Variable Independence and Aggregation Closure

J. Chomicki
Monmouth University
West Long Branch, NJ

chomicki@moncol .monmouth.edu

Abstract

We discuss the issue of adding aggregation to constraint
databases. Previous work has shown that, in general,
adding aggregates to constraint databases results in lan-
guages that are not closed. We show that by imposing a
natural restriction, called variable independence (which
is a generalization of the assumptions underlying the
classical relational model of data) on the schema, we
can guarantee that a restricted version of the language
with aggregation is closed. We illustrate our approach
in the context of linear constraint databases.

1 Introduction

Constraint databases [KIKKR90] are a natural generaliza-
tion of the relational model of data by allowing infi-
nite relations that are finitely representable using con-
straints. Constraint databases find numerous applica-
tions in spatial [BIM93, BK95, BLLM95, PVdBVG94,
VGVGY5] and temporal databases [Cho94]. Generaliz-
ing aggregation operators to constraint databases has
been identified as one of the most important open re-
search issues in this area [KG94, Kan95]. Some aggre-
gation operators like count are not applicable to infi-
nite relations. On the other hand, new operators like
area [AS91] (or its generalization: n-dimensional vol-
ume [GK94]) occur there quite naturally.

A query language resulting from adding aggregation
to a constraint query calculus [KKR90] or algebra
[KG96] should be well behaved. [Kup94] describes a
general framework, modelled after [Klu82], for adding
aggregate operators to relational algebra and calculus.
The outstanding open problem there is that of closure:
the result of a query that uses aggregation should be

*Research supported in part by ONR contract N00014-94-1-
1153 and NSF grant IRI-9509933.

D. Q. Goldin *
Brown University
Providence, RI
dgk@cs.brown.edu

G. M. Kuper
ECRC
Minchen, Germany
kuper@ecrc.de

finitely representable using the constraint language of
the database. Unrestricted aggregation may fail to
produce a closed language, as shown in [Kup94]. That
paper proposes several approaches to deal with this
problem. On the one hand, one may try to restrict
the query language, and on the other, to restrict the
classes of aggregate operators allowed. The second
approach was illustrated by the max aggregate operator
that (trivially) produces a closed language. Also, a
new nontrivial aggregation operator producing a closed
language was introduced and studied in [CK95].

A new approach, restricting the way aggregate oper-
ators are used in the query language, is proposed here.
We show that, under certain natural restrictions cap-
tured by the notion of variable independence and reflect-
ing the way aggregation is often used in real databases,
we can add aggregate operators to relational algebra,
and still get a closed language. In particular, our ap-
proach is applicable to the area aggregate operator and
its higher-dimensional versions.

As shown in [Kup94], relational algebra over linear
constraint databases is not closed under aggregation
using area. The typical example where a query is not
closed, is where we have, say, a region whose boundaries
vary with time, and we want to know how the area of
the region varies with time.

While there are applications where one might conceiv-
ably need the full generality of such a language (and for
which the problems would be unavoidable), this is not
the case for many applications.

Example 1.1 Consider, for example, a geographical
database with cadastral information, i.e., information
on land ownership and land boundaries. Suppose we are
interested in finding the area of the land owned by each
person at all points of time. Land ownership does not
vary continuously—somebody acquires a piece of land at
a single, discrete point of time.

This means that the data can be represented by a set
of generalized tuples of the form

where C(z,y) are constraints that describe the region
owned by N between times 1 and #5. If we want to find
the area of the land owned by N as a function of t, we
can represent the result as a set of generalized tuple of
the form

t1<t<t2/\(n:N)/\(z:A)

which is clearly finitely representable.

The important property of such tuples, that we shall
generalize in this paper, is that the constraints on « and
y—those on which the area computation is performed—
are separate from the constraints on n and ¢. Many
typical uses of area computation in GIS systems, such
as the current example, have this property, so that such
a restriction is quite natural.

There are, of course, possible applications for which
such an assumption would not hold, and will not be
covered by our approach. One example would be to give
the area covered by a storm as a function of time. If the
data is represented by linear constraints, there is no way
around the need for quadratic constraints to express the
result. On the other hand, if we are interested in the
area at a specific point of time, then we would first
perform a selection (time = constant), and the results
in this paper would still apply.

