
A Formal Correctness Proof for Code Generation
from SSA Form in Isabelle/HOL

Jan Olaf Blech and Sabine Glesner

Institut für Programmstrukturen und Datenorganisation
Universiẗat Karlsruhe, 76128 Karlsruhe, Germany

Abstract: Optimizations in compilers are the most error-prone phases in the compila-
tion process. Since correct compilers are a vital precondition for software correctness,
it is necessary to prove their correctness. We develop a formal semantics for static sin-
gle assignment (SSA) intermediate representations and prove formally within the Is-
abelle/HOL theorem prover that a relatively simple form of code generation preserves
the semantics of the transformed programs in SSA form. This formal correctness proof
does not only verify the correctness of a certain class of code generation algorithms but
also gives us a sufficient, easily checkable correctness criterion characterizing correct
compilation results obtained from implementations (compilers) of these algorithms.

To be published inProceedings der 3. Arbeitstagung Programmiersprachen (ATPS) auf der 34. Jahrestagung

der Gesellschaft für Informatik, Ulm, Germany, 2004, to appear in Lecture Notes in Informatics.

1 Introduction

Compiler correctness is a necessary prerequisite to ensure software correctness and reli-
ability as most modern software is written in higher programming languages and needs
to be translated into native machine code. In this paper, we address the problem of veri-
fying compiler correctness formally within a theorem prover. Starting from intermediate
representations in static single assignment (SSA) form, we consider optimizing machine
code generation based on bottom-up rewrite systems. To prove the correctness of such
program transformations, a formal semantics of the involved programming languages, i.e.
of the SSA intermediate representation form as well as of the target processor language,
is necessary. Furthermore, a formal proof1 is required that shows that the transformations
preserve the semantics of the compiled programs. Such proofs only deal with transforma-
tion algorithms themselves but not with a given compiler implementing them. To bridge
this gap, we require the formal proofs to deliver sufficient, easily checkable correctness
conditions that classify if a compilation result is correct.

Our solution is based on the observation that SSA programs specify imperative, i.e. state-
based computations. In a previous work [Gl04], we have shown that SSA semantics can
be captured elegantly and adequately with abstract state machines [Gu95]. Based on this
work, we develop a formal SSA semantics within the theorem prover Isabelle/HOL. The
imperative semantics transfers control flow from one basic block to its successor block,

1We denote proofs in theorem provers with the termformal proofs, in contrast to “paper and pencil-proofs”.

i.e. the current state is characterized by the currently executed basic block and by the
results computed by the previously executed blocks. Within basic blocks, SSA computa-
tions are purely data-flow driven. These computations are typically represented by acyclic
directed graphs representing the data dependences. In our formalization, we have rep-
resented these graphs bytermgraphs[BN98]. Termgraphs represent acyclic graphs by
duplicating common subexpressions. To keep track of the duplicates, we have assigned a
unique identification number to each node in the original graph and kept these numbers
when duplicating common subexpressions in order to be able to identify identical subex-
pressions in the termgraphs. Based on this formalization, we define a formal semantics
for SSA basic blocks by stating a function that evaluates term graphs. Our specification of
SSA semantics is well-suited to formally prove correctness of code generation algorithms.
In this paper, we formally prove the correctness of a relatively simple code generation al-
gorithm. Thereby we prove that every topological sorting of data flow dependencies in a
basic block is a correct code generation order because then the generated machine program
preserves the data flow dependencies. Furthermore, we point out how this proof can be
extended to also capture more complex optimization strategies during code generation. In
our work, we have used the Isabelle/HOL system [NPW02] to specify the SSA language
and to carry out our correctness proof. As a by-product, this formal proof yields an easily
checkable criterion classifying correct compilation results. This criterion can easily be in-
tegrated into the well-established approach of program result checking [Gl03] (also known
as translation validation [PSS98]) typically used to ensure correctness of compiler results.

2 SSA - Based Intermediate Languages

Static single assignment (SSA) form has become the preferred intermediate representation
for handling all kinds of program analyses and optimizing transformations prior to code
generation [CFR+91]. Its main merits comprise the explicit representation of def-use-
chains and, based on them, the ease by which further dataflow information can be derived.

