole of their domain.

An important class of t-norms that are copulas can also be modelled using additive generators, be-
cause of the characterisation theorem [4, 7] that relates copulas to the convexity of additive generators.
Thus, additional restrictions are imposed on spline coefficients, which guarantee its convexity.

2 Fitting uninorms

Uninorms behave like t-norms on one part of the domain and like t-conorms on the other. The tech-
nique of approximation additive generators can be extended to representable uninorms. For a fixed
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neutral elemeng (which is the zero of the additive generator), it is a straightforward adaptation of
the above method of monotone splines, now with one additional linear restricteorHatvever, the
neutral element itself can also be found from the data. To this end, an optimisation problem is solved
to find the global optimum og, in which for every intermediate value ef, spline coefficients are
computed using the non-negative least squares method of [3].

3 Fitting generalised means

Quasiarithmetic means also possess additive generators, whose sum is now weighted [1, 2]. Similarly
to t-norms and uninorms, one can fit generators to the data, by computing coefficients of a linear
monotone spline. The technique is practically the same as the one employed for t-norms, with cor-
responding weighting of the components of the matrix of the constrained system of linear equations.
However, if not only the generator, but the weights of the (generalised) mean need to be found from
the data, the problem becomes more complicated. There are two sets of variables in the regression
problem: the weights and the spline coefficients. Since for a fixed vector of weights, spline coeffi-
cients are found though a non-negative linear least squares problem, one can separate variables: at the
outer level the global optimisation problem with respect to weights is solved, and at the inner level
(i.e., for every fixed vector of weights) spline coefficients are computed.

A patrticular instance of this technique, generalised quasilinear means, in which generators are
power functions, was discussed in [2]. However the global nature of the optimisation problem was
not recognised.

4 Extensions

Similarity of representation of t-norms, uninorms and means through the univariate generator func-
tions prompts one to consider these operators in one framework, as instances of the same class of
functions satisfying [ ; aig(x) = g(y) In case of t-norms and uninorms, all weighis= 1, for means

a; = 1/n, for generalised mearjga; = 1. Conditiony a = nis used to introduce degrees of impor-

tance of arguments into t-norms ([1], Eq.(34)). Intermediate cases result from a weaker restriction
g >0.

Given the generator functiog explicitly, the weightsg; can be determined from the data using
non-negative least squares procedure. Otherwise, both the generator (i.e., its spline coefficients) and
the weights can be found from data in a manner used for generalised means, with one less restriction.

Further, commutativity of the aggregation operator can be ensured by ordering the arguments xi
in decreasing order, like it is done in OWA operators (these are so-called pseudo-OWA [6], Eq.(17)).
The usual OWA operator becomes a special caggf= x. No changes to the regression procedure
are necessary, except the reordering of arguments in the observation data.
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The talk will include two different topics which are somewhat related to each other. These topics are
described in Sections 1 and 2.

1 On the relationship between the rotation construction and Abelian
groups

We call the construction of extending the operation from the positive cone of an ordered group into the
whole group symmetrization. The aim of this section is twofold. First, the rotation construction [8] —

a method, which is a much less understood than symmetrization — shall be related to symmetrization,
thus providing a better understanding of the rotation-construction. In fact, the rotation-construction is
described as a kind of semi-symmetrization. Second, the symmetrization of t-conorms (and t-norms)
is defined analogously. We shall symmetrize t—conormsfﬁzom] in order to obtain operations on

[0,1]. The subclass of t-conorms shall be characterized which results in associative operations via
symmetrization. In fact, associativity of such an operation, which is constructed from a t-conorm by
symmetrization, is equivalent to that it is a uninorm. In addition, a characterization is given for those
t-conorms in terms of a set of equations.

The results are illustrated by three-dimensional plots.
1.1 Rotation versus symmetrization
Standing assumptiontnless otherwise specified, throughout the paper we fix an arbitrary strong

negatiorf, and denote its (unique) fixed point byFurther, we denote™ = [0,t[, I =[t, 1], |- = [O,t]
andl =]t,1]. We shall consider the following properties:

(A1) Commutativity Xy = yeX

(A2) Associativity %(yez) = (Xay)ez

(A3) Monotonicity %y < xez whenevel <z
(Ad) Conjunctive nature &y < min(x,y).

The rotation construction and the rotation-annihilation construction for t-norms were introduced in [8]
and [9], respectively. Their a far-leading generalization to the setting of partially-ordered semigroups
is in [6]. These general results applying to our topic and by using the terminology of the present paper
are quoted in Theorems 1 and 8.
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Theorem 1. (Rotation) Let e be a left-continuous operation dh 1] satisfying (A1), (A2) and (A3).
Defines, (of type[0,1] x [0,1] — [0,1]) by

Xay ifx,yel;
(x—oy) ifxel andyel_
(y—oX) ifxel_andyel,
0 ifx,yel_

Xery =

(1)

e is a left-continuous rotation invariant operation satisfying (A1), (A2) and (A3) if and only if either
C1. xey = O impliesmin(x,y) = 0 or
C2. there exists &]0, 1] such that xy = 0iff x,y < c.

In addition, s, satisfies (A4) if and only i satisfies (A4).

By applying Theorem 1 to t-conorms (which always satisfy condi@dhwe obtain:

Corollary 2. Let® be a left-continuous t-conorm dn 1]. The operatior®, (of type[0,1] x [0,1] —
[0,1]) given by

XPpy ifx,yely
(x—ay) ifxel andyel_
(y—exX) ifxel_andyel,
0 ifx,yel_

Xrotey = (2)

is a left-continuous, rotation invariant operation satisfying (A1), (A2) and (A3).

Since taking the dual operation preserves properties (Al), (A2) and (A3), we proceed as follows: By
taking the dual operation of @ with respect td (that is, the de Morgan identityoy = (X@y')’
holds) we deduce the following statement from Corollary 2:

Corollary 3. Let® be a right-continuous t-norm 0j0,t]. The operatior®" (of type|[0,1] x [0,1] —
[0,1]) given by

1 ifx,yelt

(y—oX) ifxeltandyel™

(x—oy) ifxel-andyel™

XQY ifxyel™

is a left-continuous, rotation invariant operation satisfying (A1), (A2) and (A3).

xo'y = (3)

Still assuming thatp and® are duals, (which is equivalent to-y = (X«—oY)’, as it is easy to
verify) we obtain that the operation in (3) is equal to

1 if x,yel"
r y—gx ifxelTandyel™
X—gy ifxel andyel”
Xeoy) ifxyel-

(4)

Since the operatiom is dual to® (in notation,® = @) it is not confusing to denote" by (©q)".

At this point, we are ready to define tegmmetrizatiorof . One may call the operation defined in
(5) the symmetrization of as well (in notatiorn9).
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Definition 4. Let @ be a left-continuous t-conorm dn 1]. Let @, and(®q)" be defined by (2) and
(4), respectively. Define the binary operatiopon [0, 1] by

Doy — xrotpy if x,yeltor(xelt,yel_ ,x<y)orxel_,yelt, x<y) (5)
Y= X(@q)'y ifxyel_orxelt,ycl ,x>y)or(xel_ ,yclt,x>Y)

In a more detailed form:

( XDy if x,yel"
(x—=gy) ifxeltandyel_andx<y
y—gx ifxelTandyel_ andx>y
(y—exX) ifxel_andyelt andx<y (6)
X—gay ifxel_andyel™ andx>y
Xay) ifxyel_

X@ Sy ==

(5) points out that rotation can be considered as a kind of semi-symmetrization. In order to illustrate
it with a figure, let’ = 1 —x. Denote by®p the product t-norm ofD, %], by @p its dual t-conorm on
[%, 1]. Figure 18 shows the relation between the rotation- and the symmetrization constructions.
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Figure 18:(dp), (left), its dual(®p)" (center), and®p), (right).

Lemma5. @sis a uninorm iff it is associative.

1.2 Symmetrizing t-conorms

Theorem 6. Let@® be a left-continuous t-conorn®s is associative if and only if one of the following
is true:

1. @ is isomorphic to the dual of the product t-norm.
2. @ is isomorphic to the dual of the minimum t-norm.

3. @ is isomorphic to the dual of an ordinal sum with summands all being product t-norms.

Example 7. LetX' = 1—x. At the first row of Figure 19 the rotation of the maximum t-conorm (left),
its dual (center), and the symmetrization of the maximum t-conorm. In the bottom row and in Figure
18 an example is depicted in the same style corresponding to items 3 and 1 in Theorem 6, respectively.
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Figure 19: Illustration for items 2 and 3 of Theorem 6, see Example 7
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2 Partially compensative associative operators by rotation and rotation-
annihilation

2.1 Associativity versus compensation

Many authors have tried to find operators that are associative and compensative at the same time.
As pointed out in [3] uninorms admit partial compensation (that is, at least on some subdomain of
[0,1]? they have compensative nature). We shall point out in this talk that associativity and compen-
sative nature can not be satisfied simultaneously. In fact, the proper definition on the diagonal and
its neighborhood is problematic. As a way out, the rotation construction and the rotation-annihilation
construction, in their most general forms [6], allow us to define wide families of associative aggre-
gation operations, which admit partial compensation. Thus, the here-defined operators are similar to

uninorms, a class which is being investigated intensively in the literature. The method is illustrated
with several 3D plots.

However, partial compensation is possible. We say Mas compensativen a subseX of
[0,1]2, if for (x,y) € X, min(x,y) < M(x,y) < max(x,y), andstrictly compensativé for (x,y) € X,
min(x,y) < M(x,y) < max(x,y).

Dombi has introduced a class of aggregative operators [1]. A remarkable member of this family
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Xy

MOY) = Sy X y)

(7)

called “Three Pi” operator after Yager. This class of aggregative operators is a special class of the
so-called uninorms. Uninorms were introduced in [12]. They generalize the notions of t-norms and
t-conorms by allowing the neutral elemeto lay in the open unitinterva0, 1[. A first description of

the structure of uninorms is in [3]. It has turned out that a subclass of uninorms, called representable
uninorms, coincides with the class of aggregative operators of Dombi. Further, any utinbas

an underlying t-nornT and t-conornS acting on the subdomairi8, €] x [0,€e], and|e, 1] x [e, 1] of

[0,1]2, respectively. Therefore, compensation is possible only on the remaining subdomains

[0,€] x [e,1] and [e 1] x [0, €] (8)

and in fact, any uninorm is compensative on that subdomain.

Moreover, any member of the classrepresentablaininorms is strictly compensative on those
subdomains. Fodor et. al. [2] have recently characterized all the possible uninorm opéviiciirsg
on[0,€] x [e,1]U[e 1] x [0, €], provided that the underlying t-norfand t-conornSare both continu-
ous. The result says, among others, Wdias strictly compensative nature only on those subdomains
[a,b] x [c,d] of [0,€] x [e,1] (and, of course, symmetrically) wheje b] and|c, d] correspond tatrict
summands in the ordinal sum representatiof aindsS, respectively (see Fig. 20).

Thus, representable uninorms are the best candidates of uninorms in terms of compensability.

Our aim in this section is to introduce a new class of operators, which — similar to uninorms — admits
partial compensation. We shall achieve this goal by using a generalization of the rotation construc-
tion [8] and the rotation-annihilation construction [9] for t-norms. The properties of the introduced
operators will be discussed and several illustrative examples will be given.

Theorem 8. (Rotation-annihilation) Let’ be a strong negation, t its unique fixed poingd, 1 and
define a strong negation bygk) = % Let M be a left-continuous operation ¢@, 1]

satisfying (A1), (A2) and (A3).

C1. If x,y > 0 implies M(x,y) > 0 then let M be a left-continuous t-subnorm which admits the
rotation invariance property w.r.t. N Further, let I = [0,d’[, 1° = [d’,d] and I =]d, 1].

C2. If there are xy > 0 such that Mx,y) = O then let M» be a left-continuous t-norm which admits

the rotation invariance property w.r.t. JNequivalently, let M be a left-continuous t-norm with
associated negationd)l Further, let I~ = [0,d'], 1° =]d’,d[ and I = [d, 1].

Let M; be the linear transformation of Mnto [d, 1], M4 be the linear transformation of Mnto [d’, d]
and Ms be the annihilation of M given by

Jo ifx,y e [d,d] and x< y
Ms (X,Y) —{ My(x,y) ifx,ye[d dandx>y °
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Define Ma : [0,1] x [0,1] — [0, 1] by

Ms(x,y) ifx,yel”

v, (xY)" ifxelt,yel™

Ivs (v, X)) ifxel™,yel™®

0 ifx,yel~

Mra (X,y) = Ms (X, y) ifx,y e 1° ) 9)
y ifxe It andye1°

X ifxel®andye I+t

0 ifxel~andyel®

0 ifxel®andye |~

Then M, is a left-continuous rotation invariant operation satisfying (Al), (A2) and (A3), and called
therotation-annihilatiorof M and M.

In addition, M, satisfies (A4) if and only if M satisfies (A4).

N 1 1 1 ‘ !
d ol i ‘ \
A \\ \\ ]w1
IR N R \
B : ‘ \\ db—
bp-r——qf —1 S M,
- Ao t ‘

4l i : ]
0 a / be c d 1 0 " / 1 o |+ a | 1

T N(x) N,(x) N(x)

Figure 20: Strictly compensative domains of a uninorm (dark grey) with strict sumnfafid$).
lllustration for the rotation construction (center) and for the rotation-annihilation construction (right)

2.2 Operators by rotation

The last assertion of Theorem 1 points out, that willing to construct compensative operators, t-
subnorms (and hence also t-norms) are not suitable to play the rile of

2.2.1 Rotations of t-conorms and t-superconorms

By observing that conditio@1is always satisfied by any t-superconorm (hence also by any t-conorm),
we obtain that any t-superconorm (hence also any t-conorm) can play the Mlmdtheorem 1. We
shall investigate the compensative nature of the resulted operator.

Theorem 9. Let’ be a strong negation, t its unique fixed point and S be a left-continuous t-superconorm.
Thenmin < § < maxholds on the domain®,t]x]t,1] and]t,1] x [O,t].
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2.2 Rotations of uninorms
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Taking into account Theorem 1 we see that not every uninorm is suitable for playing the Mle of

The uninorms that can be rotated (i.e. those, which result in associative operation via rotation) are
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Figure 23: The rotations of the t-norms in Figure 22, respectively
precisely the class of uninorms such that their underlying t-norm admits one of conditiGmiC2.

under this linear transformation by eThen

Theorem 12. Let’ be a strong negation, t its unique fixed point and U be a left-continuous uninorm
with neutral element e. Letjbe the linear transformation of U intp, 1] and denote the image of e

1. the rotation Uyt of a uninorm U is a uninorm with neutral elemerit e

2. min < Ut < maxholds on the domaing, €] x]e*, 1] and]e*, 1] x [0, e*].
Figure 24.

Example 13. LetxX = 1—x. The “Three Pi” operation defined in (7) and its rotation are presented in
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Figure 24: “Three Pi"” and its rotation (left), see Example W3and its rotation (right), see Example

I W

14

Example 14. Let X' = 1—x. Figure 24 shows the uninorm defined below together with its rotation.

_ [ min(xy) ifmax(xy) <3,
U(x,y)_{ max(x,y) otherwise (10)

Remark 15. Since uninorms have an underlying t-norm, this method — as a by-product — results in a
new method for constructing left-continuous (and non-continuous) t-norms.
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2.3 Operators by rotation-annihilation

The last assertion of Theorem 8 points out, that willing to construct compensative operators, t-
subnorms (and hence also t-norms) are not suitable to play the rible of

Standing assumptionthroughout this sectioM, will be an operation chosen as in Theorem 8 (de-
pending on the zero values bF), we change the operatidn; only.

