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ABSTRACT 

We investigate image formations in gravitational lensing systems using wave optics. Applying the Fresnel-Kirchhoff 
diffraction formula to waves scattered by a gravitational potential of a lens object, we demonstrate how images of 
source objects are obtained directly from wave functions without using a lens equation for gravitational lensing. As an 
example of image formation in gravitational lensing, images of a point source by a point mass gravitational lens are 
presented. These images reduce to those obtained by a ray tracing method in the geometric optics limit. 
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1. Introduction 

Gravitational lensing is one of predictions of Einstein’s 
general theory of relativity and many samples of images 
caused by gravitational lensing have been obtained ob- 
servationally [1]. Light rays obey null geodesics in 
curved spacetime and they are deflected by gravitational 
potential of lens objects. In weak gravitational field with 
thin lens approximation, a path of a light ray obeys so 
called lens equation for gravitational lensing and many 
analysis concerning the gravitational lensing effects are 
carried out based on this equation. Especially, we can 
obtain images of source objects by solving the lens equa- 
tion using a ray tracing method. As a path of light ray is 
derived as the high frequency limit of electromagnetic 
wave, wave effects of gravitational lensing become im- 
portant when the wavelength is not so much smaller than 
the size of lens objects and in such a situation, we must 
take into account of wave effects. For example, when we 
consider gravitational wave is scattered by gravitational 
lens objects, the wave effect gives significant impact on 
the amplification factor of intensity for waves [2-4]. An- 
other example that wave effects must be taken into ac- 
count is direct detection of black holes via imaging their 
shadows [5,6]. The apparent angular size of black hole 
shadows are so small that their detectability depends cru- 
cially on the angular resolution of telescopes, that is de- 
termined by diffraction limit of image formation system. 
Thus, for successful detection of black hole shadows, it is 
important to investigate wave effects on images of black 
holes. 

Although interference and diffraction of waves by 

gravitational lensing has been discussed in connection 
with amplification of gravitational waves, a little was 
discussed about how images by gravitational lensing are 
obtained based on wave optics. For electromagnetic 
wave, E. Herlt and H. Stephani [7] discussed the position 
of images by a spherical gravitational lens evaluating the 
Poynting flux of scattered wave at an observer. They 
claimed that there is a disagreement between wave optics 
and geometrical optics concerning the position of double 
images of a point source. But they have not presented 
complete understanding of image formation. In wave 
optics, image formations are understood as a diffraction 
effect by image forming devices such as a convex lens. 
The process of image formations can be expressed as a 
Fourier transformation of incident waves by imaging 
devices. In this paper, we consider image formation in 
gravitational lensing using wave optics and aim to under-
stand how images by gravitational lensing are obtained in 
terms of waves. For this purpose, we adopt the diffrac-
tion theory of image formation in wave optics [8], which 
explains image formation in optical systems in terms of 
diffraction of waves. This paper is organized as follows. 
In Section 2, we review gravitational lensing using the 
Fresnel-Kirchhoff diffraction formula. In Section 3, we 
introduce a convex lens as an image formation device 
and apply it to the gravitational lensing system. Section 4 
is devoted to summary. We use units in which 

1c G    in this paper. 

2. Wave Optics in Gravitational Lensing 

We review the basic formalism of gravitational lensing 
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based on wave optics [1]. In this paper, we do not con- 
sider polarization of waves and treat scalar waves as a 
model for electromagnetic waves. Let us consider waves 
propagating under the influence of the gravitational po- 
tential of a lens object. The background metric is as- 
sumed to be 

     

2

2 2

dd

1 2 d

d

1 2 d

g x x

U

s

U r t r x

 


  



     
   (1) 

where  U r  is the gravitational potential of the lens 
object with the condition 1U  . The scalar wave 
propagation in this curved spacetime is described by the 
following wave equation: 