The paper is organized as follows. In section 2,
we review the basic concepts of constraint databases
and aggregation. In section 3, we define the notion of
variable independence that is central to the notion of
restricted aggregation that we propose. In section 4, we
define the relational algebra with restricted aggregation
and show that it is closed. In section b, we show that for
constraint databases with linear arithmetic constraints
variable independence is effectively decidable. In section
6, we present some results about inferring variable
independence in relational algebra expressions. In
section 7, we draw conclusions and discuss related and
further work.

2 Basic notions

For a full account of constraint databases, see [KKR90].
The basic definitions are as follows:

Definition 2.1 Let & be a class of constraints.

1. A generalized k-tuple (over variables xy, ..., x1)
is a finite conjunction @1 A --- A N, where each
wi, 1 <1< N, is a constraint in ®. Furthermore,
the variables in each p; are all free and among 1,

cey Tk

2. A generalized relation of arity k& is a finite set
r = {1,...,¥pm}, where each ;1 <1 < M is a
generalized k-tuple over the same variables xq, ...,
Tk .

3. The formula corresponding to a generalized relation
r is the disjunction Y1V ---V ¥pr. We use ¢, to
denote the quantifier-free formula corresponding to
the relation r.

4. A generalized database is a finite set of generalized
relations. O

We view a set of variables {x1, ..., 2} as a relation
schema and generalized relations over {z1, ..., a5} as
instances of this schema.

In database theory, a k-ary relation r is a finite
set of k-tuples (or points in a k-dimensional space)
and a database is a finite set of relations. However,
the relational calculus and algebra can be developed
without the finiteness assumption for relations. We will
use the term wunrestricted relation for finite or infinite
sets of points in a k-dimensional space. In order to
be able to do something useful with such unrestricted
relations, we need a finite representation that we can
manipulate. This is exactly what the generalized tuples
provide.

Definition 2.2 Let ® be a class of constraints inter-
preted over domain D, r a generalized relation of arity
k with constraints in ®, let ¢, be the formula corre-
sponding to r with free variables xq,...,x,. The gen-
eralized relation r represents the unrestricted k-ary re-
lation which consists of all (ay,...,ax) in D* such that
¢r(ay,...,ax) is true. Two generalized relations over
the same set of variables are equivalent if they repre-
sent the same unrestricted relation. O

With some abuse of notation, we will use the same
symbol for a generalized tuple (relation) and the
unrestricted relation it represents.

A query ¢ on a constraint database is a first-order
formula, whose predicates are constraints or general-
ized relation symbols. The semantics of a query, are,
intuitively, the mapping from unrestricted relations to
unrestricted relations defined by this formula. Such a
query is well-defined if the result of substituting a gener-
alized relation for each occurrence of the corresponding
relation symbol, is equivalent to some generalized rela-
tion over the same constraint domain.

A query algebra can also be defined, using natural
extensions of the normal relational algebra (see [KG96]
for an extensive treatment of constraint query algebras).
The extension to aggregation is described later in this
section.

A query language L is closed for a class of constraint
databases C if the result of any query belonging to
L evaluated over a database from C' can be finitely
represented as a generalized relation from C.

We assume that the constraint language is closed un-
der negation. Moreover, it should admit effective quan-
tifier elimination. These assumptions are necessary for

the closure of relational algebra operations. For the rest
of this paper, we consider only those constraint lan-
guages that satisfy the above conditions. In particular,
we consider linear arithmetic constraints and dense or-
der constraints; linear arithmetic constraints are of the
form ayxq + -+ -+ am Ty, op ag with op € {<, <, =} and
with rational coefficients aq, ..., am.

As shown in [Kup94], Klug’s relational calculus and
algebra with aggregation can be extended to constraint
databases with minor modifications, at least as far as
the underlying semantics on unrestricted relations is
concerned. The definitions in [Kup94] are as follows:

Definition 2.3 An aggregate function f maps (possi-
bly infinite) relations with an appropriate schema to the
domain D of the constraints. For every relation S over
attributes X, if S’ is a constant expansion of S over
X UY, i.e., if there is a projection such that 7x(5') = S
and 7y (58') contains exactly one tuple, then the function
I’ such that f(S) = f/(5') is also an aggregate function.

