
Variable Independence and Aggregation ClosureJ. ChomickiMonmouth UniversityWest Long Branch, NJchomicki@moncol.monmouth.edu D. Q. Goldin �Brown UniversityProvidence, RIdgk@cs.brown.edu G. M. KuperECRCM�unchen, Germanykuper@ecrc.deAbstractWe discuss the issue of adding aggregation to constraintdatabases. Previous work has shown that, in general,adding aggregates to constraint databases results in lan-guages that are not closed. We show that by imposing anatural restriction, called variable independence (whichis a generalization of the assumptions underlying theclassical relational model of data) on the schema, wecan guarantee that a restricted version of the languagewith aggregation is closed. We illustrate our approachin the context of linear constraint databases.1 IntroductionConstraint databases [KKR90] are a natural generaliza-tion of the relational model of data by allowing in�-nite relations that are �nitely representable using con-straints. Constraint databases �nd numerous applica-tions in spatial [BJM93, BK95, BLLM95, PVdBVG94,VGVG95] and temporal databases [Cho94]. Generaliz-ing aggregation operators to constraint databases hasbeen identi�ed as one of the most important open re-search issues in this area [KG94, Kan95]. Some aggre-gation operators like count are not applicable to in�-nite relations. On the other hand, new operators likearea [AS91] (or its generalization: n-dimensional vol-ume [GK94]) occur there quite naturally.A query language resulting from adding aggregationto a constraint query calculus [KKR90] or algebra[KG96] should be well behaved. [Kup94] describes ageneral framework, modelled after [Klu82], for addingaggregate operators to relational algebra and calculus.The outstanding open problem there is that of closure:the result of a query that uses aggregation should be�Research supported in part by ONR contract N00014-94-1-1153 and NSF grant IRI-9509933.

�nitely representable using the constraint language ofthe database. Unrestricted aggregation may fail toproduce a closed language, as shown in [Kup94]. Thatpaper proposes several approaches to deal with thisproblem. On the one hand, one may try to restrictthe query language, and on the other, to restrict theclasses of aggregate operators allowed. The secondapproach was illustrated by themax aggregate operatorthat (trivially) produces a closed language. Also, anew nontrivial aggregation operator producing a closedlanguage was introduced and studied in [CK95].A new approach, restricting the way aggregate oper-ators are used in the query language, is proposed here.We show that, under certain natural restrictions cap-tured by the notion of variable independence and reect-ing the way aggregation is often used in real databases,we can add aggregate operators to relational algebra,and still get a closed language. In particular, our ap-proach is applicable to the area aggregate operator andits higher-dimensional versions.As shown in [Kup94], relational algebra over linearconstraint databases is not closed under aggregationusing area. The typical example where a query is notclosed, is where we have, say, a region whose boundariesvary with time, and we want to know how the area ofthe region varies with time.While there are applications where one might conceiv-ably need the full generality of such a language (and forwhich the problems would be unavoidable), this is notthe case for many applications.Example 1.1 Consider, for example, a geographicaldatabase with cadastral information, i.e., informationon land ownership and land boundaries. Suppose we areinterested in �nding the area of the land owned by eachperson at all points of time. Land ownership does notvary continuously{somebody acquires a piece of land ata single, discrete point of time.This means that the data can be represented by a setof generalized tuples of the formn = N ^ t1 � t � t2 ^C(x; y) 1

