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Abstract. Although symbolic data tables summarize huge sets of data they can still

become very large in size. This paper proposes a method for compressing a symbolic

data table using the recently emerged Compound Term Composition Algebra. One

charisma of CTCA is that the closed world hypotheses of its operations can lead to a

remarkably high ”compression ratio”. The compacted form apart from having much

lower storage space requirements, it allows designing more efficient algorithms for

symbolic data analysis.

1 Introduction

As recent surveys state1, the world produces between 1 and 2 exabytes (260 bytes)
of unique information per year, 90% of which is digital and with a 50% annual
growth rate. Undoubtedly, this is a boon rather than a anathema. In addition,
this plethoric growth rate has stimulated the development of new techniques and
automated tools for assisting the transformation of large amounts of data into
useful information and knowledge (see data mining and knowledge discovery in
databases). Symbolic data analysis [3, 4] has been introduced in order to solve the
problem of the analysis of data that are given on an aggregated form, i.e. where
quantitative variables are given by intervals and where categorical variables are
given by histograms. This kind of data are generated when we summarize huge
sets of data. Inescapably, even a symbolic data table could become very large
in size, making its management problematic in terms of both storage space and
computational time.

This paper aims to convey some recent advances from the area of knowledge
representation (in particular from the area of faceted taxonomies and faceted
classification), that could be exploited for symbolic data analysis. Specifically,
this paper gives the theoretical foundation of a novel method that can be used to
compress (i.e. to reduce the storage space requirements) of large symbolic data

1 http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
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tables. The proposed compression is lossless i.e. from the compressed form we
can infer exactly what we can from the original symbolic data table.

The contribution of the method is not exhausted to storage space minimiza-
tion as the resulting compact form could allow the design more efficient symbolic
analysis algorithms.

For reasons of space, this paper describes only the principles of this method
and gives some indicative examples. The interested reader is referred to the
references that are given. The rest of this paper is organized as follows. Section
2 sketches the idea and Section 3 recalls the basics of the Compound Term
Composition Algebra (CTCA), upon which the proposed method is founded.
Subsequently, Section 4 describes in more detail the steps of this technique and
Section 5 gives some indicative examples of compression using CTCA. Finally,
Section 6 concludes the paper and identifies issues for further research.

2 The Idea

A Symbolic data table is a table of data where the columns are the symbolic
variables which are used in order to describe a set of units called individuals.
Rows are called symbolic descriptions of these individuals because they are not
as usual, only tuples of single quantitative or categorical values. For instance, the
values of the cells can be intervals (if the variable is quantitative) or frequency
distributions (if the variable is categorical). Recall that in classical data analysis
a cell can have a single quantitative or categorical value. In general, we could
distinguish variables according to their range to (a) single quantitative (e.g.
age=18), (b) single categorical (or taxonomic) (e.g. color=red), (c) multi-valued
quantitative or categorical (e.g. age={11, 18}, color={red, green}) (d) interval
(e.g. age=[10,20]), and (e) multi-valued with weights (e.g. histograms). Clearly,
(a) and (b) are special cases of (c), while (c) is special case of (e) (i.e. when all
weights are either 0 or 1) for more see [4].

This paper proposes a method for compacting a symbolic data table by ex-
ploiting the Compound Term Composition Algebra (CTCA). CTCA is a recently
emerged algebra that allows specifying the valid (meaningful) compound terms
(conjunction of terms) over a faceted taxonomy in a flexible and efficient manner
(for more see [13, 12]). A system around CTCA has already been developed (FAS-
TAXON [14]) and there has already been proposed a Web annotation language
that allows exchanging faceted taxonomies and expressions of CTCA (for more
see XFML+CAMEL [2]). In brief, a faceted taxonomy is a set of taxonomies each
one describing the domain of interest from a different (preferably orthogonal)
point of view (for more about faceted classification and analysis see [10, 5, 15, 6,
7]). Faceted taxonomies are used in Web Catalogs, Libraries [7], Software Repos-
itories [8, 9], and several others application domains. Current interest in faceted
taxonomies is also indicated by several recent or ongoing projects (like FATKS2,

2 http://www.ucl.ac.uk/fatks/database.htm
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FACET3, FLAMENGO4) and the emergence of XFML [1](Core-eXchangeable
Faceted Metadata Language) a markup language for applying the faceted clas-
sification paradigm on the Web. Having a faceted taxonomy each domain object
(e.g. book or Web page) can be indexed using a compound term, i.e., a set of
terms containing one or more terms from each facet. We shall use the term mate-
rialized faceted taxonomy to refer to a faceted taxonomy accompanied by a set of
object indices. For example, Figure 1 shows a very small but indicative faceted
taxonomy consisting of three facets that is appropriate for indexing hotel Web
pages.

