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Handheld devices are becoming ubiquitous and, as their processing 
and memory capacity increases, they are starting to displace laptop 
computers for certain tasks -much as laptop computers have 
displaced desktop computers in many roles. Current handheld 
devices are evolving either from the organizer or PDA side or from 
the cellular phone side and both lines are merging rapidly. 
However, whatever their origin, all handheld devices share the same 
Achilles' heel, the battery. This is because battery technology is not 
improving at the same pace as the energy requirements of handheld 
electronics. Therefore, energy management, once in the realm of 
desired features, has become an important design requirement and 
one of the greatest challenges in portable computing, and it will 
remain so for a long time to come. 
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1 Introduction

The disparity between energy requirements and energy sources in handheld devices is the result of
several factors. First, users expect more functionality from their devices (more performance and
memory, better displays, wireless capabilities, etc.), and although partially offset by improvements
in low-power electronics, this increased functionality carries corresponding increases in energy
consumption. Second, as a consequence of their increased functionality, these handheld devices
are displacing other pieces of equipment and as a result are seeing more use between battery
charges. Finally, battery technology has not improved at the same pace as the increase in energy
requirements.

Among today’s rechargeable batteries, lithium-ion cells offer the highest capacity. Introduced
commercially by Sony in 1991, their capacity has improved by about 10 % per year in recent
years [8]. But this rate of improvement is levelling off, and even with alternate materials and novel
cell structures, major future improvement in rechargeable batteries is unlikely.

That is why battery suppliers and mobile system designers expect the eventual emergence of fuel
cell power sources and are investing accordingly. In its most basic form, a fuel cell combines
hydrogen fuel with oxygen from the surrounding air to produce water and electricity. But hy-
drogen combusts easily and has low density, making it unattractive for most mobile applications.
Instead, most efforts are directed towards using methanol as fuel and extracting the hydrogen with
catalysts or high temperature reforming [9]. While methanol-based fuel cells promise an order-of-
magnitude higher energy density than chemical rechargeable batteries, serious development issues
remain. Still, several manufacturers (Intermec Technologies & MTI MicroFuel Cells, NEC, and
Casio) have promised initial product introductions in 2004 – 2005. While some of these early fuel
cells will be used in handheld systems, most will be for laptop computers where the fuel cell’s
hardware complexity can be amortized over a larger system. Widespread adoption of fuel cells in
portable electronics is not expected until the end of the decade. Experience has shown that users’
expectations evolve along with systems’ capabilities. Even the adoption of fuel cells will prob-
ably not be enough to slake mobile users thirst for energy or diminish the importance of energy
management.

Although the words power and energy are often used interchangeably in casual conversation, it is
very important to understand the difference between these two concepts. The power used by a de-
vice is the energy consumed per time unit. Conversely, energy is the time integral of power. Since
a battery stores a given quantity of energy, the goal of energy management (unfortunately, often
referred to as power management) is to minimize the amount of energy required to satisfactorily
perform each task. In some cases, minimizing the power also minimizes energy, but, as will be
shown, this is not always the case. Some tasks will require less energy to complete when being
performed at high speed and high power for a short duration rather than at low speed and low
power for a longer period of time.

However, fixed-duration tasks — such as playing audio or video — form an important class where
the energy required is directly proportional to the average power consumed (since the duration of
the task is, by definition, constant). This class also includes waiting, whether waiting for user input
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Figure 1: Minimum power (Sleep mode) and low and high power consumption of the Itsy v2.4 for
a set of representative benchmarks. Display and front-light power of the Compaq iPAQ H36xx.
Sleep (Doze), Idle, receiving, and transmitting power of the Proxim ORiNOCO PC Gold IEEE
802.11b wireless card.

when the device is on or keeping data in memory and the clock ticking when the device is off. For
this class of tasks, focusing on minimizing power will minimize energy.

2 Energy usage in current handheld devices

In order to do useful energy management, it is important to understand how and where the energy is
used in handheld devices. Unfortunately, there is little published data available. A power study [11]
has been published for the Itsy [4], a prototype pocket computer developed by our team. In this
study, the power usage of Itsy is broken down into its components for a variety of workloads
ranging from idling to decoding and playing MPEG video. Figure 1 shows the minimum power
consumed by several components or group of components (usually attained during Sleep mode)
as well as the low and high power consumption figures for all the non Sleep-mode benchmarks
used in this study. These power ranges are representative of real-life power consumption, since the
benchmarks range from Idle mode to applications stressing the limits of most components.
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In most respects, Itsy is very similar to its contemporary commercial handheld devices based on
Intel’s StrongARM processors. Therefore, its power usage should also be representative of these
devices. However, there is one aspect where Itsy differs considerably from its commercial coun-
terparts: the display. Itsy uses a passive-matrix gray-scaleliquid crystal display (LCD), optimized
to be used without back-light in most lighting conditions (only under very dim lighting is the back-
light necessary). On the other hand, many commercial handheld devices use active-matrix color
LCDs. Although these LCDs are usually reflective or transflective and, hence, can be used with
ambient light only, it has been found that most users turn the back- or front-light on, to at least low
brightness, for more contrast and brighter more-saturated colors. To account for this difference,
Figure 1 also presents the power for the display and front-light of the Compaq iPAQ H36xx, a
device which is otherwise similar to Itsy.

