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Abstract
This paper considers state estimation for dynamic

systems in the case of nonwhite, mutually correlated
noise processes. Here, the problem is complicated
by the fact, that only the individual covariances are
known; cross covariances between random variables
obtained by taking individual noise processes at dif-
ferent time steps and between different noise processes
are completely unknown. New estimator equations
for solving this problem are derived in feedback form
for both the prediction step and for the filtering step
based on existing ideas known as covariance intersec-
tion. Solutions are given for the most general case
of updating an N–dimensional state vector estimate
based on M–dimensional observations. Furthermore,
computationally efficient solutions for obtaining mini-
mum covariance estimates are derived to avoid numer-
ical optimization otherwise required.

1 Introduction
We consider the problem of state estimation for lin-

ear dynamic systems when nonwhite, mutually corre-
lated noise processes are present. Solving this problem
includes 1. sequentially updating the state estimate
based on noisy observations and 2. propagating the
state estimate through a dynamic system.

The main problem in deriving an appropriate fil-
ter is, that the assumed noise model leads to an un-
known amount of correlation between a given state
estimate and the noise processes. Hence, an appropri-
ate estimator must yield results compatible with all
possible levels of correlation. This is the key point of
the proposed filter method, which is based on ideas
known as covariance intersection [3, 1]: The unknown
correlations are not neglected, but considered by pro-
ducing conservative estimates for prediction and fil-
tering step which are consistent with any level of cor-
relation. Applying this kind of filter to complex esti-
mation problems like multiple target tracking, robot
localization, and decentralized fusion, often improves
results significantly compared to a common Kalman
filter based approach, especially if covariances cannot

be estimated properly or the measurements are dis-
torted by non-white noise [2, 4]. Good results may
even be obtained in cases, where the Kalman filter
based approach completely fails and the filter diverges,
for example in decentralized control problems [1].

The main contribution of this paper is to derive new
formulae for the prediction step and for the filtering
step in feedback form, where the most general case
of updating an N–dimensional state vector estimate
based on M–dimensional observations is considered.

Furthermore, practically useful and computation-
ally efficient solutions for obtaining minimum covari-
ance estimates have been derived for both the pre-
diction step and for the filtering step. This allows a
simple and efficient overall implementation of the filter
algorithm, because no numerical optimization routines
are required.

We hope that the results are helpful for practition-
ers willing to implement this type of filter. Further-
more, since all the required derivations and proofs
are included, it also provides the basis for further
development along these lines.

In Sec. 2, a rigorous formulation of the problem of
state estimation with unknown correlations is given.
Section 3 then derives an algorithm for the prediction
step (time update) in the presence of unknown correla-
tions. An efficient solution for the optimal parameter
for the prediction step is derived in Sec. 4. Subse-
quently, the filter step (measurement update) for vec-
tor measurements is derived in feedback form in Sec. 5,
the solution for the corresponding optimal parame-
ter is then given in Sec. 6. The scalar measurement
case including a more explicit solution for obtaining
minimum covariance estimates is treated separately
in Sec. 7.

2 Problem Formulation
We consider a state space model with stochastic

uncertainties according to

xk+1 = Akxk + Bkuk with uk = ûk + eu
k , (1)

ŷ
k

= Hkxk + ey
k , (2)
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where the nonwhite additive input noise eu
k is charac-

terized by

Cov{eu
n, eu

m} =

{
C̃uu

n for n = m ,

unknown otherwise

and the nonwhite additive output noise ey
k by

Cov {ey
n, ey

m} =

{
C̃yy

n for n = m ,

unknown otherwise ,

which is equivalent to unknown power spectra. Only
upper bounds Cu

k , Cy
k for the true covariance matrices

are given by

Cu
k ≥ C̃uu

k ,

Cy
k ≥ C̃yy

k ,

where for two positive definite matrices A and B, the
expression A > B is interpreted as A − B positive
definite. In addition, eu

k , ey
k are possibly mutually

correlated, i.e.,

Cov {eu
n, ey

m} = unknown for all n, m ,

with an unknown amount of cross–correlation.

3 Time Update
At time step k, a state estimate xs

k of the form

xs
k = x̂s

k + es
k

is given with mean x̂s
k and additive uncertainty es

k.
The joint covariance matrix of es

k and eu
k is given by

Cov
{[

es
k

eu
k

]}
=

[
C̃ss

k C̃su
k

C̃us
k C̃uu

k

]
,

where only upper bounds Cs
k, Cu

k for the true covari-
ances C̃ss

k , C̃uu
k with

Cs
k ≥ C̃ss

k , Cu
k ≥ C̃uu

k

are known. The cross–covariances C̃su
k = (C̃us

k )T are
completely unknown.

