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INTRODUCTION

Aquatic systems are often viewed as being hierarchically orga-
nized, with lower levels of organization nested within higher
levels (e.g., Frissell et al. 1986; Imhof et al. 1996). For example,
a hierarchy may consist of headwater streams nested within sub-
watersheds that are nested within larger watersheds, or lakes
nested within ecoregions. This hierarchical organization pro-
vides a conceptual basis for testing hypotheses, often leading to
sampling designs that are also hierarchically organized. A com-
mon feature of such sampling designs is that the response
variable is measured at the lowest level (i.e., finest scale) of the
hierarchy and is modeled as a function of predictors measured at
that level as well as one or more higher levels. This hierarchical
organization leads to multilevel data structures for which tradi-
tional methods of statistical inference are often inappropriate
(Raudenbush and Bryk 2002). 

The fisheries literature is replete with examples of studies that
have collected data with a multilevel structure. Despite this
prevalence, the hierarchical structure of the data is often ignored
during statistical analysis. A fundamental problem with ignoring
the multilevel structure during analyses is that observations mea-
sured within a higher level (e.g., measurements made within the
same stream) are likely to be more similar to each other com-
pared to observations between levels (e.g., measurements made
in different streams). Therefore, analyses that ignore the multi-
level structure of the data violate a critical assumption to
commonly-used analyses, namely the assumption of indepen-
dence. Although the importance of accounting for the
correlation structure of repeated measurements on individuals
has received attention in the fisheries literature, especially with
respect to laboratory studies and analyzing size-at-age data

obtained from scales and otoliths of fishes (e.g., Jones 2000;
Schaalje et al. 2002; Pedersen and Malte 2004), multilevel data
structures in field settings have been largely ignored. 

The goals of this article are (1) to explain how to use multi-
level models that account for multilevel data structures in
fisheries data to test hypotheses and (2) to discuss how the ana-
lytical approach affects hypothesis testing and inferences. To
accomplish these goals we provide two examples using simulated
data similar in structure to published studies. We illustrate the
analysis of these data with a commonly used statistical package,
SAS®. The first example uses data with a two-level data struc-
ture to emphasize how hypothesis testing and inferences are
affected depending on the statistical approach used, while the
second example provides a detailed example of how to model
data with a three-level data structure. 

Example 1: Examining the effects of in-stream barriers
on fish density

To introduce a simple multilevel data structure, we present
the following example. Data were generated to emulate a com-
monly-used field study design to examine the effects of instream
barriers on fish density. The simulated dataset contains sample
sites (level 1) nested within streams (level 2; Figure 1). We used
these data to test the null hypothesis that fish densities do not
differ between sites above and below barriers or between streams
with or without barriers. The dataset contains measurements for
eight streams: four “treatment” streams that contain instream
barriers and four “control streams” that lack instream barriers.
For each treatment stream, fish density measurements were gen-
erated for three sites below the barrier and three sites above the
barrier (or “reference line” for control streams; Figure 1; Table
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1). The data were then analyzed two ways—using a general lin-
ear model (GLM) and a multilevel model (MIXED) in Statistical
Analysis System (SAS), and using the GLM and MIXED proce-
dures, respectively (Littell et al. 1996; SAS Institute Inc. 2000;
Littell et al. 2002). The data were generated to represent a case
where mean fish densities were reduced in treatment streams as a
whole relative to control streams, and with a greater reduction in
sites above the barriers in the treatment streams. In the control
streams, mean fish density was similar in sites above and below
the reference line. 

CONTRASTING TRADITIONAL AND
MULTILEVEL MODELS

Traditional approaches—Two ordinary least squares (OLS)
approaches are commonly used to analyze multilevel data: an
aggregating and a disaggregating approach. For the aggregated
approach, observations within each higher level group are com-
bined (analysis is performed at the higher level). For our stream
barrier example, aggregation would occur if mean densities were
calculated for each stream based on the six sample sites within
each stream (Figure 1). When this approach is used, within-
group variation is ignored (e.g., within stream), which may be a
large proportion of the total variance, resulting in a loss of infor-
mation and statistical power. For the disaggregated approach, all
observations are used, but the higher level grouping factor (e.g.,
stream) is not factored into the analysis. For our stream barrier
example, disaggregation would occur if each measurement of fish
density was treated as an independent replicate sample from each
stream. This approach is inappropriate however, because the
experimental unit is actually the stream, not individual sites, and
because the between-group variation is ignored (analysis is per-
formed at the lower level). When this occurs “replicate” samples
from a higher level grouping factor are assumed to be indepen-
dent, which is often an invalid assumption and results in
pseudoreplication (Hurlbert 1984). This approach can underes-
timate standard errors and thus increase the probability of type I
errors, i.e., finding a significant difference when one does not
actually exist. Furthermore, groups with the largest sample size
may dominate the coefficient estimates.