Another significant difference is that Itsy did not have any built-in wireless capability, while to-
day many handheld users want wireless communication, either as an accessory or, for the latest
handheld devices, built into the system. Figure 1 also shows the power consumption of a popular
wireless (IEEE 802.11b) PC Card [10], which can be used as an accessory on handheld devices
such as the Compaq iPAQ H36xx.

Finally, while it would have been preferable to present data for a more recent device with a more
modern processor, no similarly comprehensive data has been published. Although based on newer
technology, the architecture of these devices is similar enough to Itsy’s that a power breakdown
should not look qualitatively much different.

3 Energy-saving techniques

The most noticeable characteristic of Figure 1 is that the minimum power values for all components
are at least an order-of-magnitude smaller that the maximum ones. It suggests that the obvious
technique of turning off a sub-unit when it is unused can actually be very effective. Although
conceptually simple, this scheme requires a very careful analysis of theoperating system (OS).
As our experience with Itsy showed, achieving optimal energy savings requires well structured
software and a lot of careful work.

In order to achieve this goal, system hardware should be designed as a collection of inter-connected
building blocks that can function independently and be independently powered on and off. Current
handheld devices only partially fulfill this requirement. Peripheral building blocks (communication
ports, audio input and output, display, etc.) can usually be disabled or turned off when unused.
However, it is generally not possible to turn off the central building blocks, such as the processor
or memories, except by putting the whole system in Sleep mode.

With the trend of putting more and more functionality into the processor, it becomes important
that new processor architectures keep internal building blocks independent from a power point-of-
view. It would also be useful if integrated circuit manufacturers would specify the power behavior
of sub-units. Todays specifications usually provide only information on how to enable or disabled
a sub-unit or how to change its parameter (speed, etc.), but not how such actions will affect the
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Figure 2: StrongARM SA-1100 power states.

power consumption. Without such data, software developers must resort to guesses or perform
their own measurements.

Finally, one of the interesting findings of the Itsy power study is that the interplay of different
sub-units with different power characteristics sometimes results in surprising and counter-intuitive
behavior [11]. This suggests that real-time power measurement hardware might enable the soft-
ware to make better energy-use decisions.

3.1 Processor

3.1.1 Power states

As shown in Figure 1, the processor can be responsible for a large percentage of the system’s
power consumption. The processors in today’s handheld devices provide mechanisms to reduce
their power usage by reducing the available performance. There are typically three major power
states:Run, Idle, andSleep. Each of the major states can itself consist of one or more minor states.
For example, there may be multiple frequencies to choose from for the running state. Similarly,
there may be multiple levels of the Sleep state, each with a different set of components turned off.

Figure 2 shows the major power states available on the StrongARM SA-1100, the processor used
on Itsy. The Run major state has 20 minor states, two core frequencies for each of the 10 supported
frequencies used by the rest of the processor. The Idle state has 10 minor states, one per supported
frequency. The transitions between the Run state and the Idle or Sleep state are under software
control. The transition from the Idle state to the Run state is triggered by an interrupt. The transi-
tion from the Sleep state to the Run state occurs as a result of areal-time clock (RTC)alarm or an
external interrupt.

Three things need to be considered when looking at the energy implications of using a given
processor state: (1) the performance available in this state, (2) the latency required to enter and
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Table 1: Characteristics of the major power states on Itsy v2.4.

State Performance Hardware latencies Electrical power

Sleep

no instructions are
executed, interrupts are
detected and can awake the
processor

entering Sleep: 150µs
exiting Sleep: 10 – 157 ms

7.18 mW

Idle
no instructions are
executed, interrupts put the
processor in the Run state

entering Idle:< 10 cycles
exiting Idle: < 10 cycles

55.5 mW at 59 MHz
81.9 mW at 133 MHz
95.5 mW at 192 MHz

Run
performance is a function
of processor frequency

N/A depends on the workload

exit this state (usually from/to the Run state), and (3) the power consumed by the processor in this
state.

From a software point-of-view, the Idle state is considered a lightweight state because of the small
entry and exit latencies, while the Sleep state has much larger latencies and is considered a heavy-
weight state. Table 1 shows the performance, latencies and power used of Itsy for each of the
StrongARM SA-1100 states.