By definition SSA-form requires that a program and in particular each basic block is rep-
resented as a directed graph of elementary operations (jump/branch, memory read/write,
arithmetic operations on data) such that each “variable” is assigned exactly once in the
program text. Only references to such variables may appear as operands in operations.
Thus, an operand explicitly indicates the data dependency to its point of origin. The di-
rected graph of an SSA-representation is an overlay of the control and data flow graph of
the program. A control node may depend on a value which forces control to condition-
ally follow a selected path. Each basic block has one or more such control nodes as its
predecessor. At entry to a block,φ nodes, x = φ(x1, . . . , xn), represent the unique value
assigned to variablex. This value is a selection among the valuesx1, . . . , xn wherexi rep-
resents the value ofx defined on the control path through thei-th predecessor of the basic
block. n is the number of predecessors of this block. Programs can easily be transformed
into SSA form, cf. [Mu97], e.g. by a tree walk through the attributed syntax tree. The
standard transformation subscripts each variable. At join points,φ nodes sort out multiple
assignments to a variable corresponding to different control flows through the program.

As example, figure 1 shows the SSA representation for the program fragment:
a := a+2; if (..) {a := a+2; } b := a+2;

In the first basic block, the constant 2 is added to a. Thecondnode passes control flow to
the ‘then’ or to the ‘next’block, depending on the result of the comparison. In the ‘then’
block, the constant 2 is added to the result of the previousaddnode. In the ‘next’block,
theφ node chooses which reachable definition of variable ‘a’ to use, the one before the if
statement or the one of the ‘then’block. The names of variables do not appear since in
SSA form, variables are identified with their value.

add

add

jump

add

cond

control flow

data flow
b

a

Example Program:
a:=a+2; if (...) {a:=a+2;} b:=a+2;

const 2

Figure 1: SSA Representation

SSA representations describe imperative, i.e. state-
based computations. A virtual machine for SSA repre-
sentations starts execution with the first basic block of
a given program. After execution of the current block,
control flow is transferred to the uniquely defined sub-
sequent block. Hence, the current state is characterized
by the current basic block and by the outcomes of the
operations in the previously executed basic blocks.

Memory accesses need special treatment. In the func-
tional store approach [St95], memory read/write nodes
are considered as accesses to fields of a global state
variablememory. A write access modifies this global
variablememoryand requires that the outcome of this
operation yields a new (subscripted) version of the
memoryvariable. These duplications of thememory
variable are the reason for inefficiencies in practical
data flow analyses. As a solution, one might try to de-
termine which memory accesses address overlapping
memory areas and thus are truly dependent on each

other and which address independent parts with no data dependencies. For this paper,
these considerations are irrelevant since the same semantic description can be used for
accesses to only a single as well as to several independent memories.

3 A Formal SSA Semantics in Isabelle/HOL

In this section we describe the specification of SSA based intermediate languages within
the Isabelle/HOL system: First, in subsection 3.1, we formalize the data flow within basic
blocks. Then, in subsection 3.2, we describe the global control and data flow.

3.1 Formal Semantics of Basic Blocks

Basic blocks in SSA intermediate representations can be regarded as directed acyclic
graphs (DAGs) such that the nodes represent operations (e.g. arithmetic operators, con-

ADD

ADD ADDMULT

ADD ADD

1

2 3

1 1

2 3

.

MULT

==>

Figure 2: Transforming SSA DAGs into SSA Trees

stants, orφ nodes) and the edges represent the data flow in-between. Evaluation of basic
blocks takes place in two steps: First, theφ nodes are evaluated simultaneously. Then, the
results of the remaining operations are determined. We specify the first step, evaluation of
φ nodes, together with the global control flow, cf. subsection 3.2. Therefore we can treat
φ nodes within a given basic block as constants. Hence, constants andφ nodes (within a
given basic block) are nodes with only outgoing edges.