where C(x; y) are constraints that describe the regionowned by N between times t1 and t2. If we want to �ndthe area of the land owned by N as a function of t, wecan represent the result as a set of generalized tuple ofthe form t1 < t < t2 ^ (n = N) ^ (z = A)which is clearly �nitely representable.The important property of such tuples, that we shallgeneralize in this paper, is that the constraints on x andy|those on which the area computation is performed|are separate from the constraints on n and t. Manytypical uses of area computation in GIS systems, suchas the current example, have this property, so that sucha restriction is quite natural.There are, of course, possible applications for whichsuch an assumption would not hold, and will not becovered by our approach. One example would be to givethe area covered by a storm as a function of time. If thedata is represented by linear constraints, there is no wayaround the need for quadratic constraints to express theresult. On the other hand, if we are interested in thearea at a speci�c point of time, then we would �rstperform a selection (time = constant), and the resultsin this paper would still apply.The paper is organized as follows. In section 2,we review the basic concepts of constraint databasesand aggregation. In section 3, we de�ne the notion ofvariable independence that is central to the notion ofrestricted aggregation that we propose. In section 4, wede�ne the relational algebra with restricted aggregationand show that it is closed. In section 5, we show that forconstraint databases with linear arithmetic constraintsvariable independence is e�ectively decidable. In section6, we present some results about inferring variableindependence in relational algebra expressions. Insection 7, we draw conclusions and discuss related andfurther work.2 Basic notionsFor a full account of constraint databases, see [KKR90].The basic de�nitions are as follows:De�nition 2.1 Let � be a class of constraints.1. A generalized k-tuple (over variables x1, : : : , xk)is a �nite conjunction '1 ^ � � � ^ 'N , where each'i; 1 � i � N; is a constraint in �. Furthermore,the variables in each 'i are all free and among x1,: : : , xk.2. A generalized relation of arity k is a �nite setr = f 1; : : : ; Mg, where each i; 1 � i � M is ageneralized k-tuple over the same variables x1, : : : ,xk.

3. The formula corresponding to a generalized relationr is the disjunction 1 _ � � � _ M . We use �r todenote the quanti�er-free formula corresponding tothe relation r.4. A generalized database is a �nite set of generalizedrelations. 2We view a set of variables fx1, : : : , xkg as a relationschema and generalized relations over fx1, : : : , xkg asinstances of this schema.In database theory, a k-ary relation r is a �niteset of k-tuples (or points in a k-dimensional space)and a database is a �nite set of relations. However,the relational calculus and algebra can be developedwithout the �niteness assumption for relations. We willuse the term unrestricted relation for �nite or in�nitesets of points in a k-dimensional space. In order tobe able to do something useful with such unrestrictedrelations, we need a �nite representation that we canmanipulate. This is exactly what the generalized tuplesprovide.De�nition 2.2 Let � be a class of constraints inter-preted over domain D, r a generalized relation of arityk with constraints in �, let �r be the formula corre-sponding to r with free variables x1; : : : ; xk. The gen-eralized relation r represents the unrestricted k-ary re-lation which consists of all (a1; : : : ; ak) in Dk such that�r(a1; : : : ; ak) is true. Two generalized relations overthe same set of variables are equivalent if they repre-sent the same unrestricted relation. 2With some abuse of notation, we will use the samesymbol for a generalized tuple (relation) and theunrestricted relation it represents.A query � on a constraint database is a �rst-orderformula, whose predicates are constraints or general-ized relation symbols. The semantics of a query, are,intuitively, the mapping from unrestricted relations tounrestricted relations de�ned by this formula. Such aquery is well-de�ned if the result of substituting a gener-alized relation for each occurrence of the correspondingrelation symbol, is equivalent to some generalized rela-tion over the same constraint domain.A query algebra can also be de�ned, using naturalextensions of the normal relational algebra (see [KG96]for an extensive treatment of constraint query algebras).The extension to aggregation is described later in thissection.A query language L is closed for a class of constraintdatabases C if the result of any query belonging toL evaluated over a database from C can be �nitelyrepresented as a generalized relation from C.We assume that the constraint language is closed un-der negation. Moreover, it should admit e�ective quan-ti�er elimination. These assumptions are necessary for2