Theorem 16. Let’ be a strong negation, t its unique fixed pointcf,1[. Let M, be the rotation-
annihilation of a left-continuous t-superconorm and.Mhenmin < M4 < maxholds on the domains
[0,d]x]d,1] and]d, 1] x [0,d].

Theorem 17. Let’ be a strong negation, t its unique fixed poingd, 1[. Let U be a a left-continuous
uninorm with neutral element e and denote bytlee image of e under the increasing linear trans-
formation which map$0,1] onto [d,1]. Let Mg, be the rotation-annihilation of U and p Then
min < M;a < maxholds on the domain®, €] x|e*, 1] and]e*, 1] x [0,e*].

1 1 1 1
e S U
S U I
\ \
\\\ d dfr
N M. M.
t t t 2 t 2
N \\\ \3\\\
0 t 1 0 t Pai 1 o t d 1 0 t d ¢ 1

Figure 25: Rotation of t-superconorms and uninorms (left), rotation-annihilations of t-superconorms
SandM, and uninorm&J andM, (right). The compensative parts of the domains are highlighted

Example 18. LetX =1—x, d = % The dual ofS_ (called the Lukasiewicz t-norm) is defined by
T (x,y) = min(0,x+y—1). Three operators, which are results of rotation-annihilation Mittbeing
a t-conorm are in Figure 26.

Figure 26: Rotation-annihilations &, andT,_ (left), S andT_ (right) andS_ andT_ (bottom), see
Example 18
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Example 19. For € € [0, 1] the rotation-invariant t-subnorm, which is dualq is defined byT, . =
min(0,x+y—1—¢). LetX =1—x,d= 2. Two operators, which are results of rotation-annihilation
with My being a uninorm are in Figure 27.
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Figure 27: Rotation-annihilations of “Three Pi” afid, , (left), U (defined in (10)) and, (right), see
Example 19

Remark 20. From Figures 21, 22 and 26 one may have the intuition that the obtained operations do
have neutral elements, and thus they are uninorms. Indeed, the etdmbith is% in Figures 21 and

22) seems to be neutral when rotating t-conorms; and the elehfetitich is% in Figure 26) seemsto

be neutral when applying the rotation-annihilation construction with a t-conornMan@ut taking

into account that the obtained operations are always left-continuous (or by checking this conjecture
in formulas (1) and (9)), one immediately see that it is not the case. However, denotira siyall
positive real numbet,+ € (d + €, respectively) behavalmost like neutral elementas it is easy to

see. The smaller is the more the element € (d + €, respectively) behave as neutral elements do.
That is, the obtained operations have amfostneutral” element, which may be interesting from the
application viewpoint.

Example 21. Finally, we present an example in order to emphasize that the here-introduced methods
can be used iteratively. Consider the operation in the rightmost operation of Figure 24. On the left
of Figure 28 the rotation of it can be seen. Consider the operation, which is on the left-hand side of
Figure 27. Use it as a summand [@D5, 1] in an ordinal sum (in order to obtain an operation without
zero divisors). Its rotation can be seen on right of Figure 28. On the bottom of Figure 28 the rotation
of the rotation of the Three Pi operation is presented.

Keywords: Aggregation, Compensation, Associativity, Uninorm, Rotation, Rotation-annihilation
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1 Introduction

The concept of domination has been introduced in the framework of probabilistic metric spaces [8, 7]
when constructing Cartesian products of such spaces. In the framework of t-norms, domination is
also needed when building fuzzy equivalence (ordering) relations from already given corresponding
fuzzy relations. The crucial point during this process is the preservation df-thensitivity of the
underlying given fuzzy relations. Note that related problems of preserving special properties were
also investigated in the framework of pseudo-additive measures ([5, 4]).

Standard aggregation of fuzzy equivalence (ordering) relations presériransitivity is done
either be means df or Ty (x,y) = min(x,y). Both of them, i.eT itself andTy, trivially dominate the
considered t-norn. Staying in the framework of t-norms, in fact any t-noifmh dominatingT can
be applied to preservE-transitivity, i.e. if Ry, Ry are twoT -transitive, binary relations on a universe
X, then alsal *(Ry, Ry) has this property (see [3, 1]).

In  several applications, other types of aggregation processes preserving
T-transitivity are required (e.g. [2]). Especially different weights (degrees of importance) of input
fuzzy equivalence (ordering) relations cannot be properly modelled by the aggregation with t-norms,
because of their commutativity. Therefore, gendrafansitivity-preserving aggregation operators
have to be considered and the concept of domination in the framework of aggregation operators had
to be introduced (see [6]). We will briefly recall the definition of domination of aggregation operators
and some basic results.

2 Domination of aggregation operators

Definition 1. Consider am-ary aggregation operaté, : [0,1]" — [0, 1] and anm-ary aggregation
operatorBy, : [0,1]™ — [0,1]. We say thai\ ;) dominatesB ) (An) > By) if, for all x;; € [0,1]
withi € {1,...,m} andj € {1,...,n}, the following property holds:

B(m) (A(n)(xlb .. 7Xln)7 ... 7A(n) (Xml; ... ,an)) (1)
< A (Bmy (X1, - - Xm1), - - -, B(m) (Xan, - - -, Xmn) ) -
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Note that if eithemn or mor both are equal to 1, because of the boundary condition of aggregation
operatorsA ) > By is trivially fulfilled for any two aggregation operatofs B.

Definition 2. Let A andB be aggregation operators. We say thalominatesB (A > B), if A,
dominatesBr,, for alln,me N.

Note that, if two aggregation operatgksand3 are both acting on some closed interval [a, b] C
[—o0, 0], then the property of domination can be easily adapted by requiring that the Inequality (1)
must hold for all arguments; from the interval and for alln,me N.

We will briefly mention some basic results concerning isomorphic aggregation operators and ag-
gregation operators which are associative.

Consider an aggregation operator |,y [a,b]" — [a,b] on [a,b] and a monotone bijectiof :
[c,d] — [a,b]. The operatoAy : Unen [C,d]" — [c,d] defined by

A¢(X17 s 7Xn) = ¢_1(A(¢(Xl)7 s 7¢(Xn)))
is an aggregation operator @d], which is isomorphic té\.

Proposition 3. Consider two aggregation operatofsand B both acting ora, bJ.
(i) A> Bifand only ifAy > B, for all non-decreasing bijectiong : [c,d] — [a,b].
(i) A>> Bifand only if By > A, for all non-increasing bijections : [c,d] — [a,b].
Proposition 4. Let A, B be two aggregation operators. Then the following holds:
(i) If B is associative and ) > B, for all n € N, thenA > B.

(ii) If A is associative and\ ;) > B, for all m € N, thenA > B.

3 Domination of continuous Archimedean
t-norms

Next we concentrate on the domination of an aggregation operator over a continuous Archimedean
t-norm, which turns out to be closely related to subadditive aggregation operators ([6], compare
also [5]).

Definition 5. A functionF : [0,c]" — [0,¢] is subadditiveon [0, c], if the following inequality holds

for all x;,y; € [0,c] with x; +V; € [0,cl:

FOXa+VY1,-- X +Yn) <F(X1,..., %) +F(Y1,---,Yn)-

An aggregation operata : |,y [0,¢]" — [0, c] acting on[0, ¢ is subadditiveif all n-ary operations
A(m 1 10,¢]" — [0,c] are subadditive off, c].

If we want to show that an aggregation operadodominates the tukasiewicz t-norfp (A >
TL) it is equivalent to prove that the tukasiewicz t-conoBndominates the dual aggregation op-

eratorA? (S > AY) because of the isomorphism property (see Proposition 3), i.e., for arbitrary
X1, %n,Y1,-- -, ¥n € [0,1], the following inequality must hold

S—(Ad(xlv' e 7Xﬂ>aAd(yl>' e ayﬂ)) > Ad(S. (leyl)v- .- 73_(Xn,yn))
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being equivalent to
min(A%(xa, ..., %) +A%(y1,...,¥n),1) = Ad(min(xy +y1,1), ..., min(% +Yn, 1)).
Furthermore, the last inequality can be rewritten in the following form
Ad(x1, ... %)+ ANy, .. yn) = AYmin(xg +y1,1),. .., min(X, +Yn, 1)).
If X +yi <1forallie{1,...,n}, then we can derive that

Ad(xlv' . )Xn) +Ad(Y1, s aYn) Z Ad(xl+y17' . ~,Xn+Yn)
expressing thaAd is a subadditive function off, 1]. The sufficiency of the subadditivity @9 to
ensureS. > AY follows easily from the monotonicity o&¢.

If we are looking for some aggregation operafor [J,.y[0,1]" — [0,1] which dominates the
product t-normTp we can apply once again Proposition 3, ife>> Tp and thereforé\y < (Tp)g for
some strictly decreasing bijectig@n: [0,] — [0, 1]. If we choose the bijectiof by

¢ : [0,00] — [0, 1], (x) = exp(—x),
we get that
(Te)o (%,y) = ¢~ (®(X) - d(y)) = —log(exp(—x) - exp(—y)) = x+Y

such that an aggregation operafodominateslp if and only if its isomorphic transformatioA is
dominated by the sum, which means in fact that the isomorphic aggregation opgey&@ubadditive
on [0, x| (and thus concave).

In order to get an impression which aggregation operators are possible candidates for dominating a
continuous Archimedean t-norm and therefore whose isomorphic transformations are subadditive we
will consider certain types of aggregation operators, e.g. aggregation operators with neutral element
0 and OWA operators generated by some quantifier function.
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In this paper we consider t-norms on countable bounded chains. After some general
preliminaries, we focus our attention on t-norms defined on C ={0,1,2,...,n},
C={012,..,n,..,+} and C = {-c0,...,-n,...,-1,0,1,...,n,...,+o0} respectively.
Representation theorems for divisiblet-normson C ={0,1,2,...,n,...,+c0} and
C={-,..,n,..,-1,0,1,...,n,..+o} are obtained.

After preliminaries, some of the main results are described below

1.- Priminaries

A t-norm T on abounded chain (C, <, 0, 1) (alinear ordered set with minimum 0 and
maximum 1), is abinary operation on C such that for al x,y,z[1C the following axioms are
satisfied:

(T T(xy) =T(y.x)

(T2)  T(T(xy),2) = T(x,T(y,2))

(T3) T(Xy) £T(x,2) whenever y<z

(T4 TX1=x

A t-norm T on abounded chain C isdivisibleif the following condition holds:
(DIV) For dl x,yOC with x < y thereis z[IC such that x = T(y,2)

A t-norm T on abounded chain C is archimedean if the following condition holds:

(AR) For all x,y[IC — {0,1} there exist mON such that x™ <y

Similarly, the concept of t-conorm can be introduced in the usual way. For a t-conorm S,
the DIV and AR conditions are:

(DIV) For all x,yIC with x <y there is z[OC such that y = S(x,z)

(AR) For all x,y[IC — {0,1} there exist mON such that x™ >y

88



2.- t-normson C ={0,1,2,...,n-1,n}

A t-norm T on afinite chain C ={0,1,2,...,n-1,n} iscalled discrete (see [1], [3], [4]). In this
case, the divisibility condition can be characterized by means of the Lipschitz property:
T(x,y) = T(z,y) < x—2z whenever x =z

The class of divisible discrete t-norms has been characterized by Mayor and Torrens 1993
([5]). In this paper they prove that there is a unique archimedean divisible t-norm: T (X,y) =
max(x +y—n, 0) , and any not archimedean divisible t-norm isan (non trivial) ordinal sum
of archimedean divisible t-norms. More precisaly:

Theorem 1
Let nON and C={0,1,2,...,n-1,n} beafinite chain with n+1 elements. A t-norm T on Cis
divisibleif and only if thereexistsaset | ={0=ag<a < ..<g<agn1=n} OC withp=
0 such that

T(x,y) = Bb’ +max(x+y-(a +a,),0) if (x,y)0[a,a.,]* for somei:01,..,p
' C min(X, y) otherwise

Remark 1

Let usdenote by T ' the t-norm described in this theorem. Observe that | is the set of
idempotent elements of T

Incasep=0 thatis | ={O,n}, then T'=T_

Incasep=n—1thatis | =C,thenT'=Ty , Tu(x,y) = min(x,y)

Corollary 1
The correspondance | 0 — T'isabijection. There are 2" * divisible discrete t-norms on
afinite chain of n + 1 elements.

Let N be the only strong negation (non-increasing and involutive function) on
C={0,12,..,n-1,n}, thatis N(x) =n—x for dl x in C. For any t-norm T on C we consider
the so-called N-dual of T: T*(x,y) = N(T(N(x),N(y))) for al x,yinC. T* isat-conorm.
Anaogously, given any t-conorm Son C its N-dual is defined by

S*(x,y) = N(S(N(x),N(y))). S* isat-norm on C. Obvioudy, (T*)* =T and (S*)* = S.
Given apair (T,S) where T isat-norm and S at-conorm, we call this pair adual pair when
T*=S(or S* =T).

Observe that given adua pair (T,S) then we have: T isdivisible (archimedean) if and only
if Sisdivisible (archimedean).
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Corollary 2

Let nON and C={0,1,2,...,n-1,n} be afinite chain with n+1 elements. A t-conorm Son Cis
divisibleif and only if thereexistsaset | ={0=a<a < ..<g<gw1=n} OC withp=
0 such that

S(x.y) = Ea +min(x+y-2a,a, -a) if (x,y)O[a,a,]* for somei:0L...,p
’ C max(X, ) otherwise

Remark 2

Let us denote by S' the t-norm described in this theorem. Observe that | is the set of
idempotent elements of S'

Incasep=0 thatis | ={0,n}, then S'=S: S.(x,y) = min(x+y, n). Thist-conorm is the
only one which is divisible and archimedean.

Incasep=n-—1thatis | = C, then S'=Sy: Su(x,y) = max(x,y)

There are 2" ! divisible discrete t-conorms on a finite chain of n + 1 elements.

A nice relation between Frank’s equation ([2]) and the condition of divisibility for discrete
t-norms and t-conorms is given by the following

Theorem 2

A pair (T,S) where T is a t-norm and S a t-conorm on C = {0,1,2,...,n-1,n} is a solution of
the functional equation T(x,y) + S(x,y)=x+y ,x,ydC ifandonlyif TandS are
divisible with the same set of idempotent elements.

Remark 3

a) 1The number of solutions (T,S) of the Frank’s equation related to C = {0,1,2,...,n-1,n} is
2"

b) A solution (T', S') of the Frank’s equation is a dual pair if and only if N(I) = I. There
is 2("4 dual pairs which are solutions of this equation.