For our purposes here, it is sufficient to assume that
the algebra is extended by the following operator for
every aggregate function:

Definition 2.4 Let r be an unrestricted relation over
the set of attributes U, X C U such that [U — X| = n,
and f is an aggregate function of arity n which outputs
a constraint over attributes Y. Then, the aggregate
operator (X, f), when applied to r, produces a new
relation v with attributes X UY :

(X,) = {({UX] y)lt € r A
Ay = F{H'[U - X]|t' € r A'[X] = t[X]})]}.

Intuitively, the above corresponds to grouping the tuples
in » on X and applying the aggregation operator to the
remaining attributes in each group. For more details,
including the construction of an equivalent calculus, see
[Kup94].

Generalized relational algebra with aggregation may
fail to be closed even for dense order constraints

[Kup94].

Example 2.1 Consider the instance of R consisting of
a single generalized tuple:

I<r<y<z<l

The query R({z,area, ,) evaluates to a binary relation
S(z,t) where S(z,t) holds iff 22 = 2t. The latter
constraint cannot be represented using order constraints
(or linear arithmetic constraints).

In this paper, we will provide a restriction on
applying the aggregate operator to a relation, and prove
closure for the resulting class of relational expressions.
In particular, we will define the notion of wvariable

A A
4 4
2 2
0 - -
0 2 4 % 2 4
(A) (8)

Figure 1: Instance (A) is equivalent to instance (B).

independence, and stipulate that X and U — X must be
independent in r (see Definition 2.4). So, the expression
R {z,area,) from the above example would not be
permitted by our restriction.

Example 2.2 Returning now to Example 1.1, suppose
that the cadastral database contains a generalized
relation L with tuples of the following form:

i <t<taA(n=N)AC(z,y)

where C(z,y) is a conjunction of linear arithmetic
constraints describing a piece of land owned by person
N over the time interval (¢1,%2). The relational algebra
query L{{1,2},areas4) lists the area of land owned
by each person at all times. This query satisfies our
restriction on the use of aggregation,

On a concluding note, it should be noted that the
relation » in Definition 2.4 can be either extensional or
intensional. We will deal in the paper with maintaining
the restriction in both of those cases.

3 Independence of Variables

In the following definitions, we assume that R is a
generalized relation over attribute set U.

3.1 Definitions

Definition 3.1 Let X,Y C U and t be a generalized
tuple in R. We say that X and Y are independent in ¢
if:

Txy(t) = mx () My (1);

they are related in t otherwise.

Clearly, variable independence in a tuple is decidable.
Also, note that variable independence in a tuple ¢ may
be viewed as an embedded join dependency [Kan90]
holding in the unrestricted relation corresponding to .

Definition 3.2 We say that X and Y are independent
in R if there exists a relation R’ equivalent to R where
X and Y are independent in every (generalized) tuple
of R'. Otherwise, we say that they are related in R.

Example 3.1 The instance of R(z,y) in Figure 1 (A)
contains two tuples:
2<y<4n0<z <y
2<x<4N0<y <.
In each tuple, # and y are related. However, there is an
an equivalent relation (Figure 1 (B)) where this is not
the case:
2<y<4n0<e <4
2<x<4AN0<y<2

Note that for classical relations, where each tuple
always represents exactly one point, it is trivially true
that all subsets of variables are independent in every
relation. In general, however, decidability of variable
independence is far from obvious. As the above example
shows, it is not sufficient to check the individual tuples
in order to verify variable independence. In section b,
we show that for linear constraints, there is an effective
method to tell whether two variables are independent
in a given generalized relation.

To conclude the subsection, we define variable inde-
pendence for the schema of a generalized relation. Here,
variable independence is viewed as a restriction, to be
maintained by all relations that satisfy the schema. In
this way, we enrich the relation schema beyond the stan-
dard attribute name and type information.

Definition 3.3 We say X and Y are independent in
the relational schema R if every relation satisfying R
preserves the independence of X and Y; X and Y are
related in R otherwise.

3.2 Semantic vs. Syntactic Independence

The above definitions of variable independence are
semantic: for each generalized tuple ¢, they consider
the semantics of ¢{. One can also define variable
independence syntactically:

Definition 3.4 Let X,Y C U be disjoint, and t be
a generalized tuple in R. We say that X and Y are
syntactically independent in ¢ if t is a conjunction of
C1(XUZ) and C3(Y U Z), where Z =U—-X =Y, and

C(X) denotes a conjunction of constraints over X.

