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Abstract

Approximate linear programming (ALP) offers a promising
framework for solving large factored Markov decision pro-
cesses (MDPs) with both discrete and continuous states. Suc-
cessful application of the approach depends on the choice
of an appropriate set of feature functions defining the value
function, and efficient methods for generating constraints that
determine the convex space of the solution. The application
of the ALP in continuous state-space settings poses an ad-
ditional challenge – the number of constraints defining the
problem is infinite. The objective of this work is to explore
various heuristics for selecting a finite subset of constraints
defining a good solution policy and for searching the space of
such constraints more efficiently. The heuristics that we de-
veloped rely upon: (1) the structure of the factored model and
(2) stochastic state simulations to generate an appropriate set
of constraints. The improvements resulting from such heuris-
tics are illustrated on three large factored MDP problems with
continuous states.

Introduction
Markov decision processes (MDPs) offer an elegant math-
ematical framework for representing and solving decision
problems in the presence of uncertainty. While standard
solution techniques, such as value or policy iteration scale-
up well in terms of the number of states, the state space of
more realistic MDP problems is factored and thus becomes
exponential in the number of state components. This has
prompted the development of efficient algorithmic solutions
that fit well the factored models. Approximate linear pro-
gramming (ALP) has emerged recently as one of the most
promising methods for solving complex factored MDPs with
discrete state components. The method relies on a value
function model that consists of a linear combination of lo-
cal feature functions (Van Roy 1998), such that every feature
function is defined over a small number of state components.
A number of refinements of the ALP approach have been
developed over past few years. These include the work by
(Guestrin, Koller, & Parr 2001), (de Farias & Van Roy 2002;
2001), (Schuurmans & Patrascu 2002), and others (Poupart
et al. 2002).
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The ALP solutions are not limited to MDPs with dis-
crete state spaces. Recently, (Hauskrecht & Kveton 2003)
showed how one can extend the ALP approach to factored
high dimensional continuous-state MDPs (CMDPs). The
approach incorporates some aspects of the linear program-
ming method developed by (Trick & Zin 1993). However,
solutions by (Trick & Zin 1993) rely on the state-space dis-
cretization that is used to simplify both the value function
and constraints. Moreover, examples that are addressed by
(Trick & Zin 1993) consists of two-dimensional continuous-
state spaces only. In contrast, the ALP problem formulation
of (Hauskrecht & Kveton 2003) does not rely on the explicit
state space discretization, and the value function model is
optimized over the complete high dimensional continuous-
state space.

The ALP formulation of the factored CMDP problem as
proposed by (Hauskrecht & Kveton 2003) comes with a lim-
itation: the number of constraints in the linear program (LP)
is infinite. However, for the linear value function model
only a finite number of active constraints define the opti-
mal solution. The challenge is to identify these constraints
or at least their good substitutes. Interestingly, (Hauskrecht
& Kveton 2003) have shown that the ALP solution for fac-
tored CMDPs with constraints placed on a random grid is
much better, both in terms of the running time efficiency
and the solution quality, than the corresponding grid-based
MDP (GMDP) approximation. Since grid-based approxima-
tions are the most common methods to solve large CMDPs,
this result illustrates potential benefit and impact of the ALP
on the solution of large CMDPs.

Heuristic constraint generation. A number of improve-
ments and speed-ups of the basic ALP algorithm are pos-
sible. Random generation of constraints is blind and does
not take any advantage of the problem definition. Since we
want to identify a finite subset of constraints that give a very
good policy as quickly as possible, the design of heuristics
that tend to select constraints with a positive impact on the
quality of the solution is desirable. In this work, we develop
and test a heuristic constraint generation method based on
the Monte Carlo simulation of states. In the ALP, every con-
straint is associated with a point in a multidimensional state
space, so the rational behind the Monte Carlo simulation is
to focus on the points and their corresponding constraints
that are likely to be visited more often.