3.- t-normson C={0,1,2, ..., n, ..., +oo}
Theorem 3

a) There does not exist any divisible archimedean t-norm on C
b) S(x,y) =x +y is the only divisible archimedean t-conorm on C
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Theorem 4
a AtnormTonC={0,12,..,n,..,+c} isdivisbleif and only if there exist an
infiniteset 1 ={0=a<a <& <..<+ow} of elementsof C such that

Eai +max(X+y (g +a]-+l) ,0) if (xy)Uly ,ai+1]2 for somei:012,...
T(xy)=0
E min(x, y) otherwise

b) At-conormSonC={0,12,...,n, ..., +o} isdivisibleif and only if one of the
following conditions hold:

b.1) thereexistsaninfiniteset | ={0=a <& <& <... <+wo}} of elements of C such that

U a +min(x+y-2a 8 ma) i (x,y)D[ai,a]-ﬂ]2 for somei:01,...
S(x,y) =0
E max(X, y) otherwise

or

b.2) thereexistsanfiniteset | ={0=a <& <& <...<g,<+wo} of elementsof C such
that

Bai +min(x+y-2g ,a  ,-a) Iif (x,y)D[ai,a]-Jrl]2 for somei:01...,p-1

S(X,Y):Bx+y—aID if xyza,

O
H max(x,y) otherwise

Remark 4.

a) Letusdenoteby T' and S' thet-norm and t-conorm described asin theorem 4.
Observe that | is the set of idempotent elementsof T'and S'. Incasel =C, T'=Ty,
and S' = Sy. Incase| ={0,+»}, S'(x,y) =x +y theonly archimedean divisible
t-conorm on C.

b) There are uncountably many divisible t-norms and t-conorms on
C={012,..,n,.., +ow}

¢) Thereareno dua pairs(T,S) on C (thereisno any strong negation on C).
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4.- t-normson C = {-=,...,-n,...,-1,0,1,...,n,...,+o0}

Theorem 5
a) There does not exist any divisible archimedean t-normon C
b) There does not exist any divisible archimedean t-conorm on C

Similar representation theorem for this case can be also stated

Theorem 6
a At-normTonC={-c,...,-n,...,-1,0,1, ..., n, ..., +o} isdivisibleif and only if one of
the following conditions hold:

al) Thereexistsaninfiniteset | ={ -0 <@g <& < ... <+ } of elements of C such that

X+y- if x,y<
Dty =2y a1

T(xy) = B tmax(x+y-(g +a,,1),0) if (xy)O[a a,4]° for somei:12,...
O
E min(x, y) otherwise

or

a2) Thereexistsaninfiniteset | ={-o<..a;<a<a <& < ... <+o} of eementsof C
such that

i Fmax(x+y - (& +ai+1) ,0) if (xy) Ul ,ai+1]2 for somei:...,.—101,...
T(xy)=0O
E min(x, y) otherwise

b) A t-conoomSonC={-w,...,-n,...,-1,0,1, ..., n, ..., +oo} isdivisibleif and only if one of
the following conditions hold:

b.1) thereexistsaninfiniteset| = {-0<...a;<a <& < ... < +oo} of elements of C such
that

0 a +min(x+y - 2a; X +1—ai) if (X, y)D[ai,ai+1]2 for somei:...,—101,...

S(xy) =0
% max(Xx, Y) otherwise

92



or

b.2) thereexistsaninfiniteset | ={-00 <.. a,<a;<a<+w} of eementsof Csuch
that

J g rmin(x+y-2a .8 4 -a) if (xy) Ola.a,4]° for somei #0

S(X,Y):E X+y-a, if xy=a,
U
Hmax(x, y) otherwise
References:

[1] DeBaets, B. and Mesiar, R. (1999). Triangular norms on product lattices. Fuzzy Sets
and Systems 104 : 61-75.

[2] Frank, M.J. (1979). On the simultaneous associativity of F(x,y) and x +y — F(X,y).
Aequationes Math. 19 : 194-226.

[3] Godo, L. and Sierra, C. (1988). A new approach to connective generation in the
framework of expert systems using fuzzy logic. In Proccedings 18" International
Symposium on Multiple-Valued Logic, Palma de Mallorca, 157-162. IEEE Computer
Society Press.

[4] Klement, E.P., Mesiar, R. and Pap, E. (2000). Triangular Norms. Kluwer, Dordrecht.

[5] Mayor, G. and Torrens, J. (1993). On aclass of operators for expert systems. Int. J.
Intell. Syst. 8: 771-778.

93



Copulas: an introduction to their properties and applications

ROGERB. NELSEN

Lewis & Clark College
Portland (OR), USA

E-mail: nelsen@lclark.edu

Copulas are functions which join or couple multivariate distribution functions to their one-dimensional
margins. In the bivariate case, they share properties with triangular norms, e.g., thég, ifago
[0,1], satisfy certain boundary conditions, are increasing in each place, etc.

Their importance in statistical modeling is primarily a consequence of Sklar's Theorem (1959):
Let H be a two-dimensional distribution function with marginal distribution functierendG. Then
there exists a copul@d such thatH (x,y) = C(F(x),G(y)). Conversely, for any distribution functions
F andG and any copul&, the functionH defined above is a two-dimensional distribution function
with marginsF andG. Furthermore, iF andG are continuousZ is unique.

In this talk we present an overview of some of the most important properties and applications of
copulas. Of particular interest will be the class of Archimedean copulas, which are also triangular
norms. As we shall illustrate, it is easy to construct a great variety of such copulas, and members of
the class have pleasing statistical properties.

In statistical modeling, dependence is often of more interest than independence, and many de-
scriptions and measures of dependence are "distribution-free" or "scale-invariant," in that they remain
unchanged under strictly increasing transformations of random variables. As Schweizer and Wolff
(1981) noted, "...it is precisely the copula which captures [such] properties of joint distributions."
Consequently, many scale-invariant (i.e., nonparametric) properties and measures of association are
expressible in terms of copulas.

With the aid of copulas, we shall explore the relationships among dependence concepts such as
concordance, quadrant dependence, and likelihood ratio dependence, and measures of association
such as the population versions of Spearman’s rho, Kendall's tau, and Gini's gamma. The problem
of finding best-possible bounds on certain sets of copulas leagisaisi-copulasand we shall con-
sider briefly some of their properties and applications, including some recent results on the class of
multivariate Archimedean quasi-copulas.
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1 Introduction

We will discuss some properties of and some relationships between important classes of copulas. First,
we show that the both the strict and the non-strict Archimedean copulas form dense subclasses of the
class of associative copulas. Next, we characterize copulas, which are invariant under the construction
of survival copulas, and some related classes of copulas. Finally, we present an application of copulas
in aggregation theory. Full details of these results can be found in [9, 10, 11], for basic references
about copulas see [14, 17].

2 Uniform approximation of associative copulas

The setx = [0,1]%%” of all functions from the unit squari®, 1)? into the unit interval0, 1], will
be equipped with the topolog¥:, induced by the metrick,: X2 — [0,00] given by d»(f,g) =
sup{|f(x,y) —g(xy)| | (x,y) € [0,1]?} (corresponding to the uniform convergence).

The class of associative copulas, i.e., of all 1-Lipschitz t-norms [8, 13] is a compact subset of
(observe that this is not true for the class of all continuous t-norms).

The main result of this part can be formulated as follows (for the proof and more details see [9]):
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Theorem 1. The set(, of all associative copulas is the closure of both the&gif all strict copulas
and the sels of all non-strict Archimedean copulas.

This means in particular that each associative copula can be approximated with arbitrary precision
by some strict as well as by some non-strict Archimedean copula. Noticedhat (s are disjoint
sets whose union, i.e., the set of Archimedean copulas, is a proper sulpget of

Taking into account the results of [8, Section 8.2] (compare also [7]), the convergence of Archime-
dean copulas is strongly related to the convergence of their corresponding generators. To be precise,
a sequencéCn)nc 4 Of Archimedean copulas with generatggs,) - converges to an Archimedean
copulaC with generator if and only if there is a sequence of positive constdo$,.,, such that
for eachx € |0, 1] we havenﬂr;]cn -On(X) = ¢(x).

Given two copula€ andD, consider theik-product C«D: [0,1]2 — [0, 1] introduced in [2] by

1aC(x,t) aD(t,y)
C+Dixy) _/o a ot
The functionC % D is well-defined since the partial derivatives exist almost everywhere, and it is
always a copula, i.e., theproduct is an operation on the sétof all copulas. Moreover(C,x) is
a non-commutative semigroup whose annihilator is the pro@iuend whose neutral element is the
minimum Ty [12].

dt.

As a consequence of Theorem 1 and [2, Theorem 2.3], for each associativeC@mador each
copulaD there are sequences of Archimedean and strict and non-strict Archimedean ¢Gpllag,
respectively, such that the sequen(€s),c,, and (Cn * D)o, converge uniformly taC andC« D,
respectively.

3 Invariant copulas

For a given copul&, the corresponding survival copula (which has natural applications in reliability
theory) is given by

C(xy) =x+y—14+C(1—x,1-y). 1)

It is straightforward that the operator”is involutive. Two other important involutive operators on the
class of all copulas correspond@g1 andC; o (see also [3, 8]) given by, respectively,

CO,l(X7y) = X_C(le_y)v (2)
Cro(xy) =y—C(1-x.y). 3)
We also shall writ&o o = C andCy 1 = € for each copul&.

Denote by( the class of all copulas, by the class of all associative copulas (i.e., the class of
all copulas which are also t-norms), and ®yhe class of all commutative (i.e., symmetric) copulas.
Moreover, letT be the convex hull off. Then obviously the following strict inclusions hold:

TcTcScCc.

Furthermore, for each paff, j) € {0,1}2 let G j be the class of all copulas which are invariant under
the corresponding involutive transformation, i.e.,

It is trivial that (oo = C.
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Theorem 2. Let Ce ( be a copula andi, j) € {0,1}2. Then we have € ¢ j if and only if there is
a D e C such that QJ) =C, where
~ D+Dij

D) 5

Denote byC* the set of all copulas which are invariant under (1)—(3), i.e.,
C'=CoaNCroNCra.
Theorem 3. Let C be a copula. Then we haves* if and only if there is a copula [& C such that

D* =C, where
~ D+Do1+D1o+D1s

4

D*

Two prominent members af* are the productp and the copul& given byK = w The

importance of Frank t-norms [4] is also exemplified by the following result concerning associative
survival copulas.

Proposition 4. Let C be an associative copula. Then we hawe@ 1 if and only if there is & € [0, ]
such that C= TAF or if C is an ordinal sum of Frank t-norms of the form

C - (<ak7 bkaT)\i>)kEK7

where for each e K there is a ke K such that\y = Ay and &+ by = by +aw = 1.

However, the only associative copula which is invariant under (2) or (3) is the prégluct
Full details and proofs of the results in this section are contained in [10].

4 Aggregation based on copulas

Let X be a non-empty index set arid X — [0, 1] the input system to be aggregated. Dét4, m)
be a fuzzy measure space, i.8.is ac-algebra of subsets of (in the case of a finite set we usually
take 4 = 2X), andm: 4 — [0,1] a fuzzy measure as introduced in [18], thus satisfyir{@) = 0,
m(X) = 1 andm(A) < m(B) whenevelA C B. Denote by (A4) the set of allZ-measurable functions
from X to [0, 1].

Definition 5. Consider two fuzzy measure spa¢#s.4, m) and(]0,1[%, B(]0,1[%), u). The functional
Mmy: £(A4) — [0,1] given by
Mm,u(f) = U(Dm,f)a

will be called(m, p)-aggregation operatqrwhere
D = {(xY) €]0,1[* |y < m({f > x})}.

Special fuzzy measurgsimply reasonable properties of tien, p)-aggregation operatdiy, ,:

Proposition 6. Let C: [0,1]> — [0, 1] be a copula and denote by: fthe unique probability measure
on(]0,1[2, B(]0,1[%)) with L (]0, X[ x ]0,y[) = C(x,y) for all (x,y) €]0,1[?. Then, for each fuzzy mea-
sure spacéX, 4, m), the (m, lc)-aggregation operator M. is an idempotent aggregation operator
and we have M. (1a) = m(A) for all A € 4.
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Note that such a copula-based approach to aggregation was originally proposed in [5] (see also
[6]) for the Frank family of t-norms (see, e.g., [4, 8]). Depending on the choice of the cGpula
obtain some well-known types of integrals.

Example 7. Keeping the notations of Proposition 6, we obtain the following special cases:

(i) If C equals the standard prodult, i.e., i, is the Lebesgue measure @4]0, 1[2), thenMm,.,,
is just the Choquet integral with respectigsee [1, 15]).

If, in addition, m is a -additive measure o(X, ), thenMm,,, coincides with the classical
Lebesgue integral with respectrg and forX = {1,2,...,n} we obtain a weighted mean.

If X =1{1,2,...,n} and if mis a symmetric fuzzy measure ¢, 2*) then Mmy, is an OWA
operator [19].
(i) If C equals the minimuriiy then

by (A) = A({x €]0,1[| (x,x) € A}),

andMp, ., equals the Sugeno integral (see [18] and also [15]).
\Uny

If X ={1,2,...,n} and ifmis a symmetric fuzzy measure ¢X, 2X) thenMp,,,, is an WOWM
(weighted ordered weighted maximum) operator [16].
(i) If C equals the Lukasiewicz t-norm then

b (A) =A({x€]0,1[| (x,1-x) € A}),

and if the index seX is finite, thenMm,,; is the so-called opposite Sugeno integral [3].

Concerning dual aggregation operators we obtain the following result:

Proposition 8. Let X be a finite set. Keeping the notations and hypotheses of Proposition 6, we have

Mfhe = Mg .- (4)

Observe that if a copul@ coincides with its survival copul@, then a special form of (4) holds,
namely,MﬁwC =My .- All copulas with the propert¢ = C were characterized in [10]. In particular,
because of Proposition 4 (see also [4]) an associative c@puatzncides with its survival copul@
if and only if C is either a member of the family of Frank t-norrﬁgF)Ae[Qm or if Cis a symmetric
ordinal sum of Frank t-norms [8, 10]. Becauselgf= Ty, T{ = Tp, and T, = T., for all Sugeno,
Chogquet and opposite Sugeno integrals we haveXfiinite)

(/dem)d:/demd.
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This contribution is organized in two major parts. The aim of the first part is to revise the axiomatic
construction of (additive) fuzzy preference structures and is the result of a joint collaboration with
J. Fodor. We first introduce the notion of a generator triplet consisting of a preference, indifference
and incomparability generator, suitable for constructing fuzzy preference structures from a given fuzzy
preference relation. We then show that such a triplet is uniquely determined by a symmetric indiffer-
ence generatadocated between the Lukasiewicz t-norm and the minimum operator. The main results
concern the link with the axiomatic framework of Fodor and Roubens. We introduce the notion of a
monotone generator triplet and show that such a triplet is characterized by an increasing 1-Lipschitz
indifference generator (such as a commutative copula, for instance). Further characterizations concern
that case thatis an ordinal sum of Frank t-norms, and finally, the caseitlsaa Frank t-norm, which
corresponds to the fact that the generator triplet is determined by t-norms only (in fact, by two Frank
t-norms with reciprocal parameters).

The second part consists of a study of the transitivity of a reciprocal representation of fuzzy pref-
erence structures without incomparability and is the result of a joint collaboration with H. De Meyer
and S. Jenei. For a reciprocal relatiQron a set of alternatives, we introduce the concept of cycle-
transitivity which is based upon the ordering of the deg@@sb), Q(b,c) andQ(c,a), for all triplets
(a,b,c) € A3, Each type of cycle-transitivity is determined by an upper boundhere is also an
associated dual lower bound. We investigate suitable upper bounds and introduce the notion of a self-
dual upper bound. We show that cycle-transitivity generalizes stochastic transitivity. Also, we show
that under very mild conditions, fuzzy transitivity (i.€-transitivity, with C a conjunctor) can be
translated into cycle-transitivity. For a commutative cogiléor instanceC-transitivity is equivalent
to cycle-transitivity with as upper bound the dual®&nd as lower bound the corresponding survival
copula. In the more familiar context of t-norms, this means for instanceTttansitivity with T a
Frank t-norm, is equivalent to cycle-transitivity with as upper bound its dual t-conorm and as lower
bound the Frank t-norr itself.
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We first introduce the notion of a discrete dice model as a framework for describing a class of proba-
bilistic relations (or equivalently, a class of reciprocal relations). The transitivity of the probabilistic
relation generated by such a dice model is a special type of cycle-transitivity that is situated between
moderate stochastic transitivity or product-transitivity on the one side, and tukasiewicz-transitivity
on the other side, and which we call dice-transitivity.

