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ON 64%-MAJORITY RULE 

BY ANDREW CAPLIN AND BARRY NALEBUFF1 

Many electoral rules (such as those governing the U.S. Constitution) require a super- 
majority vote to change the status quo. It is well known that without some restriction on 
preferences, super-majority rules have paradoxical properties. For example, electoral cycles 
are possible with anything other than 100%-majority rule. Can these problems still arise if 
there is sufficient similarity of attitudes among the voting population? 

We introduce a definition of social consensus which involves two restrictions on 
domain: one on individual preferences, the other on the distribution of preferences. 
Individuals vote for the proposal closest (in Eucidean distance) to their most preferred 
point. The density of voters' ideal points is concave over its support in Rn. Under these 
conditions, there exists an unbeatable proposal according to 64%-majority rule. In addition, 
no electoral cycles are possible. For n-dimensional decision problems, the precise majority 
size necessary to avoid cycles is 1 - (n/(n + 1))" which rises monotonically to 1 - (l/e), 
just below 64%. 

Our approach is based on the Simpson-Kramer min-max rule. We compare this rule 
with Condorcet's original proposal for an electoral system immune to his paradox of 
voting. We conclude by considering the properties of a voting constitution based on 
64%-majority rule. 

KEYwoRDs: Condorcet's paradox, min-max majority, social choice, voting. 

1. INTRODUCTION 

THE MATHEMATICAL APPROACH to the theory of social choice dates back 200 
years to the great work of Condorcet (1785). He was the first to illustrate a 
paradoxical property of voting under majority rule. Three individuals with 
preferences { A >- B >- C), { B >- C >- A), and { C >- A >- B} will choose A over B, 
B over C, and C over A, producing a cycle of electoral victories. A broader 
perspective on the paradox of voting is provided by Arrow's general possibility 
theorem (1951). Without some restriction on preferences, no satisfactory proce- 
dure exists for arriving at social decisions. 

Both Condorcet and Arrow provide positive suggestions on how to resolve the 
problems of social decision making. Condorcet proposes that elections won by a 
large majority should take precedence over elections decided by a narrow 
majority. To implement this proposal, a vote above 50% (a super-majority) may 
be required to overturn the status quo. 

Arrow conjectures that in societies with sufficient similarity of attitudes, the 
social choice problem will be soluble. 

"The solution of the social welfare problem may lie in some generalization of the 
unanimity condition... But, the correct mathematical generalization of the unanimity 
condition is not easy to see" (1951, p. 89). 

lWe are grateful to Joseph Greenberg, Andreu Mas-Colell, and Larry Summers for insightful 
discussions and suggestions. Our two anonymous referees provided valuable comments. Conversa- 
tions with Dilip Abreu, Henry Brady, Don Brown, Sergiu Hart, David Kreps, James Mirrlees, 
Abraham Neyman, Micha Perles, Suzanne Scotchmer, Thomas Jefferson Smith, Philip White, and 
Richard Zeckhauser were stimulating and instructive. We thank the National Science Foundation 
Grant #SES8606562 for financial support. 
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If everyone has the same preferences, social decisions can be made unanimously. 
Arrow's suggestion requires a restriction of the distribution of preferences less 
extreme than unanimity. 

We present a new approach to the theory of social choice combining sugges- 
tions of Condorcet and Arrow. The idea that preferences may be similar across 
society is formalized in a mathematical definition of social consensus. When this 
consensus exists, voting cycles are impossible under a 64%-majority rule. 

Our results provide new evidence on the positive properties of super-majority 
rules. Such voting mechanisms are widely used in practice. The Constitutions of 
the U.S., twenty of the fifty states, and a wide variety of countries all require a 
two-thirds vote to approve an amendment. 

The paper is organized as follows. Section 2 reviews the literature. Our 
definition of social consensus is presented in Section 3. The theorems are stated 
and proved in Section 4 with extensions provided in Section 5. In Section 6, we 
show how our results are related to Condorcet's original proposal. Section 7 
discusses the design of a voting constitution based on a super-majority voting 
rule. Concluding remarks are in Section 8. 

2. MAJORITY RULE AND ITS GENERALIZATIONS 

Two different directions have been taken to resolve Condorcet's paradox of 
voting. One approach is to find conditions which rule out voting cycles even 
under simple (50%) majority rule. This literature begins with Black's (1948a) 
work on the median voter. A second approach, also due to Black (1948b), is to 
consider properties of super-majority rules. The applicability of each approach is 
considered in turn. 

Black (1948a) demonstrates that voting cycles cannot arise when preferences 
satisfy a "single-peakedness" condition. There are two requirements for single- 
peakedness: the social decision must be one-dimensional and voters' utility 
functions must be unimodal in this dimension. Individuals can then be identified 
by their most preferred position. The median voter's optimum secures a majority 
over all alternatives. 

The one-dimensional nature of the median voter result is problematic. It 
imposes strong restrictions on individuals preferences. The restrictions can be 
illustrated using the political parties in the United Kingdom. If we place the 
Labour party (L) on the left, the SDP/Liberal Alliance (A) in the center, and 
the Conservatives (C) on the right, single-peakedness rules out (L >- C >- A) and 
(C >- L >- A). In reality, other dimensions such as experience in office are im- 
portant. As a result, these preferences can no longer be ruled out and single- 
peakedness fails. 

Multi-dimensional analogues of the median voter result are offered by Davis 
et al. (1972), Grandmont (1978), Plott (1967), and Tullock (1967). A multi- 
dimensional median is created by imposing symmetry conditions. For example, 
when the distribution of most preferred points is radially symmetric around a 
median voter, this voter's optimum will secure a majority over all alternatives. 
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These results show that extremely strong assumptions are needed to support 
simple majority rule. Weaker assumptions are possible if we consider the gener- 
alization to super-majority rules, also known as 8-majority rules (see Black 
(1948b)). Under a 8-majority rule, priority is given to the status quo. Any 
alternative proposal must gain the support of more than 8 of the population to 
replace the status quo. A proposal which is unbeatable should it become the 
status quo is called a 8-majority winner. A 8-majority winner is then a proposal 
preferred by more than a fraction (1 - 8) of the population to any other 
alternative in pairwise comparisons. 

Condorcet's paradox demonstrates the possibility that there may be no 
50%-majority winner. In fact, the works of Kramer (1973), Plott (1967), and 
Rubinstein (1979) show that this possibility is almost a certainty; the set of 
societies for which there exists a 50%-majority winner is of measure zero. It is 
then natural to investigate the minimal majority size which ensures the existence 
of a 8-majority winner. This is known as the Simpson-Kramer min-max majority 
(Simpson (1969), Kramer (1977)). This concept is central to our work and is now 
presented more formally. 

There is a social decision to be made. The set of proposals among which 
society can choose is denoted by X. Elements of X are represented as vectors in 
n-dimensional Eucidean space, X C Rn. For a given element x e X, the k th 
coordinate, Xk, pinpoints the proposal's position on the kth issue, 1 < k < n. 

Individual preferences are defined over Rn. These preferences vary across 
society. The range of preferences is summarized by an index of types, I: an 
individual of type i has preferences >i. A given society can then be characterized 
by the distribution of types, described by the density function f(i) on i E I. 
Definition 1 summarizes this description of the social choice problem. 

DEFINITION 1: A social decision problem, C, is defined by the triple 
{ X, >i, f(i)} with X c R , representing the choice set; >i representing type i 's 
preference ordering over R , i E I; and f(i) representing the density function 
over types in society. 

The definition of the min-max majority closely follows Kramer (1977) and 
Rosenthal (1975). The difference is that our definition allows for a continuum of 
voters. 

DEFINITION 2: For a decision problem C and x, y E X, 
(a) m(x, y) is the fraction of the population for whom y >i x; 
(b) m(x) is the maximal fraction against x, m(x) supyexm(x, y); 
(c) m*(C) is the min-max majority, m*(C) infx e xm(x); 
(d) the min-max set consists of all points x* for which m(x *) = m(C). 

Note that a 8-majority winner exists if and only if 8 > m * (C).2 

2 With 8 = m * (C), existence of a 8-majority winner requires that the infimum in Definition 2(c) be 
attained. 
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The social choice correspondence which associates with a decision problem C 
the corresponding min-max set is known as the min-max rule. An axiomatic 
characterization of this rule is provided by Blair (1979). 

A major result on the min-max majority is due to Greenberg (1979): for 
decision problems C in Rn and individuals with convex preferences, m*(C) is 
bounded above by n/(n + 1). Lemma 1 in the Appendix provides a simple proof 
of this result for the case of Euclidean preferences. 

The problem of dividing a fixed pie among n + 1 selfish individuals illustrates 
Greenberg's bounds.3 Here, n of the n + 1 people prefer to expropriate the 
excluded individual's piece of the pie. Thus any proposed division can be 
outvoted by a majority of n/(n + 1). The need for such a large majority size 
reflects society's complete polarization. 