Heuristic constraint filtering. It is unlikely that one
would be able to identify a good set of constraints in one
shot. So some search process may be necessary to assure a
good constraint coverage. In such a case, the efficiency with
which we can generate constraints and solve ALPs defined
upon such constraints affect tremendously the efficiency of
our final solution. While heuristic constraint generation may
help us to identify potentially useful constraints, many of the
generated constraints can still be redundant in that they do
not contribute to the solution. Since the running time com-
plexity of the linear program solver depends on the number
of constraints, it is equally important, for the sake of effi-
ciency, to filter out as many redundant constraints as pos-
sible. In this work we develop and present a simple but
very powerful constraint filtering approach called greedy
constraint selection (filtering) that can be easily combined
with incremental and iterative search approaches. The filter-
ing is a heuristic since it focuses only on constraints that can
improve the solution directly in one step and ignores other
useful constraints without immediate effect on the solution.

Exploiting the structure. The factored CMDP model of-
fers a great deal of additional structure that can be used to
speed-up the computations in addition to various constraint-
coverage heuristics. One structure-based refinement that we
have devised and implemented takes advantage of the local
effect of actions in factored CMDP settings and leads to sig-
nificant computational savings on our test problems. The
approach optimizes the order of computation of structurally
related subtasks that occur, for example, during constraint
and policy evaluations, so that the overlapping calculations
are tied and performed together.

In the following, we first review continuous-state MDPs
(CMDPs), their factored refinements and efficient approx-
imations that one can apply to solve them. After that we
focus on the ALP approach and describe its application to
factored CMDPs. Next we develop two different heuris-
tics for speeding up the calculations of the ALP policy and
for improving its quality. Finally, we test the effects of the
heuristics on three CMDP problems.

Continuous-state MDPs
A continuous-state MDP (CMDP) is defined by a 4-tuple
(x, A, T,R), where x is a state space defined on R

n, A is a
finite set of actions, T a transition model defining the tran-
sition density p(x′|x, a) between states x and x

′ under an
action a, and R defines a reward function R(x, a) that maps
state-action pairs to real-valued rewards.

Factored CMDPs. The factored version of the CMDP
simplifies the definition of the decision process and decom-
poses transition and reward models along individual state di-
mensions (x1, x2, . . . , xn). In particular, the transition func-
tion p(x′|x, a) is assumed to be factored as:

p(x′|x, a) =
∏

x′

j

p(x′j |xj,a, a),

where xj,a are state components influencing the next value
of x′j under an action a. Similarly, we assume that rewards

are factored over smaller subsets of states into:

R(x, a) =

m
∑

i=1

Ra,i(xa,i, a).

Optimization criterion. Given a CMDP, our objective is
to find a control policy π∗ : x → A that maximizes the
infinite-horizon, discounted reward E(

∑

∞

i=0
γiri), where

γ ∈ [0, 1) is a discount factor, and ri is a reward obtained in
time step i.

Bellman equation. The value function V (x) of the opti-
mal policy satisfies the Bellman fixed point equation (Bell-
man 1957):

V (x) = max
a

[

R(x, a) + γ

∫

x′

p(x′|x, a)V (x′)dx′

]

.

The main problem in solving CMDPs is that in most cases
the recursive integral problem cannot be solved in a closed
form, and there exists no finite support for the description of
the optimal value function. To solve the problem, either the
value function or the optimal policy is replaced with a finite
approximation.