SeaSports WinterSports

AllSports

SnowBoard
SeaSki

CasinoGreece

Heraklio Rethimno

Crete

Finland

Earth

Olympus

Sports Facilities

Cefalonia

Windsurfing
SnowSki

Location

Fig. 1. A faceted taxonomy for indexing hotel Web pages

Roughly, and according to the above perspective and phraseology, each sym-
bolic data table can be viewed as a materialized faceted taxonomy. This analogy
is not hard to grasp. Each symbolic variable can be viewed as a facet. Now the
range of each symbolic variable can be viewed as a taxonomy, i.e. as a partially
ordered set of terms (clearly, categories, intervals, and subsets are partially or-
dered domains). Now each row of the symbolic data table can be viewed as an
object that has been indexed according to a faceted taxonomy, i.e. as an object
that has been associated with a compound term of the faceted taxonomy, i.e.
with a set of values from the range of the symbolic variables.

Several algorithms for finding an expression of CTCA that describes those
compound terms that are extensionally valid in a materialized faceted taxonomy
were given and analyzed in [11]. In other words, these algorithms mine an ex-
pression of CTCA that specifies the set of all distinct compound terms that are
meaningful, where a compound term is considered meaningful if it is applicable
to at least one object of the object base. It follows, that the same algorithms can
be exploited for the problem at hand, specifically for finding a short (in storage
space) expression of CTCA that specifies the rows of a symbolic data table.

Specifically, this paper focuses on symbolic variables with partially ordered
ranges, i.e. taxonomically-ordered categorical, multi-valued quantitative or cat-
egorical, and interval-valued variables. The reason is that in this case the em-
ployment of CTCA yields remarkably high compression ratios. However, CTCA
can be applied even on unordered ranges, i.e. on sets (we can view a set as a

3 http://www.glam.ac.uk/soc/research/hypermedia/facet proj/index.php
4 http://bailando.sims.berkeley.edu/flamenco.html
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poset with an empty ordering relation), so the proposed method can be also
applied on variables whose range is a set of histograms. However, an issue for
further research is to investigate ordering relations over histograms because their
availability would allow obtaining higher compression ratios even for this kind
of variables (especially when lossy compression is tolerable).

3 Faceted Taxonomies and the Compound Term
Composition Algebra

Table 1 below recalls in brief the basic notions around taxonomies, faceted tax-
onomies and materialized faceted taxonomies (for more please refer to [13]).

Name Notation Definition

terminology T a set of names called terms

subsumption ≤ a preorder relation (reflexive and transitive)

taxonomy (T ,≤) T is a terminology, ≤ a subsumption relation over T
faceted taxonomy F= {F1, ..., Fk} Fi = (T i,≤i), for i = 1, ..., k and all T i are disjoint

compound term over T s any subset of T (i.e. any element of P(T ))

compound terminology S a subset of P(T ) that includes ∅
compound ordering ¹ s ¹ s′ iff ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′.
broaders of s Br(s) {s′ ∈ P (T ) | s ¹ s′}
narrowers of s Nr(s) {s′ ∈ P (T ) | s′ ¹ s}
broaders of S Br(S) ∪{Br(s) | s ∈ S}
narrowers of S Nr(S) ∪{Nr(s) | s ∈ S}
object domain Obj any denumerable set of objects

interpretation of T I any function I : T → 2Obj

model of (T ,≤)
induced by I Ī Ī(t) = ∪{I(t′) | t′ ≤ t}
materialized (F , I) F is a faceted taxonomy {F1, ..., Fk},
faceted taxonomy I is an interpretation of T =

S
i=1,k T i

Table 1. Notations

CTCA was proposed for defining the meaningful compound terms over a
faceted taxonomy in a flexible and efficient manner. The problem of meaning-
less compound terms and the effort needed to specify the meaningful ones is a
practical problem identified even by Ranganatham himself [10] (80 years ago)
and it is probably the main reason why faceted taxonomies have not dominated
every application domain despite their uncontested advantages over the single-
hierarchical taxonomies. CTCA is the only well-founded and flexible solution to
this problem.