The importance of these bounds is seen in the context of a voting rule.4 The 
voting rule specifies the majority size, 8, required to overturn the status quo. 
Once 8 is chosen, it will be applied to a wide variety of currently unknown 
decision problems. To avoid voting cycles, 8 must exceed the min-max majority. 
But Greenberg's result demonstrates that the only universal upper bound on the 
min-max majority is 1. Use of 8 = 1 means that unanimity is required to change 
the status quo: anybody can veto change. 

The unanimity rule is needed when allowing for issues (such as pie division) 
which polarize voters. This brings us back to the suggestion of Arrow. We 
consider a restricted class of decisions for which there is a social consensus. 
Under these conditions, a 64%-majority rule winner always exists. 

3. THE DEFINITION OF SOCIAL CONSENSUS 

We introduce a definition of social consensus which involves two restrictions 
on domain: one on individual preferences >i, the other on the distribution of 
preferences f(i). 

ASSUMPTION Al (Eucidean Preferences): For an individual of type i, a >i b +-> 

Ia - xill < lib - xiji, with 11 11 representing the Euclidean norm, and xi representing 
type i's most preferred alternative in R . 

With Al, individuals rank propositions according to their Eucidean distance 
from a most preferred point. The function describing the distribution of types 
can then be represented by a density function f(x) on most preferred points 
x E Rn. This paper focuses on decisions for which f(x) is concave. 

ASSUMPTION A2 (Concavity): The density of voters' most preferred points, 
f(x), is a concave function over its support, S, which is a convex subset of Rn with 

3An allocation can be represented as a point in the solid n-dimensional unit simplex. For each i, 
1 < i < n, individual i receives share x,, and individual n + 1 receives the remainder. 

4 The topic of designing a voting rule is taken up in Section 7. 
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positive but finite volume; 

f(XXI + (1 - X)X2) > Xf(x) + (1 - A)f(X2), 

OX<X<1 and (xl,x2)eS. 

These conditions are taken up in reverse order. 
Assumption A2 is new to the social choice literature. Concavity requires a 

degree of consensus and thus ensures that society is not polarized. Its meaning is 
illustrated by an example. Consider the choice of a flat tax rate t, 0 < t < 1. 
Viewing this as a simple one-dimensional problem, Al implies that individuals 
rank tax rates according to their absolute difference from some most preferred 
rate. The assumption that f(t) is concave rules out a situation in which many 
people favor very low rates, many favor very high rates, but few favor inter- 
mediate rates. More precisely, concavity allows statements of the following kind: 
if at least 40% of the population favor 0 < t < 0.2 and at least 20% favor 
0.4 < t < 0.6, then at least 30% favor 0.2 < t < 0.4. 

In a more subtle manner, A2 (concavity) also implies that no type i has 
positive measure.5 Theorem 3 demonstrates that the results extend to the limiting 
case of large finite populations drawn from the original concave density. In this 
sense, the concavity assumption can be applied to a large finite economy. 

The restrictive nature of A2 is apparent. Restrictive though it may be, it cannot 
be relaxed in an obvious way. In Section 5, we consider the weaker requirement 
of quasi-concavity as an alternative to concavity as a definition of social con- 
sensus, 

f(Xx1 + (1 - X)X2) > Min [f(xI), f(x2)], 
O< X <1 and (xI,x2)eS. 

Proposition 6 exhibits quasi-concave densities which fail to satisfy any reason- 
able measure of consensus: in these examples, quasi-concavity has no power in 
bounding the min-max majority. However, our results do generalize to densities 
which are "close to" concave (e.g., the truncated normal). Proposition 5 provides 
this extension. 

The applicability of A2 to a given social choice problem is an empirical 
question. Since it requires a degree of social consensus it may be implausible for 
decisions in which polarization is to be expected, such as the pie division 
problem. However, the assumption may be more realistic in cases when the 
underlying issues are not so clearly divisive. In a limited set of tests, data from 
political scientists suggest that A2 is applicable to Presidential elections. For 
example, Aldrich and McKelvey (1977) and Poole and Rosenthal (1984) provide 
spatial mappings of most preferred points for voters in the 1968 to 1980 elections 
which broadly support concavity. 

5 In addition, it allows us to downplay the possibility of strategic behavior [Gibbard (1973), 
Satterthwaite (1975), Zeckhauser (1973)]. 
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Assumption Al (Eucidean preferences) was introduced in Davis and Hinich 
(1967) and has since become common in the social choice literature. In one 
dimension, Al implies Black's condition of single-peakedness. This leads to a 
restriction on preferences, a value restriction, whenever there are three or more 
alternatives (Sen (1966), Kramer (1973)). Recalling the example of the U.K. 
political parties, the restriction on preferences over the three alternatives is 
removed in a two-dimensional setting. Proposition 1, proven in the Appendix, 
shows that as dimensionality increases, Al has less restrictive implications for 
preference orderings. 

PROPOSITION 1: Consider a decision problem C in Rn satisfying Al together with 
m distinct proposals.6 

(a) For m s< n + 1, no value restriction is implied; all m! ordinal rankings can 
coexist. 

(b) For m > n + 1, value restrictions are implied; some of the m! orderings of the 
alternatives are ruled out. 

The proposition highlights the role of dimensionality. When the choice set is of 
a low dimension, Al implies particularly strong a priori restrictions on prefer- 
ences.7 On the other side, A2 (Concavity) becomes more restrictive as dimen- 
sionality increases. Thus, the choice of an appropriate dimensional setting for a 
given problem is itself a subtle issue. Fortunately, our central results can be 
stated without reference to dimensionality. 

For our purposes, the essential property of Al is that supporters of distinct 
proposals are divided by a hyperplane in the space of most preferred points. 
Section 5 shows that our results generalize to any family of preferences with this 
property. Such families of preferences are called intermediate preferences 
(Grandmont (1978)); this class includes the important case of constant elasticity 
of substitution utility functions. 

We make one final assumption which simplifies our proofs. The choice set X is 
assumed to be compact and to contain the Pareto optimal set, S. Proposition 7 
extends all results to the case where X is finite. 

ASSUMPTION A3 (Inclusivity): The set X of proposals is compact and contains 
the set S, the support of f (x). 

4. RESULTS 

We establish that the min-max majority is always less than 64%. There exists a 
proposal which at least 36% of the population favor against any alternative. For 
n-dimensional decision problems, Theorem 2 provides an upper bound on m*(C) 
of 1 - (n/(n + 1))". These bounds are the best available. The dimension-free 

6 Provided that the m proposals span a space of dimension m - 1. 
7Another restrictive aspect of Al is the implied symmetry of individual preferences around the 

most preferred point. The generalization to intermediate preferences in Section 5 shows that this form 
of symmetry is not essential to our results. 
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result arises from the fact that (n/(n + 1))" falls monotonically to l/e, which is 
just above 36%. 

Before presenting the theorems, we provide a series of examples and pre- 
liminary results. The examples provide the intuition needed to motivate the 
theorems. The first significant step is then taken in Theorem 1 which establishes 
the bound for a restricted class of concave densities, uniform densities over 
convex sets in Rn. Theorem 2 next establishes the general bound. Finally, 
examples are provided showing the bounds to be tight. 

Our first preliminary result is closely related to Hotelling's principle of minimal 
differentiation (1929). The best way to gather votes against a given proposal is to 
locate "next door," on the side with the largest population. 

PROPOSITION 2: Under Assumptions Al-A3, m(x) equals the largest fraction of 
the population on either side of any hyperplane through x. 

PROOF: Pick points x interior to S, y e X, y = x, and consider proposals 
along the line segment joining y to x. Proposals along this segment closer to x 
get an ever larger share of the vote against x. This follows from the concavity of 
the Eucidean preferences: an individual who prefers y to x also prefers 
[Xy + (1 - X)x] to x, 0 < X < 1. Hence in looking for supy { m(x, y)}, we can 
restrict attention to points y E S arbitrarily close to x. In the limit, voters are 
divided by a hyperplane through x with normal y - x. Since x is an interior 
point of S, it can be approached from all directions so that the hyperplane 
through x which most unevenly divides the population defines m(x). 

If x E X not interior to S, then since S is a convex set, there exists a 
hyperplane through x containing S in one of the half-spaces. This concurs with 
m(x) = 1; for x exterior to S the closest point in S is unanimously preferred, 
while for x on the boundary, points interior to S approaching x can capture the 
entire vote. Q.E.D. 

Proposition 2 greatly simplifies the interpretation of the min-max majority, 
m *(C). This majority can now be related to a cake-cutting problem. Two people 
must divide an asymmetric cake defined by the density function f(x). The 
second person both cuts the cake and chooses the side. But this cut is constrained 
to pass through a point of the first person's choosing. If the first person chooses 
the point x, then the second person playing optimally receives a fraction m(x) of 
the cake. The first person's objective is to find the point minimizing m(x). In 
equilibrium, the second person receives fraction m * (C), the min-max majority. 