Multilevel models—Multilevel models have received much
attention in the past several years, especially in the social and
behavioral sciences. Their increase in popularity is partly due to
methodological advances and advances in statistical computing
over the past several decades. As a result, several excellent ref-
erences on the theory and application of multilevel models in
the social and behavioral sciences are available; we refer readers
to these references for more detailed information (e.g., Hox
2002; Raudenbush and Bryk 2002; Duan and Reise 2003).

Multilevel models are represented in the literature under a
variety of names including mixed-effects models, hierarchical
linear models, random-effects models, and random coefficient
regression models. Multilevel models circumvent the problems
described above associated with using OLS approaches. For
example, multilevel models estimate standard errors correctly
and result in improved estimation of fixed effects when multi-
level data structures exist. Furthermore, both continuous and
categorical variables can be specified to have fixed or random
effects. A factor is fixed if it represents all possible levels of a fac-
tor for which inferences are to be made. For the instream barrier
example, if the streams used in the analysis were the only streams
for which inferences were to be made (e.g., if the researchers did
not want to generalize their results to other streams) then
“stream” would be specified as a fixed effect. A factor is random
if it represents a random sample of a larger set of potential fac-
tors. For the instream barrier example, if the study streams
represented a sample of streams from a larger population of
streams with and without barriers, “stream” would be specified as
a random effect. 

Another way to illustrate the difference between fixed and
random effects was presented by Bennington and Thayne
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Stream Barrier Control
Site Position A B C D E F G H

1 Above 15 49 14 12 46 67 45 74
2 Above 14 47 15 9 41 70 45 67
3 Above 7 39 25 18 42 82 57 72

4 Below 38 45 21 20 49 76 39 66
5 Below 13 50 31 24 50 76 37 64
6 Below 24 50 33 30 55 74 35 72

Table 1. Simulated dataset used for example 1. Numbers represent
simulated fish densities (fish/m2) for sites nested within treatment
(barrier) and control (no barrier) streams and for sample sites above or
below the barrier or reference line. Values used to calculate within
group means are shown outlined in a dashed line.

Figure 1. An illustration of the study-design used for the stream barrier
example. Each stream type was replicated four times (treatment streams
A–D and control streams E–H). 
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(1994). Their definition is presented in terms of the null hypoth-
esis being tested for each effect. 

Consider two effects, A and B, where A is fixed, B is ran-
dom, and there is an interaction (A x B) possible between
them. For a given dependent variable, the null hypothesis con-
cerning A is that there is no difference in means among the
levels of A in the experiment. For B, the null hypothesis is that
there is no variability among all possible levels of B (including
those not sampled), not that there are no differences among lev-
els of that effect included in the experiment. For the interaction
term (A x B), the null hypothesis is that variability among lev-
els of B is the same for all levels of A. This differs from the case
for fixed effects in that the null hypothesis for an interaction
between two fixed effects (A and C) is that the response of the
dependent variable is not different among specific levels of A
depending upon the particular level of C.

Analysis of Example 1

Ordinary least squares—We first analyzed the simulated
stream data assuming all factors are fixed effects (we assumed
streams were not randomly selected from a larger population of
streams) while ignoring the fact that sites are nested within
streams. This is equivalent to using a disaggregated OLS
approach, and was performed using the GLM procedure in SAS.
An aggregated approach could also be implemented with these
data, but for illustration purposes we restrict our analysis and dis-
cussion to the disaggregated approach, which is a common
approach used in the analysis of fisheries data. Fish density was
the response variable and site position (above or below a barrier)
and stream type (barrier or no barrier) were fixed effects. The
general form of this model is as follows:

Yijk = u + Positioni + Stream_Typej + (Position x Stream_Type)ij + eijk (1)

where Yijk is the kth measurement on the ith position, in the jth

stream, u is the overall mean, (Position x Stream_Type)ij is the
interaction effect, and errors (eijk) are assumed independent and
eijk ~ N(0, σ 2). An example of the data structure needed for ana-
lyzing the dataset in SAS is given in Appendix I. The SAS code
for performing the GLM analysis is as follows. 