The discrete dice model can be regarded as a consistent way of mutually comparing random vari-
ables from a given collection of independent discrete random variables that are uniformly distributed
on discrete number sets. This interpretation allows to extend the dice model so that arbitrary, not
necessarily independent, discrete or absolutely continuous random variables can be compared. It is
shown that ther-copula expressing the joint cumulative distribution (c.d.f.) of the collection of ran-
dom variables (generalized dice) as a function of the univariate marginal c.d.f.'s, plays a key role in
the determination of the transitivity of the probabilistic relation generated by the collection. When
the copula is the product copulB-€opula), the random variables are independent and for arbitrary
marginal c.d.f.’s, the transitivity of the generated probabilistic relation is at least dice-transitive. When
the copula is the min-copuld-copula), the generated probabilistic relation is at least Lukasiewicz-
transitive, and when the copula for bivariate marginals is the tukasiewicz coputapula), then the
generated probabilistic relation is at least moderately stochastic transitive.

Moreover, if the marginal distributions are restricted to normal distributions, thewthepula
and theP-copula yield probabilistic relations that are moderately stochastic transitive, whereas the
M-copula yields probabilistic relations that are weakly stochastic transitive. This is also the type tran-
sitivity obtained when the joint c.d.f. is the standard multivariate normal distribution with covariance
matrix Z.

Finally, we discuss some interesting features of the discrete models obtained by considering re-
spectively theM-copula ofW-copula in combination with discrete uniform marginal c.d.f’s (Ehe
copula combined with discrete uniform marginal c.d.f.’s yields the classical dice model).

Keywords: copulas, dice model, probabilistic relation, stochastic transitiVitiransitivity.
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Abstract

In the paper, the formal type theory is generalized to fuzzy one. The structure of truth values
is assumed to be the tukasiewicz algebra since the formulation of FTT based on it can be done
in a most elegant way. Some properties of theories of fuzzy type theory are demonstrated and the
completeness saying that each consistent theory has a frame model is proved. We will follow the
way of the development of the classical type theory as elaborated especially by A. Church and L.
Henkin.

1 Syntax and Semantics of Fuzzy Type Theory

In this paper, we present the formal system of FTT. Because of the limited space and complicated
technical character, we have omitted most proofs. The complete paper with full proofs can be obtained
from the author upon request.

1.1 Basic syntactical elements
1.1.1 Types

Let g, 0 be distinct objects. The set of types is the smallesTgpéssatisfying:

(i) €,0€ Types
(i) If a,B € Typeshen(af) € Types

The types represents elements aadruth values.

1.1.2 Primitive symbols

(i) Variablesxy,... wherea € Types

(i) Special constantsy,... wherea € Types We will consider the following concrete special
constantsE )y for everya € TypesandC q)o-

(iii) Auxiliary symbols:A, brackets.
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1.1.3 Formulas

The setFormy is a set of formulas of typa € Types which is the smallest set satisfying:

(i) xq € Formy andcy € Formy,
(i) if B € Formgy andA € Formy then(BA) € Formg,
(iii) if A€ Formg thenAxy A € Formg,,

If A€ Formy is a formula of the typer € Typesthen we will writeAy.

1.2 Semantics

1.2.1 Truth values

We will work with the structure of truth values forming the tukasiewicz MV-algebra
L‘I'_:<[071]7®3@7_'7071> (1)

wherea®b =0V (a+b—1) is tukasiewicz conjunctiora® b = 1A (a+b) is Lukasiewicz disjunc-

tion,a—b=-ad®db=1A(1—a-+b)is implication and-a=1—ais negation & b < [0,1]). We,

furthermore, work with théiresiduationoperationa < b= (a— b) A (b — a).

1.2.2 Frame

LetD be a set of objects arldbe a set of truth values. flamebased oD, L is a family (Ma) yc1ypes
of sets where

(i) Mg =D is a set of objects andl, = L is a set of truth values,

i) For each typg = Pa, My is a set of functiondl, C M, ® specified below.
(ii) h Ba, My i f functionsy, C Mg’ ified bel

1.2.3 Fuzzy equality
Thefuzzy equalitpn M is a binary fuzzy relatior=q C Mq x Mg, i.e. a function
:g: Ma X Ma — L

To stress thatny =q M, holds in some degreec L we will write [my =q M.

The fuzzy equality is supposed to be reflexjig =y my| = 1, symmetric|my =¢ My, | = [M; =«
Mq], and®-transitive

[mﬂ —a n(l]®[n{x =a I'T"G]g[l’ﬂ;x —a I’T'(;], %7%7nﬁeMU'
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1.2.4 Extensional functions

Let F : Mg, x --- X Mg, — Mg be a function. We say that it is extensional w.r.t fuzzy equalities
=a,,- -+ =ay =g If there are natural numbecsg, ...,gn > 1 such that

[m(xl =a; rr(]l]ql Q- ® [mC(n —dn n(xn]qn < [F(mﬂlv"'?%n) =B F(nﬁxl,...,nﬁ]n)] (2)
holds for allmg,, g, € My, i =1,...,n.

Lemma 1. Let=g be an extensional fuzzy equality. Then the functigg: Mg"“ X Mg"“ — L defined

by
[mBO( —Ba %q] = /\ [mBot(m(x) =B n'%q(nﬂ(})] (3)

My EMqy

Mq : . .
for every my, rT{Ba € M[3 is an extensional fuzzy equality.

1.2.5 Frame model
Let (Ma)gctypesP€ @ frame. Then the frame model is a tuple

I= <(M0la:0()oreTypes L> 4)

where:

(i) The £ is the Lukasiewicz MV-algebra, where its supploe: M,

(i) The=q is afuzzy equality oMq where=, is <, =¢ C Mg x M is an extensional fuzzy equality
on M, and otherwise=q is the fuzzy equality (3).

(iii) If a # o,€ then each functiofr € My is extensional.

1.2.6 Basic definitions

() Equivalence= = AXq(AYaE (oa)a Ya)Xa-
(b) ConjunctionA := AXo(AYoC(oo)0 Yo)Xo-

1.2.7 Interpretation

Given a frame model, the interpretatior of all formulas is the assignment of meaning to them.

An assignmenp to the variables ovef is a function on variables such thafxy ) € My for every
typea € Types The set of all assignments ovebe denoted by Agd).

(i) If xq is a variable therp(Xy) = p(Xa)-

(ii) If cq is a constant thery,(cq) is some element froy. If a # 0, thenp(cy ) is an extensional
function. As a special cask(E oq)q) (M) (M) = [m=¢ m] € L and Ip(C(o0)0)(a)(b) = anb
foralla,beL.

(iii) The interpretation of the formuBg, Ay of typeB is Ip(BgaAa) = Ip(Bga)(Ip(Aa))-
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(iv) The interpretation of the formulsxy Ag of typeBa is the function
Io(AxaAg) =F : Mg — {Ip(Ag) | p € Asg(1)}

such that~ (mq) = Iy (Ag) for some assignmer’ such thatp'(xq) = My and p'(yy) = p(yy)
for all yy # x4 (i.e. p differs from p only in the variablexy) and the functiorf is extensional
W.r.t*=q" and “=g".

Let us denote the set of assignmepitslue to ltem (iv) by Asg1,).

Lemma 2. For everya € Types and every assignment/p(Aq) € Mg holds true.

1.2.8 Further definitions

(a) Representation of truthl := (AxoXo = AXoXo) and falsity L := (AXoXo =AX, T).
(b) Negation = Ax(L =Xo).
(c) Implication= := Axo(AYo((XoAYo) = Xo))-

(d) Special connectivesV := Axo(AYo((Xo = Yo) = Vo)), (disjunction), & := AXo(AYo(— (X =
o)), (strong (Lukasiewicz) conjunctipri] := AXo(AYo(—(—Ac& —By))) (strong (Lukasiewicz)
disjunctior).

(e) Quantifiers:(VXy)Ao := (AXq Ao = AXq T) and(Ixg ) Ao := —(VXq)Ao.

As a special casdy" .= A& ---& A
———

n—times

Lemma 3. Let Ay, B, € Form,. Then for every assignmentepAsq 1)

(@) Ip(T) =1 Ip(L) =0.
(b) fp("Ao) Ip(Ao) — 0
(€) Ip(AoVBo) = Ip(Ao) V Ip(Bo)
(d) Ip(Ao=> Bo) = Ip(Ao) — Ip(Bo)
(€) Ip(Ao& Bo) = Ip(Ao) ® Ip(Bo)
(f) Ip(AOBo) = Ip(Ao) © Ip(Bo)
(@) Ip((VXa

(

(h) Ip((3

) N ma= P (xa)eMa Ip (Ao)

p/Asq Ip)

)Ao
) ) \/ma P’ (xa)EMa Ip(AO)

p/€Asg Ip)

1.2.9 Axioms
(FT1). (Xa = Ya)¥= (fpaXa = fpa Vo) fOr someq > 1.
(FT2). (VXa)(fpaXa = GpaXa) = (fpa = Gpa)
(FT3). (AxaBg)Aq =Cp

whereCg is obtained fronBg by replacing all substitutable occurrences@in it by Aq.
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(FT4). (A =T)=A,

(FT5). (AoVBo) = (BoV A)

(FT6). AoABo=BoAA,

(FT7). ADAT =A,

(FT8). (AoABo) ACo=AsA(BoACy)

(FT9). (Ao= (Bo=Co)) = (Bo=> (Ao = Co)

(FT10). (=Bo = —Ao) = (Ao = By)
(

(FT11). (¥Xa)(Ao=> Bo) = (Ao = (¥X4)Bo)

1.2.10 Inference rule and provability

The following is an inference rule in FTT.

Let Ay = A, and Be Form,. Then we infer Bwhere B comes form B by replacing one
occurrence of A, which is not preceded by, by A;.

(R)

The concept of provability and proof are defined in the same way as in classical logic. ATheory
over FTT is a set of formulas of type i.e. T C Form,. If A € Form, and it is provable irT then we
write T - A, as usual.

Lemma4. (a) For every interpretatiory and assignment g, (FTi) = 1where i=1,...,11.
(b) The inference rule (R) is sound, i.5(Aq = Ay) ® Ip(B) < Ip(B).

Corollary 5 (Soundness).The fuzzy type theory is sound, i.e. the following holds for every theory T:
If T - Ao thenIp(Ao) = 1 holds for every assignmentgpAsg and every frame model

2 Special properties of FFT

Theorem 6. The following is provable in FTT.

(a) If - Ag and- Ag = B, thenk B,.
(b) FAq = Aq, 0 € Types.
() -T.
(d) If - Ay = Bq thent By = Aq.
(e) If H Ay =By andt By = Cy thenk Ay =Cy.
H FAIffEFA=T.
Theorem 7 (Logical rules). (a) If - A; and- Ag = B, thentk B,
(b) If F Ag thent (VXq)Ao.
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Theorem 8. (a) F (Ac=Bo) = ((Bo=Co) = (Ac=Cy))

(b) FAAA=Ag

(€) FA= (Bo=Ao)

(d) F(mA) = (Ao= 1),

(€) F—=A = A

® =X =Yp)" = ((fap = dup)® = (fapXp = GapYp)) for some g, cp > 1.
Theorem 9 (Substitution axioms). (a) F (VXy)Bo = Co,

(b) - Co=> (3%a)Bo.

where G is obtained from B by substitution of some formula,Asubstitutable to it for all free
occurrences of x

It follows from the previous presentation that FTT contains the formal system of predicate tukasiewicz
logic and hence, all its theorems also provable in FTT.

3 Theoriesin FTT

If T be a theory and\ € Form, a formula the byT U {A} is a theory whose set of special axioms is
extended byA.

Theorem 10 (Deduction theorem).Let T be a theory, A& Form, a formula. Then TU{A} |- B iff
there is N> 1 such that T- A" = B holds for every formula B Form.

A theory T is contradictoryif T F L. Otherwise it isconsistent A theory T is completeif for
every two formulasd,, B, eitherT - A = By or T - By = A,. A theoryT is maximal consisterit
each its extensiom’, T’ D T is inconsistent.

Theorem 11. Every consistent theory T can be extended to a maximal consistent fhewnjch is

complete.

3.1 Syntactic model of FTT and completeness

Let T be a consistent complete theory. We define the equivalence on the set of all formulas as follows:
Aq ~ By = TH Ay =Byg.

The equivalence class of a formufg of type a will be denoted by|A4|. Furthermore, we put
Mg = {|Aq]| | Aq € Formy }, for all a € Types If a # o, € then

Mpa = {Mga | Mg : Ma — Mg}

wheremg, = |Agq| for someAg, € Formgy andmg (|Ba|) = |AgyBa| for everyBy € Formy. We may
define the operations on the $é§ using logical connectives as usual. Then we obtain the following
theorem.
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Theorem 12. The algebra
LT = <M07®7@7ﬁ71)0> (5)

is a locally finite, linearly ordered MV-algebra.

Now we will consider the embedding
h: Ly — 4. (6)

Recall thath preserves all suprema and infima existingiin(see also [4], Lemma 5.4.23).

To define fuzzy equality, we pufAq| =a |Ba|] = h(JA« = By|) for all a € Typeswhereh is the
embedding. It can be proved that this is an extensional fuzzy equal¥yamnd it has the properties
discussed above.

The syntactic frame model is the tuple

°= <(MG7:G)aeTypesv L) (7)
whereM, = [0, 1] and for alla € Types- {0}, Mq are the sets.
The assignmenp of elements to variables is the following(x,) = h(|Ac|) andp(Xq) = |Aq| for
o # owhere|Aq| € Myq. We put:
(i) If X4 is a variable them3(xa) = p(Xa).

(i) If cq, 0 # 0is a constant themg(CG) is some element frorfMy. As a special casdps(co) is
element fromh(Lr). The interpretatiorfg‘(E(oq)a) is the fuzzy equality depending on the type
o and I3(C(og)0) is the meet operation onh(Lr).

(iii) Interpretation of the formulBgyAq is I5(BpaAa) = 15(Bpa) (Ip(Ada)).
(iv) The interpretation of the formulsxy Ag of typeBa is the function
I5(Aa Ag) = F : Mo — {I5(Ag) | P’ € Asg(1%)}

such thaf (|Aq|) = Iﬁ(Aﬁ) = |(AXa Ag)Aq| for some assignmert’ which differs fromp only
in the variablexy.

Lemma 13. For all a € Types
[1Aa| =a [Bal] = h(|A« = Ba|) = I5(Aa = Ba). (8)
Lemma 14. Each function g, = |Cgq| € Mpq is extensional w.r.t=4 and =g.

Theorem 15. A theory T is consistent iff it has a model

4 Conclusion

This paper is focused on further development of the ideas of fuzzy logic towards more general frame-
work, which is the type theory. Our motivation stems especially from linguistics since fuzzy set
theory presents itself first of all as mathematical theory enabling to master parts of natural language
semantics, namely when vagueness is prevailing. Since natural language is much more complex
phenomenon than predicate first-order logic (classical or fuzzy), we are convinced that higher order
logical calculus is necessary.
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We are concerned with the variefy of algebras of typ€2,2,2,0,0) generated by the algeb(& o),

wherel = ([0,1], A, V,0,1) is the unit interval with minimum and maximum determined by the usual
order anch # A is a continuous t-norm. We have shown that a strict t-norm and a nilpotent t-norm,
and in fact any continuous t-norm except minimum, generate the same variety. Moreover, this variety
is not generated by any finite algebra [1,2]. However, we have not determined whether or not there is
a finite set of equations that determines this variety.

In an attempt to answer this question, we consider the vafiety algebras of typ€2,2,2,0,0)
consisting of all commutative, lattice-ordered mongifiso). By this we mean

e L=(L,A,V,0,1) is a bounded, distributive lattice
e (L,0,1) is a commutative semigroup with identity

e The semigroup operationdistributes over both meet and join.

The varietyE is determined by a finite set of equations—namely, the equations that define a
bounded, distributive lattice, together with the equations that define a commutative semigroup with
identity and the equations that saglistributes over both meet and join. Cleafiycontains the variety
generated by an algebfh o) for any t-normo, in particular,T C ‘.