To understand the general results on m*(C), consider some simple 1- and 
2-dimensional voting problems. Insights from these examples are central to 
understanding higher dimensional problems. Here, Proposition 2 is used to 
simplify the exposition; instead of proposals and counterproposals, we have 
points and hyperplanes. 

With voters' most preferred points uniformly distributed along a line segment, 
[0,1], the min-max majority is 50%, as location at the mid-point leaves the set 
evenly divided. The fact that m *(C) = 1/2 is well known; it is a special case of 
Black's median voter result. 
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(a) 

(b) 

FIGuRE 1 

In two dimensions, the simplest cases involve voters' most preferred points 
uniformly distributed over centrally symmetric figures. For a uniform density 
over a rectangle (Tullock (1967)), the min-max majority is again 50% and the 
min-max point is at the center of the rectangle. However, the 50% min-max 
majority does not generalize to distributions that are not radially symmetric. 

An example of an asymmetric density satisfying A2 is a uniform distribution of 
most preferred points over a triangle in the plane. In this case, no proposal can 
sustain a 50%-majority against all alternatives. In fact, Proposition 3 shows that 
the min-max majority is 5/9ths and that the unique min-max point is at the 
triangle's center of gravity. Note that existence and uniqueness of the min-max 
point extends to the entire class of concave population densities under considera- 
tion (see Demange (1982)). 

PROPOSITION 3: For a decision problem C in R2 satisfying Assumptions A1-A3 
with the additional assumption that f(x) is uniform on a triangle, m *(C) = 5/9. 
The unique min-max point is at the triangle 's center of gravity. 

PROOF: The result is illustrated in Figure l(a). The lines inside the triangle 
divide it into nine identical triangles. Lines through the centroid, g, can cut off 
five of the nine triangles by approaching g at an angle perpendicular to any side 
of the outer triangle. All other lines through g secure less than 5/9ths of the 
triangle. 

For any point other than g, there exists a division capturing more than 5/9ths 
of the triangle. In Figure l(b), point x = g is chosen. A line through x can now 
cut off more than 5/9ths of the triangle by approaching x at an angle perpendic- 
ular to the farthest side. Therefore, g is the unique min-max point.8 Q.E.D. 

The examples show that the min-max majority is connected to the degree of 
symmetry of the density, f(x). Indeed, this precise measure of symmetry was 

8 Note that for other distributions, the centroid is not the min-max point. For example, the 
centroid is not the min-max point when the population is uniformly distributed over a trapezoid. 



64%-MAUORITY RULE 795 

introduced by Winternitz in his study of convex sets (see Bonnesen and Fenchel 
(1934)). This unexpected connection is important in the demonstration of our 
theorems. 

THEOREM 1: For a decision problem C in Rn satisfying Assumptions A1-A3 with 
the additional assumption that the density f (x) is uniform over its convex support S, 
the min-max majority satisfies 

n n 

m*(C) 41-n + I 

PROOF: Consider the point g Jsxf (x) dx, the center of gravity (centroid) of 
the set S. By Proposition 2, m(g) equals the largest fraction of the population on 
either side of any hyperplane through g. Lemma 2, a major result on the 
Wintemitz measure of symmetry, shows that m(g) < 1 - (n/(n + 1))n. The proof 
of Theorem 1 is completed by noting that m *(C) < m(g). Q.E.D. 

LEMMA 2 (Grunbaum (1960), Hammer (1960)): Let S be a convex body of 
Volume I in Rn. Let v1 be the larger of the two volumes in a division of S by a 
hyperplane through its centroid. Then 

n n 

V1 < 1-n + 1 

PROOF: The proof is sketched to introduce a technique to economists which 
may prove useful in other applications. Figure 2 provides an illustration for the 
two-dimensional case. Without loss of generality, let S have its centroid at the 
origin. If the lemma is false then there exists a line through the origin with less 
than 4/9ths of S on one side. Let this line be x2=0 and assume that the area of 
S with x2 > 0 is less than 4/9ths. We show that this leads to a contradiction. 

x2 

S 

XI 

FIGURE 2(a) 
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X2 

T 

xi 

FIGURE 2(b) 

First, derive a new set S' from S by the process of Schwartz symmetrization 
(Bonnesen and Fenchel (1934)). For any value x2 = k, the length of the line 
segments in sets S and S' are the same. S' differs from S in that in S' all of these 
line segments are centered around xl = 0. Note that S' is convex and that the 
origin remains the centroid of S'. In addition, S' has the same area as S in both 
the half-spaces x2> 0 and x2 < 0. This symmetrized figure is illustrated in Figure 
2(a). 

Using S', construct a triangle T. The triangle agrees with S' on x2= 0 and is 
also symmetric around xl = 0. In addition, T has the same area as S' in both the 
half-spaces x2 > 0 and x2 < 0. Finally, as illustrated in Figure 2(b), T is pointed 
upwards: its upper vertex, t, on xl = 0 has x2 > 0. 

Note that in both half-spaces, x2 >0 and x2 < 0, wherever T and S' do not 
overlap, T lies above S'. Hence, the centroid of T lies on xl = 0 (by symmetry) 
above the origin. Thus the area of S' in the half-space x2> 0 exceeds the area of 
T above its centroid. From Proposition 3, the area lying above the centroid of T 
is 4/9ths. This contradicts the assumption that the area of S with x2 > 0 is less 
than 4/9ths. 

To extend the two-dimensional result to n-dimensions is straightforward (see 
Grunbaum (1960), Hammer (1960)). The area on the smaller side of any 
hyperplane through the centroid of S is at least equal to the area above the 
centroid of an upward pointed n-dimensional cone. This area is (n/(n + l))fn. 

Q.E.D. 

Theorem 1 taken alone is of limited applicability. The assumption of a uniform 
distribution mandates perfect evenness within a set, falling to zero at the 
boundaries. It is important, therefore, to extend the results to less extreme cases. 
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Theorem 2 extends the bounds to general concave densities. However, unlike 
Theorem 1, the centroid no longer suffices to establish the necessary bound, as a 
simple example demonstrates. 

EXAMPLE 1: Consider a one-dimensional problem with a triangular density of 
voters' most preferred points, { f(x) = 2(1 - x), x E [0,1]). The centroid is at 
x = 1/3. Note that a point just to the left of x = 1/3 commands a 5/9ths 
majority against x. However, the median of the distribution, x = 1 - (2/2), 
commands at least a 50% vote against any alternative. With n = 1,1/2 and not 
5/9ths is the desired bound on the min-max majority. 

The problem arises because the centroid is calculated by weighting mass by 
distance, but distance appears to be an inessential feature of the problem. (Yet 
there is an interesting relationship between the min-max point and the centroid 
which is discussed in Comment 2 following Lemma 1 in the Appendix.) 

Note that in Example 1, we get the two-dimensional bound for a one-dimen- 
sional problem. More generally, a concave density in n-dimensions gives rise to 
an (n + l)-dimensional convex set with uniform density, where the additional 
dimension represents the height of the density. This observation shows that the 
(n + l)-dimensional bound on m *(C) from Theorem 1 can still be applied to 
concave densities in n dimensions. But this is not the best bound available. 
Theorem 2 demonstrates that the bounds of Theorem 1 apply to general concave 
densities. 

THEOREM 2: For a decision problem C in RX satisfying Al-A 3, 
n n 

m*(C) 41-n + 1 

PROOF: Let x* be the min-max point. We radially transform the set S around 
x* into a new set with a uniform density. Construction 1 provides this corre- 
sponding set U. This transformation has three properties: (i) All hyperplanes 
through x* divide the volume of U in the same proportion as they divide the 
population in S. (ii) U is a convex set. (iii) x* is the min-max point of U. 
Properties (i) and (ii) are verified in Lemmas 3, 4, and 5. Property (iii) is proven 
in Lemma 6. Construction 1 and the lemmas appear in the Appendix. 

With this construction, we have shown that x* is also the min-max point of a 
convex set with uniform density. Theorem 1 applies directly to show that the 
fraction of the area of U on any side of a hyperplane through x* is less than 
1 - (n/(n + 1))n. Finally, according to (i) above, planes through x* divide the 
volume of U in the same proportions that they divide the population density in 
S, proving the theorem. Q.E.D. 

Theorem 2 provides a 50% bound for the one-dimensional problem, a 5/9ths 
bound or roughly 56% for two dimensions. The bound rises with dimension, 
converging to approximately 63.2%. Thus, the min-max point is a proposal 
supported by more than 36% of the population against any alternative. 
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COROLLARY: For any decision problem, C, satisfying Assumptions A1-A3, 

m * ( C) < 1-l/e - 0.632. 

PROOF: (n/(n + 1))n falls monotonically to a limit of l/e. Q.E.D. 