CTCA has four basic algebraic operations, namely, plus-product (⊕), minus-

product (ª), plus-self-product, (
∗⊕), and minus-self product (

∗ª). They are all
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operations over P(T ), the powerset of T , where T is the union of the terminolo-
gies of all facets. The initial operands, thus the building blocks of the algebra,
are the basic compound terminologies, which are the facet terminologies with
the only difference that each term (for reasons of notational simplicity) is viewed
a singleton. Specifically, the basic compound terminology of a terminology T i is
defined as: Ti = {{t} | t ∈ T i}∪{∅}. If e is an expression, Se denotes the outcome
of this expression and is called the compound terminology of e. An expression e
over F is defined according to the following grammar (i = 1, ..., k):

e ::= ⊕P (e, ..., e) | ªN (e, ..., e) | ∗⊕P Ti |
∗ªN Ti | Ti,

where the parameters P and N denote sets of valid and invalid compound terms
over the range of the operation, respectively. Roughly, CTCA allows specifying
the valid compound terms over a faceted taxonomy by providing a small set of
valid (P ) and a small set of invalid (N) compound terms. The self-product op-
erations allow specifying the meaningful compound terms over one facet. Specif-
ically, the definition of each operation of CTCA is summarized in Table 2 where
S, S′ denote compound terminologies. In addition, (Se,¹) is called the compound
taxonomy of e. The associated inference mechanism and the closed world assump-
tion of each operation, makes the task of specifying the meaningful compound
terms flexible and fast. The algorithm given in [13] takes as input a expression e
and a compound term s, and checks whether s ∈ Se. This algorithm has polyno-
mial time complexity, specifically O(|T |3 ∗ |P ∪N|), where P denotes the union
of all P parameters and N denotes the union of all N parameters appearing in
e.

Operation e Se

product S1 ⊕ ...⊕ Sn { s1 ∪ ... ∪ sn | si ∈ Si}
plus-product ⊕P (S1, ...Sn) S1 ∪ ... ∪ Sn ∪ Br(P )

minus-product ªN (S1, ...Sn) S1 ⊕ ...⊕ Sn −Nr(N)

self-product
∗⊕ (Ti) P (T i)

self-plus-product
∗⊕P (Ti) Ti ∪Br(P )

self-minus-product
∗ªN (Ti)

∗⊕ (Ti)−Nr(N)
Table 2. The operations of the Compound Term Composition Algebra

For example, Table 3 (that is found on the appendix) shows the partition of
the compound terms of the faceted taxonomy of Figure 1 into the set of valid and
the set of invalid compound terms. Instead of defining this partition explicitly,
with CTCA one can define it in a more flexible and quick manner. Specifically,
this partition can be specified by the subsequent expression:

e = (LocationªN Sports)⊕P Facilities

with the following P and N parameters:

N = {{Crete, WinterSports},
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{Cefalonia, WinterSports}}
P = {{Cefalonia, SeaSki, Casino},

{Cefalonia, Windsurfing, Casino}}

CTCA can be exploited both forthrightly and reversely, i.e. a designer can
formulate an expression in order to specify quickly the desired set of compound
terms, while from an existing set of compound terms an algorithm can find an
expression that describes these compound terms. It is the latter direction that
is appropriate for symbolic data analysis.

In order to apply CTCA for compacting symbolic data tables we only have
to consider facets that range a set of intervals. This is rather a trivial extension,
as we can consider each interval [a,b] as a term. The ordering between interval
terms can be inferred easily, i.e. [a, b] ≤ [c, d] iff c ≤ a and b ≤ d, and there is no
need for storing these relationships. So CTCA applies on intervals as it is.