When performing a time update at time step k by
means of the system model (1), the mean x̂p

k of the
predicted state xp

k is simply given by the weighted sum
of the mean of the last estimate x̂s

k−1 and the estimate
ûk−1 of the system input according to

x̂p
k = Ak−1x̂

s
k−1 + Bk−1ûk−1 .

The problem is now to calculate the covariance of the
predicted state xp

k, when the correlation between the
previous estimate xs

k−1 and the system input uk−1 is
unknown. Before solving this problem, we need the
following two Theorems:

Theorem 3.1 Given a positive definite symmetric
matrix C̃ with

C̃ =
[
Caa Cab

Cba Cbb

]
,

a larger matrix C ≥ C̃ is given by

C =
[ 1

0.5−κCaa 0
0 1

0.5+κCbb

]
,

with κ ∈ (−0.5, 0.5).

Proof. For C − C̃, we obtain

C − C̃ =

�
�
n

1
0.5−κ

− 1
o

Caa −Cab

−Cba

n
1

0.5+κ
− 1

o
Cbb

�
�

=

� 0.5+κ
0.5−κ

Caa −Cab

−Cba
0.5−κ
0.5+κ

Cbb

�
.

The quadratic form

Q =
�
aT bT

�n
C − C̃

o�
a
b

�
=
�
aT bT

� �λCaa −Cab

−Cba
1
λ
Cbb

��
a
b

�

with

λ =
0.5 + κ

0.5 − κ
∈ [0,∞)

and arbitrary vectors a ∈ IRN , b ∈ IRM can be rewritten
as

Q =
h√

λ aT − 1√
λ

bT
i �

Caa Cab

Cba Cbb

�
	 
z �

C̃

� √
λ a

− 1√
λ

b

�
.

Since C̃ is positive definite, we have Q ≥ 0, which implies

that C − C̃ is positive semi–definite. �

Remark 3.1 C ≥ C̃ in Theorem 3.1 implies that

trace(C) ≥ trace(C̃) ,

|C| ≥ |C̃| ,

Cii ≥ C̃ii for i = 1 . . .N + M .

Lemma 3.1 If matrix C is larger (or equal) than ma-
trix C̃, i.e., C ≥ C̃, then TCTT ≥ TC̃TT for an
arbitrary matrix T.

Theorem 3.2 Given two correlated random vectors
a, b, with means â, b̂ and true covariance matrix

Cov
{[

a
b

]}
=

[
C̃aa C̃ab

C̃ba C̃bb

]
,
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where, however, only upper bounds Caa, Cbb for the
true individual covariances C̃aa, C̃bb with

Caa ≥ C̃bb ,

Caa ≥ C̃bb ,

are known. The cross–covariances C̃ab = C̃T
ba are

unknown. Then, an upper bound Ccc for the true
covariance C̃cc of the random vector

c = Aa + Bb (3)

is given by

Ccc =
1

0.5 − κ
ACaaAT +

1
0.5 + κ

BCbbBT .

Proof. Writing (3) as

c =
�
A B

� �a
b

�
,

the true covariance C̃cc of c is obviously given by

C̃cc =
�
A B

� �C̃aa C̃ab

C̃ba C̃bb

��
AT

BT

�
.

Replacing the covariance matrix by a larger one according
to Theorem 3.1 gives

Ccc =
�
A B

� � 1
0.5−κ

Caa 0

0 1
0.5+κ

Cbb

��
AT

BT

�
.

With Lemma 3.1, we have Ccc ≥ C̃cc, which concludes the

proof. �

Based on this Theorem, the solution to calculating
the covariance of the predicted state xp

k, when the cor-
relation between the previous estimate xs

k−1 and the
system input uk−1 is unknown, is given by

Cp
k =

1
0.5 − κk−1

Ak−1Cs
k−1A

T
k−1

+
1

0.5 + κk−1
Bk−1Cu

k−1B
T
k−1

for κk−1 ∈ (−0.5, 0.5). The time update is started
with the initial state estimate x̂s

0 with initial covari-
ance Cs

0.

4 Minimum Covariance Time Update
Theorem 4.1 The parameter κmin

k for the minimum
covariance matrix of the prediction result is given as
the unique zero of

N∑
i=1

µ̄i
kκ2

k + κk + 0.25µ̄i
k

κk + 0.5µ̄i
k

!= 0

in the interval κk ∈ (−0.5, 0.5), where µ̄i
k is given by

µ̄i
k =

1 + µi
k

1 − µi
k

,

and µi
k, i = 1, . . . , N , are the generalized eigenvalues

of the matrix pair AkCS
kAT

k and BkCu
kB

T
k .