Dimension by dimension the bounds of Theorem 2 are the best available. In 
two dimensions, the 5/9ths bound is attained by the triangle (Proposition 3). As 
noted by Grunbaum (1960) and Hammer (1960), the solid n-dimensional unit 
simplex provides the general worst case. The min-max point of the solid simplex 
is always found at its center of gravity, x * = [1/(n + 1), 1/(n +...... , 1/(n + 1)]. 
This point captures (n/(n + 1)) of the area in each of n dimensions. Correspond- 
ingly, the min-max majority equals (n/(n + 1))n for the n-dimensional solid 
simplex. 

5. EXTENSIONS 

The results of the last section are robust to various changes in the underlying 
assumptions. A1-A3 are taken up and relaxed in turn. 

Al. Euclidean Preferences 

Central to our results is a simple property possessed by Euclidean preferences: 
those who prefer proposal x to proposal y can be separated by a hyperplane 
from those who prefer y to x. With Euclidean preferences, this hyperplane is 
drawn in the space of most preferred points; it is the plane which perpendicularly 
bisects the line joining x and y. Individuals with most preferred points on one 
side prefer x, those on the other side prefer y, and those on the plane itself are 
equidistant between and thus indifferent between x and y. 

Grandmont (1978) observed that this "division-by-hyperplane" property of 
Euclidean preferences is central to results supporting simple majority rule. 
Applying Grandmont's insight to the current study allows generalization of the 
results to the class of "intermediate preferences." 

The characteristic feature of intermediate preferences is that they can be 
parameterized so that supporters of opposing proposals can always be separated 
by a hyperplane. The class of intermediate preferences includes Constant Elastic- 
ity of Substitution (C.E.S.) utility functions, U(x1, x2,..., xn) = [a xl + 
a2x + ... +a xr]l/r. These preferences may be parameterized by the vector a 
contained in the n-dimensional unit simplex, Sn.9 Here, those who prefer bundle 
x to bundle y can be separated by a hyperplane in the parameter space, Sn. 

The C.E.S. utility function is used as an example to show how our results can 
be extended to the entire class of intermediate preferences. The translations of 
A2 and A3 are straightforward. First, the distribution of parameters, f(a), must 
be concave over S C Sn. Corresponding to A3, the choice set X is compact; this 
ensures that individuals have at least one most preferred point in X. Proposition 
4 extends the bounds to these cases. 

9 The elasticity of substitution, r, is held constant across society. 
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PROPOSITION 4: Consider a decision problem C defined as follows: individuals 
have C. E. S. utility functions; the distribution of types, f(a), is concave over its 
support S, a convex subset of S', n > 2; X is compact. Then 

m*(C) ( - ( )fl1 

PROOF: By Theorems 2 and 3, there exists a point a* in Sn such that every 
hyperplane though a* has at least an ((n - 1)/n)n-l fraction of the population 
on either side.'0 Since X is compact, an individual of type a* has a most 
preferred point z* in X. Consider the vote for any proposal against z*. Since 
type a* weakly prefers z *, the set preferring z* contains all points on one side of 
a hyperplane through a*. Hence, m(z*) <1 - ((n - 1)/n)n-i, proving the 
result since m *(C) < m(z *). Q.E.D. 

This argument which depends only on division of sets by hyperplanes extends 
directly to the general class of intermediate preferences and beyond." This 
extension is especially important in locational models of industrial organization. 
In the framework of Gorman (1980) and Lancaster (1966), consumers rank 
products according to their characteristics. Preferences over the space of char- 
acteristics are more sensibly treated as C.E.S. (notably, Cobb-Douglas) than as 
Eucidean. Extension to C.E.S. utility functions leads to a multi-dimensional 
model of sequential product entry (Caplin and Nalebuff (1986)) in the tradition 
of Hay (1976) and Prescott and Visscher (1977). 

A2. Concavity 

Three relaxations of concavity are considered in turn. The results are first 
extended to functions close to concave. In this case, the limits on the min-max 
majority remain close to our previous bounds. More surprisingly, our results 
change dramatically when general quasi-concave densities are allowed. Finally, 
we consider finite populations drawn from a concave density. We show that as 
the sample population increases, the min-max majority converges almost surely 
to its nonatomic limit value. 

To extend the bounds to functions close to concave, we use the L1 norm. This 
norm provides one possible measure of distance between two integrable func- 
tions, f(x) and g(x), defined on Rn, 

p(f, g) =- |If(x) - g(x)I dx. 
Rn 

10 One dimension is gained because of the restriction to the simplex. 
1 Proposition 2 applies to all families of convex preferences for which those supporting "neighbor- 

ing" propositions can be separated by a hyperplane: these are called local intermediate preferences 
(see Demange (1982)). In two dimensions, this allows our results to be generalized from preferences 
based on the Euclidean norm to preferences based on any norm. 
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PROPOSITION 5: Let f(x) > 0 on x E Rn satisfy A2, and let g(x) be an arbitrary 
probability density on R'. Define F Jf(x) dx. Then, 

m*(C)< [1-(j+ F+ p(f,g). 

PROOF: It follows directly from Theorem 2 that for the function f(x) there is 
a point z* with no more than a fraction 1 - (n/(n + 1))n of F on either side of 
any hyperplane through z *. Using point z* with function g, the most that can be 
added on any side is p(f, g). Thus, for function g, 

m*(C)<, [l-( + 1 F+ p(f, g). Q. E. D. 

Proposition 5 verifies that for functions nearly concave, the previous bounds 
can be applied with little alteration. For example, in two dimensions, a truncated 
normal density (centered in the positive orthant) is close to concave; adjusting 
the bound according to Proposition 5 shows that m * (C) < 5/9[0.925] + 0.075 
0.6.12 

Success with the normal suggests consideration of general quasi-concave densi- 
ties. Quasi-concavity is a weaker alternative to concavity as a characterization of 
social consensus. By definition, for any two proposals x and y in the support, 
f [Xx + (1 - X)y] > min [ f (x), f (y)], 0 < X < 1. Proposition 6 illustrates the lack 
of power in the assumption of quasi-concavity. 

PROPOSITION 6: There are decision problems C in Rn satisfying Al and A3 with 
f(x) quasi-concave on Xfor which 

(n +1) 

PROOF: A series of examples generated inductively prove the proposition. 
Note that while the examples below use atomic densities, the extension to 
nonatomic densities is direct.'3 

12 To establish the bound, we linearize the truncated normal at points of inflection. 
13 Consider the nonatomic density function f(xl, x2) defined on the unit square: 

f, Xl +X2>a, 

A(X1 X2)= 2 < 
a29 Xl+X2<a. 

The min-max majority can be brought close to 3 by choosing a to be sufficiently small. 
Specifically, m * (C) < 3 + A, where ' -a2"3 To see this, note that all points are in one of the three 
regions: (I) xl + x2 < 

9 (II) x2 -[1 - (a/X )]xl > a, or (III) xl - [1 - (a/1/3)]x2 > a. The 
population density contained in region I is 3 + 2(3p/2) = l + A. The total population in each of 

regions II and III is bounded above by (2/3)[(1 - a) + (a/l ) - a]/2 < 3 + ( a/Vi) =3 + . 
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In two dimensions consider the quasi-concave density function f(xl, x2) 
defined on the unit square: 

\f 33( X) = 3(l), X1 X2= 1; 

32 elsewhere, 

where 8(1) is the Dirac-delta function. For any point in the unit square, there 
exists a line through that point with no more than 1/3 of the mass on the smaller 
side. This bound is tight for the point (1, 1). For any other point, x, there is a line 
through x where the larger side contains both (1,1) and arbitrarily close to half 
of the unit square. Hence, m *(C) = 2/3. 

This example directly extends to higher dimensions. In R3, let (3/4)f(xl, x2) 
be applied to the bottom face of the unit cube with the remaining 1/4 mass 
spread uniformly over the entire cube. It is readily verified that m *(C) = 3/4. 
Generally, in n dimensions, (n/(n + 1)) of the previous density is applied to one 
(n - l)-dimensional face of the unit hypercube, and the remaining 1/(n + 1) 
mass is distributed uniformly over the hypercube. This generates an n-dimen- 
sional quasi-concave density function such that m *(C) = (n/(n + 1)). Q.E.D. 

Proposition 6 implies that the only dimension-free bound on the min-max 
majority for quasi-concave densities is 1, unanimity. Together with our earlier 
results, this shows that the restriction to concavity is increasingly important in 
higher dimensions. In one dimension, the bound is 1/2 for both the concave and 
the quasi-concave cases. In the plane, the bounds are 5/9 and 2/3 respectively, 
in R3, 37/64 and 3/4. The difference between these bounds grows monotonically 
with n from 0 to 0.11 to 0.17 to a limiting value of I/e. 

The quasi-concave bound of (n/(n + 1)) in fact provides a universal upper- 
bound. For any n-dimensional decision problem, m *(C) < (n/(n + 1)). With 
intermediate preferences, the universal nature of this bound follows from Lemma 
1 in the Appendix. Even the restriction to intermediate preferences is unneces- 
sary; the bounds of (n/(n + 1)) hold for arbitrary convex preferences (Greenberg 
(1979), Coughlin (1981)). 