  0,g g 
                    (2) 

and for a monochromatic wave with the angular fre- 
quency  , 

   2 2 24 U r                  (3) 

where  is the flat space Laplacian. 2
We show the configuration of the gravitational lensing 

system considering here (Figure 1). The wave is emitted 
by a point source, scattered by the gravitational potential 
of the lens object and reaches the observer. We assume 
the wave scattering occurs in a small spatial region 
around the lens object and outside of this region, the 
wave propagates in a flat space. With the assumptions of 
the eikonal and the thin lens approximation, the Fres- 
nel-Kirchhoff diffraction formula provides the following 
amplitude of the wave at the observer [1,3] 

  20, d exp ,
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a
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

     (4) 

where  is the effective path length (eikonal) 
along a path from the source position 

 , ,S   
  to the observer 

position  via a point   on the lens plane 
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and we assume that Sr    and Lr   . A 
constant 0  represents the intensity of a point source. 
The two dimensional gravitational potential is introduced 
by 

a

   ˆ 2 d ,zU z



  .

,

             (6) 

Then the wave amplitude at the observer can be writ-
ten as [1,2] 

    0, , F                 (7) 

observer 

source
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α

ξ(x)
η(y)

rLS rL Lens object 

Δ(d)

 

Figure 1. The gravitational lens geometry of the source, the 
lens and the observer.  1  is the deflection angle.  is 

the distance from the observer to the lens object and  is 

the distance from the observer to the source. 

Lr

Sr
LS Sr Lr r . 

 
where 0  is the wave amplitude at the observer in the 
absence of the gravitational potential : U
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 0 ,S    is the path length along a straight path from 
  to  . The amplification factor F  is given by the 
following form of a diffraction integral 

   2
1, d exp ,
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S

L LS

r
F i
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where  1 , ,S     is the Fermat potential along a path 
from the source position   to the observer position   
via a point   on the lens plane. The first term in 1  

is 
the difference of the geometric time delay between a 
straight path from the source to the observer and a de- 
flected path. The second term is the time delay due to the 
gravitational potential of the lens object. Now we intro- 
duce the following dimensionless variables: 
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      (11) 

where we choose 0  as 

0

4
, .LS

L E E
L S

Mr
r

r r
              (12) 

M  is the mass of the gravitational source, 0  and 

E  represent the Einstein radius and the Einstein angle, 
respectively. Using these dimensionless variables, 
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In the geometrical optics limit , the diffraction 
integral (13) can be evaluated around the stationary 
points of the phase function in the integrand. The sta- 
tionary points are determined by the solution of the fol- 
lowing equation: 

1w

  0.x   x y d x            (15) 

This is the lens equation for gravitational lensing and 
determines the location of the image x  for iven source 
position y . As the specific model of gravitational lens- 
ing, we consider a point mass as a gravitational source. 
In this case, the two dimensional gravitational potential is 

g

  ln x x                (16) 

and the deflection angle is given by 
4

ˆ .
M

   


            (17) 

For , the solution of the lens Equation (15) 
is 

 y d 0

1x                     (18) 

and represents the Einstein ring with the apparent angular 
radius E  defined by (12). We show an example of 
images tained as solutions of the lens Equation (15) 
(Figure 2). To produce these images, we have assumed 
an extended source with Gaussian distribution of inten- 
sity. 

The wav

ob

e property is obtained by evaluating the dif- 
fraction integral (13). For a point mass lens potential (16), 
the integral can be obtained exactly 

 
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On the observer plane, an interference pattern appears 
(F

c func

y

igure 3). For 1w , the asymptotic formula for the 
cofluent geometri tion yields 

 2w iw 
1 1 0,1, .

2 2
F i J w 
 

y y        (20) 

Using this formula, near y 0 , the distance between 
adjacent fringes of the interference pattern is 

1

 

Figure 2. Images of gravitational lensing by a point mass. 
The source is assumed to have the intensity with Gaussi  
distribution. From the top left to the bottom right panels, 

an

the source positions are . , . , . , .y 0 0 0 5 1 0 1 5 . 
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Figure 3. Amplification factor for  
 

This nterference be
een d by the gravita-

o

To establish relation between the interference pattern of 

w 10 .

fringe pattern is interpreted as i
ouble images of a point source 

- 
tw
ti nal lensing. The question we raise in this paper is how 
the interference pattern on the observer plane is related to 
the images of gravitational lensing in the geometrical 
optics limit. The wave amplitude on the observer plane 
does not make the image of the source and we have to 
transform the wave function to extract images. To answer 
this question, we introduce a “telescope” in the gravita- 
tional lensing system and simulate observation of a star 
(a point source) using the telescope. With this setup, it is 
possible to understand how images of a source are 
formed in the framework of wave optics. 