Grid-based MDP (GMDP) discretizations. A typical
solution is to discretize the state space to a set of grid
points and approximate value functions over such points.
Unfortunately, classic grid algorithms scale-up exponen-
tially with the number of state factors n (Chow & Tsitsik-
lis 1991). New approximation algorithms based on random
and pseudorandom grids (Rust 1997) offer more flexibility
together with a good accuracy-confidence guarantees. Let
G = {x1,x2, . . .xN} be a set of grid points of the state
space [0, 1]n. Then the Bellman operator H can be be ap-
proximated with an operator HG that is restricted to grid
pointsG. One such operator has been studied by (Rust 1997)
and is defined as:

VG(xi) = max
a



R(xi, a) + γ

N
∑

j=1

PG(xj |xi, a)VG(xj)



 ,

where PG(xj |xi, a) = ψa(xi)p(xj |xi, a) defines a normal-
ized transition probability such that ψa(xi) is a normaliz-
ing constant. The equation applied to grid points G de-
fines a finite state MDP with |G| states. 1 The solution,
VG = HGVG, approximates the original CMDP. Conver-
gence properties of the grid-approximation scheme for ran-
dom or pseudo-random samples were analyzed (Rust 1997).

Parametric function approximations. An alternative
way to solve a continuous-state MDP is to approximate the
optimal value function V (x) with an appropriate parametric
function model (Bertsekas & Tsitsiklis 1996). The parame-
ters of the model are fitted iteratively by applying one step
Bellman backups to a finite set of state points arranged on a
fixed grid or obtained through Monte Carlo sampling. Least
squares criterion is used to fit the parameters of the model.

1The operator HG defines a special convex approximator for
grids with a fixed point solution (see (Hauskrecht 1997) or (Gordon
1999)). Other examples include the nearest neighbor or barycentric
interpolators (Munos & Moore 1999)



In addition to parallel updates and optimizations, on-line up-
date schemes based on gradient descent (Bertsekas & Tsit-
siklis 1996; Sutton & Barto 1998) are very popular and can
be used to optimize the parameters. The disadvantage of the
methods is their instability and possible divergence (Bert-
sekas 1994).

Approximate linear programming
Recently, (Hauskrecht & Kveton 2003) have proposed the
approximate linear programming (ALP) approach as an al-
ternative method for solving large factored continuous-state
MDPs. Similarly to factored discrete-state MDP settings
(Koller & Parr 1999; Guestrin, Koller, & Parr 2001), the new
approach builds upon the linear model of the value function
(Van Roy 1998):

V (x) =
∑

i

wifi(xi),

where fi(xi)s denote feature functions defined over subsets
of state variables xi, and wis are weights that are fit by the
model. In terms of optimization, the benefit of the linear
value function model is that it allows one to convert the op-
timization of the value function over a very complex state
space to the optimization over a small set of weights.

Assuming that the state space of a CMDP is bounded
to the region [0, 1]n, (Hauskrecht & Kveton 2003) showed
that the optimization of the value function over the complete
state space can be expressed in terms of the following ap-
proximate linear program (ALP):

minimizew:
∑

i

wi

∫

xi

fi(xi)dxi

subject to:
∑

i

wiFi(x, a)−R(x, a) ≥ 0,

∀x ∈ X, a ∈ A

where

Fi(x, a) = fi(xi)− γ

∫

x
′

i





∏

x′

j
∈x

′

i

p(x′j |xj,a, a)



 fi(x
′

i)dx
′

i.

Conjugate choices. The ALP formulation of the CMDP
assumes that all integrals in the objective function and con-
straints are proper integrals. Also important is the existence
of analytical solutions of integrals in the objective func-
tion and constraints. To assure both of these conditions,
(Hauskrecht & Kveton 2003) have devised conjugate classes
of feature functions and transition models. The matching
pairs include transitions based on beta or mixture of betas
densities, where beta density is defined as:

p(xj |xj,a, a) = Beta(xj |g
1

j,a(xj,a), g2

j,a(xj,a)), (1)

and basis functions that are products of factors:

fi(xi) =
∏

xj∈xi

x
mj,i

j .

