
Implementing Object-Speci�c Design PatternsUsing Per-Object MixinsGustaf Neumann and Uwe ZdunInformation Systems and Software TechniquesUniversity of Essen, Germanyfgustaf.neumann,uwe.zdung@uni-essen.deAbstractObject-oriented software system composition is tradi-tionally centered on class-based designs. In this paperwe will take a look onto design issues from an object-level point of view and discuss the idea to build designsespecially tailored for the object-level. Currently theobject-oriented paradigm is still evolving. New ideas,like design patterns, enhance composability on the class-level. Based on the example of three design patternsfrom [11] (Decorator, Strategy, and Observer) we willshow in this paper how to re�ne class-level designs atthe object-level.We believe that the underlying concepts of a program-ming paradigm and the capabilities of the programminglanguage should be of comparable expressiveness. Re-garding the class-level implementation of design pat-terns, we have introduced a language construct called �l-ter, providing a powerful language support for class-levelpatterns. Similarly, in order to implement the object-level patterns presented in this paper, we use anotherlanguage construct, tailored for the implementation onthe object-level, called per-object mixins. This constructis implemented in the scripting language XOTcl, whichis an extension of MIT's OTcl.1 IntroductionObject-orientation is based on the principles of infor-mation hiding and abstraction through encapsulationand on specialization through inheritance. This ap-proach has proven well in reducing complexity of soft-ware architectures, but unfortunately it still entails cer-tain obstacles and limitations. Currently a central weak-ness is the composition of objects. Class-level languageconstructs are able to describe the properties and the be-havior of their instances in detail, but they su�er frompowerful means to express how classes and objects arecomposed and how they are inter-related.The discrepancy between the aim of abstractions hid-ing their implementation and the reality, where client

objects need access to module internals, is another chal-lenging problem [14]. The necessity to let a moduleaddress the requirements of several clients, while stay-ing focused enough for each speci�c client, entails theneed for a new model of abstraction. Such a model areopen implementations [15], for instances implementedwith meta-object protocols [16].Reective techniques, like read/write introspection, inconjunction with dynamics of object and class-system,are a solution to allow modules to adapt their descrip-tive representation to client requirements. A generalproblem is, how to access these features properly. Ap-proaches, like [16] or [22], use a distinction between ameta-level and a base-level, where the behavior of thebase-level is controlled through meta-objects. This isa useful but low-level approach. The per-object mixinsused in this paper provide a higher-level interface to letobjects be adapted for client requirements and they arecompletely transparent for client objects.Moreover, they avoid the distinction between meta-level and base-level. We consider the implied splitting ofthe tasks of one design entity into two (or more) objects,a base-level and a meta-level object, as the biggest dis-advantage of meta-object protocols. We rather proposethe usage of meta-classes (see [19]) or per-object mixinsin order to be able to decompose base- and meta-part,while preserving the one design entity as one object ofthe implementation.Another common problem to object-orientation isthat numerous components, with several classes andall their relationships, have to work in concert. Theevolving complexity of applications makes it di�cult forsoftware engineers to make the right design decisions.Therefore, it is important to make good designs acces-sible to other software engineers and this way reusable.The object-oriented design community proposes designpatterns [11] as a solution to this problem.Design patterns are a description of situations inwhich several classes cooperate on a certain task [26].They typically can be found in the \hot spots" [25] ofsoftware architectures. Design patterns are collected incatalogs, like [11, 9]. Most e�orts in the literature con-1