Proof. Transforming the matrix pair AkC
S
k AT

k and
BkC

u
kB

T
k as TT AkC

S
kAT

k T = I and TT BkC
u
kBT

k T =
diag

�
µ1

k, . . . , µN
k

�
results in

det{Cp
k} = det

�
1

0.5 − κk
I +

1

0.5 + κk
diag

h
µ1

k, . . . , µN
k

i
,

which is equivalent to

det{Cp
k} =

�
1

0.5 − κk

N

det

�
I +

0.5 − κk

0.5 + κk
diag

h
µ1

k, . . . , µN
k

i
,

where N is the dimension of the state space. Bilinear
transformation of κk according to

λk =
0.5 − κk

0.5 + κk

and differentiating with respect to λk gives the necessary
condition

−N

�
1 + λk

λk

N−1
1

λ2
k

NY
i=1

n
1 + µi

kλk

o
+

�
1 + λk

λk

N NX
i=1

���
��µi

k

NY
j=1
j �=i

(1 + µj
kλk)

���
�� = 0

,

which can be simplified to

−N + λk(1 + λk)
NX

i=1

µi
k

1 + λkµi
k

= 0 .

With N =
PN

i=1 1 we obtain

NX
i=1

µi
kλ2

k − 1

1 + µi
kλk

= 0 .

Resubstituting κk gives

NX
i=1

µi
k(0.5 − κk)2 + (0.5 + κk)2

0.5 + κk + (0.5 − κk)µi
k

= 0 .

Applying a bilinear transformation of the eigenvalues ac-
cording to

µ̄i
k =

1 + µi
k

1 − µi
k

concludes the proof. �
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5 Measurement Update:
Vector Observations

We consider the measurement equation (2) with
(uncertain) vector observations ŷ

k
at time k. xk de-

notes the state vector, ey
k denotes the additive uncer-

tainty. Furthermore, there exists a prior estimate xp
k

of the state vector, which also suffers from additive
uncertainty ep

k according to

xp
k = x̂p

k + ep
k .

ep
k, ey

k are assumed to be correlated according to

Cov
{[

ep
k

ey
k

]}
=

[
C̃pp

k C̃py
k

C̃yp
k C̃yy

k

]
. (4)

Only upper bounds Cp
k, Cy

k for the true covariances
C̃pp

k , C̃yy
k are known according to

Cp
k ≥ C̃pp

k ,

Cy
k ≥ C̃yy

k .

The cross–covariances C̃py
k = (C̃yp

k )T are completely
unknown.

Theorem 5.1 A conservative state estimate based on
a given vector observation ŷ

k
is given by

x̂s
k = x̂p

k + λkC
p
kH

T
k{

Cy
k + λk HkC

p
kH

T
k

}−1
(
ŷ

k
− Hkx̂p

k

)
,

Cs
k = (1 + λk)Cp

k − (1 + λk)λk Cp
kH

T
k{

Cy
k + λk HkC

p
kH

T
k

}−1
HkC

p
k ,

(5)

with scaling parameter λk ∈ [0,∞).

Proof. Consider the random vector

zk =

�
xp

k

ŷ
k

�
.

The mean of zk is

E {zk} =

�
x̂p

k

Hkx̂p
k

�
.

The covariance matrix of zk is given by

Cov {zk} = Cov

��
xp

k

ŷ
k

�

= E

��
xp

k − x̂p
k

ŷ
k
− Hkx̂p

k

��
xp

k − x̂p
k

ŷ
k
− Hkx̂p

k

�T
�

= E

��
ep

k(ep
k)T ep

k{(ep
k)T HT

k + (ey
k)T }

{Hkep
k + ey

k}ep
k {Hkep

k + ey
k}{(ep

k)T HT
k + (ey

k)T }
�

=

�
C̃pp

k C̃pp
k (Hk)T + C̃py

k

HkC̃
pp
k + C̃yp

k HkC̃
pp
k HT

k + HkC̃
py
k + C̃yp

k HT
k + C̃yy

k

�
.

Bounding the true covariance matrix in (4) from above
by

Cov

��
ep

k

ey
k

�
≤
� 1

0.5−κ
Cp

k 0

0 1
0.5+κ

Cy
k

�

gives

Cov {zk} ≤

�
��

1
0.5−κk

Cp
k

1
0.5−κk

Cp
kH

T
k

1
0.5−κk

HkC
p
k

1
0.5+κk

Cy
k + 1

0.5−κk
HkC

p
kH

T
k

�
�� .

