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Abstract

This paper considers state estimation for dynamic
systems in the case of nonwhite, mutually correlated
noise processes. Here, the problem is complicated
by the fact, that only the individual covariances are
known; cross covariances between random variables
obtained by taking individual noise processes at dif-
ferent time steps and between different noise processes
are completely unknown. New estimator equations
for solving this problem are derived in feedback form
for both the prediction step and for the filtering step
based on existing ideas known as covariance intersec-
tion. Solutions are given for the most general case
of updating an N—dimensional state vector estimate
based on M—dimensional observations. Furthermore,
computationally efficient solutions for obtaining mini-
mum covariance estimates are derived to avoid numer-
ical optimization otherwise required.

1 Introduction

We consider the problem of state estimation for lin-
ear dynamic systems when nonwhite, mutually corre-
lated noise processes are present. Solving this problem
includes 1. sequentially updating the state estimate
based on noisy observations and 2. propagating the
state estimate through a dynamic system.

The main problem in deriving an appropriate fil-
ter is, that the assumed noise model leads to an un-
known amount of correlation between a given state
estimate and the noise processes. Hence, an appropri-
ate estimator must yield results compatible with all
possible levels of correlation. This is the key point of
the proposed filter method, which is based on ideas
known as covariance intersection [3, 1]: The unknown
correlations are not neglected, but considered by pro-
ducing conservative estimates for prediction and fil-
tering step which are consistent with any level of cor-
relation. Applying this kind of filter to complex esti-
mation problems like multiple target tracking, robot
localization, and decentralized fusion, often improves
results significantly compared to a common Kalman
filter based approach, especially if covariances cannot
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be estimated properly or the measurements are dis-
torted by non-white noise [2, 4]. Good results may
even be obtained in cases, where the Kalman filter
based approach completely fails and the filter diverges,
for example in decentralized control problems [1].

The main contribution of this paper is to derive new
formulae for the prediction step and for the filtering
step in feedback form, where the most general case
of updating an N-dimensional state vector estimate
based on M—-dimensional observations is considered.

Furthermore, practically useful and computation-
ally efficient solutions for obtaining minimum covari-
ance estimates have been derived for both the pre-
diction step and for the filtering step. This allows a
simple and efficient overall implementation of the filter
algorithm, because no numerical optimization routines
are required.

We hope that the results are helpful for practition-
ers willing to implement this type of filter. Further-
more, since all the required derivations and proofs
are included, it also provides the basis for further
development along these lines.

In Sec. 2, a rigorous formulation of the problem of
state estimation with unknown correlations is given.
Section 3 then derives an algorithm for the prediction
step (time update) in the presence of unknown correla-
tions. An efficient solution for the optimal parameter
for the prediction step is derived in Sec. 4. Subse-
quently, the filter step (measurement update) for vec-
tor measurements is derived in feedback form in Sec. 5,
the solution for the corresponding optimal parame-
ter is then given in Sec. 6. The scalar measurement
case including a more explicit solution for obtaining
minimum covariance estimates is treated separately
in Sec. 7.

2 Problem Formulation
We consider a state space model with stochastic
uncertainties according to
Ty = Apzy + Bruyy, with w, = 4y +¢i . (1)
U, =Hizy +ey (2)
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where the nonwhite additive input noise e} is charac-
terized by

I Cuv forn=m ,
Cov{en, e} = :
unknown otherwise

and the nonwhite additive output noise ej by

Cov{el. e,

- CZ’/ forn=m ,

| unknown otherwise ,
which is equivalent to unknown power spectra. Only
upper bounds C}, Cy for the true covariance matrices
are given by

Cp>Cp |
Yy 1YY
C,>C;”,
where for two positive definite matrices A and B, the
expression A > B is interpreted as A — B positive

definite. In addition, e}, e} are possibly mutually
correlated, i.e.,

Cov {ey,e¥,} = unknown for all n, m ,

with an unknown amount of cross—correlation.

3 Time Update

At time step k, a state estimate zj of the form
Ty = & + ¢

is given with mean Z; and additive uncertainty ej.
The joint covariance matrix of ef and e} is given by

gl _[SF o
ol =[eF &

where only upper bounds Cj, C} for the true covari-
ances Cj°, Cp* with

Cc:> G cu>Cm

are known. The cross-covariances C3* = (C¥)T are
completely unknown.