centrate on cataloging of patterns. By using design pat-terns, they become a part of the programmer's paradigm[2].Unfortunately, in order to reuse the design experiencerepresented in the design pattern in an implementation,the programmer has to recode the pattern for every us-age. Therefore, the design pattern is no entity of theprogramming language. In [3] more problems with de-sign pattern implementation are investigated, i.e. :� Traceability: The pattern is scattered over the ob-jects and, therefore, hard to locate and to trace inan implementation [26]. We also see the problem oftraceability of run-time structures, induced by theabsence of introspection mechanisms in languageslike C++.� Self-Problem: The implementation of several pat-terns requires forwarding of messages, e.g. an objectA receives a message and forwards it to an objectB. Once the message is forwarded, references to selfrefer to the delegated object B, rather than to theoriginal receiver A [17].� Reusability: The implementation of the patternmust be recoded for every use.� Implementation Overhead: The pattern implemen-tation requires several methods with only trivial be-havior, e.g. methods solely de�ned for message for-warding.Some approaches, like [2, 3, 10, 12] provide a languagesupport for design patterns to solve this problem. In [25]seven meta-patterns are identi�ed that de�ne most ofthe patterns of Gamma et.al. [11]. In [19] we have shownan approach, how to generally language support patternsbased on these meta-patterns, using a new class-levellanguage construct, called �lter.Filters are instance methods registered for a class C.Every time an object of class C receives a message, the�lter is invoked automatically. When the �lter is reg-istered, all messages to objects of this class (and all itssub-classes) must pass the �lter, before they reach theirdestination object. Therefore, the �lter is a very power-ful language construct. In combination with its rich in-trospection facilities and the dynamics of �lter registra-tion it is able to achieve a powerful language support fordesign patterns, but also has strong meta-programmingabilities and can be used as a general tracing facility.But this power comes with a certain coarseness, whenapplied to the object-level. Generally it is possible tospecialize a �lter enough to satisfy every client object'srequirements. But we think the more intuitive way is, toprovide a language construct, similar to the �lter espe-cially tailored for the object-level. For this task we will

introduce a language construct called per-object mixin(investigated as a language construct in [20]).Moreover, we will show that the general idea of re�n-ing class-level constructs to the object-level is not lim-ited to programming language constructs. Large pro-gram structures, like class-level design pattern, can alsobe transformed into an object-speci�c pattern. In thispaper we will show such a re�nement on the example ofthe decorator, strategy and observer pattern [11]. Wewill use the new language construct per-object mixin toimplement the object-speci�c patterns properly. Before-hand, we give a brief overview of the XOTcl language,in which we have implemented the per-object mixins.2 Extended OTclExtended OTcl (XOTcl, pronounced exotickle) is anextension of OTcl [28] which is an object-oriented avorof the scripting language Tcl (Tool Command Language[23]). Generally, there is a fast and high quality devel-opment of software systems in scripting languages, likeTcl. Since they o�er a dynamic type system with auto-matic conversion, they become easily extensible throughcomponents (e.g. written in XOTcl, Tcl, or C). Allcomponents use the same string interface for argumentpassing and therefore they automatically �t together.The components can be reused in unpredicted situationswithout change. In [24] and [19] it is pointed out that theevolving component frameworks provide a high degree ofcode reuse, and o�er easy usage and rapid applicationdevelopment.OTcl preserves and extends these important featuresof Tcl. It o�ers object-orientation with encapsulationof data and operations, single and multiple inheritance,a three level class system based on meta-classes, methodchaining and rich read/write introspection facilities, al-lowing the programmer to change all relationships dy-namically (see [28] for details).In XOTcl every object is associated with a class overthe class relationship. Classes are ordered by the rela-tionship superclass in a directed acyclic graph. Classesare a special objects with the purpose of managing otherobjects. \Managing" means that a class provides meth-ods to create and destroy instances, and that it providesa repository of methods for its instances (\instprocs")to de�ne their behavior. Furthermore, a classes can becombined through single or multiple inheritance. Theinstance methods common to all objects are de�ned inthe root class Object (prede�ned or user de�ned). Sincea class is a special (managing) kind of object it is man-aged itself by a special class called \meta-class" (whichmanages itself). One interesting aspect of meta-classes isthat by providing a constructor, pre-con�gured classescan be derived. New user-de�ned meta-classes can be2