An algebra is subdirectly irreducible if for every subdirect product embeddliag];A;, at least
one of the projections is one-to-one, hence an isomorphism. An equivalent condition is that there
is a pair of elementsga,b) with a # b that are not separated by any homomorphism that is not an
embedding, that is, every homomorphi$rfrom A to another algebra is either one-to-one or satisfies
f(a) = f(b). Another way to say this is théa, b) belongs to every nontrivial congruencefof A va-
riety is generated by its subdirectly irreducible algebras, and identifying these subdirectly irreducible
algebras is key to understanding the variety.

Proposition 1. A subdirectly irreducible algebrglL,o) in £ has a unique atom a that lies beneath
every nonzero elementbf and the pair(0,a) belongs to every nontrivial congruence.

A nonempty subsdt of L is anideal of L if for everyx € 1,y e L, y < ximpliesy € |, and for
everyx,y € I, xvyel. Anideall of L is prime if xAy €|l impliesxel oryel. ForxeL,Ian
ideal of L, (I:x) ={yeL:xyel}. Forl = {0}, this is called theannihilator of x, and we write

({0} :x) = (0:x).
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Lemma 2. The following hold for elementsyke L and idealsl C L.

1. I:xvy)=I:x)N(I:y)
2. I:xAy)=(I:x)u(I:y)if Lis prime.

U
3. y(I:xy) C (I:x) C(I:xo0Y)

From this it follows quickly that ik < ythen(I:x) 2 (I:y).
Proposition 3. LetI be a prime ideal oL. The relation onIL, o) defined by
x=2yifandonly if(I:x) = (L:y)

is a congruence.

To prove this proposition we need to show thaflif x) = (I :y), then foranyze L,

(I:(xvz) = (I:(yv2)
(I: (xA2)) = (I:(yA2))
(I:zox)=(L:zoy)

which is straight forward. The following theorem gives a useful characterization of the subdirectly
irreducible algebras i.

Theorem 4. An algebra(LL, o) is subdirectly irreducible if and only ifL., o) has a unique atom that
lies below every nonzero elementlofind the annihilatorg (0 : x) : x € L} are distinct.

Theorem 5. If an algebra(L, o) in ‘£ is subdirectly irreducible, the(lL, o) is a chain. A finite chain
is subdirectly irreducible irg if and only if the residuaf) (x) = \/ {y € L:yox=0}is an involution.

Every subvariety oft is generated by its finite members. The problem of showingZhatZ (or
T + E) is thus reduced to identifying which finite chains are subdirectly irreducibig, iand then
showing whether or not these subdirectly irreducibles are generatddd)y

Every finite cyclic algebra irE is subdirectly irreducible. These can be realized as subalgebras of
the Lukasiewicz (bounded product) t-norm, hence belorg.to

Another example of a subdirectly irreducible algebr&iis the four element chain

1
e

a

0

with the multiplicationeoe = eandeca=aoa= 0. This algebra can be obtained as a homomorphic
image of an ultrapower dfl, o), with o a nilpotent t-norm, thus also belongs to T.
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Information about preference and uncertainty in decision problems cannot always be quantified in a
simple way, but only qualitative evaluations can sometimes be attained. As a consequence, the topic
of qualitative decision theory is a natural one to consider: can we make efficient decision on the basis
of qualitative information?

Giving up the quantification of utility and uncertainty has lead to give up expected utility (EU)
criterion as well — the principe of qualitative decision [3, 2] making is to model uncertainty by an
ordinal plausibility relation on events and preference byeak orderon consequences of decisions.

In [3] two qualitative criteria based on possibility theory, an optimistic and a pessimistic one, whose
definitions only require a (finite) completely ordered scale for utility and uncertainty are proposed.
Let Sbe a set of state{ a set of consequence adXc the set of possible acts (in decision under
uncertainty, an act is a functioh: S— X):

Definition 1 (Possibilistic utilities). Let L = [0_,1; ] be a finite ordinal scalen: L — L the order
reversing function of Lt: S— L a possibility distribution orsandp: X — L a utility function onX.

e < SX,L, > will be called a qualitative possibisitic utility model (QPU-model)

o the optimistic possibilistic utility off is:
Uoptmu(f) = maxesmin(1(s), u(f(s)))

e pessimisitic utility off is : Upesru(f) = minsesmax(n(1y(s)), u(f(s)))

e ~opTnu and>=pesny are classically defined frotdopt y andUpg sy

These criteria proved to be not efficient enough, in the sense that they fail to satisfy the principle
of strict Pareto dominanc#'s, p(f(s)) > p(g(s)) and3s*, m(s*) > 0 andu(f(s*)) > p(g(s")) does not
imply f ~optrpgnorf ~pesnug

This drawback is not observed within expected utility theory since the follo®irg-Thing Prin-
ciple (STP) [5] insures that identical consequences do not influence the relative preference between

two events.
STPYf,g,h,h', fAh= gAh< fAR = gAH

114



So, the question is whether it is possible or not to reconciliate possibilistic criteria and efficiency.
The answer seems to be no: in [4] it is shown that the possibilistic criteria cannot obey the STP, except
in a very particular case: when the actual state of the world is known, i.e. when there is no uncertainty
at all' So, we cannot both stay in the pure QPU framework and satisfy the Pareto principle. The idea
is then to try to cope with this problem by proposiedinement®f the possibilistic criteria that obey
the Sure Thing Principle. Formally:

Definition 2 (Refinement). >’ refines>- iff Vf,ge XS, f = g=f ~'g.

Since we are looking for weak orders it is natural to think of refinements based on expected utility.
Concerning the optimistic utility criterion, we obtain the following result:

Theorem 3. Let< S X, L, T,u > be a possibilistic model based on ascale llap=0. < a1 <... <
ok =1, ) . The functiory : L — [0, 1] defined by:

o X(0U) =0, x(a) = i =1....k

o V= (Zi:l,..,k N?ki—i )_1
is such that:

e X oTris a probability distribution
hd iEU,XoTL,Xou reﬁnestop-r_’]-Lu

e XorTr(resp.x oM ) andrt(resp. W) are ordinaly equivalent

Soforany< S X,L, 1t u> we are able to propose an EU model that refines the former. This model
is thus perfectly compatible with the optimistic qualitative utility and more decisive than it. Moreover,
since it is based on expected utility it satisfies the Sure Thing Principle as well as Pareto dominance
and does not use other information than the original one - it is unbiased. Moreover, it can be shown
that, if we do not accept to introduce a bias in the EU-refinement, it is unique, up to an isomorphism.

When considering the pessimistic qualitative model, the same kind of result can be obtained. First
of all, notice that-pgsry and=opTry are dual relations:

Proposition 4. Let< S X,L, 1t 1> be a QPU model. It holds that:
vf,ge XS f =pesnu9< g =oprny f, where fi=nop

This gives rise to the following definition of pessimistic EU-refinement:

Theorem 5. Let< S X, L, > be a QPU model any : L — [0, 1] be the transformation of L w.r.t.
mtidentified Theorem 3. Let xommand U = x(1.) — X onoy; it holds that:

e ~gu,pu is arefinement obpesny
e p(resp. U) and(resp. W) are ordinaly equivalent

e any unbiased EU-refinement®besr, is ordinally equivalent to-gy p v
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So, if < S X,L, > a QPU model, it is always possible to build a probabilistic transformation
X using Theorem 3, and thus a probabilly= X o Tt and two utility functionsu = x op andu’ =
X(1) —xonopthat define the unbiased EU-refinements of the optimistic and pessimistic utility criteria
respectively.

This proves an important result for bridging qualitative possibilistic decision theory and expected
utility theory: we have shown than any optimistic or pessimistic QPU model can be refined by a EU
model. So, (i) possibilistic decision criteria are compatible with the classical expected utility criterion
and (ii) choosing a EU model is advantageous, since it leads to a EU-refinement of the original rule
(thus, a more decisive criterion) and it allows to satisfy the STP and the principle of Pareto.

But this does not mean that qualitativeness and ordinality are given up. For instance, in both cases,
the probability measures are "big-stepped probabilities", i.e. satisfy

vse SP({s}) > P({s,P({s}) <P({sh)})

States are clustered in ordinal classes and any state of one class is more plausible that any event
built on the lower classes. Although probabilistic and based on additive manipulations of utilities,
these new criteria remain ordinal (it is actually possible to show they generalize well known ordinal
weighted means, namely the leximin and leximax procedures.) And this is very natural: since we
come from an ordinal model and do not accept any bias, we go to another (probabilistic but) ordinal
model, in which the numbers only encode orders of magnitude.

The result of the present research can be viewed in a more general perspective: the optimistic and
pessimistic utilities are not limited to decision under uncertainty and can be view as general maximin
and minimax procedures (used for instance in multi criteria decision making, voting theory, etc) : we
have shown that they can be refined by a classical weighted sum, when the strict Pareto principle is
required. This raises a new question: can we extend this principle to any other instance of Sugeno
integral [7] ? this is the topic of the second part of the present presentation.
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Part | has shown that prioritized maximin and minimax aggregations can be refined by a classical
weighted sum, as soon as the strict consistency with the Pareto principle is required. It can thus be
asked if the same question can be solved for discrete Sugeno integrals [3] since prioritized minimum
and maximum are special cases of fuzzy integrals.

The first result is negative. One basic reason why prioritized maximin and minimax aggrega-
tions can be refined by a weighted average with fixed weights is that these operations do not violate
independence (the sure thing principle) in a drastic way. Indeed the ordering relations induced by
UopTrnu(f) andUpessru( f) satisfy a weaker independence condition:

WSTPYf,g,h, IV, fAh= gAh= fAH > gAH.

So modifying two acts by altering their common consequences never results in a strong preference
reversal. On the contrary such a preference reversal is clearly possible for Sugeno integral because
for a fuzzy measurg and three seté, B,C, whereC is disjoint from bothA andB, one may have
y(A) > y(B) andy(BUC) > y(AUC). This feature makes it impossible to refine rankings of acts in-
duced by Sugeno integrals by means of another functional which satisfies the sure thing principle.In
particular, a Sugeno integral with respect to a given fuzzy measure cannot be presented by an expected
utility with respect to a single probability distribution.

However it makes sense to try and refine a Sugeno integral-based ordering by means of a Choquet
integral[2][1]. Indeed the expression of a Sugeno integral and of a discrete Choquet integral are
similar. Moreover while Choquet integrals are additive for comonotonic acts, Sugeno integrals are
both maxitive and minitive for comonotonic acts — recall that two dctsare comonotonic iff there
exists a single permutatiamon the states obthat rearrange the values of baqthf ) andp(g) in non
decreasing order, i.e. such that:

and



A Sugeno integral serving as a preference functional to evaluateiact the form:

SUGu(f) = maxmin(y(A?), u(f (Soqi))))

i=1n

wherey is a monotonic set function ranging on a finite chiita qualitative fuzzy measurg),a
utility function taking its values on the sanhe o is a permutation rearranging the valygg (s)) in
non-decreasing order, a#l = {Sy(i);---,Som) }

Similarly a Choquet integral reads:

Chyy(f) = ZS(V(A?) — V(A% 1)) x u(f(soqi))

wherev is a numerical fuzzy measure ané numerical utility function.

Now, consider a set of ack; that share the same permutatimifi.e. a set of comonotonic acts).
For any of these acts, the expression of the Sugeno integral comes down to a prioritized maximum (an
optimistic utility) with respect to a possibility distributiams (sy(i)) = Y(AY)

Vi € Fo: SUG(f) = maxmin(t(s), b(f(s)))

So the results of Part | apply when restricted to comonotonic acts : the restrictiosuef, to
anyFs can be refined without bias by an expected utility based on a big-stepped probabditg a
big-stepped utility function:

Vi eFs :EUpu(f) = Zspo(s) x u(f(s))

se

The point is that one will get different probability and utility measures for the difféferitThe
idea is then to consider that the differgitare the projections of a common "big-stepped fuzzy mea-
sure"v such that:

VFs, Po(So(i)) = V(AT) — V(A1)

In this context,EUy, y is the restriction td~; of the Choquet integraCh, y(f). We have shown that

the previous system of equation is always consistent. Moreover, according to Part I, we know that:
whateverFs, Ch, y, = EU(pg,u) defines an unbiased refinement3id G, , = UopTy,,. This suggests

that, for anyy: 25 — L, p: X — L, there exists a fuzzy measuren 25 and a utility functionu in X

such that, whatevef, g € XS:

SUG(f) > SUG(G) = Chyy () > Chyy(g)

Moreover, for any permutatioa of the elements in $5(Sy(i)) Must be a big-stepped probability. As

2But all theF5 can share the samewhich depend oh but not onao.
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a consequence, when all states have distinct confidence veligghe big-stepped fuzzy measure is
such that:

VAC SV(A) >2xV(B)
for all proper subsetB of A. A general definition of such measure by a necessary and sufficient con-
dition is a topic for further research.

Finally, we would like to suggest that an alternative approach to refine the Sugeno integral by a
Choquet integral may start from the expression of Sugeno integral involving all sub&ets of

SUG(f) = maxmin(y(A), minp(f(s)))
and the corresponding expression of the Choquet integral in terms of the Moebius tramgfoirm

Chyu(f) = AZSmy(M x minp(f(s))

Further research shall also include a deeper exploration of this alternative refinement and the
exploration of the relationship between the two approaches, in particular of the the relationships be-
tween big-stepped fuzzy measures and (big-stepped) belief functions (i.e. Choquet utilities that rely
on a positive and big-stepped ?
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There are two most fundamental relational concepts in mathematics which accompany mathemati-
cians as well as computer scientists and engineers throughout their life in sciequiatence rela-
tions(reflexive, symmetric, and transitive relations) gpdrtial) orderings(reflexive, antisymmetric,

and transitive relations).

It is not surprising that, within the early gold rush of fuzzification of virtually any classical math-
ematical concept, these two fundamental types of relations did not have to await the introduction of
their fuzzy counterparts for a long time [22].

Fuzzy equivalence relations are now well-accepted concepts for expressing equivalence/equality
in vague environments [8, 13, 16, 18, 20, 21] (in contrast to Zadeh'’s original definition, now with
the additional degree of freedom that the conjunction in transitivity may be modeled by an arbitrary
triangular norm [15]).

In the meantime, fuzzy equivalence relations have turned out to be helpful tools in various disci-
plines, in particular, as soon as the interpretation of fuzzy sets, partitions, and controllers [16, 21, 10,
14]is concerned. More direct practical applications have emerged in flexible query systems [12, 17]
and fuzzy databases in general [19].

Fuzzy (partial) orderings have been introduced more or less in parallel with fuzzy equivalence
relations [22], however, they have never played a significant role in real-world applications.

This paper advocates a “similarity-based” generalization of fuzzy orderings, however, not from
the pure mathematical viewpoint of logic or algebra (for what we would like to refer to the extensive
studies in [2, 3, 5, 11]). Instead, we attempt to demonstrate the potential for applications by means
of considering comprehensive overviews of four case studies. Those are flexible query systems [7],
ordering-based modifiers [1, 9], and orderings of fuzzy sets [4]. Finally, we also discuss the inter-
pretability property, for which orderings of fuzzy sets are of fundamental importance [6].
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Abstract

We give here a discussion of a fuzzy function which is given by a system of fuzzy relation
equations. We demonstrate, how problems of interpolation and approximation of fuzzy functions
are connected with solvability of systems of fuzzy relation equations. First we explain the gen-
eral framework, and later on we prove some particular results related to the problem of the best

approximation.
Key words: system of fuzzy relation equations, solvability and approximate solvability of a fuzzy
relation equation system, fuzzy function, interpolation and approximation of fuzzy functions

1 Introduction

We will concern with a problem of fuzzy functions representation by a solution to a system of fuzzy
relation equations. In order to introduce this stuff we need an algebra of fuzzy logic operations. We
choose a BL-algebra which has been introduced by Hajek in [5] and which in a certain sense general-
izes boolean algebra. This appears in the extension of the set of boolean operations by two semigroup
operations which constitute so called adjoined couple. The following definition summarizes defini-
tions originally introduced in [5].