The above definition extends to relations, just as for
semantic variable independence.

In Section 4, we will impose a variable independence
condition on the schema of those relations to which
aggregation may be applied, and show that for all
reasonable constraint classes, relational algebra with
restricted aggregation is closed. The proof will rely on
the following lemma:

Lemma 3.1 X and U — X aresemantically indepen-
dent in R iff they are syntactically independent in R.

Proof: The “if” direction is straightforward. We
prove the “only if” direction. By Definition 3.2, there
exists R’ equivalent to R where for every tuple ¢ in
R, t = nx(t) W my_x(t). Since the constraint
class admits quantifier elimination, both projections
are representable as finite disjunctions of conjunctions
of constraints; the first one is over X, the second
over U — X. By pairing up the disjuncts from the
two projections, we obtain a finite set of tuples whose
disjunction is equivalent to ¢, where X and U — X are
syntactically independent in all tuples. By repeating
this construction for every ¢ in R’, we obtain a relation
equivalent to R where X and U — X are syntactically
independent in each tuple. I

Note that the above lemma does not generalize
to arbitrary sets of attributes; in general, semantic
independence does not imply syntactic and vice versa.
For example, {#} and {y} are semantically (but not
syntactically) independent in the singleton relation
consisting of the tuple

I<e<IAN<y<lAz=2+4y.

On the other hand, {z} and {y} are syntactically (but
not semantically) independent in the relation consisting
of the tuple

r<yAhy<z.

In the rest of this paper, “independence” will mean se-
mantic independence, unless explicity stated otherwise.

4 Restricted Aggregation

In this section, we impose a variable independence
condition on the schema of those relations to which
aggregation is applied. We show that for all reasonable
constraint classes, relational algebra with restricted
aggregation is closed; i.e., the result of any relational
algebra expression can be represented as a generalized
relation.

Definition 4.1 The relational algebra with restricted
aggregation consists of the standard relational algebra,
together with expressions of the form e{X, f), provided
that X and U — X are independent in the schema of e
(where U is the set of attributes of).

Theorem 4.1 Relational algebra with restricted aggre-
gation is closed for constraint databases whenecver the
constraint class admits quantifier elimination and is
closed under negation.

Proof: (sketch) Let e be a relational expression on the
given schema, with attributes U, and let X be a subset
of U such that the expression e (X, f) is permitted in the
language, and let e evaluate to the relation Ry. We must
show that Ro (X, f) is representable as a generalized
relation in our constraint language.

By our restrictions on the use of aggregation, com-
bined with Lemma 3.1, there must be R equivalent to

Ry of the form
R= \/ ct

1<i<i

where each C" is of the form
C'=c¢i AN, Ny A=+ A,

where each ¢} contains only variables from X, and each

dé» contains only variables from U — X.
Let

C={cj,~ch |1 <i<l1<k<j}

Because the constraint language is closed under
negation, C is a valid constraint set. For any & C C,

define ¢s as
q/)g = /\ C.

cES
Let
b = {¢s | S CC, ps satisfiable }

and let ¥ be the set of minimal formulas in @, i.e.,
those ¢ € ® with the property that, whenever ¢’ € ®
such that ¢ — ¢ is valid, then ¢ is equivalent to ¢'.

Define R’ as
R = \/ ce,
PeT
where

CP =g A\ A Ay | 1<i< g — A AC)

We can then show:
Lemma 4.1 R' =R

Now, let ¢ be a tuple (i.e., an n-dimensional point) in
(the semantics) of R. By the minimality of ¥, we can
easily see that {[X] satisfies exactly one element of ¥,
and hence that ¢ satisfies exactly one C'®. Then

{(U[U = X]|t' € RAV[X] = t[X]} =
=UtIU = X1 |V EdiA---Ad)

where the union is over those d’s in the definition of C'?.
Call this set A?, since it clearly depends only on ¢ and
not on the choice of ¢.

Then the result of e (X, f) can be represented by the
set of tuples of the form (m is the column for the result
of the aggregation)

o Am= f(A?)

which is clearly finite.