We now consider decision problems with a finite population. The most 
preferred points are independentlv drawn from a probability density f (x), where 
f(x) satisfies A2. In the limit as the population increases, the min-max majority 
converges to m * (C), its value for the limit decision problem. 

The sample space is the set 02 of all infinite sequences of most preferred points 
x E S. A realization w E 02 involves the sequence of values (xl(X), .. ., Xk( ), ... ) 

where Xk((iO) represents the most preferred point for individual k in the given 
realization. Given w, consider the population consisting of the first k realized 
values, (xl(w),..., Xk(w)). Note that the min-max majority for this population is 
uniquely defined (this is the finite case originally studied by Simpson and 
Kramer) and is denoted by m *(w). Theorem 3, proven in the Appendix, confirms 
that with independent draws, the sample min-max majority converges almost 
surely to its limiting value. Hence, the bounds of the paper extend to large finite 
populations drawn from a concave density. 
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THEOREM 3: For a decision problem C in RX satisfying Assumption A1-A3, 

mk (X)--m*(C) a.e. 

A3. Inclusivity 

Until now, we have assumed A3 (Inclusivity), that there is a continuum of 
alternative proposals. Inclusivity was used in the proof of Proposition 2 to 
approach interior points of S from all directions. In addition, inclusivity guaran- 
tees that the min-max point is a possible choice. 

Yet, political decisions rarely involve more than a few alternatives. The 
restricted set of choices may not include the unrestricted min-max point, in which 
case our existing proofs break down. It is then important to show that all the 
results extend to cases in which X is finite, thus violating A3. 

Proposition 7 demonstrates that the previous bounds on the min-max majority 
still apply provided only that the choice set, X, is compact. The proof uses the 
proposal in X closest to the unrestricted min-max point. 

PROPOSITION 7: Consider a decision problem C' satisfying Al and A2 with X a 
compact set. Let C be the same problem with X extended to include S, C = { X U 
S, >i,5 f }. Then, m * (C'-) < m * (C). 

PROOF: Consider the point y e X closest to x*, the min-max point for 
problem C. (If two or more points in X are equidistant from x *, then any one of 
them can be selected.) At least a proportion [1 - m *(C)] favors y against any 
alternative in X. If not, those favoring the alternative must strictly include x* 
(since x* is interior to all half-spaces containing more than fraction m*(C) of 
the population). But, this yields a contradiction: no point in X is closer to x* 
than is the point y. Q.E.D. 

This result is related to Kramer's (1977) demonstration that with intermediate 
preferences, the partial ordering defined by the min-max majority is acyclic. If 
proposal A is supported by more than m *(C) against proposal B, then A must 
also be closer to the global min-max point. A cycle would contradict the fact that 
each vector is successively closer to the min-max point. 

6. CONDORCET ON VOTING 

In this section, we suggest an interpretation of Condorcet's proposal for an 
electoral system immune to his paradox of voting. We show that this interpreta- 
tion is closely related to the Simpson-Kramer min-max rule. 

Condorcet argues that an electoral procedure should be based on pairwise 
comparison of proposals to avoid other paradoxes arising with plurality voting. 
He then demonstrates that majority votes in pairwise competition may lead to a 
"contradictory system". When this contradiction arises, Condorcet suggests that 
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a vote decided by a large majority should take precedence over a vote decided by 
a small majority: a vote of 90: 10 counts for more than a vote of 51: 49. 

"The preceding reflections suggest this general rule: that whenever it is essential to make 
the election, it is necessary to take successively all the propositions that have a majority, 
beginning with those possessing the largest. As soon as these first propositions produce a 
result, it should be taken as the decision, without regard for the less probable decisions that 
follow" (Condorcet (1785, p. 56)). 

With this procedure, only majorities above some critical size are counted in the 
social ordering. A result is achieved when this (partial) ordering produces a 
proposal which is both undominated, and dominates directly or indirectly all 
other proposals. The following definition formalizes this interpretation of 
Condorcet's idea; other interpretations are offered in Black (1953). 

DEFINITION 3-CONDORCET'S RULE: (i) For a given 8, consider all pairwise 
comparisons in which the winner receives more than 8% of the vote. (ii) When 
these comparisons give rise to an acycic partial ordering [>,], define { >, } to be 
its transitive closure. (iii) If possible, pick 3* so that {>, } has a dominant 
element. Implement this proposal. 

An example based on Condorcet (p. 55, para. 3) illustrates this procedure. 

EXAMPLE 2: There are three proposals A, B, and C. In pairwise comparisons, 
75% prefer A to B; 65% prefer B to C; and 60% prefer C to A.14 Counting only 
majorities above 60% yields the partial ordering A[ >60 ]B, B[ >60 IC. In the 
transitive closure, A dominates both B and C. A is then the proposal selected by 
Condorcet's rule. 

Condorcet's rule is closely related to the Simpson-Kramer min-max rule. Both 
are based on giving priority to elections determined by the largest majorities. 
However, rather than using the largest majority elections directly to generate an 
ordering, the min-max rule uses these elections to eliminate losing propositions. 
The min-max point is then determined when all but one of the proposals are 
beaten. Returning to Example 2, B is beaten 75 to 25 and thus is eliminated first. 
Next, C is eliminated (with a vote of 65 to 35 against). Using a 60%-majority, 
only A remains as an undominated element. 

In Example 2, both the Condorcet rule and the min-max rule lead to proposal 
A. Theorem 4 establishes that this equivalence holds more generally. 

THEOREM 4: For a decision problem C satisfying Al and A3, Condorcet's rule 
selects the min-max point x *. 

14 Preferences generating this voting pattern are { A >- B >- C } for 40% of the voters { B >- C >- A 
for 25% of the voters, and { C >- A >- B ) for 35% of the voters. Note that these preferences can arise in 
a two-dimensional decision problem with Euclidean preferences although the density of most 
preferred points is not concave. 
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PROOF: Under Al and A3, the min-max point is the unique element un- 
dominated according to the partial ordering [>m*(C)] and thus also for its 
transitive closure { >m*(C) }. No point other than x * could be chosen by 
Condorcet's rule: for majority sizes 8 > m *(C), x* is undominated; for majority 
sizes 8 < m (C), all points are dominated. Thus it remains to show that accord- 
ing to { >m*(C) }, x * is a dominant proposal, i.e., for any given proposal z other 
than x* there exists a finite list of J proposals z1 through zj such that 

X [>m*(C)]Z1 [>m*(C)]Z2[ >m*(C)] [ >m*(C)]ZJ[ >m*(C)]Z. 

This is demonstrated by Lemmas 7 and 8 in the Appendix. Q.E.D. 

Theorem 4 has striking implications. For example, with a min-max majority of 
60%, the min-max point is guaranteed at least 40% support against any alterna- 
tive. Theorem 4 turns this statement around. The min-max point actually beats 
every other proposal through a sequence of votes in which the winning proposi- 
tion receives more than 60% support. For smaller min-max majorities the margin 
of victory available to the min-max point actually increases. If the min-max point 
can only be guaranteed a 1% vote, then it defeats all other proposals, directly or 
indirectly, by a 99 to 1 vote. 

The difficulty with Condorcet's rule is that without Al it may fail to produce a 
result. There may be no majority size v* such that { >,* } has a unique dominant 
element. A cycle can arise before the appearance of a dominant element, as in 
Example 3. 

EXAMPLE 3: There are 4 proposals, A, B, C, and D. In pairwise comparisons, 
75% prefer A to B, 65% prefer B to C, and 60% prefer C to A. D receives 45% of 
the vote against each of A, B, and C.15 The partial ordering [>,] is acycic only 
for v > 60%. However, these orderings fail to produce a dominant element. Thus, 
Condorcet's rule cannot be applied to the example. 

In contrast to Condorcet's rule, the min-max rule is always well-defined: in 
Example 3, D is chosen. Theorem 4 together with this example suggest that the 
Simpson-Kramer min-max rule is a fully consistent analogue to Condorcet's rule. 

7. 64%-MAJORITY RULE AS AN ELECTORAL SYSTEM 

This section considers the properties of a voting constitution based on a 
8-majority rule. The constitution fixes a majority size, 8, which will then be 
applied to a large number of decision problems.16 Different decisions will 
typically have different min-max majorities so that the fixed value of 8 will not 

15 Preferences generating this voting pattern are { A >- B >- C >- D } for 22% of the voters, { B >- C 
>- A >- D} for 13.75% of the voters, {C >- A >- B >- D} for 19.25% of the voters, { D >- A >- B >- C} for 
18% of the voters, { D >- B >- C >- A} for 11.25% of the voters, and { D >- C >- A >- B} for 15.75% of 
the voters. These preferences can arise in a 3-dimensional decision problem with Eucidean prefer- 
ences. 