Definition 1. A BL-algebrais an algebra
L=(L,V,A,*,—,0,1)
with four binary operations and two constants such that
(i) (L,Vv,A,0,1)is alattice withO and1 as the least and greatest elements w.r.t. the lattice ordering,

(i) (L,%,1) is a commutative semigroup with urit such that the multiplication is associative,
commutative and 4x = xforall xe L,

(i) * and— form an adjoint pair, i.e.
z< (x—vy)iff xxz<yforall x,y,ze L,
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(iv) and moreover, for akk,y € L
X*(X—Y) =XAY,
X=y)V(y—x =1

Another two operations of: unary— and binary— can be defined by

“X=X—0,
X y=(X—=Y)A(y—X).

The following properties will be widely used in the sequel:

X<y& (X—y) =1,
Xoy=1lex=y.

Note that if a latticgL, Vv, A,0,1) is given, then BL-algebra is completely defined by the choice
of multiplication operatiorx. In particular,L = [0, 1] andx is known as d-norm.

Let us fix some BL-algebra with a supporiL and takeX andY as arbitrary universes. Denote
F (X) asetof all fuzzy subsets of, i.e. a set of all function$A: X — L}. A system of fuzzy relation
equations
AoR=B;, 1<i<n, 1)

whereA € F(X),Bi € F(Y) andRe F(X xY) and o’ is the sup-*-composition, is considered

with respect to unknown fuzzy relatidh Very often system (1) is connected with applications like
fuzzy control, identification of fuzzy systems, prediction of fuzzy systems, decision-making, etc.
Such systems arise in the process of formalization of some list of linguistic IF-THEN rules, which
well recommends itself as an approximating instrument for continuous dependencies. Because a
solution of (1) may not exist in general, the problem to investigate necessary and sufficient, or also
only sufficient conditions for solvability arises. This problem has been widely studied in the literature,
and some nice theoretical results have been obtained. Let us point out some of them: Sanchez [12],
Perf-Tonis [11], Gavalec [1] with necessary and sufficient conditions, Gottwald [2], Klawonn [8] with
sufficient conditions.

Of course, all of these results have practical importance only in the the case when the universes
of discourseX andY are finite. In the case when these universes of discourse are infinite, however,
those results can be systematized and considered in the light of a new topic whizhyisunctions
and their representations

In the present paper we will introduce the problem of solvability of fuzzy relation equations in a
new framework as the problem of interpolation and approximation of a fuzzy function.

2 Interpolation and approximation of a fuzzy function

The notion of a fuzzy function is not well established in the literature. Imprecisely, it has been used
to mean the often so called fuzzy systems. Precisely this notion was defined e.g. in Klawonn’s paper
[8] where it has been introduced with respect to two similarity relations on the universes for the
independent and the dependent variables.

Trying to be as much as possible close to the classical case we give the following definition.
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Definition 2. Let 7 (X), F(Y) be the classes of all fuzzy subsets of universes of discotesedY.
A (perhaps multivalued) mappingfrom #(X) into 7 (Y) is called afuzzy functionf for any fuzzy
subset® A’ € F(X) and for fuzzy subse8, B’ € #(Y) which aref-related withA, A, respectively,
the following holds true

A=A —-B=B. (2)

Example 3. Any fuzzy relationR € (X x Y) determines via sup-*-composition a fuzzy function,
defined as the mappinig from ¥ (X) to # (Y) which is described by

fR(ANY) = (Ao R)(y) = |/ (AX) =R(xY)).

XeX

In this example, fuzzy sefir(A) = Ao Ris the value of fuzzy functiorir determined byR in the
“fuzzy point” determined byA.

Nor Definition 2, neither the above given Example do not provide us with a way, how a fuzzy
function can be constructed, and that is why, the problem of construction (e.g. representation by a
formula) is of a primary importance.

Very often a fuzzy function is described partially by a list of fuzzy IF-THEN rules
IF xis A THENYyis B;, i=1...,n,

whereA; € F (X),B; € F(Y). This description gives only a partially fixed mapping procedire: B;.
Thus the problem of the completion for the “missing points” appears. The natural requirement for such
a completion is that it should agree with the original data.

This leads us to the problem knowniagerpolationproblem.

Definition 4. Let a list of original data, consisting of ordered pairs of fuzzy $8sB;),i =1,...,n,
be given. A fuzzy functiorf defined on¥ (X) interpolatesthese data if

f(A)=B, i=1,....n 3)

We will also call f an interpolating fuzzy function.

As a side remark we mention that, even supposing the existence of an interpolating fuzzy function,
it is usually not unique. The solution of the interpolation problem without reference to any directly
specified class of interpolating functions is essentially arbitrary, even in a classical case. That is the
reason why in classical mathematics the interpolation problem is solved usually in a predetermined
class of “simple” functions, e.g. in the (or: some) class of polynomials.

We will consider a solution to the fuzzy interpolation problem in the class of fuzzy fundiigns
represented by fuzzy relations. It is easy to see that a fuzzy relRti@presents an interpolating
fuzzy function with respect to the given ddi&,B;), i = 1,...,n, if and only if Ris a solution of the
corresponding system (1) of relation equations.

2.1 Approximate solutions and their approximation quality

The restriction of interpolating functions to the cldsmay, however, create a new problem: that of
the existence of an interpolating function within this restricted class. Then the problem of interpolation

125



becomes intertwined with the problem of approximation. And this means here to find Fside
function which “suitably approximates” the fuzzy function one intended to interpolate.

Besides a set of approximating objects one needs to estimate|tiadiiy, and to rank the approx-
imating objects accordingly. One possibility is measuring some kind of “distance” or “similarity”
between an object frorir and the particular object which is to be approximated.

As we have mentioned at the beginning, a system (1) of relation equations is not always solvable.
In this situation, being again interested in a completing of a partial function given by(paiBs), we
have to break the requirement of agreement with the original data. This leads us to the definition of
the notion of an approximate solution to the system (1). We also consider this approximate solution
as an approximating fuzzy function with respect to the given gatd;),i=1,...,n.

Two things have to be specified for this approximation problem: an approximating space and a
quality of approximation.

Let us fix the original set of argument-value p&ifg,B;), i = 1,...,n, and consider the following
approximating space of all fuzzy relations ¥rx Y
R ={Re F(XxY). (4)

An evaluation of a quality of approximation come from a comparison of the intended V&lues
and those ones realized Byi.e. from an index

n
8(R) = A\ A\ (Bi(Y) < (A oR)(Y)). (5)
i=1lyeY
Let us remark thab(R) is essentially the solution degree introduced by Gottwald, cf. [3].
Being equipped with this measudR) for the quality of an approximatioR we may compare
two different approximate solution saying thate R _is better tharR, € R _if
6(R2) < 6(R1).

It is easy to see that in this way we have introduced a preorder on tbe defined in (4).

In the previous studies on systems of fuzzy relation equations, two types of approximate solutions
have played a prominent role, without having been tied with a clearly chosen approximation space:
the MA-relationRya = Ui ; (A x B;) of Mamdani/Assilian, and the S-relatiéh= Nt (A > By) first
considered by Sanchez. In forming these relations two particular fypd3 Ar> B of fuzzy relations,
each determined by a pdih, B) of fuzzy sets, are used which are defined by the membership functions

Ax B(Xuy) = A(X) * B(y)7 (6)
A>B(xy) = AX) — B(y). ()

We called these fuzzy relatiopseudo-solutions IPMUO2 and shall follow this usage here.

However, in this paper we will consider two other, more specified approximation spaces which
are subspaces &

R={Re F(XxY):AoR=C, 1<i<n,
forsome Ci,...,Che F(Y) suchthat C CBj} (8)
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and

Ri={Re F(XxY):AoR=C, 1<i<n,
forsome Ci,...,Che F(Y) suchthat G D Bi}. (9)

In discussions later on which use these approximation spaces we will not only refer to their el-
ements, we will also refer to the (solvable) systems of relation equations which determine these el-
ements. Then we will denote the systems which determine the elemeftsasfl-approximating
systemsand those which determine the element®ghs*u-approximating systems

In the literature on fuzzy relation equations the following rankings for approximation quality have
been used:

¢ the solution degreeXR) of Gottwald (or the difference between these solution degrees and the
solvability degree);

e the preordering between solutioRsof systemsA; o R= B which satisfyB/ C B; forall 1 <i <
n, given by
R<wR' iff BCB'CB;, 1<i<n, (10)

which was implicitly used by Wu [13] and later on by Klir/Yuan [6, 7].

Of course, this last mentioned preordering could, and should be defined more general e.g. w.r.t. a
similarity degreeE for fuzzy sets as

R<eR' iff E(B,B)<E(BB), 1<i<n, (11)

or in a similar way w.r.t. a metric in the class of all fuzzy sets.

2.2 Optimal approximations

Having some “quality index” available to evaluate the quality of particular approximations allows to
(somehow) compare different approximations.

This, however, is usually not sufficient. One likes to know more, viz. somethingpéikepossible
approximations. And this can be understood as the search for (suitably) extremal elements among the
approximating objects, of course extremal w.r.t. some ranking induced by the previously mentioned
quality indices.

Looking again at our standard examples the situation was that

e in Gottwald's approach through solution and solvability degrees the best possible approxima-
tions had not been discussed explicitly;

e in Wu's approach only the best possible approximations in sense of the preordering (10) have
been considered.

For the general situation we shall use the following terminology.

Definition 5. Suppose that a ranking is given for the approximating objects. An approximating
object¢ € R is p-optimal iff there does not exists iR an approximating object which is ranked
higher thanp.
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3 Some optimality considerations

The problem arises immediately whether the two standard pseudo-solRt@m$Rya are optimal
approximate solutions for suitable approximation spaces. For the S-pseudo-sBistich an opti-
mality was shown in [6, 7] w.r.t. the approximation $tand a ranking similar to (10).

We show thaR is even an optimal approximate solution in the approximation®setquipped
with the ranking (11).

Proposition 6. The fuzzy relatio is always an optimal approximate solutionfnunder the ranking
(112).

Proof. We know, e.g. from [4], that one always h&s R C B; for the fuzzy relation

n
ﬁz m A > B;.
i=1
Now consider a family of fuzzy sets; with A o RCC CBforalli= 1,...,n and such that the
system
AioR=C (12)

of relation equations is solvable. L8be its maximal solution
. n
S= ﬂ A>G.
i=1

FromC; C B; we have immediately > C; C A > B; and thuség R This gives

Ci=AoSCAORCC

and thus

AoR=G.
That means that no system (12) wiho R C C; C B; for some 1< i < nis solvable, i.eRis an optimal
approximate solution. O

For the MA-pseudo-solution the situation is different.

Proposition 7. There exist systent$) of relation equations for which their MA-pseudo-solutiamR
is an approximate solution in the approximation gtwhich, however, is not optimal in this set under
the ranking (11).

Proof. Let us consider the following system of relation equations with input-output data

A = (5,1,.5,0), B, = (.5,1,0,0),
A; = (0,.5,1,.5), B, = (0,0,.5,1).

Then we have immediately

5 50 0 000 O
51 00 005 5
AxBi= | 5 5 g 0 PoxBa= g o 5 1
0 0 00 005 5
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and therefore

55 0 0
5 1 5 5
RMA—(A]_XBl)U(Aszz)— 5 5 5 1
0 0 5 5
This gives
AtoRua =(.5,1,.5,.5), AzoRya =(.5,.5,.51).
To see the non-optimality duya consider the following modificatiom of Rya given by
5 0 O
01 0O
T= 0 0 01
0 050
Then we find

AjoT =(510.5 and AyoT=(0,551),

and hence see that the fuzzy relatibsolves the system

AioR = (5,1,0,.5),
AoR = (0,.5,.51)

of fuzzy relation equations. And this system is a strongly better *u-approximating system w.r.t. the
initial system as is the *u-approximating system

AjoR = (5,1,5,5),
AoR = (5,.5,.51)

which hasRya as its solution. O

A closer inspection of the proof of Proposition 6 shows that the crucial difference of the previous
optimality result forR to the present situation &y is that in the former case the solvable approxi-
mating system has its own (largest) solut@rBut in the present situation a solvable approximating
system may fail to have his MA-pseudo-solutigga as a solution.

However, this remark leads us to a partial optimality result w.r.t. the MA-pseudo-solution.

Definition 8. Let us call a systenil) of relation equation#1A-solvableiff its MA-pseudo-solution
Rwva is a solution of this system.

Then we have the following result.
Proposition 9. If a systen(1) of relation equations has an MA-solvable *u-approximating system
RIA=B", i=1...n (13)
such that for the MA-pseudo-solutiomRof (1) one has
BiCB CAoRua, i=41,...,n,
then one has

Bf =AoRuya forall i=1,...,n.
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Proof. Let Rj, = UL1 A x Bf be the MA-(pseudo-)solution of (13). Then one has because of the
monotonic dependency of the MA-pseudo-solution from the (input and) output data

Rva € Rya
and therefore for eadh=1,...,n
B CAocRva CAoRys =B,
which just mean8; = AioRya. ]
Corollary 10. If all input sets of(1) are normal then the system
AlocR=AoRua, i=1,...,n, (14)

is the smallest MA-solvable *u-supersystem(fbr.

Proof. From the normality of the input sets one HsC AioRya foralli=1,...,n. So a smaller
MA-solvable *u-supersysterfi3) would have to satisf; £ B € AioRforalli=1,...,n. Butthen
it coincides with(14). O

Corollary 11. LetR be the S-pseudo-solution(df) and suppose that the modified system
AoR=AO0R, i=1,...,n, (15)

is MA-solvable. Then the iterated pseudo-solutiain fR[By]”A], introduced in[4], is an optimal
*|l-approximate solution of1).

Proof. Assume that (15) is MA-solvable. Then its MA-solution is by construction of the system (16)

A~

exactly the iterated pseudo-solutiBga [R[Bxk]”Ax] of (1).
Therefore one has

AoRua[RBJ'A]=AoRCB, i=1,...,n.

Now Proposition 6, i.e. the optimality &% as a *u-approximate solution yields immediately the opti-

-~

mality of Ruya [R[Bk]”Ax]. O

This last Proposition can be further generalized. To do this assumg ithabmepseudo-solution
strategy i.e. some mapping from the class of familigs, Bj)1<i<n Of input-output data pairs into the
class of fuzzy relations, which yields for any given systéin of relation equations aS-pseudo-
solutionRs. Of course the systertll) will be calledS-solvableiff Rs is a solution of the system

(D).

Definition 12. We shall say that th8-pseudo-solutiofRs depends isotonicallyw.r.t. inclusior) on
the output data of the systefh) of relation equations iff the condition

if BCB foralli=1,...,n then RsCR;.

holds true for theS-pseudo-solution&s of the system(1) andR; of an “output-modified” system
R'A=AocR=B,i=1,...,n
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Definition 13. Furthermore we understand by &roptimal *u-approximate solution of the system
(1) the S-pseudo-solution of afi-solvable *u-approximating system ¢f) which has the additional
property that no strongly better *u-approximating systenmilofis S-solvable.

Proposition 14. Suppose that th&-pseudo-solution depends isotonically.r.t. inclusion) on the
output data of the systems of relation equations. Assume furthermore that tpseudo-solution
Rs of (1) one always hasB- A o Rs (or that one always hasiARs € B;) foralli =1,...,n. Then
the S-pseudo-solution Rof (1) is anS-optimal *u-approximateor: *l-approximate) solution of the

system(1).