the closure of relational algebra operations. For the restof this paper, we consider only those constraint lan-guages that satisfy the above conditions. In particular,we consider linear arithmetic constraints and dense or-der constraints; linear arithmetic constraints are of theform a1x1 + � � �+ amxm op a0 with op 2 f�; <;=g andwith rational coe�cients a0; : : : ; am.As shown in [Kup94], Klug's relational calculus andalgebra with aggregation can be extended to constraintdatabases with minor modi�cations, at least as far asthe underlying semantics on unrestricted relations isconcerned. The de�nitions in [Kup94] are as follows:De�nition 2.3 An aggregate function f maps (possi-bly in�nite) relations with an appropriate schema to thedomain D of the constraints. For every relation S overattributes X, if S0 is a constant expansion of S overX[Y , i.e., if there is a projection such that �X(S0) = Sand �Y (S0) contains exactly one tuple, then the functionf 0 such that f(S) = f 0(S0) is also an aggregate function.For our purposes here, it is su�cient to assume thatthe algebra is extended by the following operator forevery aggregate function:De�nition 2.4 Let r be an unrestricted relation overthe set of attributes U , X � U such that jU �Xj = n,and f is an aggregate function of arity n which outputsa constraint over attributes Y . Then, the aggregateoperator hX; fi, when applied to r, produces a newrelation r0 with attributes X [Y :r hX; fi = f(t[X]; y)jt 2 r ^^y = f(ft0[U �X]jt0 2 r ^ t0[X] = t[X]g)g:Intuitively, the above corresponds to grouping the tuplesin r on X and applying the aggregation operator to theremaining attributes in each group. For more details,including the construction of an equivalent calculus, see[Kup94].Generalized relational algebra with aggregation mayfail to be closed even for dense order constraints[Kup94].Example 2.1 Consider the instance of R consisting ofa single generalized tuple:0 < x < y < z < 1The query R hz; areax;yi evaluates to a binary relationS(z; t) where S(z; t) holds i� z2 = 2t. The latterconstraint cannot be represented using order constraints(or linear arithmetic constraints).In this paper, we will provide a restriction onapplying the aggregate operator to a relation, and proveclosure for the resulting class of relational expressions.In particular, we will de�ne the notion of variable

0

2

4

0 2 4
0

2

4

0 2 4

(A) (B)Figure 1: Instance (A) is equivalent to instance (B).independence, and stipulate that X and U �X must beindependent in r (see De�nition 2.4). So, the expressionR hz; areax;yi from the above example would not bepermitted by our restriction.Example 2.2 Returning now to Example 1.1, supposethat the cadastral database contains a generalizedrelation L with tuples of the following form:t1 < t < t2 ^ (n = N) ^C(x; y)where C(x; y) is a conjunction of linear arithmeticconstraints describing a piece of land owned by personN over the time interval (t1; t2). The relational algebraquery L hf1; 2g; area3;4i lists the area of land ownedby each person at all times. This query satis�es ourrestriction on the use of aggregation,On a concluding note, it should be noted that therelation r in De�nition 2.4 can be either extensional orintensional. We will deal in the paper with maintainingthe restriction in both of those cases.3 Independence of VariablesIn the following de�nitions, we assume that R is ageneralized relation over attribute set U .3.1 De�nitionsDe�nition 3.1 Let X;Y � U and t be a generalizedtuple in R. We say that X and Y are independent in tif: �XY (t) = �X(t) 1 �Y (t);they are related in t otherwise.Clearly, variable independence in a tuple is decidable.Also, note that variable independence in a tuple t maybe viewed as an embedded join dependency [Kan90]holding in the unrestricted relation corresponding to t.De�nition 3.2 We say that X and Y are independentin R if there exists a relation R0 equivalent to R whereX and Y are independent in every (generalized) tupleof R0. Otherwise, we say that they are related in R. 3

Example 3.1 The instance of R(x; y) in Figure 1 (A)contains two tuples:2 � y � 4 ^ 0 � x � y;2 � x � 4 ^ 0 � y � x:In each tuple, x and y are related. However, there is anan equivalent relation (Figure 1 (B)) where this is notthe case: 2 � y � 4 ^ 0 � x � 4;2 � x � 4 ^ 0 � y � 2:Note that for classical relations, where each tuplealways represents exactly one point, it is trivially truethat all subsets of variables are independent in everyrelation. In general, however, decidability of variableindependence is far from obvious. As the above exampleshows, it is not su�cient to check the individual tuplesin order to verify variable independence. In section 5,we show that for linear constraints, there is an e�ectivemethod to tell whether two variables are independentin a given generalized relation.To conclude the subsection, we de�ne variable inde-pendence for the schema of a generalized relation. Here,variable independence is viewed as a restriction, to bemaintained by all relations that satisfy the schema. Inthis way, we enrich the relation schema beyond the stan-dard attribute name and type information.De�nition 3.3 We say X and Y are independent inthe relational schema R if every relation satisfying Rpreserves the independence of X and Y ; X and Y arerelated in R otherwise.3.2 Semantic vs. Syntactic IndependenceThe above de�nitions of variable independence aresemantic: for each generalized tuple t, they considerthe semantics of t. One can also de�ne variableindependence syntactically:De�nition 3.4 Let X;Y � U be disjoint, and t bea generalized tuple in R. We say that X and Y aresyntactically independent in t if t is a conjunction ofC1(X [Z) and C2(Y [Z), where Z = U �X � Y , andC(X) denotes a conjunction of constraints over X.The above de�nition extends to relations, just as forsemantic variable independence.In Section 4, we will impose a variable independencecondition on the schema of those relations to whichaggregation may be applied, and show that for allreasonable constraint classes, relational algebra withrestricted aggregation is closed. The proof will rely onthe following lemma:Lemma 3.1 X and U � X aresemantically indepen-dent in R i� they are syntactically independent in R.