Note that the disjointness of facet terminologies can be implemented in prac-
tise by prefixing each value of the range of a variable by the variable name.

4 The Technique

Roughly, a symbolic data table with k columns and n rows can be compressed
in three steps:

(a) At first, we organize the range of each variable as a partially ordered set
(poset) and we store it.
Note that if the range of a variable is a set of categories that are partially
ordered, i.e. a taxonomy, then it is enough to store only the transitive reduc-
tion of the taxonomic ordering. If the range of a variable is a set R of subsets
of a set D (i.e. R ⊆ P(D) where P(D) denotes the powerset of D), then we
again have a poset, i.e. the partially ordered set (R,⊆). In this case we only
have to store R as here the ordering relation corresponds to the relation ⊆
which can be deduced algorithmically (for any two sets s and s′ we can check
whether s ⊆ s′). Finally, if the range of a variable is a set of intervals L then
we only have to store L because again the ordering relation can be deduced.

(b) Subsequently, we can run one of the algorithms described in [11] that mine
an expression of CTCA that describes exactly the rows of our table.
Using the notations of the previous section, the objective of these algorithms
is to find an expression e such that

Se = {s ∈ P(T ) | Ī(s) 6= ∅}
where if s = {t1, ..., tk} then I(s) = I(t1) ∩ ... ∩ I(tk). That paper gives the
algorithms for two straightforward methods for extracting a plus-product
and a minus-product expression and an exhaustive algorithm for finding the
shortest (i.e. the most space economical) expression. The latter yields ex-
pressions with remarkably low storage space requirements, thanks to the
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closed-world assumptions of CTCA, but its computational complexity if re-
markably higher. For reasons of space the description of the algorithms is
omitted.

(c) Finally, we store the mined expression and its parameters (e.g. in a relational
database as it has been done in FASTAXON [14]).

After the above process we can delete the symbolic data table and keep stored
only the posets and the mined expression e. Now suppose that we want to check
whether an arbitrary tuple s (over the domain of our variables) exists in the
table. We don’t have to restore the initial table in order to answer this question.
Instead, we run the algorithm described in [13] which takes as input a faceted
taxonomy, an expression e and a compound term s and decides in polynomial
time whether s ∈ Se.

Another remark that should be mentioned here is that it is also possible to
browse the symbolic table without having to reconstruct it. Specifically, by the
faceted taxonomy F and the expression e we can derive dynamically a navigation
tree that allows browsing all compound terms in Se using the algorithm described
in [13] that has been implemented in FASTAXON [14].

Of course, at any time we could run a (quite simple) algorithm for recon-
structing the symbolic data table at its original form.

5 Indicative Examples

This section presents a small number of intuitive examples for demonstrating
the potential of CTCA for the problem at hand.

Consider that we have two variables A and B. The variable A ranges over
the set {a1, a2, a3} and assume that this set is ordered according to a taxonomic
relation (subsumption) as follows: a3 ≤ a2 ≤ a1. Now consider the following
table

A B
a1 b1

a2 b1

a3 b1

The rows of this table can be described by the expression e = A⊕P B where
P = {{a3, b1}}. One can easily see that Se = {{a1, b1}, {a2, b1}, {a3, b1}}.

Alternatively, they can be described by the expression e′ = A ªN B where
N = ∅ as Aª∅ B = A⊕B = {{a1, b1}, {a2, b1}, {a3, b1}}.

Now assume that the range of A is the taxonomy ({a1, a2, a3, a4}, {a2 ≤
a1, a3 ≤ a2, a4 ≤ a2}), the range of B is the taxonomy ({b1, b2}, {b2 ≤ b1}) and
that we have the following table:
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A B
{a3, a4} b1

a2 b2

a1 b1

a1 b2

a2 b1

a3 b1

Here and in order to describe the set {a3, a4} we are obliged to use a self-product
operation over A. We can describe the rows of this table by any of the above
three expressions:

– e1 = (
∗⊕P1 (A)) ⊕P2(B) where P1 = {{a3, a4}} and P2 = {{a3, a4, b1}, {a2, b2}}

– e2 = (
∗ªN1 (A)) ⊕P2 (B) where N1 = ∅ and P2 = {{a3, a4, b1}, {a2, b2}}.