When performing a time update at time step k by
means of the system model (1), the mean 2% of the
predicted state 2% is simply given by the weighted sum
of the mean of the last estimate 2; _; and the estimate
2y, of the system input according to

iz = Ak—lizfl + Bk—l@k,1 .

The problem is now to calculate the covariance of the
predicted state 2, when the correlation between the
previous estimate xj_; and the system input u;_, is
unknown. Before solving this problem, we need the
following two Theorems:
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THEOREM 3.1 Given a positive definite symmetric
matriz C with

~ __ Caa Cab
€= [Cba Cbb] ’

a larger matriz C > C is given by

C = |:0.51/-ecaa 0

1 )
0 o.5+anJ

with k € (—0.5,0.5).
ProoF. For C — C, we obtain
—1 — —
C— C _ {045—}4 1} C”’”’ Cab
—Cha {ﬁ - 1} Cup
_ {g:gt:caa _Cab :|

0.5—k
—Cha 057w Cb

The quadratic form
_ [T 3T ~l Q] _r.7.T ACaa —CabQ
o-twrrfe-cp ] -wen'Gr (& i

with
_05+«k

A
05—k

€ [0, 00)

and arbitrary vectors a € RY, b € RM can be rewritten
as

Cua Cab| [ VAa
Q=[VAa" - K] [cba cbﬂ {—Lab}

VX 2
N————
c

Since C is positive definite, we have Q > 0, which implies
that C — C is positive semi—definite. O

REMARK 3.1 C > C in Theorem 3.1 implies that

trace(C) > trace(C) ,
icl=[C,
LEMMA 3.1 If matriz C is larger (or equal) than ma-

triz C, i.e., C > C, then TCTT > TCTT for an
arbitrary matriz T.

THEOREM 3.2 Given two correlated random wvectors
a, b, with means a, b and true covariance matrixz

corf{[i]} - (& &

[ISlis]




where, however, only upper bounds Cgq, Cpp for the
true individual covariances Cgq, Cpp with

Caa > Cbb )

Caa > Cbb )
are known. The cross—covariances Cqp = C;;’; are
unknown. Then, an upper bound C.. for the true

covariance C.. of the random vector
= Aa+Bb (3)

is given by

1 ——  AC, AT+

Ccc:
05—k 0.5+

BCyB” .
K
PROOF. Writing (3) as
a
c= [A B] [b] ,
the true covariance Ce. of ¢ is obviously given by

Caa Ca| [AT

Cia Cu) BT

Replacing the covariance matrix by a larger one according
to Theorem 3.1 gives

75— Caa 0 AT
— 0.5—k
e = [A B] { 0 05+mcbb:| [ }

Coo= [A B][

With Lemma 3.1, we have C.. > CCC, which concludes the
proof. O

Based on this Theorem, the solution to calculating
the covariance of the predicted state 2}, when the cor-
relation between the previous estimate xj_; and the
system input w,_, is unknown, is given by

1 s T
Ck =05y A1 G
1
- - B, ,C* BT
T 0b ey EtCE1BE

for ky—1 € (—0.5,0.5). The time update is started
with the initial state estimate Zg with initial covari-
ance C§.

4 Minimum Covariance Time Update
THEOREM 4.1 The parameter k" for the minimum
covariance matrix of the prediction result is given as
the unique zero of

Y k2 4 kg 4+ 0250 1 0
K + 0.5/]?C

=1
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in the interval ki, € (—0.5,0.5), where [} is given by

)

[ = 1+ p,
l—uk

and uk, i=1,.
of the matrix pair AkCSA

, N, are the generalized eigenvalues
and B,C¢BY.

PROOF. Transforming the matrix pair AyC7AF and

B,C!B} as TTAL,C;ATT =1 and TTB,C!BIT =

diag [,u,l€7 e ,,ukN] results in
1

I
det{C}} = det{0.5fmc +0.5+M

ding [ ]}

which is equivalent to

1 N 0.5
det {1
nk} C{+o5+

det{CP} = {

uiv]} :

Bilinear

dag[ﬂk,...