16 Ferejohn et al. (1980) discuss properties of related voting schemes. 
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coincide with the min-max majority for each specific decision problem. As the 
pre-specified majority size is increased, there will be more decision problems with 
8 > m *(C) and fewer with 8 < m *(C). To evaluate the tradeoff between high and 
low values of 8, we examine in turn the different issues that arise when 
8 <m*(C) and when 8> m*(C). 

Serious problems may arise when a 8-majority below the min-max majority is 
used. McKelvey (1979) shows that use of a 50%-majority rule when no simple 
majority winner exists (i.e. m *(C) > 1/2) leads to global cycles. A sequence of 
majority votes can lead from any given proposal to any other proposal: whoever 
controls the agenda controls the outcome. The same problem occurs even with 
voting under a super-majority rule. For example, global cycles arise with the use 
of a 60%-majority rule when no 60%-majority winner exists (i.e. m*(C) > 0.6). 
Generally, McKelvey's (1979) arguments apply to prove existence of global cycles 
whenever the majority size 8 is less than the min-max majority. 

No voting cycles are possible when 8 is larger than the min-max majority.17 
Instead, there are many 8-majority winners and once any of them becomes the 
status quo it can never be replaced. This results in an indeterminacy; many 
different positions are unbeatable as the status quo. The significance of this 
indeterminacy depends on the size of the set of 8-majority winners. Theorem 5 
demonstrates that the set of 8-majority winners shrinks to zero in a uniform 
manner as 8 falls toward m *(C). Hence, indeterminacy may not be disturbing 
when 8 is close to m *(C) as the set of 8-majority winners is small and its 
elements are all very similar. 

Definition 2 provides a measure of indeterminacy for a given 8-majority rule 
when 8 > m * (C). The set of 8-majority winners is measured according to its 
population. 

DEFINITION 2: Consider a decision problem, C, satisfying Assumptions 
A1-A3, and E > 0. Define 8 m *(C) + E. Let W(3) denote the nonempty set of 
8-majority winners in X. The indeterminacy of the 8-majority rule is defined by 

I(C, E I f (x) dx. 

I(C, e) measures the proportion of the population whose most preferred points 
are 8-majority winners when 8 = m*(C) + e. At e = 0, I(C,O) = 0 since the 
min-max point is a singleton and f(x) is nonatomic. Theorem 5, proven in the 
Appendix, demonstrates uniform convergence of I(C, E) to zero as E shrinks to 0. 

THEOREM 5: For a decision problem C in Rn satisfying Assumptions A1-A3, 

I(C E)I< En 

17 To avoid cycles, the min-max majority is calculated treating the entire Pareto optimal set S as 
part of the choice set (see Proposition 7). Acycicity also requires intermediate preferences. 
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In the proof, we show that the set of 8-majority winners is contained in a 
simplex with no more than e((n + 1)/n)n of the total population. This has the 
additional implication that for small e, all of the 8-majority winners are close 
together. Since all winning propositions are similar, the issue of which one is 
chosen becomes less significant. 

The bounds of Theorem 5 may not be the best available, especially for decision 
problems in higher dimensions. In the present context, we are especially 
interested in the potential indeterminacy of a 64%-majority rule. Example 4 
considers decision problems where a simple majority winner always exists, so that 
m *(C) = 0.5 and e = 0.14. For these examples we show that the indeterminacy of 
a 64%-majority rule shrinks rapidly with the dimension of the decision problem. 
The measure of indeterminacy falls from 28% with n = 1 to below 1% for n > 4. 

EXAMPLE 4: Consider a decision problem C in Rn with f(x) uniform over the 
solid n-dimensional cube. Because this density is radially symmetric, m * (C) = 

1/2. Here the indeterminacy of 64%-majority rule is I(C, 0.14) < (0.28)n. This 
bound is established by considering the planes parallel to the outer faces of the 
cube. Shift each of the 2n faces inward until 36% of the density lies between it 
and the outer face. Any point in this outer region can be beaten using a 
64%-majority rule. The area remaining between these planes is (0.28)n. 

Return to the problem of fixing a voting rule. The tradeoff in choosing 8 before 
knowing C is that 8 < m *(C) results in global cycles while 8 > m *(C) leads to 
indeterminacy. The results of this section highlight an asymmetry in this trade-off. 
Global cycles exist for any 8 < m *(C). In contrast, the indeterminacy disappears 
continuously as 8 falls to m *(C).l8 

It may be judged that avoiding global cycles (and the resulting possibilities for 
agenda control) is more important than avoiding a small amount of inde- 
terminacy. This suggests fixing the majority size above rather than below the 
average value of m *(C). Without Assumptions A1-A3, a unanimity rule may be 
needed to avoid electoral cycles (Greenberg (1979)) leading to complete inde- 
terminacy. The value of Theorem 2 is to provide a 64% bound on m *(C) 
applicable to a wide variety of problems. For any social decision problem 
satisfying Al-A3, a 64%-majority rule avoids electoral cycles and may lead to 
only minor indeterminacy. 

8. CONCLUSION 

Many electoral rules require a super-majority vote to change the status-quo. 
Without some restriction on preferences, super-majority rules have paradoxical 
properties. For example, electoral cycles are possible with anything other than 
100%-majority rule. It has long been suspected that these problems will not arise 
if there is sufficient similarity of attitudes among the voting population. 

18 However, it may be that as 8 approaches m * (C) from below, the number of steps needed to 
complete a voting cycle grows without bound. This would make the discontinuity less dramatic. 
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We introduce a definition of social consensus which involves two restrictions 
on domain: one on individual preferences, the other on the distribution of 
preferences. When this consensus exists, 64%-majority rule has many desirable 
properties including the elimination of all electoral cycles. Given the widespread 
acceptance of voting in democratic societies, it is particularly pleasing to present 
positive results. 
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APPENDIX 

Lemma 1 serves two roles. It provides a simple proof of Greenberg's (1979) bound on the min-max 
majority for the special case of Eucidean preferences. More importantly, the lemma plays an integral 
role in the proofs of Theorems 2, 3, and 5. 

Some shorthand notation will be useful. Any hyperplane H divides the space X into larger and 
smaller closed half-spaces, HL and Hs. By larger, we mean that the half-space HL contains nmore of 
the population than Hs. In the event of an even split, the naming is arbitrary. 

LEMMA 1: For a decision problem C in RN satisfying Al-A3, there exists a family of (n + 1) 
hyperplanes H = iH, H2,..., Hn+i) with properties (i)-(iii): (i) All planes Hi pass through x*; (ii) 

all half-spaces Hi contain precisely fraction m * (C) of the total population; (iii) every point in Rn is 
contained in one of the smaller half-spaces, Unl+ HS = R n.19 

Properties (i)-(iii) imply that m*(C) < n/(n + 1). 

PROOF: Consider the family F of all hyperplanes satisfying conditions (i) and (ii) with typical 
element Hf E H. We first show that 

(1) Inte0ri n Hf | 0 

To prove (1), assume to the contrary that there exists a point y E Intn[ffL]. Consider all 
half-spaces defined by hyperplanes through x* which exclude y from their interior. These can be 
identified by the set of unit normals, 11, passing through x* and pointing away from y: 

n {E E RnI r .= 1 and s. (y - x*) 0}. 

Note that II is a compact set. With A2, the population in any half-space is a continuous function 
of -r. Thus there exists a maximal population m' among the half-spaces identified by II. But any 
half-space in II has a population strictly less than m * (C) since y lies interior to all half-spaces Hf 
with population m*(C). Hence m' = m*(C) - h for some h > 0. 

Now consider a point z on the line segment (y, x*) which is close enough to x* for the population 
between all parallel hyperplanes through x* and z to be below h.20 We show that no hyperplane 
through z has population more than m*(C) on either side: m(z) < m*(C). Note that no half-space 
defined by a hyperplane through z contains both x* and y in its interior (since x *, z, and y are 
colinear). If x* is not in the interior, then the half-space is a subset of a half-space defined by a plane 
through x *; hence its population is no more than m * (C). If y is not in the interior, then by 
construction the most added to the constrained optimum of m' is h. Again, the population is no more 
than m' + h = m*(C). This proves m(z) < m*(C). 

19 Our proof assumes that the set X is of full dimension. More generally, the proof holds for 
n = dim (X), which strengthens the result. 

20 The existence of such a point z follows from the continuity and boundedness of full-dimen- 
sional nonatomic concave densities. 
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But m(z) < m*(C) is inconsistent with x* being the min-max point. And m(z) = m*(C) implies 
that z is also a min-max point which is inconsistent with the uniqueness of x* (see Demange (1982)). 
This contradiction rules out the existence of any point y Int [nHfl I establishing equation (2). 

Application of Helly's theorem on the intersection of convex sets (see Rado (1946)) to equation (2) 
implies that there exists an (n + 1) member subfamily of F such that the intersection of their larger 
sides also has empty interior. For this (n + 1) member subfamily, the union of the smaller half-spaces 
is R , completing the proof of (i)-(iii). 