– e3 = (
∗ªN1 (A)) ªN2 (B) where N1 = ∅ and N2 = {{a3, a4, b2}}.

Clearly, e3 is the most space economical expression as it requires us to keep
stored only one compound term that consists of three single terms.

Example 1.
Assume that we have the following table with information about hotels:

Id Location Prices
H1 Heraklion [30,50]
H2 Lixouri [33,40]
H3 Heraklion [25,300]
H4 Heraklion [33,40]

For notational simplicity we shall use A for Location and B for Prices. The
above table (by ignoring the first column) can be represented by the expression
e1 = AªN1 B where N1 = ∅ as all combinations between the domain of these two
variables are valid (appear or are semantically inferred from those that appear).
Specifically, although Lixouri does not co-appear in the table with neither [30,50]
nor with [25, 300], these combination are valid because since there is a hotel at
Lixouri with rates [33,40], it is true that we can find a hotel at Lixouri at [30,50]
or [25,300] Euros.

Example 2.
Let us now modify one cell of the above table:

Id Location Prices
H1 Heraklion [30,50]
H2 Lixouri [30,50]
H3 Heraklion [25,300]
H4 Heraklion [33,40]

8



This table can be represented by the expression e2 = A ªN2 B where N2 =
{{Lixouri, [33, 40]}}.
Example 3.

Let us now add one more row and one more column to the table of the
previous example

Id Location Prices SportsAndFacilities
H1 Heraklion [30,50] SeaSki, Sauna
H2 Lixouri [30,50]
H3 Heraklion [25,300] WindSurfing, SeaSki, Sauna
H4 Heraklion [33,40]
H5 Helsinki [33,40] SmokeSauna

Let C denote the variable SportsAndFacilities and let the range of C be or-
ganized as shown in Figure 2. Let’s now try finding the expression that describes
this table. The ”subtable” that consists of the columns B and C is described by
the expression e2 as we saw earlier in Example 2. Now the range of variable C can
be expressed using a self-product operation, specifically by eC =

∗⊕PC
(C) where

PC = {{WindSurfing, SeaSki, Sauna}}. Note that if SmokeSauna did not be-

long to the range of C then we would have defined eC as follows: eC =
∗ªNC

(C)
with NC = ∅.

In order to represent the whole table we have to combine e2 and eC . This
can be obtained as: e3 = e2 ⊕P3 eC where

P3 = {{Heraklion, [25, 300], Lixouri, {WindSurfing, SeaSki, Sauna}}

Windsurfing

SeaSports

SeaSki

SportsAndFacilities

Sauna

SmokeSauna

Fig. 2. The range of the symbolic variable SportsAndFacilities

Summarizing, CTCA can indeed compact a symbolic data table and can yield
to remarkably high compression ratios. One can easily guess that the more sym-
bolic variables we have and the more numerous are the ranges of these variables,
the higher compression ratio we can achieve with CTCA.

6 Epilogue

Although symbolic data tables summarize huge sets of data they can still become
very large in size. This paper proposes a method for compressing a symbolic
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data table using the recently emerged Compound Term Composition Algebra
(CTCA). One charisma of CTCA for the problem at hand is that the closed
world hypotheses of its operations (described analytically at [12]) can lead to a
remarkably high ”compression ratio”. Another remark that have to be mentioned
here is that the functionality offered by CTCA cannot be obtained by using a
classical logic-based formalism, like Description Logics, as it was shown in [12].
At last, but not least, this paper identified the analogies between symbolic data
tables and faceted taxonomies (and CTCA) in order to act as a two-way canal
between the two communities. An issue for further research is the characteriza-
tion of the proposed approach according to Kolmogorov’s complexity and the
extension of this method for frequency-valued symbolic variables.
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Valid