derived from the prede�ned meta-class Class in orderto restrict or enhance the abilities of the classes thatthey manage. All inter-object and inter-class relation-ships are fully dynamic and can be changed at arbitrarytimes with immediate e�ect. Since classes are also ob-jects, all methods applicable for objects can be appliedon the class-objects as well.The OTcl properties provide a good basis for XOTcl.The XOTcl extensions focus on mechanisms to man-age the complexity that may occur in large object-oriented systems, especially when systems-parts have tobe adapted for certain purposes. In particular we addedthe following support:� Dynamic Object Aggregations, to provide dynamicaggregations through nested namespaces (objects).� Nested Classes, to reduce the interference of inde-pendently developed program structures.� Assertions, to reduce the interface and the reliabil-ity problems caused by dynamic typing and, there-fore, to ease the combination of many components.� Meta-data, to enhance self-documentation of ob-jects and classes.� Per-object mixins, as a means to improve exibilityof mixin methods by giving an object access to sev-eral di�erent supplemental classes, which may bechanged dynamically.� Filters as a means of abstractions over method in-vocations to implement large program structures,like design patterns.3 Per-Object MixinsIn this section we will give a brief introduction tothe new language construct per-object mixin, discussedmore deeply in [20]. The construct bases on the methodchaining ability of OTcl, which mixes the same-named(or \shadowed") super-class methods into the currentmethod (modeled after CLOS [5]), without explicit nam-ing of the \mixin" method. A method can invoke theshadowed methods by the next-primitive, resulting in anunambiguous, linear next-path.Per-object mixins are a novel approach of XOTcl tohandle complex data-structures dynamically on a per-object basis. The term \mixin" is a short form for\mixin class".A per-object mixin is a class which is mixed intothe precedence order of an object in front of theprecedence order implied by the class hierarchy.

As a consequence, the per-object mixins extend themethod chaining of a single object.An arbitrary class can be registered as a per-objectmixin for an object by the prede�ned mixin method.This method accepts a list of per-object mixins allowingthe programmer to register multiple mixins. The follow-ing de�nes the classes A and Mix1 (with a method) andregisters Mix1 on the instance a of class A.Class AA instproc proc1 {} {puts [self class]next}Class Mix1Mix1 instproc proc1 {} {puts [self class]next}A aa mixin Mix1Since the per-object mixins extend the method chain-ing, they use the next-primitive to forward messages toshadowed methods. If a call on object a is invoked, like\a proc1", the per-object mixin is mixed into the prece-dence order of the object, immediately in front of theprecedence order resulting from the class hierarchy. Theresulting output of the example call is:::Mix1::A
AMix1

Object

next

next

next

a

instance-of
per-object
mixinFigure 1: Next-Path with Per-Object MixinsMixins may be removed dynamically at arbitrarytimes by handing the mixin method an empty list. Forintrospection purpose XOTcl o�ers the mixin option ofthe info instance method. A command of the formobjName info mixin ?class?returns the list of all mixins of the object, when classis not speci�ed. The command returns 1, if class is amixin of the object, or 0 otherwise.The usual way to specialize descriptive structuresin object-oriented languages is inheritance. Since per-object mixins are themselves normal classes they canbene�t from specialization through inheritance. This isnecessary, because, by being normal classes, instances3

can be derived directly from them. Without providingan inheritance ability the behavior of a class as a per-object mixin would di�er from the behavior, when theclass is instantiated. This would be an undesirable in-consistency to the language.4 Per-Object Design Patterns4.1 Implementation through Per-ObjectMixinsThe re�nement idea of class-level constructs to theobject-level is not only applicable to language constructsbut also to certain class structures. E.g. certain de-sign patterns are implementable on the object-level. Forthe implementation of design patterns on the class-levelwe propose the language support through �lters as pre-sented in [19].A central property of per-object mixins is that theyact transparently for their objects. Therefore, we con-sider them as a natural way for object-based decompo-sition [18]. An disadvantage of traditional object-baseddecomposition is that it splits one conceptual entity intomultiple separated entities. Traditional object-orientedapproaches o�er no support to combine several objectsto an entity, without loosing the decomposition. An im-portant sub-problem in this context is the mentionedself-problem [17], since forwarding in a decomposed sys-tem entails the problem of loosing the self-reference.Per-object mixins are able to decompose several tasksof one conceptual entity, without referencing to anotherobject. Since design patterns often gain from decomposi-tions, per-object mixins make these patterns conceptualentities. Therefore, we consider per-object mixins as aproper implementation of object-level design patterns.4.2 The Decorator Design PatternFigure 2 shows the implementation of the decoratorpattern from [11]. It attaches additional responsibilityto an object. Another way to do so is using inheritance,but this is inexible, because the additions would have tobe statically attached. The decorator pattern solves thisproblem by de�ning an abstract component type and byletting decorators aggregate one such component. Theemerging run-time object structure is a chain of deco-rators terminated by the concrete component, which isthe object being decorated. The pattern is an alternativeto sub-classing and, therefore, resembles the per-objectmixin. For that reason, this pattern is very easily trans-ferable to the object-level.The implementation of Gamma et.al. [11] su�ers fromseveral problems, due to the used language C++. It