Hence, according to the appendix we have

x̂s
k = x̂p

k +
1

0.5 − κk
Cp

k HT
k

�
1

0.5 + κk
Cy

k

+
1

0.5 − κk
HkC

p
kH

T
k

−1

(ŷ
k
−Hkx̂p

k) ,

Cs
k =

1

0.5 − κk
Cp

k − 1

(0.5 − κk)2
Cp

k HT
k

�
1

0.5 + κk
Cy

k

+
1

0.5 − κk
HkC

p
kH

T
k

−1

Hk Cp
k ,

or equivalently

x̂s
k = x̂p

k +
0.5 + κk

0.5 − κk
Cp

k HT
k

�
Cy

k

+
0.5 + κk

0.5 − κk
HkC

p
kH

T
k

−1

(ŷ
k
− Hkx̂p

k) ,

Cs
k =

1

0.5 − κk
Cp

k − 1

0.5 − κk

0.5 + κk

0.5 − κk
Cp

k HT
k

�
Cy

k

+
0.5 + κk

0.5 − κk
HkC

p
kH

T
k

−1

Hk Cp
k .

With the bilinear transformation

λk =
0.5 + κk

0.5 − κk
(6)

we have

1

0.5 − κk
= 1 + λk , (7)

which achieves the proof. �

6 Minimum Covariance Measurement
Update

Theorem 6.1 The scaling parameter λmin
k for a min-

imum covariance matrix of the filtering result is given
by

λmin
k =

0.5 + κmin
k

0.5 − κmin
k

,
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where κmin
k is the unique zero of the expression

M∑
i=1

κk − 0.5
κk + 0.5µ̄i

k

!= M − N

with κk ∈ (−0.5, 0.5). Note that M is the dimen-
sion of the measurement vector and N is the dimen-
sion of the state vector. µ̄i

k are given by the bilinear
transformation

µ̄i
k =

1 + µi
k

1 − µi
k

,

where µi
k, i = 1, . . . , M , are the generalized eigenval-

ues of the real, symmetric, positive definite matrix pair
Cy

k and HkC
p
kH

T
k .

Proof. We have

det{Cs
k} =

(1 + λk)N det{Cp
k}det{Cy

k}
det{Cy

k + λkHkC
p
kH

T
k }

.

Transforming the matrix pair Cy
k, HkC

p
kH

T
k according

to TT Cy
kT = I, TT HkC

p
kH

T
k T = diag[µ1

k, . . . , µM
k ] we

obtain

det{Cs
k} = ck

(1 + λk)N

MY
i=1

(1 + µi
kλk)

with ck = det{Cp
k}det{Cy

k} and hence

det{Cs
k} = ck

MY
i=1

1

1 + µi
kλk

(1 + λk)N .

As a necessary condition for λmin
k we obtain

∂

∂λk
det{Cs

k} = ck

�
MY

i=1

(1 + µi
kλk)2

�−1�
N(1 + λk)N−1

MY
i=1

(1 + µi
kλk) − (1 + λk)N

MX
i=1

�
µi

k

MY
j=1
j �=i

(1 + µj
kλk)

�
!
= 0

Because of µi
k > 0 for i = 1, . . . , M and λk ∈ [0,∞) the

relations

(1 + λk)N−1 ≥ 1 ,

MY
i=1

(1 + µi
kλk) ≥ 1 ,

MY
i=1

(1 + µi
kλk)2 ≥ 1

hold and the above condition is simplified to

MX
i=1

1 − µi
k

1 + µi
kλk

!
= M − N .

Applying bilinear transformations according to

λmin
k =

0.5 + κmin
k

0.5 − κmin
k

, µ̄i
k =

1 + µi
k

1 − µi
k

gives the desired result. �

7 Measurement Update:
Scalar Observations

The case of estimating a vector state from scalar ob-
servations is treated separately from the general case,
since more explicit results can be obtained. We con-
sider an (uncertain) scalar observation ŷk at time k,
with the associated measurement equation

ŷk = HT
k xk + ey

k . (8)

xk denotes the state vector, ey
k denotes the additive

uncertainty. Furthermore, there exists a prior esti-
mate x̂p

k of the state vector. x̂p
k also suffers from

additive uncertainty ep
k according to

xp
k = x̂p

k + ep
k .

ep
k, ey

k are assumed to be correlated according to

Cov
{[

ep
k

ey
k

]}
=

[
C̃pp

k C̃
py

k

(C̃
yp

k )T C̃yy
k

]
.