Proof. We discuss only the *u-approximating case, the other one is treated similarly.
Consider ars-solvable system
AoR=B, i=1,...,n (16)

with S-pseudo-solutiofiRy which satisfies for th&-pseudo-solutioRs of (1) the inclusion relations

Bi £ B C AoRs, i=1,...,n.
Then one has
AloRézBrgAioRSgA!oRg, |:1, N,
and hence the relationship
B =AoRs forall i=1,...,n.

O]

Itis immediately clear that Corollary 10 is the particular case of the MA-pseudo-solution strategy.
But also Proposition 6 is a particular case of this Proposition: the case of the S-pseudo-solution
strategy (having in mind that S-solvability and solvability are equivalent notions).

4 Concluding remarks

A notion of a fuzzy function as a mapping between universes of fuzzy sets with a uniqueness property
has been introduced. In this setting, a precise and approximate solutions to a system of fuzzy relation
equations are considered as the interpolating and approximating fuzzy functions with respect to a
given data. We recall the necessary and sufficient conditions of solvability of a system of fuzzy
relation equations and concentrated on a problem of approximate solvability. First we explained the
general framework, and later on we proved some particular results related to the problem of the best
approximation in different approximation spaces.

References

[1] Gavalec, M. (2001): Solvability and Unique Solvability of max-min Fuzzy Equatibogzy
Sets Systeni4No 3, 385-394.

[2] Gottwald, S. (1993)Fuzzy Sets and Fuzzy Logithe Foundations of Application — from a
Mathematical Point of View. Vieweg: Braunschweig/Wiesbaden and Teknea: Toulouse.

131



[3] Gottwald, S. (2000): Generalised solvability behaviour for systems of fuzzy equatiofgsin:
covering the World with Fuzzy Log{¥. Novak, |. Perfilieva eds.) Advances in Soft Computing,
Physica-Verlag: Heidelberg 2000, 401-430.

[4] Gottwald, S., Novak, V. and I. Perfilieva (2002): Fuzzy control and t-norm-based fuzzy logic.
Some recent results. IProc. 9th Internat. Conf. IPMU 20Q20l. 2, ESIA — Université de
Savoie: Annecy 2002, 1087-1094.

[5] Hajek P. (1998Metamathematics of fuzzy logiluwer, Dordrecht.

[6] Klir, G. and B. Yuan (1994): Approximate solutions of systems of fuzzy relation equations.
In: FUZZ-IEEE '94.Proc. 3rd Internat. Conf. Fuzzy Systems, June 26-29, 1994, Orlando/FL,
1452-1457.

[7] Klir, G. and B. Yuan (1995)Fuzzy Sets and Fuzzy Logitheory and Applications. Prentice
Hall: Upper Saddle River.

[8] Klawonn, F. (2001): Fuzzy points, fuzzy relations and fuzzy functions.Oiscovering the
World with Fuzzy Logi€V. Novak, |. Perfilieva eds.) Advances in Soft Computing, Physica-
Verlag: Heidelberg 2000, 431-453.

[9] Mamdani, A./Assilian, S. (1975): An experiment in linguistic synthesis with a fuzzy logic
controller.Internat. J. Man-Machine Studiés 1-13.

[10] Novak, V./Perfilieva, I./Makor, J. (1999): Mathematical Principles of Fuzzy Logikluwer
Acad. Publ., Boston.

[11] Perfilieva, I./Tonis, A. (2000): Compatibility of systems of fuzzy relation equatibriernat.
J. General Systen9, 511-528.

[12] Sanchez, E. (1976): Resolution of composite fuzzy relation equatignsmation and Control
30, 38-48.

[13] Wu Wangming (1986): Fuzzy reasoning and fuzzy relation equatkunsy Sets Syster§,
67-78.

132



Compatible extensions of fuzzy relations

IRINA GEORGESCU

Turku Centre for Computer Science, Institute for Advanced Management Systems Research
Turku, Finland

E-mail: irina.georgescu@abo.fi

In this paper we introduce the notion of the compatible extension of a fuzzy relation and we prove
an extension theorem for fuzzy relations. Our result generalizes to fuzzy set theory an extension
theorem proved by Duggan for crisp relations. We also obtain fuzzy versions of some theorems of
Szpilrajn, Hansson and Suzumura. A classical Szpilrajn theorem asserts that any strict partial order
is a subrelation of a strict linear order. Later this result lead to a wide range of extension theorems.
Hansson proved that every preorder can be extended to a total preorder. Suzumura refined Hansson'’s
result by proving that a relation has a total and transitive compatible extension if and only if it is
transitive-consistent. A very general extension theorem was proved by Duggan. Duggan’s result
generalizes all the known extension theorems and some new interesting follow from it. Zadeh proved
a fuzzy form of the Szpilrajn’s theorem. This paper is another contribution to this problem following
Duggan’s trend. LeX be a non-empty set. Aizzy relatioron X is a functionR: X? — [0,1]. If R Q
are two fuzzy relations oK, thenR C Q means thaR(x,y) < Q(x,y) for anyx,y € X; in this case& is
called arextensiorof R. A fuzzy relationR s transitiveif R(x,y) AR(Y,z) < R(x,z) for all x,y,z € X.
The transitive closure TR) of a fuzzy relationR is the intersection of all transitive fuzzy relations
includingR. For any fuzzy relatioR let us define the fuzzy relatidfk by Pr(X,y) = R(X,y) A =R(Y, X).
Let R, Q be two fuzzy relations oX. Q is said to be aompatible extensionf Rif RC Q and
Pr C Pg. A classR_ of fuzzy relations orX is closed upwardf for any totally ordered family{R; }ic
of fuzzy relations in®, we haveURi € R. A fuzzy relationR is total if for any x # y we have

iel
R(x,y) VR(y,x) > 0. A class® of fuzzy relations orX is arc-receptiveif for any x # y and for any
transitive fuzzy relatioR € R, R(y,x) = 0 impliesT (R[x,y]) € R..

The following result is a generalization of Duggans’s extension theorem:

Theorem 1. Let R be a closed upward and arc-receptive class of fuzzy relations on X. For any
transitive fuzzy relation R ®_there exists a total and transitive fuzzy relation/R®_such that Ris
a compatible extension of R.

A relationRis transitive-consistenfconsistent in Suzumura terminology) if for any integer 2
and for anyz,...,z, € X, (z1,22) € Prand(z,z), .. .,
(zn-1,27) € Rimplies (zy,z1) ¢ R In [1] it was proved thaR is transitive-consistent if and only if
Pr C Pr(r)- Any transitive relation is transitive-consistent. Suzumura’s theorem [2] asserts that a crisp
relation has a total and transitive compatible extension if and only if it is transitive-consistent. We
give a fuzzy generalization of this result.

Theorem 2. For a fuzzy relation R on X the following are equivalent:
() R has a total and transitive compatible extension Q; (ii) R has a transitive compatible extension Q;
(iii) R is transitive-consistent.

Keywords:Fuzzy relation; Compatible extension; Transitive-consistent
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1 Introduction

Triangular norms are, on the one hand, special semigroups and, on the other hand, solutions of some
functional equations [1, 8, 15, 16]. This mixture quite often requires new approaches to answer
guestions about the nature of triangular norms. There are some problems which were stated some time
ago and remained unsolved for years. An example for this is the question whether the domination is a
transitive relation on the class of t-norms (this problem was posed by B. Schweizer and A. Sklar [16]).
Recall that a t-nornT; dominates a t-norr, (in symbolsT; > T,) if for all x,y,u,v € [0, 1]

Tl(TZ(X’ y) ) TZ(U’V)) > TZ(Tl(X7 U) ) Tl(ya V)) 1)

Obviously, we hav@y > T andT > T for each t-nornT, and thafl; > T, impliesT; > T, (therefore
the relatiors> is reflexive and antisymmetric).

The aim of this note is to recall some well-known problems of the past (which have been solved
meanwhile) and to state several problems which are open and have not been posed so far for a wider
audience. Some of the solved problems were already mentioned in the monographs [8, 16] and in a
special note devoted to open problems [11].
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2 Some solved problems

Solved Problem 1. Suppose that an Archimedean t-nofimhas a continuous diagonal. Tsneces-
sarily continuous?

This problem goes back to [16], and it can be easily transformed to the case of an arbitrary t-norm
with continuous diagonal. A negative answer was given by G. M. Krause [10], for a more detailed
discussion of this topic see [8, Appendix B] and [18, 12].

Solved Problem 2.Let T be a cancellative t-norm which is continuous in the pgihtl). Is T
necessarily continuous?

This problem was posed by E. Pap in [11]. A negative answer was given by M. &&wifirand
M. S. Kurili¢ [2]. Moreover, there are non-continuous cancellative t-norms which are left-continuous
[17], see also [8, Example 2.29(ii)]. On the other hand, for an Archimedean t-norm its left-continuity is
equivalent to its continuity [9], and for a cancellative Archimedean t-norm its continuity is equivalent
with its continuity in the poin{1,1) [5]. Therefore all counterexamples regarding this problem are
necessarily non-Archimedean.

Solved Problem 3.Can each (continuous) function in
D = {8 [0,1]°Y | &is non-decreasing arli< idj ;) and3(1) = 1}.
be extended to a t-norm, i.e., do we habe= {&7 | T is a t-norn} (compare [7])?

Here the functio®dr : [0,1] — [0, 1] denotes the diagonal section of a t-nofrgiven bydr (X) =
T(X,X).

This problem was stated in [8, Remark 7.20], and a negative answer was given by A. Mesiarova
[13] showing that the functiod: [0,1] — [0, 1] given by

Z if xe [0,0.5],
d(x) = ¢ 0.25 if x€]0.5,0.75],
3x—2 otherwise,

cannot be the diagonal of a t-norm, although we hageD.

Solved Problem 4.Let T be a continuous t-norm 0@, 1]2 (i.e., a an Abelian semigroup operation
T:[0,1)2 x [0,1]2 — [0, 1]2 with neutral elementl,1) which is non-decreasing with respect to the
product order o0, 1]?). Is T necessarily the Cartesian product of two t-normsGa]?

This problem was stated in [3], and a counterexample was provided by S. Jenei and B. De Baets

[6].

3 Some open problems

Open Problem 5. Let T be a continuous Archimedean t-norm with additive generat¢®, 1] —
[0,00] anda € ]0,0.5[. Prove or disprove that
T(max(x—a,0),min(x+a,1)) < T(x,x)

holds for allx € [0, 1] if and only ift is convex.
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This problem has been posed by J. Fodor. Note that a positive solution of this problem would
induce a new characterization of associative copulas.

Open Problem 6. Let T be a conditionally cancellative (left-continuous) t-norm which is continuous
in the point(1,1). IsT necessarily continuous?

A t-norm T satisfies the conditional cancellation lawTifx,y) = T(x,z) > O impliesy = z 8,
Definition 2.9]. Note that, for t-norms without zero divisors, this is exactly the solved problem 2.
Open Problem 7. Characterize all continuous (Archimedean) t-noffnsuch that the restriction of
T to Q? is a binary operation of®, 1] N Q.

This problem was inspired by some work of S. Jenei and F. Montagna on the extension of t-norms.
Open Problem 8. (i) Characterize all strictly decreasing functidng0, 1] — [0, ] witht(1) =0

such that the operatich: [0,1]> — [0, 1] given by
T(xy) =tV (0 +t(y) (@)
is a t-norm, where the pseudo-invetse : [0,0] — [0,1] is given by
Y (u) = sup{x € [0,1] | t(x) > u}.
(il) Characterize all strictly decreasing functidng0, 1] — [0, o] with t(1) = O such that the op-

erationT: [0,1]2 — [0,1] given by (2) is a t-norm and such that for all> 2 and for all
X1,X2, .., % € [0,1] we have

T (X1, %, ..., %) =tV (ilt(xi)). (3)

Note that each t-norrit induced by some functionsatisfying (2) and (3) is necessarily Archi-
medean. However, there are non-Archimedean t-naFnteduced by functions satisfying (2) only
[19].

Open Problem 9. For a given pair of a t-nornT and its dual t-conorn®, characterize all binary
aggregation operatoss: [0,1]?> — [0,1] such thaA >> T andS’> A, where the domination relation
> is given by (1).

Recall that a functior : [0,1]> — [0,1] is called a (binary) aggregation operator if it is nonde-

creasing and satisfigs(0,0) = 0 andA(1,1) = 1 (for details concerning domination see [14]).

Also the dual problem of characterizing, for a given binary aggregation opeatdtt-normsT
such thatA >> T andS>> A holds, whereSis the t-conorm dual td@, is of interest.

Open Problem 10. Given a binary aggregation operatdr [0,1]> — [0, 1], characterize all pairs
(T,S) of a t-normT and a t-conornBsuch that for al(x,y) € [0,1]?> we have

A(T(xY),S(xY)) =A(XY). (4)
Clearly, in the case wherk equals the arithmetic mean, (4) is just the Frank functional equation

which was completely solved in [4]. In the case= Tp this problem was recently solved by G. Mayor.

Another modification of the Frank functional equation was proposed by J. Fodor: For a given
t-norm Ty and a given t-conorngy, characterize all t-norm$ and t-conormsS such that for all
(x,y) € [0,1]? we have
T(X’y) + S(Xv y) = TO(X7y) + S)(Xa y)
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1 Introduction

It is often the case in practice that one has to deal with bounded bipolar scales instead of the usual
[0,1] interval. Bipolar scales are symmetric around a central pointyé¢ladral value usually denoted

by 0, and can be either of numerical nature (an interv& gbntaining 0), or of ordinal nature (only

order matters): see a construction of an ordinal bipolar scale in [1, 3, 2]. Bipolar scales are bounded

if there exist a least and a greatest element (denoted for example -1 and 1). Values above the neutral
value 0 (positive values) are considered as attractive, good, while those under 0 are considered as
repulsive, bad, etc.

There are psychological evidences that human behaviour reflects bipolarity, and behaviours in e.g.
decision differ when utilities or scores are positive or negative. The well-known Cumulative Prospect
Theory (CPT) model [9] is a powerful bipolar model, where a Choquet integral is used to aggregate
the positive utilities and negative utilities separately, and two capaeities are used, one for the
positive part, the other for the negative part.

The question is now to produce a panoply of aggregation operators for the bipolar case, extending
those already known for the unipolar cd6gl], while possibly imposing some structural properties.
We address here 3 topics, described below. This can be seen as first steps in this direction.

2 Symmetric pseudo-additions and multiplications

The aim is to define pseudo-additions and pseudo-multiplications, spylof], so as to get a struc-
ture close to a ring, or an Abelian group, if only one operation is considered. A natural starting point
seems to take t-norms and t-conormg@ri], and get them symmetrized.

We show that if the t-conorm is nilpotent, then there is no way to build even a group. If the
t-conorm is strict, then a group can be obtained, and in this case the symmetrized t-conorm corre-
sponds to a uninorm rescaled prl, 1. However, one cannot obtain a ring anyway (at least with our
assumptions) [4].

We show that these results are closely related to the theory of ordered Abelian groups and Hoélder
theorem [8].
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3 Symmetric operations on symmetric ordinal scales

The aim is the same than in Section 2, and can be seen as the case where the t-conorm and t-norm is the
max and min operators. We define a symmetric maxinignand a symmetric minimur@®, in such

a way that the structure is as close as possible to a ring. In fact, it is shown that imposing a symmetric
element prevents the symmetric maximum to be associative. In order to cope with non associativity,
we propose various rules of computation, which define unambiguously the value of expressions such
that©);¢, &, and study in detail the properties of the rules [2].