Component

Operation

Decorator

Operation

component

component->Operation()

ConcreteComponent

Operation

Decorator::Operation()
addedBehaviour()

ConcreteDecoratorA

Operation

addedState

ConcreteDecoratorB

Operation

addedBehaviourFigure 2: Decorator Design Pattern [11]entails the self-problem, since the �rst decorator is thereceiving object and this reference gets lost through mes-sage forwarding. The pattern is hard to trace in theprogram code and hard to introspect in the run-timestructures. The abstract pattern semantics are mixedinto application classes, therefore, the pattern is hard toreuse.
Component

Operation

ConcreteComponent

Operation

addedBehaviour
[self] next

ConcreteDecoratorB

Operation

addedState

ConcreteDecoratorA

Operation

addedBehaviour

componentObj

instance-of

next

next

next next

per-object mixin

per-object mixin

Figure 3: Per-Object Decorator Implemented with Per-Object MixinsFigure 3 shows the per-object decorator implementedthrough mixins in general. The component objecthas several mixins de�ned automatically performing theadded behavior. They are combined through next. Af-terwards the operation is forwarded to the object's classand is resolved in original precedence order. All oper-ation calls are performed on the same object, so thissolution does not su�er from the self-problem. Sincemixins are a language construct they are easy to reuse.Furthermore, they are introspectable, so the pattern istraceable in the run-time structures.As an example we will implement an Image class whichis decorated by a scrollbar and a menu. We create thethree necessary classes. At �rst we build an abstractcomponent type Widget for all three classes, using theabstract instance method. For the sake of simplicity wegive the classes only one (unspeci�ed) method draw:Class WidgetWidget abstract instproc draw args4

Class Image -superclass WidgetImage instproc draw args {# do the drawing of the image}Class Menu -superclass WidgetMenu instproc draw args {# attach menu to an imagenext}Class ScrollBar -superclass WidgetScrollBar instproc draw args {# attach scrollbar to an imagenext}In order to provide the main window of an image viewerwith a scrollbar and a menu, it is only necessary to in-stantiate the Image and to specify the decorating classesMenu and Scrollbar as mixin classes of the object:Image mainImage -mixin {Menu ScrollBar}Out of its simplicity and shortness this solution reducesthe complexity of the pattern radically. Moreover, itdoes not entail the stated problems like the self-problem,but all these bene�ts would also apply on decoratorsusing �lters. The main di�erence is, it is applied onthe object-level. Only one image is decorated. Withoutmaintenance of arbitrary structures, like decorator-lists,or other implementation overhead we can simply createother Image-instances, which are decorated in anotherway. E.g. a zoomed image that needs no menu is createdby:Image zoom -mixin ScrollBar4.3 The Strategy Design PatternThe strategy design pattern [11] encapsulates a set ofalgorithms in classes and lets clients use them throughan abstract interface. This way the algorithms becomedynamically exchangeable. Figure 4 shows the patternimplementation of Gamma et.al.
Context

ContextInterface

strategy Strategy

AlgoritmInterface

ConcreteStrategyB

AlgoritmInterface

ConcreteStrategyA

AlgoritmInterface

ConcreteStrategyC

AlgoritmInterfaceFigure 4: Strategy Design Pattern [11]The implementation entails similar obstacles like thedecorator pattern, which are described in [2]. I.e. it ishard to determine in the program code or at run-timeif a class is instantiated as a strategy or as an applica-tion object. When the strategy object refers to self, itrefers to itself instead of the receiving context object.The explicit forwarding of messages is an implementa-tion overhead, where the software engineer has to ex-plicitly distinguish between containing object and thestrategy objects.