PROC GLM DATA = barrier_data;
CLASS stream stream_type position;
MODEL density = stream_type position stream_type*position

/ SOLUTION;
LSMEANS stream_type position stream_type*position /

STDERR PDIFF ADJUST = tukey;
RUN;

For a detailed description of the SAS syntax, see Littell et al.
(2002). Briefly, the CLASS statement contains the classification
variables (categorical independent variables), the MODEL
statement defines the model to be fit, and the SOLUTION
option requests the parameter estimates. The LSMEANS state-
ment requests that the least-squares (LS) means be calculated for
each classification variable listed in the statement. Least-squares
means are within-group means adjusted for other effects in the
model and are also known as the population marginal means
(Searle 1987). The PDIFF option reports the results of the
hypothesis test of the differences between LS means (Ho: LS

meani = LS meanj). The ADJUST = tukey statement requests a
multiple comparison test with adjusted P-values and confidence
limits for the LS means using the Tukey-Kramer method. This
adjustment controls for the overall experiment-wise error rate
(e.g., controls for type I error rate). Note that PROC GLM
allows for random terms; however, the standard errors from the
LSMEANS statement are usually not computed correctly (Littell
et al. 1998). The GLM procedure in this example was run with
only fixed effects. 

The type III sums of squares tests for the significance of the
fixed effects, which account for the other effects in the model,
are as follows, stream type F = 58.31, P = < 0.0001, position F =
1.01, P = 0.319, stream type × position interaction F = 1.71, P =
0.197. The analysis indicates there is a significant difference in
mean fish density between stream types, with barrier streams
having significantly lower mean density levels compared to con-
trol streams (barrier stream X

_ 
= 26.8 fish/m2, standard error (SE)

= 2.92; control stream X
_ 

=58.4 fish/m2, SE = 2.92). Table 2 con-
tains the LS means and standard error estimates for each stream
type and site position. The analysis did not detect any interac-
tion between site position and stream type, although we had
simulated an interaction effect in the dataset. 

Multilevel model—Because multilevel models have received
more attention in the social and behavioral sciences and thus
references are not available specifically for the natural sciences,
we use symbols consistent with Raudenbush and Bryk (2002) in
our description of multilevel models. For this analysis, the
dependent variable was the same as in the GLM analysis; how-
ever, we took into account the nested structure of the data (sites
nested within streams) and analyzed the data using the MIXED
procedure in SAS with random effects. Position, above or below
the barrier, was the site-level (level 1) predictor and stream type
(with or without a barrier) was the stream-level predictor (level
2). Stream was regarded as a random effect. Typically, it is likely
that measurements of fish density from the same stream are cor-
related (i.e., lack statistical independence); one way to model
this correlation is by treating each stream as having a random
effect. Furthermore, we assumed that streams used in the study
represented a random sample of a larger population of streams;
therefore, we can generalize our results to other similar systems. 

General linear model Multilevel model
Stream type Position LSM SE LSM SE

Barrier Above 22.0a 4.14 22.0a 7.38
Barrier Below 31.6a 4.14 31.6b 7.38
Control Above 59.0b 4.14 59.0b 7.38
Control Below 57.8b 4.14 57.8b 7.38

Table 2. Least-squares means (LSM) and standard error (SE) estimates
for example 1 analyzed in SAS using a general linear model (PROC GLM)
and a multilevel model (PROC MIXED). For each analysis (column) least-
squares means with different superscripted letters are significantly
different (P < 0.05 using Tukey-Kramer multiple comparison test). Least-
squares means correspond to the arithmetic within group means which
can be calculated using the values in Table 1.
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The model can also be viewed in two levels and in a com-
bined form as follows:

Level 1 model: Yij = β0j + β1j (Position) + rij (2)

where Yij is the density of fish in site i in stream j, β0j is the mean
outcome for stream j, β1j is the coefficient for the fixed effect of
site position on fish density, rij is the level-1 error, where
rij ~ N(0, σ 2), and σ 2 is the variance at level 1 after controlling
for the effects of position. 