where N is the dimension of the state space.
transformation of k; according to

0.5 — kg

A = 2Bk
¥ =05+ rr

and differentiating with respect to A\, gives the necessary
condition

N—-1 N
_N{]-‘;k/\k} /\iiH{1+ui)\k}+
1=1
N N N ’
{li:k} D ok [JA+mre) p =0

i=1 j=1
B

=
which can be simplified to

—N 4+ Ae(1+ A —rk =0

)
With N = 3"~ | 1 we obtain
i=1 1+ M )\k

Resubstituting ki gives

N i _ 2 2

13,(0.5 — k) + (0.5 4+ ki) -0

0.5+ ki + (0.5 — ki)l

=1

Applying a bilinear transformation of the eigenvalues ac-
cording to

k= 7 _ 7
1= py,

concludes the proof. O
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5 Measurement Update:
Vector Observations
We consider the measurement equation (2) with
(uncertain) vector observations §, at time k. z; de-

notes the state vector, e} denotes the additive uncer-
tainty. Furthermore, there exists a prior estimate z%
of the state vector, which also suffers from additive
uncertainty e} according to

el e} are assumed to be correlated according to

gp égp éyy
wfldf-leh & o
Only upper bounds C}, CY for the true covariances
CP?, C}Y are known according to

4 PP
Cch > Crr |
Y Yy
C!>CYw .

The cross—covariances C}Y = (CY¥")T are completely
unknown.

THEOREM 5.1 A conservative state estimate based on
a giwen vector observation Y, is given by

£} — &+ \CJH]
{Cl+ N H,CpHT (Qk - Hkﬁ) 7
C; = (1+M\,)Ch — (14 \g) \p CRHE
{CY + A\ H,CPHT} ™ H,CP
with scaling parameter A € [0, 00).

PrRoOOF. Consider the random vector

The mean of gz, is

£t = i)

The covariance matrix of z, is given by

Cov{z,} = Cov { Bﬂ }

—E E:;c) - @i Qz - iz T

T B, — Hezy| 8, — Hizy

B er(en)” er{(en) T HE + ()"}
{Hye} +efyer  {Hie] + el H(ep) Hy + ()"}

_ Cyr CyP(Hy)" + CpY

~ [H.CIP +C}P HCIPHY +H,C}Y + C{"H} 4+ C}¥
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Bounding the true covariance matrix in (4) from above

by
D 1 CP 0
Cov 25 < |05k L y
Ek 0 045+an
gives
1 1 T
0.5—Kp CZ 0.5—Kp CZHk
Cov {z,} <
F 1 H Cp 1 Cy 1 H CPHT
05—y eCy e Ok t o, e G Hi

Hence, according to the appendix we have

1 1
iy = + ——— CYHj « ———CY
Lo =Lkt 55 ey O k{0.5+m k
1 —1
T ~ P
+ 05— HrCiHL } (7, — Hry) ,
1 1 T 1
Ci=—- CP__—~- __CPH cv
P05 —kk F (05 —kp)? KR {0.5+mk .

1 -1
+mﬂkch£} H,C? ,

or equivalently

iZZiiJrg:g%:’;CZH{{cg
S:E%ZZH’“CZHE}A@IC —Hiiy) ,
Ci=05 1— Kok Ci-os 1_ P 8? i— :i CLH; {CZ
+ gg%:l’:chsz}l H, C? .

With the bilinear transformation

M= Gk (6)
we have
L i, (7)
0.5 — kg
which achieves the proof. a

6 Minimum Covariance Measurement
Update

THEOREM 6.1 The scaling parameter A\J*™ for a min-
imum covariance matrix of the filtering result is given

by
Apin — 0.5+ /1,2”" ’
0.5 — wJHn




where k"™ is the unique zero of the expression

Rk — 0.5

; K + 0.5,11?f

LM-N

with k, € (—0.5,0.5). Note that M is the dimen-
sion of the measurement vector and N is the dimen-
sion of the state vector. [it are given by the bilinear
transformation

e 1+ pj,
1 — pj,
where ,ufc, i=1,...,M, are the generalized eigenval-

ues of the real, symmetric, positive definite matriz pair
C? and H,CYH} .