The object-speci�c implementation using mixins en-tails none of these problems. Since mixins are not in-stantiated and form a conceptual entity with the con-taining object, there is a clear distinction of strategypart and containing object part, which is introspectableat run-time. But still the self-problem does not occur.The forwarding is handled automatically { without nam-ing of the mixin-method { by the next-primitive of thelanguage. Figure 5 shows the evolving situation for anobject containingObj1 that is attached to one speci�cstrategy. Note, that this solution is also applicable ifthe strategy depends on the output of the object, sincethe strategy computation may be put after the next-call.
Context Strategy

AlgoritmInterface

ConcreteStrategyB

AlgoritmInterface

ConcreteStrategyA

AlgoritmInterface

ConcreteStrategyC

AlgoritmInterface

containingObj1

instance-of

next
per-object mixin

next

next

Figure 5: Per-Object Strategy Implemented with Per-Object MixinsAs an example we will implement a comparison strat-egy for strings. For instances, if a parser should parse astring into a node tree, it has to check which node typea string to be parsed belongs to. In a language o�eringclass-objects, an abstract factory for node objects canquestion the node class-object, whether a string matchesthe type of the node or not, before creating a new in-stance.Firstly, we create the abstract interface for nodes thatjust speci�es an interface for parsing:Class Node -parameter contentNode abstract instproc parse stringFor this example we create two special node types, adescription node, which holds a literal \Description" anda \or" node holding an \or"-expression.Class DescriptionNode -superclass NodeDescriptionNode set content "Description"DescriptionNode instproc parse string {# parse the description string}Class OrNode -superclass NodeOrNode set content "|"OrNode instproc parse string {# parse the or expression string}On both classes the content of the node class is storedas a class variable. Here, we need two di�erent compari-son strategies: Literals, like \description", must exactlymatch their content, while expressions, like \or", mustonly contain their content. We implement these com-parison strategies as classes:5

Class ComparisonStrategyComparisonStrategy abstract instproc match stringClass Equals -superclass ComparisonStrategyEquals instproc match string {[self] instvar contentreturn [expr {$string == $content}]}Class Matches -superclass ComparisonStrategyMatches instproc match string {[self] instvar contentreturn [string match $string* $content]}If we now register the two comparison strategies for thecorresponding node class-objects, like:DescriptionNode mixin EqualsOrNode mixin Matchesa factory can query the class-object for a match andinstantiate the proper node class in order to let it parsethe given string, e.g. :...if {[OrNode match $string]} {OrNode orNodeObj -parse $string}...4.4 The Observer Design PatternThe observer pattern is a solution to the commonproblem that a set of depending objects (\observers")rely on the state of one or more observed objects (\sub-jects"). It ful�lls the task of notifying all state changes.Figure 6 shows the observer design pattern as presentedin [11].
Subject

Attach
Detach
Notify

ConreteSubject

GetState
SetState

subjectState

for all o in observes {
 o->Update()
}

return subjectState

Observer

Update

Update

observerState

ConcreteObserver
observerState =
 subject->GetState

subject

observers

Figure 6: The Observer Pattern [11]Bosch [2] identi�es the problem that the traceabilityand resuseability of the pattern su�er from the fact thatthe methods attach, detach and notify do not build upa conceptual entity and that the calls of notify must beinserted at every point where a state change occurs. In[19] we present a solution for this problem which is using�lters. In the case that only some observed methods ofa certain set of subjects (and not all subjects of onetype) should be observed, the object-speci�c solutionpresented in this section is more appropriate. Whenall the instances of a whole hierarchy (possibly with all

Subject

ConreteSubject

observedObj
instance-of per-object mixin

observedOperation1
observedOperation2
...
unobservedOperation

observedOperation1
observedOperation2
...
unobservedOperation

Observer

ConreteObserver

observedOperation1
observedOperation2
...

observedOperation1
observedOperation2
...

next

nextnext
next

Figure 7: Per-Object Observer Implemented with Per-Object Mixinstheir methods) are depending on the subjects, the �ltersolution should be used.In Figure 7 a solution for an observer using per-objectmixins is presented. The observers are mixins of the ob-served object and specify a set of observed operations.Additionally the subjects may contain unobserved oper-ations.As an example for this solution we present a networkmonitor which observes a set of connections and main-tains several views on these (e.g. a diagram and a textualoutput). This example is strongly resembling the exam-ple in [19] and should underline the stated di�erences ofthe two language constructs �lter and per-object mixins,which are examined more deeply in Section 5.1.
Internet