Again, only upper bounds Cp
k, Cy

k for the true covari-
ances C̃pp

k , C̃yy
k are known according to

Cp
k ≥ C̃pp

k , Cy
k ≥ C̃yy

k

and the cross–covariances C̃
py

k = C̃
yp

k are completely
unknown.

Theorem 7.1 A conservative estimate for the state
in the linear measurement equation according to (8)
with a given scalar observation ŷk is given by

x̂s
k = x̂p

k + λk
Cp

kHk

Cy
k + λk HT

k Cp
kHk

(
ŷk − HT

k x̂p
k

)
,

(9)

Cs
k = (1 + λk)Cp

k − (1 + λk)λk
Cp

kHk HT
k Cp

k

Cy
k + λk HT

k Cp
kHk

(10)

with scaling parameter λk ∈ [0,∞).

Proof. Similar to vector case. �
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Theorem 7.2 With N ≥ 2 the dimension of the state
space and Gk = HT

k Cp
kHk, the minimum size of Cs

k
in (10) is attained for λmin

k given by

λmin
k =

Gk − NCy
k

(N − 1)Gk
.

Proof. Minimizing the volume of

Cs
k = (1 + λk)Cp

k − (1 + λk)λk
Cp

kHk HT
k Cp

k

Cy
k + λk HT

k Cp
kHk

is equivalent to minimizing

det(Cs
k) =det(Cp

k) det

�
(1 + λk)I

− (1 + λk)λk
Hk HT

k Cp
k

Cy
k + λk HT

k Cp
kHk

�
.

From basic linear algebra, we have

det(cI + abT ) = cL−1
�
c + aT b

�
with L the dimension of the vectors a, b and scalar c.
Hence, we obtain

det(Cs
k) =det(Cp

k)(1 + λk)N−1

�
1 + λk

− (1 + λk)λk
HT

k Cp
kHk

Cy
k + λk HT

k Cp
kHk

�
,

which can be simplified to

det(Cs
k) ∼ (1 + λk)N Cy

k

Cy
k + λkGk

.

Differentiation with respect to λk yields

∂

∂λk
det(Cs

k)

∼ (1 + λk)N−1Cy
k

N (Cy
k + λkGk) − (1 + λk)Gk

(Cy
k + λkGk)2

.

Setting the result to zero gives the necessary condition

λmin
k (N − 1)Gk + NCy

k − Gk = 0 .

With

∂2

∂λ2
k

det{Cs
k(λmin

k )} > 0 ,

this is the desired result. �

The special case of scalar states in the case of scalar
measurements must be treated separately and yields
simpler results.

Theorem 7.3 For the case N = 1, the scaling param-
eter λmin

k for minimum variance of the filtering result
is given by

λmin
k =

{
0 Cy

k ≥ H2
kCp

k ,

∞ otherwise.

Proof. The variance of the filtering result can be written
as

Cs
k =

Cp
k

C
y
k

H2
k

(1 + λk)

C
y
k

H2
k

+ λk Cp
k

.

The result follows by inspection. �

8 Conclusions
This article provides a self–contained derivation for

both the prediction and filtering step for state estima-
tion in the case of unknown correlations. The filtering
step is based on existing ideas [1], but has been fur-
ther extended. Moreover, an efficient algorithm for
the time update step has been developed. For both
the time update and the filtering step closed–form
solutions for the calculation of minimum covariance
estimates have been derived.

References
[1] Covariance Intersection Working Group,

“A culminating advance in the theory
and practice of data fusion, filtering, and
decentralized estimation”, Available at
http://www.ait.nrl.navy.mil/people/uhlmann/
CovInt.html, 1997.

[2] M. Csorba and H. Durrant–Whyte, “Map building us-
ing relative estimates”, Proceedings of the 1997 SPIE
Aerosense Conference, Orlando, Florida, 1997.

[3] S. Julier and J. Uhlmann, “A nondivergent estimation
algorithm in the presence of unknown correlations”,
Proceedings of the 1997 American Control Conference
(ACC’97), 1997.

[4] J. Uhlmann, S. Julier, and M. Csorba, “Nondivergent
simultaneous map building and localization using co-
variance intersection”, Proceedings of the 1997 SPIE
Aerosense Conference, Orlando, Florida, 1997.

Appendix
If a, b are jointly Gaussian with mean and covariance�

â

b̂

�
and

�
Caa Cab

Cba Cbb

�
,

a given observation b̃ yields the conditional (Gaussian)

density of the random variable a conditioned on b̃ accord-
ing to

E
n

a | b = b̃
o

= â + CabC
−1
bb

�
b̃ − b̂

�
,

E
n

aaT | b = b̃
o

= Caa − CabC
−1
bb Cba .
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