In such a case the integrals in the objective function simplify
to (Hauskrecht & Kveton 2003):
∫

xi

fi(xi)dxi =

∫

xi

∏

xj∈xi

x
mj,i

j dxi =
∏

xj∈xi

1

mj,i + 1
,

and the integrals in constraints simplify to:

∫

x
′

i





∏

x′

j
∈x

′

i

p(x′

j |xj,a, a)



 fi(x
′

i)dx
′

i =

∏

x′

j
∈x

′

i

Γ(g1

j,a(xj,a) + g2

j,a(xj,a))Γ(g1

j,a(xj,a)) + mj,i)

Γ(g1

j,a(xj,a) + g2

j,a(xj,a) + mj,i)Γ(g1

j,a(xj,a))
,

where Γ(.) is a gamma function.
The new ALP formulation for factored CMDPs is simi-

lar to the ALP formulation for factored discrete-state MDPs
(Schuurmans & Patrascu 2002). In particular, the ALP op-
timizes the weights of the linear model and the objective
function and constraints decompose over state subspaces as-
sociated with individual feature functions. The fact that we
optimize over the finite set of weights means that the number
of active constraints defining the optimal solution is finite.
So our ultimate objective is to identify active constraints or,
at least, they good surrogates.

The main difference between the ALPs for the two mod-
els is that the linear program built for a CMDP has infi-
nite number of constraints; one for each state x and action
a, while the number of constraints in a factored discrete-
state MDPs is finite, though exponential in the number of
state variables. Existing methods for solving ALPs for
factored finite-state MDPs (Guestrin, Koller, & Parr 2001;
Schuurmans & Patrascu 2002) take advantage of local con-
straint decompositions and various heuristics to search for
the set of active constraints. However, at the end, all of these
methods depend on the fact that the decompositions are de-
fined on a finite state subspace that can be enumerated. Un-
fortunately, constraints in the CMPD model decompose over
smaller but still continuous subspaces, so the existing solu-
tions for the finite-state MDPs cannot be applied directly. To
address this problem, (Hauskrecht & Kveton 2003) applied
and tested constraint generation methods based on sampling.
They showed a very good performance of the approach when
compared to two standard approaches for solving CMDPs:
the grid state-space discretization and approximate dynamic
programming with the least squares fit.

Searching the space of constraints
The objective of this research is to develop methods for solv-
ing ALPs for CMDPs that can replace random constraint
sampling and identify a finite subset of constraints defining
a good-quality solution in a more principled way. Unfortu-
nately, in general, it is very hard to come up with a good
set of constraints in one shot. Typically, a much better op-
tion is to generate the set gradually in multiple steps, such
that in every step, the procedure takes advantage of the pre-
viously found solution, and applies it to build a new set of
constraints. In the following, we describe incremental and
iterative forms of such a procedure.



function ALP-incremental(model)
C ← initialize constraints
w← ALP(C)
while a stopping criterion is not met
Cnew ← generate new constraints from model and w

C ← C ∪ Cnew

w← ALP(C)
return w

Figure 1: ALP with incremental generation of constraints.
The most recent solution of the ALP, represented by weights
w, is used together with the model to generate a new set
of constraints Cnew. In every iteration, the existing set of
constraints C is extended with the set Cnew.

function ALP-iterative(model)
C ← initialize constraints
w← ALP(C)
while a stopping criterion is not met
C ← generate new constraints from model and w

w← ALP(C)
return w

Figure 2: ALP with iterative generation of constraints. The
most recent solution of the ALP, represented by weights w,
is used together with the model to generate a new set of
constraints Cnew. In every iteration, the existing set of con-
straints C is replaced with the set Cnew.

Incremental approach. In the incremental approach
(Figure 1), an initial set of constraints is gradually expanded
such that the feedback from the previous-stage solution is
actively used to generate a new set of constraints. The new
constraints are added to the existing set of constraints, and
the procedure is repeated until a stopping criterion is met.

Iterative approach. In the iterative approach (Figure 2),
the set of constraints is build from an empty set in every step.
The procedure starts with an initial set of constraints, uses
feedback from the most recent solution to generate new con-
straints, and finally replaces the set of existing constraints
with the new constraints. The process is repeated until a
stopping criterion is met.