Finally, since U I+ 'lHS v X, the population in Hs must be at least 1/(n + 1) of the total. Q.E.D. 

COMMENT 1: With slight amendments Lemma 1 could also provide a direct argument for the 
existence and uniqueness of the min-max point. 

COMMENT 2: The H, are the hyperplanes through x* which maximize the population in their 
larger half-space. The first-order condition for this maximization is simply that x* is the centroid of 
H,. The min-max point is the centroid of each hyperplane in this (n + 1)-member family. A good 
approximation for this point may be the centroid of the entire density. This may make the role of the 
centroid in Theorem 1 less surprising. 

PROPOSITION 1: Consider a decision problem C in Rn satisfying Al together with m distinct 
proposals: 

(a) For m < n + 1, no value restriction is implied (provided that the m proposals span a space of 
dimension m - 1); all m! ordinal rankings can coexist. 

(b) For m > n + 1, value restrictions are implied; some of the m! orderings of the alternatives are 
ruled out. 

PROOF: (a) To generate the ordering { Xl> X2> ... > xm }, for example, consider the set of 
points contained in the intersection of the following half-spaces: the xl side of the hyperplane 
perpendicularly bisecting xl and x2; the x2 side of the hyperplane perpendicularly bisecting x2 and 
X3; ... and so on. It must be shown that under the hypothesized conditions, this set is nonempty. A 
standard sufficient condition for nonemptiness of a set defined by m linear inequalities is that the 
gradient vectors be linearly independent. In this case, the gradient vectors are (x2 - x), (x3 - 

x2),...,(Xm - Xm _). But, these vectors must be linearly independent; otherwise the vectors (x2 - 
x1), (x3 - x),.(Xm - x) would also be linearly dependent, contradicting the dimensionality as- 
sumption. 

(b) The proof is based on a theorem of Greenberg (1979, Theorem 2). A special case of 
Greenberg's result holds that under Al when the choice set X is n-dimensional, there exists a 
proposal in X supported by at least l/n + 1 of the population against any alternative. This result 
implies that some of the following m orderings must be excluded: 

(X1 > X2 > ... > Xm); (X2 > X3 > ... > Xm > X1); ... ;(Xm > X1 > X2 > > Xm-l). 

Otherwise, consider a population of m individuals with these preference orderings. Note the m - 1 
of the individuals prefer x2 to xl, m - 1 prefer X3 to x2, and so on. Thus no proposal gains the 
support of more 1/m of the population against all alternatives, contradicting Greenberg's theorem. 

Q.E.D. 

CONSTRUCTION 1: U is a set with uniform (unit) density derived from S by a radial transforma- 
tion around x *. The transformation is constructed in such a way that it preserves mass in all regions 
which are unions of half-lines emanating from x *. In particular, the transformation preserves the 
mass on either side of hyperplanes through x*. 

To construct the set U, draw the line from x* extending in direction 'r to the point b,, E Bd(S), 
the boundary of S. The mass along this line segment is calculated using n-dimensional spherical 
integration around x Here, the density at distance d is weighted by d' '; for example in spherical 
integration (R3) the density is weighted by d2. 

Without loss of generality take x* to be the origin. Let A, equal the distance to b,, ,, = I1b,,II. 
Define Al. to be the mass of f along [0, b,], calculated using spherical integration around the origin; 

(2) AX--I (rtr)n -f (rb dr. 
0 
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To construct a set with unit density while preserving the mass in direction S requires extending (or 
contracting) Bd(S) by a factor a,,, where 

(nA )1 
(3) a1J--- 

ll~~~~~1b.f 11 

so that 

(4) A= f(ra, )Al.n llff Al. dr. 
0 

Define U to be the set which in each direction S away from 0 has length a,,I1b,I1. By construction, 
spherical integration shows that the mass in the half-space defined by any hyperplane through 0 is the 
same for the set S with density f(x) as for the set U with unit density. Q.E.D. 

LEMMA 3: The set U defined in Construction 1 is convex. 

PROOF: Without loss of generality, take x* to be the origin. Consider two points b, and b2 on the 
boundary of set S. Since S is convex, the point xx = Xb1 + (1 - X)b2 is contained in S, for 0 6 X 6 1. 
In the construction of the new set U, the ray joining 0 to b, is extended by factor a, and the ray 
joining 0 to b2 is extended by factor a2. No generality is lost setting a, = 1 and removing the 
subscript from a2, a = a2/al. To prove that U is convex it suffices that the expansion factor ax 
applicable to the line in S joining 0 and xx is large enough to extend the point Xx beyond the line 
connecting b, to ab2. By Lemma 4 below, this will be the case provided that ax satisfies inequality 
(5): 

(5) ax > a/[ax + 1-X]. 

But, according to Lemma 5 below, ax > A + (1 - A) a. Thus, to complete the proof, we need only 
show that, 

(6) [X+(1-A)a]>a/[aA?1-A], 06A61 and 06a. 

Multiplying both sides of (7) by [aX + 1 - A] and collecting terms shows that this inequality is 
equivalent to X(1 - A)(a - 1)2 > 0, completing the proof of Lemma 3. Q.E.D. 

LEMMA 4: If ax > a/[aA + 1 - A], then the set U is convex. 

PROOF: Consider, a*, the minimal value of ax which still ensures that the transformed line in U 
between 0 and xx extends beyond the line joining b, and ab2. The derivation of a* is illustrated in 
Figure 3. The line joining b, to ab2 intersects the ray extending from 0 to xx at point arxx where 

(7) a? XX = Tb1 + (1 - T)ab2, 

for some T, 0 6 T 6 1. Substituting in the value of xx = Ab1 + (1 - A)b2 demonstrates that T = xar 
and as required, a* = a/[aA + 1 - A]. Q.E.D. 

LEMMA 5: ax>[A+(1-A)an]l/n>A+(1-A)a,06AX1 and 06a. 

PROOF: To prove the first half of the inequality, note that along any ray from the origin, concavity 
of the density f(x) implies 

(8) f(rxx) >Af(rb1) + (1 -A)f(rb2), r>0. 

Substituting this inequality into the definitions of Ax and ax in Construction 1 shows 

(9) aA > [A + (1- )an]11n 

To demonstrate the second half of the inequality, consider the function 

(10) H(X,a) {X+ (1-X)a} _{X+ (1-_)a}. 
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?ab2 

b2 

FIGURE 3 

Taking the second partial derivative of H(X, a) with respect to X yields 

(11) d2H(X,a) =-(n)(n - 1)(1-a)2(A+(1_A)a)-2O for n>1. 

Thus H is weakly concave with respect to A. Inspection verifies that H(O, a) = H(A, a) = 0 for 
a > 0. Combining this with concavity shows that H(A, a) > 0, for 0 6 X 6 1 and a > 0. Q.E.D. 

LEMMA 6: The min-max point of the set U is x*. 

PROOF: Since all hyperplanes through x* divide the areas of U and S in the same proportion, the 
maximal vote against x* in U is also preserved and equals m*(C). In addition, we know from 
Lemma 1 that for the original decision problem there are n + 1 hyperplanes through x* containing 
exactly m * (C) on their larger side. All points of Rn are contained in the smaller side of one of these 
n + 1 hyperplanes. Construction 1 preserves these properties. For any point u E U, therefore, one of 
these n + 1 hyperplanes will contain even less than 1 - m* (C) on its smaller side, confirming the 
Lemma. Q.E.D. 

THEOREM 3: For a decision problem C in Rn satisfying A1-A3, 

mk*(w)-4m*(C) a.e. 

Before presenting the proof, we must provide additional definitions and preliminary remarks. Pick 
a proposition z e S and a gradient vector 'i, normalized to lie on the n-dimensional unit ball, Bn. We 
define four functions as follows: 

(2) Ik( (Z g ) (? if XT Xk (W) < T Z 

l k 

(12b) Mk(Z,'7TW)- ?f If (Z ) VOW); k j- 

(12c) Mk (z,w)- max Mk (Z, T,w); 

(12d) m * (X) = min Mk (Z, ) 
2es 
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The function mk(z, ir, w) represents the proportion of the first k observations lying strictly above 
the hyperplane through z with normal w, while mk(z, w) represents the maximal proportion across 
all hyperplanes through z and mZ*(w) represents the minimum such value across z E S.21 

As in Proposition 2, we know that mk(z, w) also defines the maximal vote that any proposition 
receives against z, and that m *(w) defines the min-max majority for a population of size k with 
preferences {xl(w),...IXk(W)}- 

For a given pair (z, er), note that mk(z, ', w) is a random variable, since it is a sum of measurable 
indicator functions. In addition, the indicator functions, Ik(z, w, w), are independent with common 
distribution, taking the values 1 and 0 with probability m(z, qr) and 1 - m(z, er), where 

(13) m (z,' S) lim m (z, z + Xq), 
?A4O 

with m(z, z + XAr) as in Definition 2(a).22 Hence, the strong law of large numbers (see e.g., Chung 
(1974, Theorem 5.12)) applies to show that 

(14) mk(Z,'r,w)--*m(z,w7) a.e. 