Earth, AllSports Greece, AllSports
Finland, AllSports Olympus, AllSports
Crete, AllSports Cefalonia, AllSports
Rethimno, AllSports Heraklio, AllSports
Earth, SeaSports Greece, SeaSports
Finland, SeaSports Crete, SeaSports
Cefalonia, SeaSports Rethimno, SeaSports
Heraklio, SeaSports Earth, WinterSp.
Greece, WinterSp. Finland, WinterSp.
Olympus, WinterSp. Earth, SeaSki
Greece, SeaSki Finland, SeaSki
Crete, SeaSki Cefalonia, SeaSki
Rethimno, SeaSki Heraklio, SeaSki
Earth, WindSurf. Greece, WindSurf.
Finland, WindSurf. Crete, WindSurf.
Cefalonia, WindSurf. Rethimno, WindSurf.
Heraklio, WindSurf. Earth, SnowBoard
Greece, SnowBoard Finland, SnowBoard
Olympus, SnowBoard Earth, SnowSki
Greece, SnowSki Finland, SnowSki
Olympus, SnowSki Earth, AllSports, Cas.
Greece, AllSports, Cas. Cefalonia, AllSports, Cas.
AllSports, Cas. SeaSports, Cas.
SeaSki, Cas. Windsurf., Cas.
Earth, Cas. Greece, Cas.
Cefalonia, Cas. Earth, SeaSports, Cas.
Greece, SeaSports, Cas. Earth, SeaSki, Cas.
Greece, SeaSki, Cas. Cefalonia, SeaSki, Cas.
Earth, WindSurf., Cas. Greece, WindSurf., Cas.
Cefalonia, WindSurf., Cas. Cefalonia, SeaSports, Cas.

Invalid

Crete, WinterSp. Cefalonia, WinterSp.
Rethimno, WinterSp. Heraklio, WinterSp.
Olympus, SeaSki Olympus, WindSurf.
Crete, SnowBoard Cefalonia, SnowBoard
Rethimno, SnowBoard Heraklio, SnowBoard
Crete, SnowSki Cefalonia, SnowSki
Rethimno, SnowSki Heraklio, SnowSki
Finland, Cas. Olympus, Cas.
Crete, Cas. Heraklio, Cas.
Rethimno, Cas. WinterSp., Cas.
SnowBoard, Cas. SnowSki, Cas.
Olympus, SeaSports Crete, WinterSp., Cas.
Cefalonia, WinterSp., Cas. Rethimno, WinterSp., Cas.
Heraklio, WinterSp., Cas. Olympus, SeaSki, Cas.
Olympus, WindSurf., Cas. Crete, SnowBoard, Cas.
Cefalonia, SnowBoard, Cas. Rethimno, SnowBoard, Cas.
Heraklio, SnowBoard, Cas. Crete, SnowSki, Cas.
Cefalonia, SnowSki, Cas. Rethimno, SnowSki, Cas.
Heraklio, SnowSki, Cas. Olympus, AllSports, Cas.
Crete, AllSports, Cas. Rethimno, AllSports, Cas.
Heraklio, AllSports, Cas. Crete, SeaSports, Cas.
Rethimno, SeaSports, Cas. Heraklio, SeaSports, Cas.
Olympus, WinterSp., Cas. Crete, SeaSki, Cas.
Rethimno, SeaSki, Cas. Heraklio, SeaSki, Cas.
Crete, WindSurf., Cas. Rethimno, WindSurf., Cas.
Heraklio, WindSurf., Cas. Olympus, SnowBoard, Cas.
Olympus, SnowSki, Cas. Finland, AllSports, Cas.
Finland, SeaSports, Cas. Finland, WinterSp., Cas.
Finland, SeaSki, Cas. Finland, WindSurf., Cas.
Finland, SnowSki, Cas. Finland, SnowBoard, Cas.
Earth, WinterSp., Cas. Greece, WinterSp., Cas.
Earth, SnowBoard, Cas. Greece, SnowBoard, Cas.
Earth, SnowSki, Cas. Greece, SnowSki, Cas.
Olympus, SeaSports, Cas.

Table 3. The Valid and Invalid compound terms of the example of Figure 1

As the facet Location has 8 terms, the facet Sports has 7 terms, and the facet Facilities
has one term, the number of compound terms that contain at most 1 term from each facet is
9*8*2 = 144. This table contains 60 valid and 67 invalid compound terms, thus 127 in total.
By adding the (8+7+1=16) singletons (which were omitted from the column of valid) and
the empty set we reach the 144.
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