Collector: c1

Collector: c2

Diagram

TextOutput

Figure 8: Observer ExampleIn the implementation the class Pinger encapsulatesview and collector classes, the collectors are treated assubjects of the observer:Class PingerClass Pinger::CollectorPinger::Collector abstract instproc ping stringClass Pinger::NetCollector -superclass CollectorThe operation ping is the network event, which mustbe handled by the collector. This is the operation tobe observed. The NetCollector starts the observation6

of the network connection in its constructor init. Theconstructor is an unobserved operation:Pinger::NetCollector instproc init args {set hostName 132.252.180.67set f [open "| /bin/ping $hostName" r]fconfigure $f -blocking falsefileevent $f readable "[self] ping \[gets $f\]"}Pinger::NetCollector instproc ping {string} {# handle the network event}The two observers:Class Pinger::DiagramClass Pinger::TextOutputmust specify an observing ping method. The text outputpresentation may look like:Pinger::TextOutput instproc ping {string} {puts "PINGER: [self] -- $string"}The diagram ping operation will most likely forward themessage to a speci�ed diagram object. For concrete ap-plications the classes of the observers must be registeredas mixins, e.g. like the situation in Figure 8, where c1 hasone diagram observer, while c2 is observed by a textualoutput and a diagram:Pinger::NetCollector c1 -mixin Pinger::DiagramPinger::NetCollector c2 \-mixin {Pinger::TextOutput Pinger::Diagram}5 Related WorkWe �rstly will compare the per-object mixin approachto implement design patterns to our class-level approach\�lter". Afterwards we will sketch related works fromthe literature regarding per-object mixins and �nally re-garding the idea of language support for design patterns.5.1 Comparison of Filters and Per-ObjectMixinsAs shown in [19] �lters are able to achieve a reusablelanguage support for design patterns as programminglanguage entities. Furthermore it enables running pro-grams to trace (and manipulate) their structures. Thispower has sometimes the disadvantage of a certaincoarseness, when �lters should work on single objects.Consider a situation where only a single method in-voked on some objects should be observed. The �lterwould have to be de�ned on these object's classes. Inorder to ful�ll it's observation task it would have to checkexplicitly on every call to every object of these classeswhether the object is in the set of observed objects ornot. This is an elaborate solution. Moreover, if the set

of observed objects may change dynamically at least alist of them would have to be maintained. Perhaps therewould have to be di�erent �lters for every object. In anycase this would lead to an implementation overhead. Allthese problems would not occur when using per-objectmixins.Generally, a class-level construct aiming at reductionof complexity in large systems must be able to handlevery broad structures, like entire class hierarchies. Forsome problems on the object-level a �ner granularity ofthe language construct is more appropriate.Nevertheless, both new language constructs, �lter andper-object mixin contain several similarities. A �lterwhich contains code for an explicit delimitation of it'sactions to a certain method of a certain instance of oneclass, is relatively equivalent to a per-object mixin. Onthe other hand, the same applies for a per-object mixinwhich is registered on every instance of a class or hier-archy and contains methods for all instprocs of the hier-archy. The elaborateness of both directions emphasizesthe sensibleness of the idea of a distinction of object- andclass-level for language constructs aiming at complexity.Both constructs use inheritance for specialization,classes can optionally limit their inheritance abilities,when applied as per-object mixin (see [20] for details).The di�erences, the two constructs entail, make themwell suited for their language level. Per-object mixinsare only applied on calls to one object's methods whichare de�ned on the per-object mixin class. The �lter han-dles all calls of all instances of the �ltered class and it'ssub-classes.On the example of the observer pattern, investigatedin this paper and in [19], it becomes obvious that thegranularity of both language constructs makes them rea-sonable in usage, depending on the application's needs.These should be the basis for the decision which kind ofdesign pattern, object- or class-level, is to be used. Thedecision for the appropriate language construct followsdirectly.5.2 Related Work on Per-Object MixinsPer-object mixins base on the method chaining mech-anism ofOTcl, discussed more deeply in [28]. The mech-anism provides an automatic method chaining withoutexplicit naming of the mixin method. It is a very ex-ible programming mechanism and, combined with theunambiguous precedence OTcl o�ers, they avoid nameclashes through (multiple) inheritance at all. The ideaof mixins in OTcl are inuenced by the lisp extensionCLOS [5].There are several extensions to the idea of mixins dis-cussed. In Agora [27] mixins are treated as named at-tributes of classes, in order to let the class control how7