There are a couple of things to consider when looking at Table 1. One is to note that the Sleep
state has two minor states, depending on whether or not the main clock is left enabled. Turning
it off saves power but increases the latency to exit the Sleep state from 10 ms to 157 ms. Another
important issue is that these latencies are only hardware latencies and, in the case of the Sleep
state, one should consider the sometimes significant latencies resulting from saving and restoring
OS state.

3.1.2 Frequency and voltage scaling

Dynamic frequency scaling (DFS)is a technique that seeks to reduce power consumption by chang-
ing the processor frequency based on the requirements of the executing application. For fixed-
duration tasks, especially waiting, this usually results in a proportional reduction of energy use.
For other tasks, due to the corresponding increases in execution time, DFS could either save or
waste energy depending on second-order effects. To guarantee energy savings, the processor volt-
age must be changed at the same time as the frequency. This technique is referred to asdynamic
voltage-frequency scaling (DVFS). In the literature, it is also known asdynamic voltage scaling
(DVS).

The importance of DVFS arises from the fact that the power consumed by a processor is propor-
tional to the frequency and to the voltage squared:

P ∝ f · v2
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As a first approximation, a given task (with no waiting) takes a fixed number of processor cycles,
so the energy used per task is proportional to the voltage squared.

Older processors did not support voltage scaling (although the StrongARM processor was only
specified to allow frequency scaling, several experimental systems, including Itsy, used it to im-
plement DVFS). Newer processors like the Intel’s XScale processors are specified to operate at a
few different voltage points, with different maximum frequencies.

DVFS and DFS algorithms strive to change the frequency without affecting the user’s perception of
system response time. Frequency changes usually occur at a fixed rate, for instance every 10 ms,
and are based on a prediction of the processing requirements (workload) until the next decision
point. Although many algorithms have been proposed [12, 3], DVFS (or even DFS) is rarely
implemented in general purpose commercial handheld systems.

Instead, handheld devices that support frequency scaling have taken a more static approach, chang-
ing processor frequency only as a result of major events such as a user request or low battery
condition. There are many reasons for the lack of DVFS/DFS in commercial handheld systems,
including the added complexity of correctly implementing DVFS/DFS and the potential for in-
creased system response time. There are also side effects associated with frequency changes in
many current processors. These processors are highly integrated and include many I/O compo-
nents, such as LCD controller and serial ports, which can misbehave during or after a frequency
change. To eliminate this problem, some (like the XScale processors) can be programmed with
two core frequencies, where one is a multiple of the other, and can quickly switch between the two
without affecting the I/O components.

3.2 Memory

One interesting finding of the Itsy power study [11] is that the energy cost of refreshingdynamic
random-access memory (DRAM)is small compared to the cost of accessing it. Therefore increas-
ing the size of the memory does not result in an important energy penalty. This is, however, not
the case in Sleep mode. In Sleep mode, it would be beneficial to be able to selectively power
down part of the memory. Although OSes have traditionally not implemented any mechanisms for
this purpose, one could compress the memory content or otherwise free memory (e.g., require that
some applications save their state and exit) to take advantage of such a feature.

Any techniques to reduce the number of memory accesses would also be beneficial. Traditionally,
caches have been used for this purpose. However, caches are themselves memory arrays and the
energy cost of accessing a cache will increase with its size. In the future, it is possible that cache
sizes for handheld processors will be optimized to reduce energy consumption rather then access
time.
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3.3 Display

As illustrated by Figure 1, the display back- or front-light can easily dominate over the not insignif-
icant power used by the display itself. Even at quarter brightness, the iPAQ H36xx’s front-light is
a major power consumer.

Some of this lamp power becomes the photons which make up the image and, hence, some power
use is unavoidable in low lighting conditions. However, with good ambient lighting, the use of a
back- or front-light could be completely avoided if LCDs had better reflective characteristics.

While cold cathode fluorescent lamps (CCFLs)are typically used for illuminating color LCDs in
handheld products,light emitting diodes (LEDs)are gaining a foothold. While today’s white LEDs
have less than half the efficiency of CCFLs, they are rapidly improving and dropping in price [5]
and are being used where the LED’s lower efficiency is offset by simplified light-guide optics and
elimination of the CCFL’s high-voltage power converter.

Independently from display hardware improvements, other energy-saving techniques might also
be used. For instance, a typical back- or front-light illuminates an LCD uniformly. However, the
full brightness of the light is only efficiently used for light pixels. For dark pixels, the light is
mostly absorbed and the corresponding power wasted. Naehyuck Chang and his team proposed to
dimming the back- or front-light while compensating by increasing the brightness and the contrast
when displaying dark pictures [2]. They also proposed software techniques to reduce the power
consumption of the LCD driver.