DAGs representing SSA basic blocks contain common subexpressions only once. In our
formalization we have represented such a DAG by transforming it into an equivalent set of
trees by duplicating shared subterms, cf. Figure 2. To enable identification of equivalent
subtrees, we assign a unique number to each operation in the original DAG and duplicate
this identification number whenever duplicating a shared subexpression. We can transform
such a set of trees into a single tree by adding a root node. In Isabelle/HOL, these trees are
formalized in the following manner:

datatype SSATree = CONST value identifier | PHI phiargs value identifier |
NODE operator SSATree SSATree value identifier |
LOAD SSATree SSATree value identifier |
STORE SSATree SSATree SSATree memory identifier |
MEMORY memory identifier

Nodes represent constants,φ-nodes with argument lists, arithmetic operations, and mem-
ory accesses. Each node has two associated numbers assigned to it, thevaluerepresenting
the result of the corresponding operation and itsidentifier . Memory accesses are specified
according to the functional store approach [St95], cf. section 2.MEMORY memory id -
entifier represents the state of memory at the beginning of the evaluation of a given basic
block; identifier being the identifier of this constant (wrt. a basic block) function.LOAD
andSTORE are the usual operations which load and store values from and in memory.
Both get the address to be loaded from or stored to, resp., as well as the current memory
and, in case of the store operation, the value to be stored as operands which areSSATrees.
Result of the load operation is the fetched value, result of the store operation is the updated
memory. SSA basic blocks are evaluated with the evaluation functioneval tree which is
defined inductively on SSA trees. Since memory operations are formalized functionally,
they can be defined in the same format as the purely functional operations.

Remark: BecauseCONST andPHI nodes behave the same when processed byeval tree
within a fixed basic block, we treat them uniformly asLEAF in the proof in section 4.

consts eval tree :: ′′SSATree ⇒ SSATree′′

primrec ′′eval tree (CONST val ident) = (CONST val ident ′′)
.

′′eval tree (NODE operator tree1 tree2 val ident) =
(NODE operator (eval tree tree1) (eval tree tree2)
(operator (get ssatree val (eval tree tree1)) (get ssatree val (eval tree tree2)))
ident)′′ . . .

3.2 Formal Semantics for the Global Control and Data Flow

An SSA program is formalized as a list of basic blocks whereby each basic block carries
five pieces of information which integrates it into the global control and data flow:

datatypeBASICBLOCK =

NEW identifier identifier ′′identifier × nat ′′ ′′identifier × nat ′′ ′′SSATree list ′′

1. identifier the value number that determines the successor basic block
2. identifier the value number that determines the memory state for the

successor basic block
3. identifier × nat successor target 1 and its rank
4. identifier × nat successor target 2 and its rank
5. SSATree list list of SSATrees containing the operations of the basic block

In our formalization, a basic blockb can have two different successorsb′ (target 1 and
target 2) specified by the third and fourth field of typeidentifier × nat . identifier is
the number characterizing the successor block.nat specifies its rank which defines the
selection of the arguments in theφ nodes inb′: If the value of rank isi, then theith
argument in the argument list of eachφ node inb′ is chosen. (Remember thatφ nodes
have exactly as many operands as the basic block has predecessor blocks.)

Execution of SSA programs is state-based. Each single state transition corresponds to
the execution of a single basic block. We define the current state by the values of the
operations executed in previous basic blocks, by the current state of memory, and by the
currently executed basic block. Therefore we specify:

- a table of values formalized as a function (identifier ⇒ value)
indexed by value numbers

- a memory state (identifier ⇒ value), indexed by memory addresses
- current basic block and its rank

The state transition function(step :: ′′BASICBLOCK list ⇒ state ⇒ state ′′) evalu-
ates basic blocks by performing the following computations:

- it assigns eachφ-node its value
- it assigns the initial memory constant (identifier ⇒ value) to each initial memory node
- it evaluates the basic block (i.e. calculates and stores values in nodes)
- it collects all calculated values and updates the table of values
- it collects the memory state for the next basic block from the corresp. distinct memory node
- it determines the successor basic block with the corresponding distinct value number

We have specified the semantics of SSA intermediate languages via this state transition

function, thereby covering all major aspects of SSA based intermediate languages. For a
complete specification with all details, we refer to [Bl04].

4 Correctness of Code Generation

In this section, we consider a relatively simple code generation algorithm and prove part
of its correctness by showing that it preserves the obervable behavior of translated basic
blocks. Therefore, as core of the proof, we show that every topological sorting of a basic
block is a correct code generation order. This is the most interesting part in the overall
correctness proof for code generation as it transforms the tree or DAG structure, resp.,
into a linear code sequence. For simplicity, we do not consider memory operations in this
paper. Furthermore, since we prove correctness of code generation for individual basic
blocks, we can treatPHI as constants and, hence, do not distinguish betweenPHI and
CONST nodes but instead treat them uniformly asLEAF nodes.