3. Image Formation in Wave Optics 
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the wave and the images of the source in the gravitational 

Let us 

lensing system, we first consider an image formation 
system composed of a single convex lens and review 
how images of source objects appear in the framework of 
wave optics [8]. 

3.1. Image Formation by a Convex Lens 

 in

in front of a thin convex lens and 
 x  is the incident wave from a point source 

t x
 

is the trans- 
mitted w  the lens (Figure 4). They are connected 
by the following relation 

     

ave by

 
2

2
i

, e f
t inT


  

x

x x T x x        (22) 

where is called a lens transformatio
The act  a convex lens is to modify the

 T x  
ion of
t wav

n function. 
 phase of the 
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assuming fx  . Thus, a convex lens converts spheri-

ave fronts. 
is actio

cal wave fronts to plane w
Using th n of a convex lens for the incident 

wave and the transmitted wave, we can demonstrate the 
image formation by a convex lens in the framework of 
wave optics. Let us consider the configuration of the lens 
system shown in Figure 4. We assume the distribution of 
the source field on the object plane z a   as  0 0 x . 
Using the Fresnel-Kirchhoff diffraction formula, the am-
plitude of the wave in front of the lens is given by 
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lens is given by the relation (22) 
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For a value of  satisfying the following relation 
(the lens equation for a convex thin lens), 
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the wave amplitude becomes 
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For 
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Thus, a magnified image of the source field appears on 
the z b  

rted i

plane. This reproduces the result of image 
formation in geometric optics; we have shown that an 
inve mages with magnification b a  of a source 
object appears on z b  satisfying the lens Equation 
(24). 

If we do not take 

r 

 

Figure 4. Left panel: wave front modification by a convex 
lens. Right panel: one lens image formation system. 

D   limit, due to the diffrac- 
tion effect, an image of a point source has finite size on 
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th  the Airye image plane called  disk [8]. Its size is given 
by 
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wer of the image formation system. 

3.2. Image Formation in Gravitat

As we have observed that a convex lens can be a d
mage form

gravitational lensing system and obtain images by gravi-
tational lensing. We consider a configuration of the 
gravitational lens system shown in Figure 5 and examine 
how the images of the source object appear using wave 
optics. As the source object, we assume a point source of 
wave. The amplitude of the wave just in front of a con-
vex lens is 
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where denotes the aperture of the convex lens. Us-
ing dimensionless variables, the wave amplitude on the 
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nsing system and 1 d   holds. Then, the wave 
amplitude on the image plane is 
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If we choose the location of the image plane $z_2$ to 
satisfy the following “lens equation” for a convex lens, 
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  (34) 

For 

 


   y d

w    limit (large lens aperture limit or high 
frequency limit), we obtains 

   2, L S
I

r r
 

LSr f

 
   

 
y d         (35) 
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Figure 5. Configuration of a gravitational lens with a con-
vex lens system. Orange lines represent paths that contrib
ute to diffraction integrals. 
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and the image of the point source appears at the follow- 
ing location on the image plane determined by the lens 
Equation (33): 

 .LSr f
  d x y            (36) 

L Sr r

Equations (35) and (36) reproduce t
image formation in the geometrical optics (ray tracin
te

he same result of 
g) in 

rms of the wave optics. This is what we aim to clarify 
in this paper. If the lens Equation (33) has multiple solu-
tions   , 1, 2, ,j j L x  , the wave amplitude on the im-
age plane becomes 

 
  

 
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,

j

I

J w
j j

j

A
w

 

  


x d
       (37) 

where 

 
 

x d
y d

jA  are constants. 
As a xample of image formation in a gravitational 

 sy  optics, we present the wave 
n e

lensing stem using wave
optical images of a point source by the gravitational lens-
ing of a point mass (Figure 6). They are obtained by 
Fourier transformation of the amplification factor F  
(Equation (32)) and the lens equation for gravitational 
lensing (15) has not been used. This procedure corre-
sponds to image formation by a convex lens. These im-
ages correspond to images obtained by geometric optics 
(Figure 2). We can observe wave effect in these images. 