Proof: The \if" direction is straightforward. Weprove the \only if" direction. By De�nition 3.2, thereexists R0 equivalent to R where for every tuple t inR0, t = �X(t) 1 �U�X(t). Since the constraintclass admits quanti�er elimination, both projectionsare representable as �nite disjunctions of conjunctionsof constraints; the �rst one is over X, the secondover U � X. By pairing up the disjuncts from thetwo projections, we obtain a �nite set of tuples whosedisjunction is equivalent to t, where X and U �X aresyntactically independent in all tuples. By repeatingthis construction for every t in R0, we obtain a relationequivalent to R where X and U � X are syntacticallyindependent in each tuple.Note that the above lemma does not generalizeto arbitrary sets of attributes; in general, semanticindependence does not imply syntactic and vice versa.For example, fxg and fyg are semantically (but notsyntactically) independent in the singleton relationconsisting of the tuple0 < x < 1 ^ 0 < y < 1 ^ z = x+ y:On the other hand, fxg and fyg are syntactically (butnot semantically) independent in the relation consistingof the tuple x < y ^ y < z:In the rest of this paper, \independence" will mean se-mantic independence, unless explicity stated otherwise.4 Restricted AggregationIn this section, we impose a variable independencecondition on the schema of those relations to whichaggregation is applied. We show that for all reasonableconstraint classes, relational algebra with restrictedaggregation is closed; i.e., the result of any relationalalgebra expression can be represented as a generalizedrelation.De�nition 4.1 The relational algebra with restrictedaggregation consists of the standard relational algebra,together with expressions of the form e hX; fi, providedthat X and U �X are independent in the schema of e(where U is the set of attributes of e).Theorem 4.1 Relational algebra with restricted aggre-gation is closed for constraint databases whenever theconstraint class admits quanti�er elimination and isclosed under negation.Proof: (sketch) Let e be a relational expression on thegiven schema, with attributes U , and let X be a subsetof U such that the expression e hX; fi is permitted in thelanguage, and let e evaluate to the relationR0. We mustshow that R0 hX; fi is representable as a generalizedrelation in our constraint language. 4

By our restrictions on the use of aggregation, com-bined with Lemma 3.1, there must be R equivalent toR0 of the form R � _1�i�lCiwhere each Ci is of the formCi = ci1 ^ � � � ^ ciji ^ di1 ^ � � � ^ dikiwhere each cij contains only variables from X, and eachdij contains only variables from U �X.Let C = fcik;:cik j 1 � i � l; 1 � k � jigBecause the constraint language is closed undernegation, C is a valid constraint set. For any S � C,de�ne �S as �S = ĉ2S c:Let � = f�S j S � C; �S satis�able gand let 	 be the set of minimal formulas in �, i.e.,those � 2 � with the property that, whenever �0 2 �such that �0 ! � is valid, then � is equivalent to �0.De�ne R0 as R0 � _�2	C�;whereC� = �^_fdi1^� � �^diki j 1 � i � l; �! ci1^� � �^ cijigWe can then show:Lemma 4.1 R0 � RNow, let t be a tuple (i.e., an n-dimensional point) in(the semantics) of R. By the minimality of 	, we caneasily see that t[X] satis�es exactly one element of 	,and hence that t satis�es exactly one C�. Thenft0[U �X]jt0 2 R ^ t0[X] = t[X]g == Sft0[U �X] j t0 j= di1 ^ � � � ^ dikigwhere the union is over those d's in the de�nition of C�.Call this set A�, since it clearly depends only on � andnot on the choice of t.Then the result of e hX; fi can be represented by theset of tuples of the form (m is the column for the resultof the aggregation) � ^m = f(A�)which is clearly �nite.To make restricted aggregation practical, we must beable to determine e�ectively, for a generalized databasefR1; : : : ; Rng and a relational expression e hX; fi, whetherX and U �X are independent in e. There are two as-pects to this problem:

1. testing whether some Ri satis�es the independencerestrictions on its schema2. testing whether an arbitrary relational algebra ex-pression e satis�es its schema restrictions.Note that neither of the above tests needs to beperformed at run-time, i.e., during query evaluation.The �rst test, discussed in Section 5, can be done whencreating or updating Ri. The second, discussed inSection 6, can be done at compile-time, provided thatall schema restrictions for fR1; : : : ; Rng are satis�ed.5 Testing variable independenceAs mentioned at the end of Section 4, given a relation Rwhose schema restricts X and Y to be independent, wemust be able to test whether R satis�es the restriction.Clearly, if X and Y are independent in each tupleof R, the answer is positive. Therefore, one way ofenforcing independence restrictions on R's schema is bystipulating that each tuple satis�es these restrictions.To allow the user maximum exibility, it is desirableto have an algorithm for testing, given an arbitrary Rwith attibute set U , and arbitrary X;Y � U , whetherX and Y are independent in R. In this section, weprovide such an independence test for linear constraintdatabases. As a side e�ect, this test generates onsuccess a relation R equivalent to R where X and Yare independent for all tuples.Unlike the work of [Las90], where all tests areperformed on constraint sets (i.e., tuples), this test isfor disjunctions of constraint sets (i.e., relations). Theindependence test consists of three steps:Step 1. The �rst step of the test is to create theboundary representation B(R) for the polyhedral objectconsisting of the feasible points of R, i.e., the pointswhose coordinates have values satisfying R's formula�R. This is done using standard techniques from CAD,summarized below.Each generalized tuple t corresponds to a convex setPt of n-dimensional points, bounded by n-dimensionalhalf-planes. The boundary representation of Pt iscomputed by a convex hull algorithm, such as the \giftwrapping" method in [CK70].B(R) is obtained by unioning together the bound-ary representations of the individual tuples, a standardSolid Modeling operation. See [FvDFH] for an introduc-tion to polyhedral Solid Modeling, or [MM] for detailsof the algorithms. These algorithms extend to an arbi-trary number of dimensions, as in [PS86].Step 2. The next step of the algorithm is to createa vertex grid partitioning R of R.We project the set of B(R)'s vertices onto each of then axes, and sort the kj obtained values, for 1 � j � n.This partitions each axis into (kj + 1) intervals:f(�1; v1); (v1; v2); : : : ; (vkj ;+1)g: 5

In turn, this induces a partitioning of the n-space into((k1+1)�� � ��(kn+1)) n-dimensional rectangles, whereeach rectangle is the cross-product of the correspondingintervals. We denote this set of rectangles by VR, thevertex grid of R.The intersection of each rectangle in VR with B(R)consists of 0 or more disjoint point sets. These pointsets are convex, since no rectangle can contain a vertexof B(R) as its interior point; therefore, each onecorresponds to some tuple tj . The set of these tuples,denoted by R, is the vertex grid partitioning of R. It isequivalent to R.Step 3. The last step of the algorithm is to check,for each t in R, whether X and Y are independent in t.The following theorem provides the motivation for theindependence test:Theorem 5.1 X and Y are independent in R if andonly if, for all tuples t in R, X and Y are independentin t.Proof: (Sketch) The \if" direction of the theoremfollows from de�nitions. For the other direction, weassume that X and Y are independent in R. Let R0be equivalent to R where X and Y are independent foreach tuple t 2 R0. Let R0 be the intersection of thetuples of R0 with the vertex grid of R0:R0 = ftj \ tk : tj 2 R0; tk 2 VR0g:It can be shown that X and Y are independent for eachtuple in R0. It can also be shown that for each tuple t inthe vertex grid partitioning of R, there exists a subsetof R0 whose union is equivalent to t. This implies thatX and Y are independent in t, completing the proof.We conclude the chapter with a short discussionof complexity issues. It can be shown that the datacomplexity of the independence test is polynomial.However, the combined complexity is exponential in n.This is due to the fact that the size of B(R) can beexponential in n:Example 5.1 Consider a relation R over n variablesconsisting of one tuple with the following constraints:0 � x1 � 1; : : : ; 0 � xn � 1:Its feasible points form a hypercube with 2n verticesand O(2n) edges.It is our opinion that the exponential combinedcomplexity is unavoidable, since any independence testwill have to somehow consider the complete geometryof the feasible points of R.