4.1 Semantics of the Machine Language

Machine code is formalized as a list of CodeElements which operate on values stored in a
value tablewhich can be considered as an infinite set of registers holding the results of all
hitherto computed value numbers. The value table is specified as a function(identifier ⇒
value) that maps identifiers to their current values. Since we concentrate on the correct
translation of individual basic blocks, it is sufficient to work with this machine language:

datatypeCodeElement = L value identifier | N operator identifier identifier identifier

The ′′L value identifier ′′-element has the following semantics: storevalue at value table
cell specified byidentifier . The ′′N operator identifier identifier identifier ′′-element
means: get value stored at firstidentifier , get value stored at secondidentifier , apply
operator on both values and store the result at the thirdidentifier . The function that
evaluates a machine code list updates the value table:

eval codelist :: ′′CodeList ⇒ (identifier ⇒ value) ⇒ (identifier ⇒ value)′′

and is primitive recursive over the code list and evaluates one instruction after the other.

4.2 Proof Prerequisites: Translation Function and Topsort Criterion

Prerequisites for our proof are twofold: First, we need to specify the translation between
SSA form and the machine language. Secondly, we need to define the predicateis topsort
which describes the sequences of machine code that preserve the partial order on the op-
erations determined by SSA basic blocks. Concerning the first need, the translation func-
tion, we have defined a functionce ify2 that maps an SSATree (node) to a code element

2ce ify stands forCodeElementify.

(SSATree ⇒ CodeElement). Our formalization of topological sortings, formally defined
by the predicateis topsort , covers the following aspects:

- Each element in the tree must have a corresponding element in the code list.
- Each element in the code list must have a corresponding element in the tree.
- If an elementa in the tree is a successor of another elementb, then the corresponding

elementce ify a must also be a successor ofce ify b in the code list.
- Each Element in the code list has a unique identifier.

A detailed description of the Isabelle/HOL specification defining these requirements can
be found in [Bl04]. As example, the first requirement is formalized in Isabelle/HOL by:

(∀ a.((is in tree a tree) −→ (∃ b.((is in cl b clist) ∧ (ce ify a = b))))).

is in cl (CodeElement ⇒ CodeElement list ⇒ bool) is a predicate which holds if
CodeElement is contained inCodeElement list . is in tree (SSATree ⇒ SSATree ⇒
bool) is defined analogously for the subtree relation.

4.3 The Main Theorem

We claim that if a code list is a topological sorting of an SSA tree, then each value calcu-
lated in the tree must also be calculated in the code list and stored under the same value
number in the value table:3

theoremmain theorem:
′′(∀ clist . ((is topsort clist tree) −→

(∀ t.(is in tree t (eval tree tree)) −→
(∃ ident val .(val = (eval codelist clist(λ a.(Eps(λ a. False)))) ident)∧
(val = get ssatree val t) ∧ (ident = get ssatree id t)))))′′

Proof of main theorem: By induction over the SSATreetree:

Proof of Base Case:We need to show that ifis topsort clist (LEAF val ident) holds,
then the result ofLEAFval ident is also computed by the machine program and is avail-
able under value numberident after execution ofclist . Therefore we need a lemma stating
that the istopsort criterion is only satisfied if clist has the form[L val ident]:

Auxiliary lemma : ′′((is topsort clist (LEAF val ident)) −→ (clist = [L val ident]))′′

With this lemma, the proof of the induction base case is trivial. (Note thatLEAF can
either be aCONST or aPHI node).

Proof of Induction Step: Proving the induction-step is more difficult. We have the fol-
lowing induction assumptions:

- ∀ list ′.is topsort list ′ kid1 =⇒ every value calculated inkid1 is calculated inlist ′.
- ∀ list ′′.is topsort list ′′ kid2 =⇒ every value calculated inkid2 is calculated inlist ′′.

and need to show that:
∀ list .is topsort list (NODE fun kid1 kid2 val ident) =⇒ every value calculated in
(NODE fun kid1 kid2 val ident) is also calculated inlist .