Both iterative and incremental search procedures can
come in different guises depending on the methods em-
ployed to generate constraints. In the following, we propose
and explore a number of heuristic approaches for generat-
ing constraints that can improve tremendously the quality of
the resulting solution as well as the efficiency of the search
process.

Heuristics for constraint generation
State space simulation
The ALP methods for solving CMDPs presented by
(Hauskrecht & Kveton 2003) use randomly generated con-
straints. Surprisingly, even in this case, the solutions were
much better (in terms of both the quality and the efficiency)
than solutions obtained for the corresponding grid-based ap-
proaches. An open issue is whether it is possible to choose
constraints that would reflect better the underlying CMDP
model and its dynamics.

In the ALP, randomly generated points lead to a uniform
coverage of the state space by constraints. This may not
reflect the differences in the importance among different re-
gions of the state space. Intuitively, we would like to have a
better coverage of the state space regions that affect the solu-
tion the most. To address this problem, we propose a Monte
Carlo method, in which the constraints are selected by sim-
ulating the state space according to the currently available
policy π. The method prefers points (and subsequently con-
straints) in the regions that are visited with a higher proba-
bility. The intuition behind this heuristic is that the regions
that are visited more likely are also more important for the
quality of the solution.

The state space simulation heuristic can be easily incor-
porated into the incremental and iterative approaches, and
used to generate new constraints. In one scenario, one can
pick randomly a starting point in the state space and simulate
a trajectory of k steps according to the currently available
policy π. The point reached after k steps is selected as the
point that defines a new set of constraints. As there is a con-
straint associated with every point and action, by adopting
this Monte Carlo strategy, a total number of |A| constraints
can be generated. The simulation can be repeated multi-
ple times using trajectories of the same or different length.
Alternatively, one can use the same simulation trajectory to
choose more than one point.

Greedy constraint selection
Every constraint in the ALP is associated with an n-
dimensional point x and an action a, so we can use a pair
(x, a) to identify a constraint. A finite set of constraints
defines a convex space, a simplex, and the solution of the
corresponding linear program is in one of its corners. Con-
straints that are critical for the solution are denoted as active
constraints. Assuming that w

∗ is the optimal solution, all
active constraints satisfy the condition

∑

i

w∗

i Fi(x, a)−R(x, a) = 0.

Other constraints in the linear program are inactive.
An addition of a new constraint (x, a) changes the exist-

ing solution w
∗ only if the new constraint violates the solu-

tion, which means that
∑

i

w∗

i Fi(x, a)−R(x, a) < 0. (2)

This condition offers a simple but in practice very power-
ful way of filtering constraints from a set of candidate con-
straints. Simply, only a constraint that violates the current



Figure 3: Graphical representation of simplexes and ALP
solutions for (a) constraints {c0, c1, c2, c3, c4}, (b) con-
straints {c0, c1, c2}, and (c) constraints {c0, c1, c2, c4}. The
simplexes are represented by gray polygons, and the corre-
sponding solutions of the ALPs by black circles. The arrows
at end of constraints point to the subspaces of solutions that
are not violated by the constraints.

solution w
∗, and thus is guaranteed to immediately improve

the solution, is chosen. We refer to such a method as to
greedy constraint selection since it greedily focuses only on
the constraints that assure immediate improvement of the
current solution w

∗. We note that a similar idea for MDPs
with much simpler state spaces was investigated by (Trick
& Zin 1993). The method gained significant computational
savings as compared to linear programs with all constraints.