Level 2 model: β0j = γ00 + γ01 (Stream_Type) + u0 j, and

β1j = γ10 (3)

where γ00 is the grand mean density, γ01 is the estimated coeffi-
cient for the fixed effect of stream type (i.e., barrier or control)
on stream mean fish density, γ10 is a fixed effect representing the
coefficient for the effect of position on fish density, and u0 j is the
residual, where u0 j ~ N(0, τ00) and τ00 is the conditional vari-
ance (the stream-level variance after controlling for stream
type). The combined model can then be written to contain the
site position × stream type interaction as follows:

Yij = γ00 + γ10 (Position) + γ01 (Stream_Type) + 
γ11 (Position x Stream_Type)+ u0j + rij (4)

where γ11 is the estimated coefficient for the interaction term
and all other variables are defined as above. The model can be
implemented using the following code:

PROC MIXED COVTEST DATA= barrier_data;
CLASS stream stream_type position;
MODEL density = stream_type position stream_type*position /

SOLUTION;
RANDOM intercept / SUBJECT = stream;
LSMEANS stream_type position stream_type*position / PDIFF

ADJUST = tukey;
RUN;

For an extensive explanation of the PROC MIXED syntax, see
Littell et al. (1996). The syntax is similar to that used in the GLM
procedure; however, important differences exist. The COVTEST
statement produces asymptotic standard errors and Wald Z-tests for
the covariance parameter estimates, σ̂ 2 and τ̂00. The CLASS state-
ment is the same as described for the GLM procedure, while the
MODEL statement lists the dependent variable and only the fixed
effects. The SOLUTION option after the MODEL statement
requests the parameter estimates and their standard errors for the
fixed effects. The RANDOM statement specifies the random
effects in the model. The intercept is designated as random in this
model because it is assumed that the stream-level intercepts are
from a larger population of stream-level intercepts. The SUBJECT
option identifies the subject(s) in the multilevel model. Specifying
a subject is equivalent to nesting all effects in the RANDOM state-
ment within the subject effect (Littell et al. 1996). Therefore, the
above syntax is modeling fish density while accounting for the data
being clustered (grouped) by streams. As in the GLM procedure,
the LSMEANS statement requests the LS means estimates for the
specified fixed effects and the PDIFF option for the LSMEANS
statement requests the differences between the LS means.

The analysis indicated that there was a significant position ×
stream type interaction. The overall type III tests for the fixed

effects are as follows: stream type, F = 9.44, P = 0.0039; position,
F = 5.56, P = 0.024; and position x stream type interaction, F =
9.39, P = 0.004. Note that because PROC MIXED uses a likeli-
hood-based approach to estimation, it does not directly compute
or display the sums of squares; however, the type III tests are equiv-
alent to those produced by PROC GLM. Table 2 contains the LS
means estimates and standard errors for each stream type and site
position. In treatment streams, sites located above the barrier had
significantly lower mean fish density estimates compared to sites
below the barrier; whereas, in control streams mean fish density
did not differ between sites located above or below the barrier ref-
erence line. Treatment streams had lower fish density estimates
compared to control streams, regardless of position, but consider-
ing only sites below the barriers, treatment and control streams did
not differ significantly in mean fish density estimates. 

Both the traditional (OLS) and multilevel analyses resulted
in the same LS means point estimates and they were equal to the
arithmetic means of the values outlined in Table 1. Least-squares
means will be equivalent to arithmetic means for cases with bal-
anced designs, as in this example. However, for unbalanced
designs, which are common in ecological studies, the LS means
estimates will typically not equal the arithmetic means. 

There are two major differences between the traditional and
multilevel analyses that have implications for hypothesis testing and
inferences: (1) the difference in standard error estimates and (2) the
specification of random versus fixed effects. In the multilevel analy-
sis, the standard error estimates of the means are about two times
larger compared to the OLS estimates. This difference is due to the
fact that the standard error in the traditional analysis is calculated
using only the residual variance (the residual variance is the only
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variance component in fixed effects models); whereas, the standard
error in the multilevel analysis is calculated using two variance com-
ponents: the residual variance and a between-stream variance. The
smaller standard errors estimated using the traditional approach can
lead to increased probabilities of type I error rates, i.e., finding a sig-
nificant difference when one does not actually exist. 