3Eps denotes the Hilbertε-operator defined in Isabelle/HOL which embodies the axiom of choice.

In our proof, we have skolemized the∀-quantified variableslist ′ andlist ′′ in the induction
assumptions by instantiating them withproj list kid1 andproj list kid2 . The function
(proj :: ′′CodeElement list ⇒ SSATree ⇒ CodeElement list ′′) maps all elements
from the input CodeElement list having a corresponding element in the SSATree to the
output code element list. In our proof we have defined theproj function via its properties.
From these characteristics and from the induction hypotheses, we can derive that every
value that gets calculated inkid1 andkid2 will be calculated in the CodeElement listlist .

To complete the proof, for every subtreet of tree, we have to show that its values will be
calculated in the code list. We prove this by the following case distinction:

t is subtree ofkid1 , or t is subtree ofkid2 , or t is the root node:tree.

The first two cases can be derived from the induction hypotheses and the characteristics of
theproj function. For the third case, we show that for every topologically sorted list of a
tree the last element corresponds to the root. Since every child node is correctly evaluated
in the CodeElement list, we derive that the root node is also evaluated correctly. �

The entire proof has been carried out in Isabelle/HOL. Our proof verifies 45 lemmas and
the main theorem. In total, our proof theory file contains about 885 lines of proof code.

5 Integration into Checker Approach

In recent years, program checking (also known as translation validation) has been estab-
lished as the method of choice to ensure the correctness of compiler implementations:
Instead of verifying a compiler, one only verifies its results. The correctness result pre-
sented in section 4 concerns only the correctness of the code generation algorithm but not
of its implementation. In this section, we show how this formally verified correctness re-
sult can be connected with the program checking approach in order to ensure that a given
compiler implementation produces correct machine code.

yes / no

source program

target program

to be verified

compiler checker

Figure 3: Program Checking

Figure 3 demonstrates the
principle of program check-
ing. First the compiler com-
putes the translated program.
Then the independent checker
evaluates a sufficient condi-
tion which classifies correct
results. Our istopsort predi-
cate defined in section 4 is a
sufficient criterion for the cor-

rectness of the generated machine code for a given basic block. Its sufficiency has been
formally verified by our main theorem. So to check the correctness of the generated ma-
chine code, the checker checks if the topsort criterion holds for the SSA basic block and the
generated machine code. This check can be efficiently computed. With a checker imple-
menting this check, we are able to connect the formal proof for the algorithmic correctness
of code generation with a concrete compiler implementing it.

6 Related Work

Early work on formal correctness proofs for compilers [Mo89] was carried out in the
Boyer-Moore theorem prover considering the translation of the programming language
Piton. Recent work has concentrated on transformations taking place in compiler front-
ends. [Ni98] describes the verification of lexical analysis in Isabelle/HOL. The formal ver-
ification of the translation from Java to Java byte code and formal byte code verification
was investigated in [St02, KN03]. Further related work on formal compiler verification
was done in the german Verifix project [GDG+96] focusing on correct compiler construc-
tion: [DvHG03] considers the verification of a compiler for a Lisp subset in the theorem
prover PVS. The approach of proof-carrying code [Ne97] is weaker than ours because it
concentrates only on the verification of necessary but not sufficient correctness criteria.
The approach of program checking has been proposed by the Verifix project [GDG+96]
and has also become known as translation validation [PSS98, Ne00]. For an overview and
for results on program checking in optimizing backend transformations cf. [Gl03].

7 Conclusion

In this paper, we have presented a formal semantics for SSA intermediate representations
within the theorem prover Isabelle/HOL. Thereby we represented common subexpressions
in basic blocks by termgraphs. Based on this formalization, we verified the correctness of
a relatively simple code generation algorithm by proving that the semantics of the trans-
lated programs is preserved. In particular, we proved that every topological sorting of the
operations in a basic block is a correct code generation order. We have carried out this
proof in Isabelle/HOL. Thereby we have demonstrated that our SSA specification is a suit-
able basis for correctness proofs. We also showed how to connect this formal proof with a
concrete compiler implementation by exploiting the approach of program checking.