4 Bi-capacities

It is known that, with discrete universes, the Choquet integral can be seen as a general family of
aggregation operators. If the underlying scale is bipolar, the Choquet integral extends usually in 2
ways: the symmetric integral (or Sipos integral), and the asymmetric integral (see [7] for propserties).
A more general way is to consider the CPT model. Yet, more general extensions can be done, where
there is a real interconnection between positive and negative parts. This is achieved through the
concept ofbi-capacities[6, 5], which code the value taken by the integral for functions being 1 on
some subsed, and -1 on some subsBt The Choquet integral w.r.t a bi-capacity generalizes the
CPT model, and can be interpreted, as the Choquet integral, with the help of the Shapley value, and
interaction indices.

Key words: t-norm, uninorm, ordered group, bipolar scale, capacity, Choquet integral
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The motivation for our investigations is coming from integration theory.

The definition for the Lebesgue-Integral of simple functions uses an addition, a multiplication, a dis-
tributive law and a measure.

To avoid the additivity of the measure the Choquet-Integral requires only an isotone set function which
disappears at the empty set (a so-called fuzzy measure), but a difference is needed now.

To define a more general integral it thus seems naturally to consider a fuzzy measure and three gener-
alized functions defined on an arbitrary interval
[AB] , —0o<A<B<o:

a pseudo-addition, a pseudo-multiplication and a pseudo-difference,
which are connected by an appropriate distributive law so that the
three operations are fitting.

So there are two steps :

First the interaction of fitting pseudo-additions and pseudo-multiplications connected by a distributiv-
ity law has to be investigated.

Then - in a second step - one has to choose an appropriate pseudo-difference to define an integral
satisfying desirable properties.

Let us start with some remarks :

We assume that a pseudoaddition is essentially a t-conorfA & but a pseudo-multiplication is
only an isotone function which is continuous (& BJ? (neither associativity nor commutativity is
required).

The usual one-sided distributivity is a rather strong property so that the class of fitting pseudo-
multiplications is very restricted (for example, the usual (bounded) addition and (bounded) multi-
plication are not fitting operations).
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We can offer a weak distributive law for which extensive classes of pseudo-additions and pseudo-
multiplications are fitting. Actually, we use 2 different pseudo-additions to introduce one-sided dis-
tributivity laws (here we only give the left-distributivity law) :

Definition 1. LetA,m: [A B]?> — [A,B] be pseudo-additions with
generator sets
{km: [afy, biy] — [0,00] [ me Ka} and{hy : [, bf] — [0,0] || € Ka} .

Moreover, letDy ;= {b5,: mec Ky}
and leto : [A,B]? — [A, B] be pseudo-multiplicaton.

Theno satisfies the weak left-distributivity law with respecttom) iff aAb ¢ D, implies(aAb) ¢
x= (aox)m(box) for all a,b,x € (A, B].

This means that the usual distributivity law holds
if aAb ¢ D, is no right endpoint of an "archimedean"” interjaf}, b3

(By "usual left- (or right-) distributivity" we mean the equations
(alb)ox = (aox)m(box) (orao (xAy) = (acx)m(acy)) are satisfied
for all x,y,a,b € (A,B]).

Using additional axioms like the existence of a one-sided unit we investigate the structure of the
pseudo-multiplication (and its influence on the ordinal-sum-structure of the pseudo-addition) and the
possibility of a representation of the pseudo-multiplication by generators of the pseudoaddition.

We present the following special case of a more general result (Suprisingly a similar result holds
in the case of the validity of a one-sided "usual" left distributivity law).

Theorem 2. Lef\,m: [A B]? — [A, B] be pseudo-additions,
leto : [A,B]? — [A, B] be a pseudo-multiplication which satisfies the weak left-distributivity law with
respect tqA,m) and lete have a right unit
(that is, there is ar € (A, b] such thaboe=afor all a€ (A, B).
(I) Then we have
(@A =m.
(b) If © has a left unit
(that is, there is aB € (A,b] such thaBoa = afor all a < (A, B))
thenA has one of the following structures

Max

nonstrict
Max

strict

Max
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(1) Forallme Kj, | € Kq there is a monotonic increasing, continuous funcgign: (A, b] — [0, o]
with the property

A A [ acxe @bl —aox=h""(kn(@ gmi(x) -

ac (af, bfy] x<(A.B]

Theorem 2 has rather weak assumptions. In the literature ratheroteassumed to be a uni-norm
or a t-norm, but the above result shows that neither associativity nor commutativity is needed. In
contrary, in many cases we get thats automatically associative and commutative.

Note that the structure of the pseudo-addition in Theorem 2 reduces to an ordinal sum with at
most 2 "archimedean intervals". This explains why in all existing examples in the literature at most 2
"archimedean intervals" were chosen (see [1]).

Moreover, we can give representations of fitting pseudo-multiplications in all "archimedean inter-
vals" using the generators of the pseudo-addition.
>From this result we get - for example - very easily a recent result of Klement, Mesiar and Pap con-
cerning t-norms and t-conorms which satisfy a restricted distributive law (see [2]).

Concerning the second step we define - like proposed by Murofushi and Sugeno (see [4]) -
a mapping—, : [A,B]> — [A B] to be pseudo-difference with respect to a pseudo-addaidfi
a—pb:=inf{ce[A B]:bAc> a}.

But here we have no restriction to archimedean pseudo-additions.
Fortunately this pseudo-difference is very compatible with the weak left- and right-distributivity law.

Our integral definition for measurable functiofisis based on the fuzzy-t-conorm integral of
Murofushi and Sugeno ( see [4]). To define an integral we need only two continuous t-conorms, a
fitting pseudo-multiplication and an arbitrary fuzzy-meagure
But of course, if we want to prove the theorem of monotone convergence, we negdstbantinuous
from below.

The usual results concerning integrals like monotonicity and commonotone additivity are presented
(rather often the proof for the monotonicity of a "fuzzy" integral has gaps, we will point out that the
proof for the monotonicity is not trivial).

Further the fuzzy-measure can be decomposed into "fuzzy-measure components" fitting to the
ordinal structure of the pseudo-addition and pseudo-multiplication, so that we have in each "archime-
dean interval" a nice representation with the generators of the pseudo-addition and pseudo-multiplication.

Finally a characterization result for the integral can be represented which is similar to a result of
Benvenuti and Mesiar (see [1]).

Theorem 3. LetX, 4) be a measurable space.
Further, letA,m: [0,B]2 — [0, B] be pseudo-additions and
leto : [0,B]2 — [0, B] be a pseudo-multiplication satisfying the usual left- and right-distributivity and
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having a left-uni€ and having 0 as neutral element
(thatisa= 0 orx= 0 impliesacx = 0 for all a,x € [0, B]).

Moreover let? : {f : X — [0,B] | f measurablé and
letl : ¥ — [0,B] be a function.

Then there existsm-decomposable fuzzy measyre4 — [0, B]
(thatis,U NV = 0impliesp(U UV) = U )mp(V))
which is continuous from below satisfying

A1) = [ tau
feF
(where [ is our fuzzy integral) iff
1. | is monotonic increasing,
2. lis continuous from below,
3. lis decomposable UNV = 0implies! (€ly ) =1 (€ly)ml(1y)),
4. | is weakly homogeneous (I (aly) = a<l(€lv)),
5. | is additive for commonotone functiorisg
(if f(x) < f(x) impliesg(x) < g(y) thenl(fAg) =I(f)ml(g)).
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In control theory and also in theory of approximate reasoning, introduced by Zadeh in [14], much of

the knowledge of system behavior and system control can be stated in the form of if-then rules. The
Fuzzy Logic Control, FLC has been carried out searching for different mathematical models in order
to supply these rules. In most sources it was suggested to represent an

if xis AthenyisB

rule in the form of fuzzy implication (shortymp(A, B), relation (shortlyR(A,B)), or simply as a
connection (for example as a t-norif(A, B)) between the so called rule premiseis A, and rule
consequencey is B. Let x be from universeX, y from universeY, and letx andy be linguistic
variables. Fuzzy subsgtof X is characterized by its membership functjgn: X — [0,1]. The most
significant differences between the models of FLC-s lie in the definition of this connection, relation
or implication.

The other important part of the FLC is the inference mechanism. One of the widely used methods
is the Generalized Modus Ponens (GMP), in which the main point is, that the infeyaad® is
obtained when the propositions are:

- the " rule from the rule system afrules: if xis A thenyis B,

- and the system inputis A

GMP represents the real influences of the implication or connection choice on the inference mecha-
nisms in fuzzy systems [4], [13]. Usually the general rule consequence for one rule from a rule system
is obtained by

B'(y) = Suxp(T (A'(x), Imp(A(x), B(y)))-
Xe
In this field we can find the new results for left-continuous t-norms in [1]. The connectiptA, B)
is generally defined, and specially it can be some t-norm, too.

In engineering applications the Mamdani implication is widely used. The Mamdani GMP with
Mamdani implication inference rule says, that the membership function of the consedgieisce
defined by

B(y) = supmin(A'(x), min(A(x), B(y)))
xeX
or generally
B(Y) = Sup(T (A'(x), T(A(x), B(y))). (1)

xeX
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whereT is a left-continuous t-norm. Thus we obtain from (1)

B(y) = T (sud(T(A'(x),A()), B(Y))-

xeX

Generally speaking, the consequence (rule output) is given with a fuzB/(ggt which is derived
from rule consequendg(y), as a cut of thé(y). This cut, sup.x T(A'(x),A(X)), is the generalized
degree of firing level of the rule [13], considering actual rule base iAffa), and usually depends on
the covering oveA(x) andA'(x). But first of all it depends on the sup of the membership function of
T(A(X),AX))-

The FLC rule base output is constructed as a crisp value calculated with a defuzzification model,
from rule base output. Rule base output is an aggregation of all rule conseqigiygés rule base.
A t-conormSis usually used as an aggregation operator

Yout = S(B/nv S(B;Flﬂ S(? S(B/Zﬂ Bél.))))

In system control, however, intuitively one would expect: let's make the powerful coincidence be-
tween fuzzy sets stronger, and the weak coincidence even weaker. The family of evolutionary opera-
tors ([9]), and the family of distance-based operators ([8]), satisfy that properties, but the covering over
A(x) andA'(x) is not really reflected by the sup of the membership function offfA&(A’(x), A(x))

(Ta"®s the maximum distance based operator). Hence, and because of the non-continuity of the
distance-based operators, it was unreasonable to use the classical degree of firing, to give expression
for the coincidence of the rule premise (fuzzy Agtand system input (fuzzy sét). Therefore a De-

gree of CoincidencelJoc) for those fuzzy sets has been initiated. It is nothing else, but the proportion

of area under membership function of the distance-based intersection of those fuzzy sets, and the area
under membership function of their union (using max as the fuzzy union)

Jx T (A (%), Ax))dx

D00 maxA(x), A(X)dx

This definition has two advantages:

- it considers the width of coincidence AfandA/, and not only the "height”, the sup, and

- the rule output is weighted with a measure of coincidenc& afdA’ in each rule ([10]).

The rule output fuzzy sd8’ is achieved as a cut of rule consequeBagith Doc
B'(y) = T"(B(y),Doc)  or  B(y)=TI"(B(y), Doo).
It is easy to prove thdDoc € [0, 1], andDoc= 1 if AandA’ cover each other, which implid (y) =

B(y), andDoc= 0 if AandA’ have no point of contact, which impli&s (y) = 0.

The FLC rule base output is constructed as above explained. The output is constructed as a crisp
value calculated from rule base output, which is an aggregation of all rule conseqBgyses rule
base. For aggregation, distance based oper&ftitor S'** can be used.

We can see the justification for this line of reasoning in the simulations of a simple dynamic
system, using distance based operator-peits, S"" or T"& ST [12].
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An additional possibility is if the cuB;(y) of the rule consequendg(y) is calculated from the
expression ([11])

/

JyB(y)dy
Based on this fact, we have for triangular membership funcéom$, A’ (x), B(y) that

B'(y) = max(B(y),1—v1—Doc).

TheB'(y) is obtained as a weighted fuzzy set, and the weight paraniztey §epends orf, Ta"(A'(x), A(X)) dx.
It is a measure related to the area under membership funtfiGii{A’'(x),A(x)), and it is a non-
additive measure related to t-norm and t-conorm (in the domain and in the range) in the spirit as it can
be found in [2] and [5],[6],[7]. Using this fact a connection betw&art type of inference mechanism

and generalized fuzzy measures and integrals has been investigated.

The further steps are the investigation of measure-properties of different degrees of firing types
used by FLC, and the use of the other types of fuzzy integrals from the pseudo-analysis in decision-
making by FLC.
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Abstract

Fuzzy measured tmeasures) o -tribes are a fuzzification of measuresmlgebras. They
were characterized recently in [4]. Here we investigate the convex structure of probability
measuresT(-states).
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Let T be a fixed strict triangular norm (t-norm), i.e., a binary operafiori0, 1] — [0, 1] which is
commutative, associative, continuous, strictly increasing (except for the boundary of the domain) and
satisfies the boundary conditidifa, 1) = afor allac [0, 1] (see [9, 16]). AT -tribeis a collectionZ of
fuzzy subsets which contains the empty set and which is closed under the standard fuzzy complement
and (the pointwise application of) the triangular nofim(extended to countably many arguments).

The notion of aT -tribe was introduced by Butnariu and Klement [5, 6] as a generalizationosf a
algebra of subsets of a set. Further, they introduced the notibAneéasure as a generalization of a
o-additive measure on@algebra (her&: [0,1] — [0, 1] denotes the triangular conorm dualfttpi.e.,
S(a,b)=1-T(1—a,1—b)): Afunctionm: 7 — Ris called ar -measureff it satisfies the following
axioms:

m(0) =0,
m(T(A,B)) + m(S(A,B)) = m(A) + m(B),
Ay A= m(A,) — m(A),

where the symbol” denotes monotone increasing convergence. The notionmkasure is not

only a natural generalization of a classical measure. It is also the base of successful applications in
game theory. Many deep mathematical results, including a generalization of Liapunoff Theorem, were
proved in [1, 2, 6]. An overview of fuzzy measures can be found in [7].

Thestrict Frank triangular norms § s (0, ) (see [8]) are t-norms of the form

<sa—1><sb—1>>

Ts(a,b) = logs <1+ s—1
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forse (0,00)\ {1} or
Ti(a,b)=a-b

(the product t-norm) fos = 1.

A characterization of monotonit-measures for a Frank triangular noihhas been presented in
[6] and completed in [13]:

Theorem 1. Let T be a strict Frank triangular norm and |6t be a T -tribe. Then the set(@) of all
crispelements off” (i.e., those attaining only valudsl) is a o-algebra. Each T-measure p éhis
of the form

H(A) = v(AX((0,1])) + [ AdA

wherev, A are (classical) measures on(C) (up to the standard identification of sets with their
characteristic functions).

In [15], the latter theorem was extended to a more general case of so+oadidy Frank t-norms
(see [12, 14]). On the other hand, for all other t-noffrhe general form of & -measure reduces to

W(A) = v(AH((0,1])),

wherev is a (classical) measure @{7). These results were obtained under an additional assumption
of monotonicity of thel -measure in question; nevertheless, an independent generalization in [3] (for
Frank t-norms) and [4] (for the general case) show that the characterization of nonmoriotonic
measures remains essentially the same.

We tried to compare probability measures (called aliste$ on o-algebras angbrobability T -
measureqcalled alsoT -state} on T-tribes. They form convex sets. In many cases the space of
all T-states is affinely homeomorphic to the state space of smalgebra. This correspondence is
canonical in the case when the t-nofnis not nearly Frank; them-states on & -tribe 7" are uniquely
determined by their restriction to treealgebraC(7). A less trivial correspondence is obtained for
Frank and nearly Frank t-norms where the above restriction is not injective. Still in many cases (e.g.,
for semigenerated tribestroduced in [11]) theT -state space is affinely homeomorphic to the state
space of some-algebra (different fronC(7)).
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