In each image, we can observe concentric interference 
pattern which is caused by finite size of the lens aperture 
and this is not intrinsic feature of the gravitational lens-
ing system. We can also observe radial non-concentric 
 

 

Figure 6. Wave optical images of a point source by the 
gravitational lensing of a point mass. Parameters are 

, . w 40 0 5  (radius of the convex lens), 

tional lensing at correspond

, . , , .y 0 0 5 1 1 5 . 

patterns. They are caused by interference between double 
images and represent the intrinsic feature of the gravita-

 system. For 0y  case th s 
to the Einstein ring in the geometrical optics limit, we 
can observe a bright spot at the center of the ring, which 
is the result of constructiv rference and does not 
appear in geometric optics. For sufficiently large values 
of w

e inte

 , the wave amplitude at the observer coincides 
with the result obtained by geometric optics. It is possi- 
ble to estimate analytically the intensity distribution of 
the stein ring using the formula (20): Ein

     

 
   

     

1 02

0 1

d
1 d

d d .

J w J w

J w J w

 


  

2
0d exp

1

I d J w iw





     d
d d d d

 

 

  (38) 

The intensity of the image  I d  has a peak at 
1d   (Figure 7) and this value exactly corresponds to 

lar size of the Einstein ring the angu

.Ef


                (39) 

4. Summary 

We investigated image formation in gravitational lensing 
 wave optics. Instead of using the ray 

obtained images directly from wave 
system based on
tracing method, we 
functions at the observer without using the lens equation 
of gravitational lensing. For this purpose, we introduced 
a “telescope” with a single convex thin lens, which acts 
as a Fourier transformer for waves at the observer. The 
analysis in this paper relates the wave amplitude and im-
ages of the gravitational lensing directly. In the geomet-
ric optics limit of waves, images by lensing systems are 
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Figure 7.  I d . The highest peak at d 1   for w 40

corresponds to the Ei ng. The peak at nstein ri d 0  is 
terfer-the purely  optica  due to constructive in

ence of wa
wave

ves. 
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paths

(photon), expressing image in terms of 

ack 
ho

in-Aid for Scientific Research (C) (23540297). The au- 
thor thanks all member of “Black Hole Horizon Project 
Meeting” in which the preliminary version of this paper 
was presented. 

obtained by a lens equation that  determines  of 
each light rays. As light rays are trajectories of massless 
test particles 
wave is to express particle motion in terms of waves. 

As an application and extension of analysis presented 
in this paper, we plan to investigate gravitational lensing 
by a black hole and obtain wave optical images of bl

les. This subject is related to observation of black hole 
Shadows [5,6]. As the apparent angular sizes of black 
hole shadows are so small, the diffraction effect on ima- 
ges are crucial to resolve black hole shadows in observa- 
tion using radio interferometer. For SgrA*, which is the 
black hole candidate at Galactic center, the apparent an- 
gular size of its shadow is estimated to be 30  arc 
seconds and this value is the largest among black hole 
candidates. For a sub-mm VLBI with a baseline length 
D , using Equation (28), the condition to r  the 
shadow becomes 1000 kmD  and this requirement 
shows the possibility to detect the black hole shadow of 

rA* using the present day technology of VLBI tele- 
scope. Thus, analys ole shadows based on 
wave optics is an important task to evaluate detectability 
of shadows and determination of black hole parameters 
via imaging of black holes. 

The topic of wave optical image formation in black 
hole spacetimes belongs to a classical problem of wave 
scattering in black hole spac

esolve

Sg
is of black h

etimes [9]. As is well known, 
w

was supported in part by the JSPS Grant- 
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