it is extended. A central property of these mixins is thatthey may be nested. Bracha and Cook [6] analyze dif-ferent inheritance mechanisms and propose mixins as ageneral inheritance construct. Inheritance is interpretedas mixin composition. In Jigsaw [7] mixins are used tounbundle the several roles of classes by providing a setof operators controlling e�ects like inheritance, name-resolution, modi�cation, etc.These approaches use class-level constructs, also re-sembling the �lter approach. But as they use mixinclasses the methods are only applied on certain messages(methods of the mixins), and not on all messages like in�lters. This limits the expressiveness of mixin classes incomparison to �lters. Since these mixins are applied onlyon classes their granularity is not �ne enough for object-level applications. Nevertheless as a kind of \per-classmixins" they show the similarity between mixin and �l-ter in general.There are some other class-level concepts, with theability to intercept and then change, redirect, or other-wise a�ect messages. The composition �lter model [1]introduces the idea of a higher-level object interactionmodel through abstract communication types (ACTs).This idea was adopted by some approaches in the areaof distributed computing, e.g. like Orbix �lters [13].5.3 Related Work on Design Pattern Im-plementationSoukup [26] and Bosch [3] have identi�ed problemsin the implementation of popular design patterns [11].Hedin [12] presents an approach to implement designpatterns based on an attribute grammar in a specialcomment marking the pattern in the source code. Thisaddresses the problem of traceability. The comments as-sign roles to the classes, which constrain them by rules.The FLO-language [10] introduces a new component\connector" that is placed between interacting objects.The connectors are controlled through a set of inter-action rules that are realized by operators. It is alsocentered on messages exchanges.The LayOM-approach [2] is an approach for languagesupport for design pattern, partially resembling the �l-ter, since the approach is centered on message exchangesas well. It puts layers around the objects which handlethe incoming messages. Every layer o�ers an interfacefor the programmer to determine the behavior of thelayer through a set of operators which are (statically)given by the layer de�nition.These approaches are class-level approaches andtherefore su�er from the stated problems regarding theobject-level composability. In [4, 3] a composition tech-nique, called superimposition is proposed as a languagesupport for implementation of frameworks. It composes

the di�erent behavioral roles a component has to playinto one single entity. In conjunction with the layersthis approach should also allow the software engineerto implemented a design pattern object-speci�c, in thesense that it is able to let supplier objects play di�er-ent roles for di�erent client requirements. Therefore, wethink object-level design pattern should be easily im-plementable using this approach, but in comparison toper-object mixins this class-level approach seems to suf-fer from being static and o�ering no introspection.6 ConclusionIn this paper we have argued for a stronger focuson composability issues regarding the object-level andexplained several obstacles in object-oriented program-ming. We solved these by introducing exible and �ne-grained language constructs. In particular we presentedthe high-level programming language construct of per-object mixins, and showed its well-suitedness for objectcomposition.After this introduction we investigated in the appli-cation of the language constructs for design patterns,which are class-based. For three example patterns wepresented object-level equivalents. We give applicationexamples implemented via per-object mixins. This way,we have shown how to implement these new patternsin a way that they are object-speci�c, transparent forthe client object and not su�ering from the stated set ofde�ciencies occurring in traditional design pattern im-plementations.For most class-level design patterns, e.g. those in cat-alogs like [11, 9], it should be possible and make sense to�nd an object-speci�c representation. The subset of pat-terns that rely on message exchanges, i.e. the patternsrelying on the meta-patterns of Pree [25], should bene�tfrom being implemented using per-object mixins, whenthe pattern is applied on the object-level.XOTcl is available for evaluation fromhttp://nestroy.wi-inf.uni-essen.de/xotcl/.References[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A.Yonezawa: Abstracting Object Interactions UsingComposition Filters, ECOOP '93, 1993.[2] J. Bosch: Design Patterns as Language Constructs,Journal of Object Oriented Programming, alsoavailable as http://bilbo.ide.hk-r.se:8080/�bosch/,1996.8