To make restricted aggregation practical, we must be
able to determine effectively, for a generalized database
{R1,..., Ry} and arelational expression e (X, f), whether
X and U — X are independent in e. There are two as-
pects to this problem:

1. testing whether some R; satisfies the independence
restrictions on its schema

2. testing whether an arbitrary relational algebra ex-
pression e satisfies its schema restrictions.

Note that neither of the above tests needs to be
performed at run-time, i.e., during query evaluation.
The first test, discussed in Section 5, can be done when
creating or updating R;. The second, discussed in
Section 6, can be done at compile-time, provided that
all schema restrictions for {Ry,..., Ry} are satisfied.

5 Testing variable independence

As mentioned at the end of Section 4, given a relation R
whose schema restricts X and Y to be independent, we
must be able to test whether R satisfies the restriction.
Clearly, if X and Y are independent in each tuple
of R, the answer is positive. Therefore, one way of
enforcing independence restrictions on R’s schema is by
stipulating that each tuple satisfies these restrictions.

To allow the user maximum flexibility, it is desirable
to have an algorithm for testing, given an arbitrary R
with attibute set U, and arbitrary X,Y C U, whether
X and Y are independent in R. In this section, we
provide such an independence test for linear constraint
databases. As a side effect, this test generates on
success a relation R equivalent to R where X and Y
are independent for all tuples.

Unlike the work of [Las90], where all tests are
performed on constraint sets (i.e., tuples), this test is
for disjunctions of constraint sets (i.e., relations). The
independence test consists of three steps:

Step 1. The first step of the test is to create the
boundary representation B(R) for the polyhedral object
consisting of the feasible points of R, i.e., the points
whose coordinates have values satisfying R’s formula
¢r. This is done using standard techniques from CAD,
summarized below.

Each generalized tuple ¢ corresponds to a convex set
P; of n-dimensional points, bounded by n-dimensional
half-planes. The boundary representation of P; is
computed by a convex hull algorithm, such as the “gift
wrapping” method in [CK70].

B(R) is obtained by unioning together the bound-
ary representations of the individual tuples, a standard
Solid Modeling operation. See [FvDFH] for an introduc-
tion to polyhedral Solid Modeling, or [MM] for details
of the algorithms. These algorithms extend to an arbi-
trary number of dimensions, as in [PS86].

Step 2. The next step of the algorithm is to create
a vertex grid partitioning R of R.

We project the set of B(R)’s vertices onto each of the
n axes, and sort the k; obtained values, for 1 < j < n.
This partitions each axis into (k; + 1) intervals:

{(=00,v1), (v1,v2)s ..., (Vk,, +00) }.

In turn, this induces a partitioning of the n-space into
((k1+1)x---x (kn+1)) n-dimensional rectangles, where
each rectangle is the cross-product of the corresponding
intervals. We denote this set of rectangles by Vg, the
vertex grid of R.

The intersection of each rectangle in Vi with B(R)
consists of 0 or more disjoint point sets. These point
sets are convex, since no rectangle can contain a vertex
of B(R) as its interior point; therefore, each one
corresponds to some tuple ¢;. The set of these tuples,
denoted by R, is the vertex grid partitioning of R. Tt is
equivalent to R.

Step 3. The last step of the algorithm is to check,
for each t in R, whether X and Y are independent in t.

The following theorem provides the motivation for the
independence test:

Theorem 5.1 X and Y are independent in R if and
only if, for all tuplest in R, X and Y are independent
int.

Proof: (Sketch) The “if” direction of the theorem
follows from definitions. For the other direction, we
assume that X and Y are independent in R. Let R’
be equivalent to R where X and Y are independent for
each tuple ¢ € R’. Let R be the intersection of the
tuples of R’ with the vertex grid of R':

R/ = {tj Nt : 15 € R/,tk € VR/}.

It can be shown that X and Y are independent for each
tuple in R'. Tt can also be shown that for each tuple ¢ in
the vertex grid partitioning of R, there exists a subset
of B whose union is equivalent to ¢. This implies that
X and Y are independent in ¢, completing the proof. i

We conclude the chapter with a short discussion
of complexity issues. It can be shown that the data
complexity of the independence test is polynomial.
However, the combined complexity is exponential in n.
This is due to the fact that the size of B(R) can be
exponential in n:

Example 5.1 Consider a relation R over n variables
consisting of one tuple with the following constraints:

0<z;<1,...,0< 2, <1.