Organic light-emitting diode (OLED)displays are a promising new technology for the near future.
However, since these displays are emissive, they can not make use of ambient light. However,
a more pro-active form of energy management is possible for OLED displays: Subu Iyer et al.
suggest darkening the parts of the screen that are not actively used by an application [7]. Although
effective on laptop computers, it is unclear whether this technique would yield significant energy
savings for handheld devices, where most applications use most of the screen. One could also
choose window color schemes to reduce the number of bright pixels (e.g., light text over dark
background).

Finally, further energy reduction could be achieved by changing the usage model for some hand-
held devices. A viewfinder or head-mounted display uses a tiny, display element to produce a large
virtual image [6] and uses significantly less power than direct-view handheld displays.

3.4 Audio system

While microphone input uses little power, audio output — particularly using loudspeakers — can
use appreciable power. In recent years, highly efficient switching (class D) amplifiers have been
displacing traditional linear amplifiers on portable electronics for all but audiophile applications.
The remaining power is mostly used to actually produce the sound and little can be done if speakers
remain the favored audio-output interface. However, as with displays, energy could be saved by
changing the usage model, in this case by using headsets.
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3.5 Wireless networking

Wireless networking is becoming an important feature in current handheld devices. The most
popular short-range wireless technologies areBluetooth (BT)and IEEE 802.11b (orWiFi). Low-
power BT is a short range technology, having a typical range of 10 meters, with a bandwidth of
less than 1 Mbit/s. One of its main advantages is the low power consumption, on the order of 100 –
200 mW for transmission and reception, 10 – 20 mW in Idle mode, with even lower power modes
(e.g., SNIFF, HOLD, or PARK) available during sporadic use.

IEEE 802.11b has a much longer range, normally about 100 meters, and a much higher bandwidth
(11 Mbit/s) at the cost of much higher power consumption. For example, an IEEE 802.11b wireless
PC Card was measured at about 60 mW in Sleep (Doze) mode, 805 mW in Idle mode, 950 mW
while receiving, and 1400 mW while transmitting [10].

Today’s most common technology for wide-area wireless networking isGeneral Packet Radio
Service (GPRS). GPRS uses a mobile telephone network to send and receive information and has a
theoretical maximum speed of about 170 kbit/s. Typical speeds are much less, in the range of 10 –
50 kbit/s. Higher speeds are expected in the future whenEnhanced Data rates for GSM Evolution
(EDGE)andUniversal Mobile Telephone System (3GSM)are introduced.

Reducing energy consumption in a wireless subsystem is achieved by spending as much time as
possible in low power states. However, as with processor state switching, it is important to take
into account the energy cost of transitions into and out of these lower power states.

4 Current operating systems

Current operating systems usually implement three power states substantially equivalent to the
Run, Idle, and Sleep states described earlier for Linux. However, they are often named differently.
In particular, Windows CE 3.0 calls themOn, Idle andSuspend; Symbian calls themRun, Idle and
Standby; and Palm OS calls themRun, DozeandSleep.

Most OSes use an Idle thread or process running at the lowest possible priority that is entered
whenever there is no useful work to be done. The function of the Idle thread is to put the processor
into its Idle state. The OS enters its Sleep state either through a user action such as pressing a
button, or through an inactivity timer. Before the OS can put the processor into its Sleep state, it
must first save some portion of the OS state, such as the value of some processor control registers.
When the OS resumes, either by user action or by an RTC alarm (e.g., an appointment alarm), the
OS must restore the processor registers that were saved.

OSes also support turning off individual components when they are not being used. For example,
the audio subsystem could be turned off when no application is using it.

Linux is often used for prototyping thanks to its open-source model, which allows anyone to im-
plement and explore novel energy management approaches.
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5 Conclusion

As people are increasingly relying on handheld devices, good energy management is becoming
necessary to squeeze the most out of a battery. A plethora of ideas have been proposed and tested
by researchers in academia and in industry, but few have made their way into commercial products.
The field is still in its infancy and interesting ideas continue to blossom.

Power/energy studies, which have been sadly lacking, are necessary to understand how energy is
actually used. Very little data is available and more published studies are badly needed. Another
requirement is better tools to track how energy is used [1], in particular the capability to evaluate
power consumption in real time.

There is also a chasm in that power measurements have traditionally been in the hands of hardware
engineers, while energy management is usually the responsibility of software developers. Hard-
ware engineers need to provide energy-tracking tools that software developers can easily use. At
the same time, software engineers need to acquire a better understanding of how the hardware uses
energy. In many respects, the energy-management field is at the same stage as performance evalua-
tion decades ago, when a similar gulf existed between hardware engineers who understood ”where
cycles were being used” and software engineers who wrote compilers and applications. Perhaps
within a few years ”energy-management engineers” will be as numerous as performance engineers
are today and will help bridge this still yawning gap.
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