We can assert, therefore, that for any finite list of pairs (zl, 10. I(ZK, IrK) 

(15) sup Imk(zk,Tk,w)-m(zk,1ik)J--0 a.e. 
1 < k <K 

PROOF OF THEOREM 3: We first prove that liminf m *(w) > m*(C) a.e. By Lemma 1, we know 
that there exists a family of n + 1 hyperplanes through x* with normal vectors (r.'ff- 7n+,) such 
that 

(16) m(x*,wi)=m*(C), forall 1<i<n+1, 

and all points z E S lie in the smaller side of one of these hyperplanes, 

(17) wi*zS ,*x* forsome 1SiSn+1. 

Given z e S, choose w, so that equation (17) is satisfied. By definition (12a) this implies Ik(z, wi, w) > 

Ik(x*, w, w) for all k and w. Application of (12b) and (12c) yields 

(18) mk (z, w) > mk(z, Tj,W) > mk(x, 7T,)- 

Note that an equation of this form is valid for all points z e S, where only the index i varies on 
the right-hand side. Definition (12d) then gives 

(19) mk* () > min mk(X*q,i' ). 
1 <i<n+1 

Application of the strong law of large numbers to the finite list (x *, eri), 1 S i S n + 1, yields 

(20) lim inf mZ* (w) > min m(x*,wi)=m*(C) a.e. 
1 < i <n?1 

where the substitution of m*(C) in (20) follows from (16). To prove that limsup m *(W) < m*(C) 
a.e., it suffices to prove the result for a fixed e> 0, i.e., lim sup m*(w) < m*(C) + e, since the 
intersection of countable sequences of such sets with e shrinking to zero will itself be a set of full 
measure. 

Given e > 0, we first select 8 > 0 so that Vz e S, v E B", 

(21) IX *-Zl 68 JM (X*, ) -M(Z, ) 16E. 

Existence of such a 8 > 0 follows from the fact that m(x, er), defined in equation (13), is a continuous 
function on a compact set and is therefore uniformly continuous. 

Next we select a finite number of hyperplanes ( vr1. r, ) so that Vdr e B", 

(22) {zeSIq.-z>q.-x* } c {zeSIrj-z>q(rj(x* - qrj)} 

21 This is also the minimum for z E X, since for points z e S, mk(Z, w) = 1. 
22 It is convenient to use x e Rn. Extension to arbitrary compact X follows as in Proposition 7. 
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for some j, 1 <j < J. Existence of such a family of hyperplanes follows from the open cover theorem 
applied to gradient vectors v E B'. To see this, note that (22) holds strictly when w. = w, while 
compactness of S ensures that for a fixed vector vj on the right hand side, (22) iolds for a 
neighborhood of ff in Bn. 

Property (22) ensures that Vdr E B', 

(23) mk(x*,7T,w) < max mk(X*-8Tj,Vj, w). 
1<j<J 

Since this inequality holds for all ir, 

(24) mk(x*,w) < max mk(X*-8VTj,Vj,w). 
1 <j <J 

But then application of the strong law of large numbers to the list (x* - qrj, rj), 1 6j < J, ensures 

(25) limsupmk(x*,w)< max m(x*-8wrj,jrj) a.e. 

<M(X*,vTj) +e a.e. 

<m(x*)+e=m*(C)+e a.e. 

as required. The first inequality follows by (15), the second by (21), and the third by the definition of 
x*. Q.E.D. 

Note that although we have restricted our attention to concave densities, this result applies more 
generally to continuous densities on full-dimensional compact supports. 

LEMMA 7: The min-max point x* dominates directly or indirectly all other proposals in X. For any 
given proposal p other than x* there exists a sequence of j proposals z1 through Zj such that: 

X* ['m*(C)]Zl[>m*(C)]Z2[>m*(C)] ... [>m*(C)]Zj[>m*(C)]P 

PROOF: The following notational conventions are used in the proof: m* is shorthand for 
m*(C), NM(x) is the open e-ball around x, and N,(x)[>m* ]y means that xl[>m* ]y holds for 
xl e N,(x). First note that the set of points y for which y[>m* ]p is open. Hence, there exists some 
point y* and some e > O such that N,(y*)[>m* ]p. Now define the family of sets S(y), y E X: 

S(y)= {X E Xly[>m* ]x}. 

Consider the collection of sets 69 consisting of all sets S(y), y e X, together with Ne(x*). We 
show that 9 forms an open cover of X. Directly, x* is in N,(x*). For any other point x there is 
some point y such that y[>m* ]x; therefore, x E S(y). Finally, S(y) is open since the population 
density is nonatomic. 

Since Q is an open cover of a compact set, there exists some finite subcover. Any subcover 
must include N,(x*) since x* is unbeaten according to [>m* ]. Let the subcover be 
( Ne(X *), S(Y), S(Y2), . S(YQ)} 

Recall the point y* for which Ne(y * )[m> p. We now show that there is a sequence of no more 
than Q elections leading from y* to within e of x* in which the winner always receives more than m* 
percentage of the vote. Either y * MN(x *) or it is contained in one of the S(yq) in which case 
without loss of generality assume y * E S(yl) so that Yi [ >m * ] y *. Since y1 is not contained in 
S(yl) either Yi C Ne(x*) or without loss of generality Yi E S(y2) so that 
Y2 [ >m* l. Continue this process. Since successive winning propositions are closer to x *, there can 
be no cycles among the series of points yq (see Proposition 7). Thus, after no more than Q steps, the 
series of successive propositions must terminate with a point yq E N,(x*). Hence, we have a series, 
Yq[>m* ]Yq-l .. Y2[>m* IY1[>m* ]y*, and yq EN,(x*). 

We replace this series of elections by a series starting from x 

X*[>m* ]Zq Z3[>m*]Z2[>m*]Z1 

where x* and zq have the same perpendicular bisector as yq and Yq-1. This construction continues 
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so that finally Yi and y* have the same perpendicular bisector as Z2 and zl. Lemma 8, demonstrated 
below, shows that IIx* -YqII=IIZq -Yq-1II= ... =ilzl -y*ll<E. Thus zl reAN(y*) and hence 
Zl [>>m* ] p, completing the proof. Q.E.D. 

LEMMA 8: If xl and y1 have the same bisecting hyperplane as x2 and y2, then IIx2-x111 = IIY2 - Y1lI- 

PROOF: The following two conditions must hold if x2 and Y2 are to have the same bisecting 
hyperplane as xl and Yli 

(26) (X2-Y2) =p(x1 -Y1), FER; 

(27) [(X2 +Y2)/2 - (xl +yl)/2] (xl -Yl) = 0. 

Equation (26) states that the line joining xl to Yi is parallel to the line joining x2 to y2; (27) states 
that the two midpoints lie on the same bisecting plane. Combining these equations reveals, 

(28) [(X2-X1 + (Y2-Y1 [(X2-X1)-(Y2-Y1 = ?, 
so that IIX2 - Xl = IIY2 - YIIi Q.E.D. 

THEOREM 5: For a decision problem C in Rn satisfying A1-A3, 

/n + 1 n 
I(C,E) 6 EV 

PROOF: The proof relies on the family of n+1 hyperplanes H=(Hl,H2,...,Hn+1} from 
Lemma 1. Construct a family G = Gl, G2,..., Gn11 of hyperplanes where Gi is parallel to Hi but 
shifted into HiS until the population in His n GiL equals E. From condition (ii) of Lemma 1, any point 
interior to a smaller side, Gis, is beaten by more than m * (C) + E by its projection onto the plane G,. 
Therefore no point interior to any half-space GS can be a 8-majority winner, with 8 = m * (C) + E. 
Hence any 8-majority winner must be contained in all the larger half-spaces: I(C, E) A EL() nG,L. 

It remains only to show that the simplex AL(E) contains no more than ((n + 1)/n)nE of the total 
population. 

Assume to the contrary that AL(,) contains more than ((n + 1)/n)nE of the total population. 
Applying Theorem 2, there is at least (n/(n + 1))n of the simplex's population and therefore strictly 
more than E of the total population contained in AL(E) on the smaller side of any hyperplane through 
d *, the min-max point of AL(E). By condition (iii) of Lemma 1, d * His for some i. In addition, 
d * E G/L since d * e L(E). However, the region { His n GiL } is constructed to have population E. 
This implies that the plane parallel to Hi through d* can have a population of no more than E in 
AL(E) on its smaller side (since this region is a subset of { Hn n GiL }). This contradicts the conclusion 
that all hyperplanes through d* have more than E from AL(E) on their smaller side and completes the 
proof. Q.E.D. 
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