Its feasible points form a hypercube with 2" vertices

and O(2") edges.

It is our opinion that the exponential combined
complexity is unavoidable, since any independence test
will have to somehow consider the complete geometry
of the feasible points of R.

6 Inference of variable independence

In this section we show how to infer variable indepen-
dence in relational algebra expressions.

In contrast to the previous section, the results in this
section are applicable to any constraint language closed
under negation and admitting quantifier elimination,
not just linear arithmetic constraints.

Notation:

e U denotes the schema of the generalized relation R,

e R :Indep(X,Y) denotes the fact that X and ¥V are
independent in R,

e 3(Ay1,...,A;) denotes a constraint with free vari-

ables Aq,..., Ag.

Theorem 6.1 The following inference rules are valid:

1.if X C U, then c4=4(R) : Indep({4}, X) and

oa=a(R) : Indep(X, {A4});
2. i R

: Indep(X,Y) and ({A1,..., 45} C X or

{A1,..., A} CY), then op(a,,...,4,)(R) : Indep(X,Y);

3. if R : Indep(X,Y) and X,Y C Z, then mz(R) :
Indep(X,Y);

4. if R:Indep(X,Y) and S : Indep(X,Y), then RUS :
Indep(X,Y);

5. 4f R : Indep(X,Y), then R x S
(similarly for S);

: Indep(X,Y)

6. if S has schema U’ disjoint from the schema of R
and X CU and Y CU’, then R x S : Indep(X,Y)
and R x S : Indep(Y, X);

7. if R : Indep(X,Y) and X,Y C 7 then R{Z, [) :
Indep(X,Y);

8. if Y C X and m is the new column corresponding
to the result of the aggregation, then R{(X, f)
Indep(Y, {m}) and R{X, f) : Indep({m},Y).

Proof: We prove the validity the second inference rule.
The validity of the remaining rules can be established
in a similar way.

The basic idea is as follows: given a representation
for R in which X and Y are independent, we construct
from it a representation for o'5(4,,...,4,)(R) in which X
and Y are independent. In this case, we conjoin every
(generalized) tuple t of R with 03(4,....,4,)(R) to obtain
another generalized tuple ¢’. We have to show that

ny(t/) = Fx(t/) X Fy(t/).

The fact that the left-hand side is contained in the
right-hand side follows directly from the definition of
projection and join. To obtain the containment in the

other direction, let p be a (ground) tuple in 7x (') X
my (t'). Thus, there are tuples p’ € ¢/ and p’" € ¢’ such
that:

e P'[X]=p[X] and B(p'[A4],..
e p'[Y] =p[Y] and B(p"[A4],..
o YIXNY]=p'[XNY]

., P'[Ax]) holds,
., P"[Ax]) holds,

Now clearly p € mx(t) M my (¢). Because
ny(t) = Fx(t) X Fy(t)

p € mxy (). But also 8(p[A1],...,p[Ak]) holds (notice
the importance of Ay,..., Ay being entirely in X or V)
and thus p € mxy ().

In general, we cannot infer variable independence in
a difference of two relations.

Example 6.1 Consider the instance Iy with schema

{x,y,2}:
y>z
r < Y.

Its complement consists of the tuple
z<yhy <z

Thus while x and z are independent in Iy, they are not
independent in the complement of Ij.

For the special case of Y = U — X, we have:
Theorem 6.2 The following inference rule is valid:

e if R:Indep(X,U — X) and S : Indep(X,U — X),
then R — S : Indep(X,U — X).

Proof: (sketch) Assume I is an instance of R
satisfying Indep(X,U — X) and I is an instance of S
satisfying Indep(X,U — X). Then by definition there
exist instances I] equivalent to I; and I equivalent to
Iy consisting only of tuples in which X and U — X
are independent. TLet If = {t1,...,1,} and I} =
{51,-..,8m}. The difference of I{ and I} can thus be
represented as the set of tuples

w; = (t As1 A Ds)

for i = 1 = 1,...,n. Let X = {Ay,...,Ax} and
U—-X ={B1,...,Bn}. Now every s;, 1 = 1,...,m,
can in turn be represented as a tuple of the form

ﬂ(Al,...,Ak) /\”y(Bl,,Bm)
by Lemma 3.1. Thus its negation is of the form
-5(A44, ..