6 Inference of variable independenceIn this section we show how to infer variable indepen-dence in relational algebra expressions.In contrast to the previous section, the results in thissection are applicable to any constraint language closedunder negation and admitting quanti�er elimination,not just linear arithmetic constraints.Notation:� U denotes the schema of the generalized relation R,� R : Indep(X;Y) denotes the fact that X and Y areindependent in R,� �(A1; : : : ; Ak) denotes a constraint with free vari-ables A1; : : : ; Ak.Theorem 6.1 The following inference rules are valid:1. if X � U , then �A=a(R) : Indep(fAg; X) and�A=a(R) : Indep(X; fAg);2. if R : Indep(X;Y) and (fA1; : : : ; Akg � X orfA1; : : : ; Akg � Y), then ��(A1;:::;Ak)(R) : Indep(X;Y);3. if R : Indep(X;Y) and X;Y � Z, then �Z(R) :Indep(X;Y);4. if R : Indep(X;Y) and S : Indep(X;Y), then R[S :Indep(X;Y);5. if R : Indep(X;Y), then R � S : Indep(X;Y)(similarly for S);6. if S has schema U 0 disjoint from the schema of Rand X � U and Y � U 0, then R� S : Indep(X;Y)and R� S : Indep(Y;X);7. if R : Indep(X;Y) and X;Y � Z then R hZ; fi :Indep(X;Y);8. if Y � X and m is the new column correspondingto the result of the aggregation, then R hX; fi :Indep(Y; fmg) and R hX; fi : Indep(fmg; Y).Proof: We prove the validity the second inference rule.The validity of the remaining rules can be establishedin a similar way.The basic idea is as follows: given a representationfor R in which X and Y are independent, we constructfrom it a representation for ��(A1;:::;Ak)(R) in which Xand Y are independent. In this case, we conjoin every(generalized) tuple t of R with ��(A1 ;:::;Ak)(R) to obtainanother generalized tuple t0. We have to show that�XY (t0) = �X(t0) 1 �Y (t0):The fact that the left-hand side is contained in theright-hand side follows directly from the de�nition ofprojection and join. To obtain the containment in the6

other direction, let p be a (ground) tuple in �X(t0) 1�Y (t0). Thus, there are tuples p0 2 t0 and p00 2 t0 suchthat:� p0[X] = p[X] and �(p0[A1]; : : : ; p0[Ak]) holds,� p00[Y] = p[Y] and �(p00[A1]; : : : ; p00[Ak]) holds,� p0[X \ Y] = p00[X \ Y].Now clearly p 2 �X(t) 1 �Y (t). Because�XY (t) = �X(t) 1 �Y (t)p 2 �XY (t). But also �(p[A1]; : : : ; p[Ak]) holds (noticethe importance of A1; : : : ; Ak being entirely in X or Y)and thus p 2 �XY (t0).In general, we cannot infer variable independence ina di�erence of two relations.Example 6.1 Consider the instance I0 with schemafx; y; zg: y > zx < y:Its complement consists of the tuplez � y ^ y � x:Thus while x and z are independent in I0, they are notindependent in the complement of I0.For the special case of Y = U �X, we have:Theorem 6.2 The following inference rule is valid:� if R : Indep(X;U � X) and S : Indep(X;U � X),then R� S : Indep(X;U �X).Proof: (sketch) Assume I1 is an instance of Rsatisfying Indep(X;U � X) and I2 is an instance of Ssatisfying Indep(X;U � X). Then by de�nition thereexist instances I01 equivalent to I1 and I 02 equivalent toI2 consisting only of tuples in which X and U � Xare independent. Let I 01 = ft1; : : : ; tng and I 02 =fs1; : : : ; smg. The di�erence of I 01 and I 02 can thus berepresented as the set of tupleswi = (ti ^ :s1 ^ :sm)for i = 1 = 1; : : : ; n. Let X = fA1; : : : ; Akg andU � X = fB1; : : : ; Bmg. Now every si, i = 1; : : : ;m,can in turn be represented as a tuple of the form�(A1; : : : ; Ak) ^ (B1 ; : : : ; Bm)by Lemma 3.1. Thus its negation is of the form:�(A1; : : : ; Ak) _ :(B1; : : : ; Bm):Because of this and the fact that the constraintlanguage is closed under negation, each tuple wi can