[3] J. Bosch: Design Patterns and Frameworks: On theIssue of Language Support, LSDF'97, also availableas http://bilbo.ide.hk-r.se:8080/�bosch/, 1997.[4] J. Bosch: Composition through Superimposition,ECOOP '96 Workshop on Composability Issues inObject-Orientation (CIOO '96), 1996.[5] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E.Keene, G. Kiczales, D.A. Moon: Common LispObject System. In: Common Lisp the Language,2nd Edition, http://info.cs.pub.ro/onl/lisp/clm/node260.html, 1989.[6] G. Bracha, W. Cook: Mixin-Based Inheritance, in:Proc. of OOPSLA/ECOOP '90, special issue ofSIGPLAN Notices, Vol. 25, No. 10, October 1990,pp. 303{311.[7] G. Bracha, G. Lindstrom: Modularity Meets Inher-itance, in: Proc. of IEEE International Conferenceon Computer Languages, April 1992.[8] S. Demeyer, P. Steyaert, K. De Hondt: TechniquesFor Building Open Hypermedia Systems, ECHT'94Workshop, Edinburgh, September1994.[9] F. Buschmann, R. Meunier, H. Rohnert, P. Som-merlad, M. Stal: Pattern-oriented Software Archi-tecture { A System of Patterns, J. Wiley and SonsLtd, 1996.[10] S. Ducasse: Message Passing Abstractions asElementary Bricks for Design Pattern Im-plementations, LSDF'97, also available ashttp://bilbo.ide.hk-r.se:8080/�bosch/lsdf/, 1997.[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994[12] G. Hedin: Language Support for Design Patternsusing Attribute Extension, LSDF'97, also avail-able as http://bilbo.ide.hk-r.se:8080/�bosch/lsdf/,1997.[13] IONA Technologies Ltd.: The Orbix Architecture,August 1993.[14] G. Kiczales: Towards a New Model of Abstraction inSoftware Engineering, in: Proc. of IMSA'92 Work-shop on Reection and Meta-level Architectures,1992.[15] G. Kiczales, J. Lamping, C. Videira Lopes, C.Maeda, A. Mendhekar, G. Murphy: Open Imple-mentation Design Guidelines, in: Proc. of ICSE'97,Boston, May 1997.[16] G. Kiczales, J. des Rivieres, D.G. Bobrow: The Artof the Metaobject Protocol, MIT Press 1991.

[17] H. Lieberman: Using Prototypical Objects to Im-plement Shared Behavior in Object Oriented Sys-tems, in: Proc. of OOPSLA '86, Portland, Novem-ber 1986.[18] B. Meyer: Object-Oriented Software Construction {Second Edition, Prentice Hall, 1997.[19] G. Neumann, U. Zdun: Filters as a Language Sup-port for Design Patterns in Object-Oriented Script-ing Languages, in: Proc. of COOTS'99, 5th Confer-ence on Object-Oriented Technologies and Systems,San Diego, May 1999.[20] G. Neumann, U.Zdun: Enhancing Object-BasedSystem Composition through Per-Object Mixins,submitted for publication, 1999.[21] G. Neumann, U.Zdun: XOTcl, an Object-OrientedScripting Language, submitted for publication,1998.[22] A. Oliva, L. E. Buzato: Design and Implementationof Guarana, in: Proc. of COOTS'99, 5th Conferenceon Object-Oriented Technologies and Systems, SanDiego, May 1999.[23] J. K. Ousterhout: Tcl: An embeddable CommandLanguage, in: Proc. of the 1990 Winter USENIXConference, January 1990.[24] J. K. Ousterhout: Scripting: Higher Level Program-ming for the 21st Century, in: IEEE Computer, Vol.31, No. 3, March 1998.[25] W. Pree: Design Patterns for Object-Oriented Soft-ware Development, Addison-Wesley, 1995.[26] J. Soukup: Implementing Patterns, in: J.O. Coplien,D.C. Schmidt (Eds.), Pattern Languages of Pro-gram Design, Addison-Wesley 1995, pp 395-412,also available as http://www. codefarms.com/publications/papers/patterns.html, 1995.[27] P. Steyaert, W. Codenie, T. D'Hondt, K. De Hondt,C. Lucas, M. Van Limberghen: Nested Mixin-Methods in Agora, in: Proc. of ECOOP '93, LNCS707, Springer-Verlag, 1993.[28] D. Wetherall, C.J. Lindblad: Extending Tcl for Dy-namic Object-Oriented Programming, in: Proc. ofthe Tcl/Tk Workshop '95, Toronto, July 1995.[29] U. Zdun: Entwicklung und Implementierung vonAns�atzen, wie Entwurfsmustern, Namensr�aumenund Zusicherungen, zur Entwicklung von kom-plexen Systemen in einer objektorientierten Skript-sprache, Diplomarbeit (diploma thesis), Universit�atGesamthochschule Essen, 1998.9