The second major difference between our two analyses is the
specification of stream as a random effect in the multilevel analysis.
The specification of random effects has implications for what infer-
ences can be made based on the results of the analyses. For the
traditional approach, with stream as a fixed effect, results can not be
generalized to streams that were not used in the analysis and must be
restricted to the eight streams used in the study. For the multilevel
analysis, where stream was specified as a random effect, inferences
can be generalized to a larger population of barrier and no-barrier
streams. Often a goal of a study is the ability to generalize results
found from a subset of study streams or lakes to a larger population of
streams or lakes of interest. The use of random effects allows for such
inference, whereas purely fixed effects models do not.

Example 2: Examining the relationship between aquatic
macrophyte percent cover and stomach fullness of yellow
perch (Perca flavescens) in inland lakes

For this example, we focus our analysis on the multilevel model-
ing approach to demonstrate how to analyze and interpret datasets
with three levels. As a result, we do not compare this multilevel anal-
ysis with a traditional OLS analysis. The limitations of using

traditional OLS approaches as discussed previously, however, do exist
for analyzing these data. We realize that some of the following model
details are fairly dense; however, it is our goal that these details will
aid in the understanding and interpretation of the model. 

Data were generated to emulate a field study designed to exam-
ine the effects of macrophyte cover on percent stomach fullness
of yellow perch in inland lakes. The dataset contains individual
fish (level 1), nested within sampling sites (level 2), nested
within lakes (level 3; Figure 2). In this example, sample sites were
assumed to be randomly chosen within lakes and lakes were ran-
domly selected from a larger population of lakes. The data were
used to test the null hypothesis that percent stomach fullness is
not related to percent macrophyte cover while controlling for the
effect of individual fish weight on stomach fullness. The dataset
contains measurements of percent stomach fullness and weight
(g) for individual fish sampled from eight sample sites within each
of four lakes. Sample sizes of individual fish varied among sites
and lakes, ranging from 0–46 fish per site and from 160–245 fish
per lake for a total of 751 observations. Weight and percent stom-
ach fullness of individual fish ranged between 110–293 g and
14.4–42.2%, respectively. Percent macrophyte cover was gener-
ated for each sample site and ranged from 2–97%. 

We introduced complexity to this dataset by not only intro-
ducing a third level to the hierarchy, but by also including
predictors at multiple levels: the predictor at level 1 (the individ-
ual fish level) is fish weight and the predictor at level 2 (the site
level) is percent macrophyte cover. Because of this complexity, we

are going to view this analysis as a two-
stage process. 

Stage 1—The first stage involves
obtaining initial estimates of the total
variance, how the variation is partitioned
(i.e., obtain variance estimates that
describe how much variation in stomach
fullness there is due to individual differ-
ences of fish within sites nested within
lakes, among sites nested within lakes,
and among lakes). These variance esti-
mates are also used, along with variance
estimates obtained in stage 2, to deter-
mine the percent variation explained at
each level of the model by the predictor
variables. The model that produces these
estimates is a one-way ANOVA with ran-
dom effects and is also referred to as an
unconditional model because it does not
contain any predictor variables. This one-
way ANOVA with random effects can be
viewed as a three-level model as follows:

Level 1 model: Yijk = π0jk + eijk (5)

where Yijk is the percent stomach fullness
of fish i in site j and lake k, π0jk is the
mean stomach fullness of site j in lake k,
and eijk is the random “fish effect,” and
eijk~ N(0,σ 2) where σ 2 is the residual
variance component due to individual dif-
ferences of fish within sites nested within
lakes.

Figure 2. An illustration of the study-design used for the yellow perch stomach fullness example.
Yellow perch (level 1 of the hierarchy) were sampled from eight sample sites (level 2 of the
hierarchy) within four lakes (level 3 of the hierarchy; lakes A–D). Stomach fullness (dependent
variable) and weight (level 1 predictor variable) were determined for each fish and percent
macrophyte cover (level 2 predictor variable) was determined for each sample site.