be represented using a �nite number of tuples of theform �(A1; : : : ; Ak) ^ (B1; : : : ; Bm):In every such a tuple X and U �X are independent.The above special case is important because theapplication e hX; fi of a restricted aggregation operatorin the version of relational algebra discussed in section4 is allowed only if e : Indep(X;U �X) where U is theschema of e.Remark: A tuple in a �nite instance of relationalschema R(A1; : : : ; An) may be viewed as a generalizedtuple ^i=1;:::;nAi = ai:Therefore, in every such instance every two disjointsubsets of the schema are independent. The result ofany relational expression applied to such an instancecan also be represented in this form and variableindependence is preserved. Our rules are too weakto make this kind of inference, c.f.. the rule for�Ak=Am (R). This is because of their generality.Thus, there is clearly a need for developing specializedinference rules that will exploit the properties ofrestricted constraint languages.7 Related and further workIn the context of constraint databases, we have de�neda restricted version of aggregation whose addition torelational algebra results in a closed language. Therestriction requires that the set of variables groupedupon is independent of the remaining variables. Weformalized this restriction using the notion of variableindependence. We have shown that for constraintdatabases with linear arithmetic constraints variableindependence is decidable with acceptable complexity.We have also provided a set of rules for inferring variableindependence in relational expressions.Previous work on aggregation, with the exceptionof [Klu82, OOM87, Kup94, CK95], has concentratedon a �xed set of aggregation operators, e.g., sum orcount, motivated by traditional database applications.Such operators are applicable to �nite relations and donot generalize to in�nite ones. In [CK95], a specialaggregation operator for generalized relations thatpreserved closure of relational algebra operations wasproposed. The issue of closure of general aggregationoperators was not, however, addressed.The idea of variable independence can be potentiallyapplied beyond the context of aggregation. [Rev95]de�ned a restricted form of Datalog with negation andinteger gap-order constraints. The restriction requiredessentially that all attributes be independent in everygeneralized tuple in order to guarantee the terminationof bottom-up query evaluation. As Figure 1 shows, a7

generalized relation containing tuples in which not allattributes are independent can still be equivalent to onein which in all the tuples all attributes are independent.If the technique we proposed in section 5 can begeneralized to the integer case, it will provide a toolto enlarge the class of terminating Datalog programs.Other possible extensions of this work include: largerclasses of constraints (e.g., polynomial constraints),other query languages with aggregation (e.g., relationalcalculus, Datalog [MPR90, RS92, SSRB93, VG92]),properties of variable independence considered as adependency class (axiomatization, implication).References[AS91] W.G. Aref and H. Samet. Extending a DBMSwith Spatial Operations. In InternationalSymposium on Large Spatial Databases, pages299{318, 1991.[BJM93] A. Brodsky, J. Ja�ar, and M.J. Maher.Towards Practical Constraint Databases. InInternational Conference on Very Large DataBases, Dublin, Ireland, 1993.[BK95] A. Brodsky and Y. Kornatzky. The LyriCLanguage: Constraining Objects. In ACMSIGMOD International Conference on Man-agement of Data, San Jose, California, 1995.[BLLM95] A. Brodsky, C. Lassez, J-L. Lassez, and M.J.Maher. Separability of Polyhedra for OptimalFiltering of Spatial and Constraint Data. InACM Symposium on Principles of DatabaseSystems, San Jose, California, 1995.[Cho94] J. Chomicki. Temporal Query Languages: ASurvey. In D.M. Gabbay and H.J. Ohlbach,editors, Temporal Logic, First InternationalConference, pages 506{534. Springer-Verlag,LNAI 827, 1994.[CK70] D.R.Chand, S.S. Kapur. An Algorithm forConvex Polytopes. JACM, 17(1): 78{86,1970.[CK95] J. Chomicki and G. Kuper. Measuring In�niteRelations. In ACM Symposium on Principlesof Database Systems, 1995.[FvDFH] J.D.Foley, A. van Dam, S.K.Feiner, J.F.Hughes Computer Graphics, Principles andPractice. Addison-Wesley, 1990.[GK94] P. Gritzmann and V. Klee. On the Complex-ity of Some Basic Problems in ComputationalConvexity: II. Volume and Mixed Volumes.Technical Report TR-94-31, DIMACS, Rut-gers University, New Brunswick, NJ, 1994.