Unfortunately, the greedy constraint selection is only a
heuristic since the constraint that does not violate the condi-
tion can become active later in a context of newly added
constraints. To illustrate this, let us consider a CMDP
problem with two continuous state variables. Let us as-
sume that its ALP approximation relies on five constraints
{c0, c1, c2, c3, c4}. The solution simplex defined by such
constraints is illustrated in Figure 3a, and the solution w

∗

is represented by a black circle. The active constraints,
which determine the solution w

∗, are c3 and c4. Now let
us consider the case in which only the first three constraints
{c0, c1, c2} are used to solve the ALP. The solution w

′ of
the ALP is shown in Figure 3b. It is clear that the ALP solu-
tion w

′ for this subset differs from the optimal solution w
∗

obtained for all five constraints, which implies that at least
one of the constraints {c3, c4} is critical for the solution w

∗.
Unfortunately, if the next constraint tested by the greedy cri-
terion is c3, it fails the greedy test, since it cannot change
the solution w

′ alone. Thus, the greedy test fails to pick a
constraint that is important for the final solution. However,
note that the constraint c3 becomes active (and passes the
greedy test) if the constraint c4 is added to the set of con-
straints {c0, c1, c2} before c3 is tested. This is illustrated in
Figure 3c. In general, if there exists a better solution, there
is at least one constraint that passes the greedy test.

Using greedy constraint selection to solve the ALP.
Greedy constraint filtering is especially useful when com-

function GI-ALP(C)
partition C into C1, . . . , Cm
initialize linear program lp
for (x, a) ∈ C1

add (x, a) to lp
w← solve lp
for j ← 2 to m

for (x, a) ∈ Cj
if (

∑

i wiFi(x, a)−R(x, a) < 0)
add (x, a) to lp

w← solve lp
return w

Figure 4: Greedy incremental ALP (GI-ALP).

bined with incremental or iterative search approaches. This
filtering is also at the heart of the method that we call
greedy incremental ALP (GI-ALP), which can be viewed as
a heuristic speed-up of the ALP solver.

Greedy incremental ALP (GI-ALP). Let C =
{c1, c2, . . . , cN} be a set ofN candidate constraints we con-
sider adding to the ALP. In the first step, the procedure tests
constraint c1 whether it passes the greedy test. If the con-
straint passes, it is added to the linear program, and the solu-
tion of the LP is recomputed. In the next step, constraint c2
is tested, and this process of filtering constraints continues
until all constraints are scanned.

In more a general setting, the GI-ALP method tests whole
sets of constraints. If C1, C2, . . . , Cm is a partitioning of
C into m mutually exclusive constraint sets, the procedure
starts by testing constraints in the first partition C1. Those
constraints that pass the greedy test are added to the linear
program, and the LP is resolved. In the next step, constraints
from the set C2 are tested, and the algorithm continues until
all partitions are scanned. An outline of this procedure is
presented in Figure 4.

Partitioning and ordering. It is easy to see that the time
complexity of the algorithm and the quality of its solution
depends on the partitioning of C and the order in which the
partitions are examined. If the number of partitions m is
set to 1, the algorithm turns into the standard ALP. Setting
m = N corresponds to the case when only one constraint is
added at time. In such a case, the linear program is recom-
puted only if a new constraint violates the current solution.
Another interesting partitioning divides constraints into par-
titions of unequal cardinality, such as |Ci| = 2i. The rational
behind this choice is that if the probability of detecting an ac-
tive constraint decreases exponentially with time step i, the
total number of added constraints to the LP in every partition
Ci stays constant. The results presented in the experimental
section are obtained for this partitioning.

The GI-ALP is a heuristic in terms of the optimal solution
w

∗ and its corresponding policy π∗. However, in highly
distributed environments, our experimental results show that
the solutions obtained by GI-ALP are very close to those of



the ALP. Moreover, in terms of computation time, several-
fold speed-up is observed due to a smaller number of applied
constraints.

Speed-ups due to the local effect of actions
CMDPs built for highly distributed environments tend to ex-
hibit local effect of actions. We say that an action a has a
local effect if it directly influences only a small subset of
state components. This feature can be used to speed up the
operations that require iterations over all possible actions,
while the state component x is fixed. Example of such an
operation is the evaluation of constraints in the ALP or the
computation of a policy π. In the following, we show how
the evaluation of a constraint factorizes due to local actions.