Level 2 model: π0jk = β00k + r0jk (6)

where β00k is the mean fullness in lake k, r0jk is the random “site
effect,” and r0jk~ N(0, τπ), where τπ is the variance between sites
nested within lakes.

Level 3 model: β00k = γ000+u00k (7)

where γ000 is the overall grand mean fullness, u00k is the random
“lake effect,” and u00k ~ N(0,τβ), where τβ is the variance

between lakes. The combined unconditional model, therefore,
has a fixed effect (γ000) and three random effects, (u00k, r0jk, and
eijk), and is as follows:

Yijk = γ000 + u00k + r0jk+ eijk (8)

Examining the initial variance estimates provides information
regarding how much total variation there is at each level that
can subsequently be modeled with predictor variables. The code
required for performing the one-way ANOVA with random
effects for this example is:

PROC MIXED COVTEST DATA = lake_data;
CLASS lake site;
MODEL fullness = / SOLUTION;
RANDOM intercept / SUBJECT = lake;
RANDOM intercept / SUBJECT = site(lake);
RUN;

The syntax for this unconditional model is similar to that
described in example 1; however, there is an additional RAN-
DOM statement which specifies that sites are nested within lakes.

Results from the one-way ANOVA with random effects show
that the grand mean (γ̂000) stomach fullness over all lakes is 24% and
the estimates of variance among-fish-within-sites-nested-within-
lakes (σ̂ 2), among-sites-within-lakes (τ̂π), and among-lakes (τ̂β) are
8.67 (SE = 0.46, P < 0.0001), 7.44 (SE = 2.18, P = 0.0003), and 2.18
(SE = 2.6, P = 0.202), respectively. The percent variance among fish
within sites nested within lakes, among sites within lakes, and among
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Estimate SE P-value

Parameter                

Intercept (γ̂000) 5.92 1.31 0.02

Weight ( γ̂100) 0.10 0.003 <0.0001
Percent cover ( γ̂010) 5.02 1.26 <0.0001

Weight × percent cover ( γ̂110) -0.005 0.004 0.24

Variance components

Among fish within sites 
nested within lakes (σ̂ 2) 1.07 0.05 <0.0001

Among sites within lakes ( τ̂π) 5.15 1.48 0.0002

Among lakes (τ̂β) 1.71 1.95 0.19

Table 3. Final parameter and variance estimates, standard errors (SE)
and P—values for example 2. 
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lakes is 47%, 41%, and 12%, respectively. We now have information
on how the variance is partitioned in our dataset and a conditional
model can be specified in stage 2.

Stage 2—The predictor of interest in this study is percent
macrophyte cover. However, we also need to account for the
effect of individual fish weight on stomach fullness in the model.
Therefore, our two predictors are fish weight, modeled at level 1,
and percent macrophyte cover, modeled at level 2. Level 3 (the
lake level) is left unconditional, with no predictor variables
(covariates). Again, the model can be viewed as three levels and
in a combined form as follows:

Level 1 model: Yijk = π0jk + π1jk(Weight)ijk + eijk (9)

where Yijk is the stomach fullness for fish i in site j in lake k, π0jk
is the intercept for site j in lake k, π1jk is the estimated coefficient
for the fixed effect of fish weight on stomach fullness, and eijk is
the level-1 random effect.

Level 2 model: π0jk = β00k + β01k (Percent_Cover)jk + r0jk
π1jk = β10k (10)

where β00k is the intercept for lake k, β01k is the estimated coef-
ficient for the fixed effect of percent macrophyte cover, β10k is a
fixed effect representing the coefficient for the effect of fish
weight on stomach fullness, and r0jk is the level-2 random effect.