[Kan90] P.C. Kanellakis. Elements of RelationalDatabase Theory. In Jan van Leeuwen,editor, Handbook of Theoretical ComputerScience, volume B, chapter 17, pages 1073{1158. Elsevier/MIT Press, 1990.[Kan95] P.C. Kanellakis. Constraint Programmingand Database Languages: A Tutorial. InACM Symposium on Principles of DatabaseSystems, 1995.[KG94] P. C. Kanellakis and D. Q. Goldin. Constraintprogramming and database query languages.In Proc. 2nd Conference on Theoretical As-pects of Computer Software (TACS), April1994.[KG96] P.C. Kanellakis and D.Q. Goldin ConstraintQuery Algebras Constraints Journal, 1stissue, 1996 (to be published).[KKR90] P.C. Kanellakis, G.M. Kuper, and P.Z.Revesz. Constraint Query Languages. JCSS,51(1): 26{52, 1995.[Klu82] A. Klug. Equivalence of Relational Algebraand Relational Calculus Query LanguagesHaving Aggregate Functions. Journal of theACM, 29(3):699{717, 1982.[Kup94] G. Kuper. Aggregation in ConstraintDatabases. In PPCP'93, First InternationalWorkshop on Principles and Practice of Con-straint Programming, pages 161{172. MITPress, 1994.[Las90] J.L. Lassez. Querying Constraints. In 9thACM Symposium on Principles of DatabaseSystems, pages 288{298, 1990.[MM] Martti Mantyla. Solid Modeling. ComputerScience Press, 1988.[MPR90] I.S. Mumick, H. Pirahesh, and R. Ramakrish-nan. Duplicates and Aggregates in DeductiveDatabases. In International Conference onVery Large Data Bases, August 1990.[OOM87] G. Ozsoyoglu, Z.M. Ozsoyoglu, and V. Matos.Extending Relational Algebra and RelationalCalculus with Set-Valued Attributes and Ag-gregate Functions. ACM Transactions onDatabase Systems, 12:566{592, 1987.[PBCF93] A.Paoluzzi, F.Bernandini, C.Cattani,V.Ferrucci. Dimension-Independent Model-ing with Simplicial Complexes ACM Trans.Graphics, 12(1): 56{102, 1993. 8

[PVdBVG94] J. Paredaens, J. Van den Bussche, andD. Van Gucht. Towards a Theory of SpatialDatabase Queries. In ACM Symposium onPrinciples of Database Systems, pages 279{288, Minneapolis, Minnesota, 1994.[PS86] L.K. Putnam, P.A. Subrahmanyam. BooleanOperations on n-dimensional objects. IEEEComput. Graph. Appl., 6(6): 43{51, 1986.[Rev95] P. Z. Revesz. Safe Strati�ed Datalog with In-teger Order Programs. In International Con-ference on Constraint Programming, Mar-seilles, France, September 1995. Springer-Verlag, LNCS 1000.[RS92] K. A. Ross and Y. Sagiv. Monotonic Aggre-gation in Deductive Databases. In ACM Sym-posium on Principles of Database Systems,pages 114{126, 1992.[SSRB93] S. Sudarshan, D. Srivastava, R. Ramakr-ishnan, and C. Beeri. Extending the Well-Founded and Valid Model Semantics for Ag-gregation. In International Logic Program-ming Symposium, 1993.[VG92] A. Van Gelder. The Well-Founded Semanticsof Aggregation. In ACM Symposium onPrinciples of Database Systems, pages 127{138, San Diego, California, June 1992.[VGVG95] L. Vandeurzen, M. Gyssens, andD. Van Gucht. On the Desirability and Lim-itations of Linear Spatial Database Models.In International Symposium on Large SpatialDatabases, pages 14{28, 1995.

9