PrROOF. We have

1 N '4 Y
det{Ck + AkaCka }
Transforming the matrix pair CY, HyCLYH] according
to TTCYT = I, T"H,CYHLT = diag[us,... ,un| we
obtain
R 14+ M)V
r(C1) oo LN
[T+ piAe)
i=1
with ¢ = det{C%} det{C}} and hence
A
det{C}} = — (1 +)Y
et{Cr} Ckil:[ll+%/\k( + k)
As a necessary condition for A" we obtain
P M -1
_— S 1 i 2 N(1 N-1
aM®“Q} %{H(+MM)} {<+mw
M , M- M '
T10+ pire) = @ 20™ 3 [ TTa+ waw| Lo

=1 =1 Jj=1
G

Because of pi > 0 fori =1,...
relations

,M and X\, € [0,00) the

(1 + )\k)N_l
M

[T+ pre) > 1,

i=1

>1

I

H 1+Mk)\k

hold and the above condition is simplified to

M-
S LN
i:11+’u7i‘3/\k
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Applying bilinear transformations according to

min 0.5+ Kmin _3 1+ [758
Ak = 7““’ k= :
0.5 1—
gives the desired result. |

7 Measurement Update:
Scalar Observations
The case of estimating a vector state from scalar ob-
servations is treated separately from the general case,
since more explicit results can be obtained. We con-
sider an (uncertain) scalar observation g at time k,
with the associated measurement equation

gk = Hi zy + ¢} . (8)

z;, denotes the state vector, e} denotes the additive
uncertainty. Furthermore, there exists a prior esti-
mate 27 of the state vector. % also suffers from
additive uncertainty e} according to

(31717 Qiy
@nr o

Again, only upper bounds C}, CY for the true covari-
ances CY”, C}Y are known according to

D PP Y Yy
Ch>Crr oY >CY

. APY =P
and the cross—covariances C;~ = C} are completely
unknown.

THEOREM 7.1 A conservative estimate for the state
in the linear measurement equation according to (8)
with a given scalar observation Y is given by

CLL,
Y+ N HECLH,

kA (i — Hi )

9)

15>

s _
B =

15>

CYH, H;C?
Cj = (14 M)CY — (14 M)\ ik
F= (14 A)Cp = (14 Ar) “CT 3 HT OV,
(10)
with scaling parameter A € [0, 00).
PROOF. Similar to vector case. g
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THEOREM 7.2 With N > 2 the dimension of the state
space and Gy = ﬂfCiﬂk, the minimum size of C§,
in (10) is attained for A" given by

Amin — Gk — NC}CJ
k (N —1)Gy
PROOF. Minimizing the volume of

Gt H;C}
CY+ M\ H{CYH,

Ci = (1+X)Cf — (1 + M)A
is equivalent to minimizing

det(Cy) =det(CP) det ((1 + )T

H,HTC?

* C}cj + Ak ﬂfciﬂk
From basic linear algebra, we have
det(cI + a_bT) =kt (c + QTI_))

with L the dimension of the vectors a, b and scalar c.
Hence, we obtain

det(C}) =det(CP)(1 4+ Xg)¥ " <1 + Ak

— (1 +)A

Hi ClH, )
* C}E’ + Ak ﬂgciﬂk ’

which can be simplified to

Cr

det(CE) ~ (1+ AN =k
et(Ci) ~ (14 ) C7 + MG

Differentiation with respect to Ay yields

9 s

N (CY + M\Gr) — (14 )G
~ ANy (CF + AGr) — (1 + Ae)Gr

(C + MGr)?

Setting the result to zero gives the necessary condition

AN = 1)Gr + NCY =G =0 .

With
? i
this is the desired result. O

The special case of scalar states in the case of scalar
measurements must be treated separately and yields
simpler results.
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THEOREM 7.3 For the case N = 1, the scaling param-
eter A" for minimum variance of the filtering result
18 given by
: 2
k oo otherwise.
PROOF. The variance of the filtering result can be written
as

Cy
. Cr (1 + k)
H—’% + A\ CY
The result follows by inspection. a

8 Conclusions

This article provides a self-contained derivation for
both the prediction and filtering step for state estima-
tion in the case of unknown correlations. The filtering
step is based on existing ideas [1], but has been fur-
ther extended. Moreover, an efficient algorithm for
the time update step has been developed. For both
the time update and the filtering step closed—form
solutions for the calculation of minimum covariance
estimates have been derived.
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Appendix

If a, b are jointly Gaussian with mean and covariance
@ Caa Cab
i = (& &)
a given observation b yields the conditional (Gaussian)

density of the random variable a conditioned on E accord-
ing to

=
—
|@
Q
N
IS
I
IS