Because of this and the fact that the constraint

language is closed under negation, each tuple w; can

S Ar) V(B ..., Bp).

be represented using a finite number of tuples of the
form

ﬂ(Al,...,Ak) /\"y(Bl,,Bm)

In every such a tuple X and U — X are independent. B

The above special case is important because the
application e (X, f) of a restricted aggregation operator
in the version of relational algebra discussed in section
4 is allowed only if e : Indep(X,U — X) where U is the
schema of e.

Remark: A tuple in a finite instance of relational
schema R(Aj,...,Ay) may be viewed as a generalized

tuple
/\ Az = a;.
i=1,...,n

Therefore, in every such instance every two disjoint
subsets of the schema are independent. The result of
any relational expression applied to such an instance
can also be represented in this form and variable
independence is preserved. Qur rules are too weak
to make this kind of inference, c.f.. the rule for
Ta,=4,, (R). This is because of their generality.
Thus, there is clearly a need for developing specialized
inference rules that will exploit the properties of
restricted constraint languages.

7 Related and further work

In the context of constraint databases, we have defined
a restricted version of aggregation whose addition to
relational algebra results in a closed language. The
restriction requires that the set of variables grouped
upon is independent of the remaining variables. We
formalized this restriction using the notion of wvariable
independence. ~ We have shown that for constraint
databases with linear arithmetic constraints variable
independence is decidable with acceptable complexity.
We have also provided a set of rules for inferring variable
independence in relational expressions.

Previous work on aggregation, with the exception
of [Klu82, OOMS87, Kup94, CK95], has concentrated
on a fixed set of aggregation operators, e.g., sum or
count, motivated by traditional database applications.
Such operators are applicable to finite relations and do
not generalize to infinite ones. In [CK95], a special
aggregation operator for generalized relations that
preserved closure of relational algebra operations was
proposed. The issue of closure of general aggregation
operators was not, however, addressed.

The idea of variable independence can be potentially
applied beyond the context of aggregation. [Rev95]
defined a restricted form of Datalog with negation and
integer gap-order constraints. The restriction required
essentially that all attributes be independent in every
generalized tuple in order to guarantee the termination
of bottom-up query evaluation. As Figure 1 shows, a

generalized relation containing tuples in which not all
attributes are independent can still be equivalent to one
in which in all the tuples all attributes are independent.
If the technique we proposed in section 5 can be
generalized to the integer case, it will provide a tool
to enlarge the class of terminating Datalog programs.
Other possible extensions of this work include: larger
classes of constraints (e.g., polynomial constraints),
other query languages with aggregation (e.g., relational

calculus,

Datalog [MPR90, RS92, SSRB93, VG92)),

properties of variable independence considered as a
dependency class (axiomatization, implication).

References

[AS91]

[BIMY3]

[BK95]

W.G. Aref and H. Samet. Extending a DBMS
with Spatial Operations. In International
Symposium on Large Spatial Databases, pages
299-318, 1991.

A. Brodsky, J. Jaffar, and M.J. Maher.
Towards Practical Constraint Databases. In
International Conference on Very Large Data
Bases, Dublin, Ireland, 1993.

A. Brodsky and Y. Kornatzky. The LyriC
Language: Constraining Objects. In ACM
SIGMOD International Conference on Man-
agement of Data, San Jose, California, 1995.

[BLLM95] A. Brodsky, C. Lassez, J-L. Lassez, and M.J.

[Cho94]

[CKT70]

[CK95]

[FvDFH]

[GK94]

Mabher. Separability of Polyhedra for Optimal
Filtering of Spatial and Constraint Data. In
ACM Symposium on Principles of Database
Systems, San Jose, California, 1995.

J. Chomicki. Temporal Query Languages: A
Survey. In D.M. Gabbay and H.J. Ohlbach,
editors, Temporal Logic, First International
Conference, pages 506-534. Springer-Verlag,
LINAT 827, 1994.

D.R.Chand, S.S. Kapur. An Algorithm for
Convex Polytopes. JACM, 17(1): T78-86,
1970.