In ongoing work, we are using this specification to prove the correctness of data flow anal-
yses (e.g. live variables analysis/dead code elimination). In future work, we want to extend
the machine language to include very long instruction words (VLIW), predicated instruc-
tions, and speculative execution. This implies that we need to consider more advanced
code generation algorithms which aggressively explore the inherent data dependencies to
generate efficient code for such architectures. We are convinced that the specification and
correctness proof stated in this paper are a good basis to also verify such advanced al-
gorithms. In addition, we are experimenting with alternative formalisms which represent
basic blocks directly as partial orders. In this formalization, code generation is correct
if the order in the generated code is contained in the original partial order. It seems that
both formalisms, the one with partial orders and the one presented in this paper, have their
special advantages and disadvantages, depending on the proof goals.

Acknowledgments: The authors would like to thank the anonymous reviewers for their
helpful comments. This work was supported by a research grant within the “Eliteförder-
programm f̈ur Postdoktoranden der Landesstiftung Baden-Württemberg”.

References

[Bl04] Blech, J. O. Eine formale Semantik für SSA-Zwischensprachen in Isabelle/HOL.
Diplomarbeit (Master’s Thesis), Betreuung (Advisor): Sabine Glesner, Universität
Karlsruhe, Fakulẗat für Informatik. 2004.

[BN98] Baader and Nipkow:Term Rewriting and All That. Cambridge University Press. 1998.

[CFR+91] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.ACM
Transactions on Programming Languages and Systems. 13(4):451–490. October 1991.

[DvHG03] Dold, A., von Henke, F. W., and Goerigk, W.: A Completely Verified Realistic Boot-
strap Compiler.Int’l Journal of Foundations of Comp. Science. 14(4):659–680. 2003.

[GDG+96] Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von Henke, F., Hoffmann, U.,
Langmaack, H., Pfeifer, H., Ruess, H., and Zimmermann, W.: Compiler Correctness
and Implementation Verification: The Verifix Approach. In:Poster Session of CC’96.
IDA Technical Report LiTH-IDA-R-96-12, Linkoeping, Sweden. 1996.

[Gl03] Glesner, S.: Using Program Checking to Ensure the Correctness of Compiler Imple-
mentations.Journal of Universal Comp. Science (J.UCS). 9(3):191–222. March 2003.

[Gl04] Glesner, S.: An ASM Semantics for SSA Intermediate Representations. In:Proc. 11th
Int’l Workshop on Abstract State Machines. May 2004. Springer, LNCS Vol. 3052.

[Gu95] Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (Hrsg.),Specifica-
tion and Validation Methods. pages 231–243. Oxford University Press. 1995.

[KN03] Klein, G. and Nipkow, T.: Verified Bytecode Verifiers.Theoretical Computer Science.
298:583–626. 2003.

[Mo89] Moore, J. S.: A Mechanically Verified Language Implementation.Journal of Automated
Reasoning. 5(4):461–492. 1989.

[Mu97] Muchnick, S. S.:Compiler Design and Implementation. Morgan Kaufmann. 1997.

[Ne97] Necula, G. C.: Proof-Carrying Code. In:Proc. Symposium on Principles of Program-
ming Languages (POPL’97). pages 106–119. 1997.

[Ne00] Necula, G. C.: Translation Validation for an Optimizing Compiler. In:Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00). pages 83–94. Vancouver, British Columbia, Canada. May 2000.

[Ni98] Nipkow, T.: Verified Lexical Analysis.Theorem Proving in Higher Order Logics. pages
1–15. Springer, LNCS, Vol. 1479. 1998. Invited talk.

[NPW02] Nipkow, T., Paulson, L. C., and Wenzel, M.:Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Lecture Notes in Computer Science, Vol. 2283. 2002.

[PSS98] Pnueli, A., Siegel, M., and Singerman, E.: Translation validation.Proc. Tools and
Algorithms for the Construction and Analysis of Systems. 1998. Springer, LNCS, Vol.
1384.

[St95] Steensgaard, B.: Sparse Functional Stores for Imperative Programs.First ACM SIG-
PLAN Workshop on Intermediate Representations (IR’95), San Francisco, CA. 1995.

[St02] Strecker, M.: Formal verification of a Java compiler in Isabelle.Proc. Conference on
Automated Deduction (CADE). Springer, LNCS, Vol. 2392. 2002.