Level 3 model: β00k = γ000, β10k = γ100, β01k = γ010 (11)

where γ000 represents the coefficient for the level 2 intercept,
γ100 represents the coefficient for the fixed effect of fish weight
on stomach fullness, and γ010 represents the coefficient for the
fixed effect of percent macrophyte cover on stomach fullness.
The combined model is as follows:

Yijk = γ000 +γ100 (Weight) + γ010 (Percent_Cover) + γ110 (Weight x
Percent_Cover) + u00k + r0jk + eijk (12)

where γ110 is the estimated coefficient for the interaction term
and all other variables are defined as above. The model can be
specified using the following code:

PROC MIXED COVTEST DATA = lake_data;
CLASS lake site;
MODEL fullness = weight cover weight*cover / SOLUTION;
RANDOM intercept / SUBJECT = lake;
RANDOM intercept / SUBJECT = site(lake);
RUN;

The syntax is similar to that described in the unconditional
model; however, we now have specified the full model in the
MODEL statement.

The analysis indicated that both fish weight and percent
macrophyte cover were significantly and positively associated
with percent stomach fullness and that there was not a signifi-
cant interaction effect (Table 3). Variance estimates obtained
from the final model (full model) can be used along with the
variance estimates from the unconditional model to determine
how much variation was explained at each level as follows:

Varianceunconditional – Varaiancefull
Percent variance explained = __________________________ (13)

Varianceunconditional

where Varianceunconditional is an estimate of ^σ 2, ^τπ, or ^τβ from the
unconditional model and Varaiancefull is an estimate of ^σ 2, ^τπ, or
^τβ from the full model. For example, to determine how much of
the variation in stomach fullness among fish within sites nested
within lakes was explained by fish weight we perform the follow-
ing calculation: 

8.67(^σ 2
unconditional) – 1.07 (^σ 2

full) = 0.88
____________________________ (14)
8.67(^σ 2

unconditional)

thus, fish weight explained 88% of the among-fish-within-site-
nested-within-lake (level 1) variation in stomach fullness. Using
equation 13, we can determine that percent macrophyte cover
explained 31% of the variation in fish stomach fullness among
sites within lakes (level 2). Because we did not have predictors at
the lake-level (level 3), we do not need to calculate percent vari-
ation explained at this level. However, if predictors were
included at level 3, the same calculation could be performed to
determine percent variation explained.

In this example, the multilevel model accounted for the fact
that fish were nested within sample sites within lakes and sample
sites were nested within lakes. As in example 1, the specification
of random effects allowed us to account for the lack of indepen-
dence of observations within sites and lakes with similar
implications for inferring (e.g., the ability to generalize to a
larger population of lakes). The analysis also allowed for the par-
titioning of variance among the three levels. Variance
partitioning provides valuable information on how much varia-
tion is contained at each level. Knowledge of how much
variation exists at each level can also help guide future data col-
lection efforts by allowing researchers to focus data collection at
the level (e.g., spatial scale) that contains much of the variabil-
ity that needs to be explained.

CONCLUSION

Multilevel models provide several advantages over the more
commonly-used OLS approaches when analyzing data with a
hierarchical structure. Because hierarchical structures are com-
mon to both experimental and field (observational) studies in
fisheries research, we encourage the use of multilevel models
where appropriate. Some other examples of where hierarchical
data structures may arise in fisheries research, where multilevel
models would be applicable, include investigations of fishing
tournament-related mortality, where fish are nested within tour-
naments and tournaments are nested within lakes, and
investigations of landscape features on lake or stream attributes,
where waterbodies are nested within watersheds and watersheds
are nested within ecoregions. Furthermore, due to statistical
computing advances, multilevel models can be implemented in
widely available statistical software packages. These approaches
provide better estimation of fixed effects, allow for the partition-
ing of variance components across levels, and allow for
generalizations beyond the particular groups (e.g., streams or
lakes) used in the study. 
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APPENDIX

An example of the data structure required to analyze the
stream barrier dataset (example 1) using SAS. The DATA
statement specifies the name of the dataset that is generated.
The INPUT statement specifies the variables that are read
from the program editor window and the “$” designates
variables as character variables. The data corresponding to
the variables listed in the INPUT statement are entered
after the DATALINES statement.

DATA barrier_data; 
INPUT density stream $ site stream_type $
position $; 
DATALINES; 
15 A 1 Barrier Above
14 A 2 Barrier Above
7 A 3 Barrier Above
49 B 1 Barrier Above
47 B 2 Barrier Above
39 B 3 Barrier Above
14 C 1 Barrier Above
15 C 2 Barrier Above
25 C 3 Barrier Above
.
.
.
72 E 6 Control Below
;