J. Chomicki and G. Kuper. Measuring Infinite
Relations. In ACM Symposium on Principles
of Database Systems, 1995.

J.D.Foley, A. van Dam, S.K.Feiner, J.F.
Hughes Computer Graphics, Principles and
Practice. Addison-Wesley, 1990.

P. Gritzmann and V. Klee. On the Complex-
ity of Some Basic Problems in Computational
Convexity: II. Volume and Mixed Volumes.
Technical Report TR-94-31, DIMACS, Rut-
gers University, New Brunswick, NJ, 1994.

[Kan90]

[Kan95]

[KG94]

[KG96]

[KKR90]

[K1u82]

[Kup94]

[Las90]

[MM]

[MPR90]

[OOMS7]

[PBCF93] A.Paoluzzi,

P.C. Kanellakis. Elements of Relational
Database Theory. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer
Science, volume B, chapter 17, pages 1073—
1158. Elsevier/MIT Press, 1990.

P.C. Kanellakis. Constraint Programming
and Database Languages: A Tutorial. In
ACM Symposium on Principles of Database
Systems, 1995.

P. C. Kanellakis and D. Q. Goldin. Constraint
programming and database query languages.
In Proc. 2nd Conference on Theoretical As-
pects of Computer Software (TACS), April
1994.

P.C. Kanellakis and D.Q. Goldin Constraint
Query Algebras Constraints Journal, 1st
issue, 1996 (to be published).

P.C. Kanellakis, G.M. Kuper, and P.Z.
Revesz. Constraint Query Languages. JCSS,
51(1): 26-52, 1995.

A. Klug. Equivalence of Relational Algebra
and Relational Calculus Query Languages
Having Aggregate Functions. Journal of the
ACM, 29(3):699-717, 1982.

G. Kuper. Aggregation in Constraint
Databases. In PPCP’93, First International
Workshop on Principles and Practice of Con-
straint Programming, pages 161-172. MIT
Press, 1994.

J.L. Lassez. Querying Constraints. In 9th
ACM Symposium on Principles of Database
Systems, pages 288-298, 1990.

Martti Mantyla. Solid Modeling. Computer
Science Press, 1988.

I.S. Mumick, H. Pirahesh, and R. Ramakrish-
nan. Duplicates and Aggregates in Deductive
Databases. In International Conference on
Very Large Data Bases, August 1990.

G. Ozsoyoglu, Z.M. Ozsoyoglu, and V. Matos.
Extending Relational Algebra and Relational
Calculus with Set-Valued Attributes and Ag-
gregate Functions. ACM Transactions on

Database Systems, 12:566-592, 1987.

F.Bernandini, C.Cattani,
V.Ferrucci. Dimension-Independent Model-

ing with Simplicial Complexes ACM Trans.
Graphics, 12(1): 56-102, 1993.

[PVABVGY94] J. Paredaens, J. Van den Bussche, and

[PS86]

[Rev95]

[RS92]

D. Van Gucht. Towards a Theory of Spatial
Database Queries. In ACM Symposium on
Principles of Database Systems, pages 279-
288, Minneapolis, Minnesota, 1994.

L.K. Putnam, P.A. Subrahmanyam. Boolean
Operations on n-dimensional objects. IEFE

Comput. Graph. Appl., 6(6): 43-51, 1986.

P. Z. Revesz. Safe Stratified Datalog with In-
teger Order Programs. In International Con-
ference on Constraint Programming, Mar-
seilles, France, September 1995. Springer-
Verlag, LNCS 1000.

K. A. Ross and Y. Sagiv. Monotonic Aggre-
gation in Deductive Databases. In ACM Sym-
posium on Principles of Database Systems,
pages 114-126, 1992.

[SSRB93] S. Sudarshan, D. Srivastava, R. Ramakr-

[VG92]

ishnan, and C. Beeri. Extending the Well-
Founded and Valid Model Semantics for Ag-
gregation. In International Logic Program-
ming Symposium, 1993.

A. Van Gelder. The Well-Founded Semantics
of Aggregation. In ACM Symposium on
Principles of Database Systems, pages 127—
138, San Diego, California, June 1992.

[VGVGY95] L. Vandeurzen, M. Gyssens, and

D. Van Gucht. On the Desirability and Lim-
itations of Linear Spatial Database Models.
In International Symposium on Large Spatial
Databases, pages 14-28, 1995.