If an action a1 affects factors xa1
, and an action a2 affects

factors xa2
, the evaluation of the constraint (x, a2) can be

rewritten as:
∑

i wiFi(x, a2)−R(x, a2) =

∑

i∈ta1,a2

wiFi(x, a2) +
∑

i/∈ta1,a2

wiFi(x, a1)−R(x, a2),

where

ta1,a2
= {i : ∃j : (j ∈ (xa1

∪ xa2
)) ∧ (xj ∈ dom(fi))}

represents the set of feature function indices whose domain
contains at least one of the factors from xa1

∪xa2
. Due to the

factorization above, the computation of the terms Fi(x, a)
can be divided into two components: i /∈ ta1,a2

, which can
be effectively cached from the same computation performed
for the action a1; and i ∈ ta1,a2

, which are affected by ei-
ther of the actions, and have to be recomputed. Thus, the
computational savings are realized on subexpressions that
are cached from previous computations.

This result is especially important if the terms Fi(x, a) are
hard to compute because integrals do not have closed-form
solutions. The savings are even larger if the constraints are
evaluated for all actions. In such a case, one scans sequen-
tially all actions while caching the terms from the most re-
cent constraint, and reuses the results for the next constraint.
We note that the computation of the reward part R(x, a2)
can be decomposed in a similar manner. We have optimized
our ALP solvers and took advantage of both factorizations
in all experiments.

Experiments
Experimental setup
To analyze the heuristics and their performance, we use
three CMDP problems, each of them defined by one of the
computer network topologies in Figure 5. The computer net-
work examples were originally proposed for factored finite-
state MDPs by (Guestrin, Koller, & Parr 2001). Continuous
versions of these examples were introduced in (Hauskrecht
& Kveton 2003).

A network consists of n connected computers, one of
which is a server, and the remaining computers are work-
stations. The state of the jth computer xj is represented by
a real number between 0 and 1, which reflects the reliability
of the computer to process tasks. The state of the network

Figure 5: Example of computer network topologies 6-ring,
7-star, and 18-ring-of-rings. Server is marked by a gray cir-
cle.
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Figure 6: Example of transition functions for the ring net-
work topology. If a = j, the transition function simplifies
to Beta(20, 2). If a 6= j, the transition model is defined by
Beta(2 + 13xj − 5xjxj−1, 10− 2xj − 6xjxj−1).



x is defined by a reliability vector (x1, x2, . . . , xn) of indi-
vidual computers, such that x1 is the state of the server. The
topology of a network plays an important role in the oper-
ation of the network. In particular, an unreliable computer
may affect the reliability of computers connected to it.

To improve the performance of the network and its pro-
cessing power, we employ an administrator who maintains
the computers, and is able to improve their reliability. There
are (n + 1) actions that the administrator can perform. The
action j ∈ {1, 2, . . . , n} means that the administrator at-
tends the jth computer. The effect of the action is improved
reliability of the attended computer. The action (n + 1) is
a dummy action and represents the scenario when the ad-
ministrator does nothing. Transition functions defining the
dynamics of the network state over time are factored and de-
fined using beta densities as presented in Equation 1. Figure
6 illustrates various transitions employed by the model.

The quality of the network operation is measured in terms
of the reward function:

R(x, a) = 2x2

1
+

n
∑

j=2

x2

j ,

that is given by a weighted sum of computer states. In our
model, the highest weight is assigned to the server. The dis-
count factor is γ = 0.95.

To approximate the optimal value function, a combina-
tion of linear (one per node of the network) and quadratic
(one per link) feature functions is used. As discussed ear-
lier, these are the conjugate choices that lead to closed-form
solutions to integrals in the factored ALP.

Results
The comparison of the ALP method with random constraints
to alternative CMDP solutions on computer network prob-
lems was performed by (Hauskrecht & Kveton 2003). The
results presented in that work illustrate the benefit of the
ALP approach both in terms of the running time and the
quality of the resulting approximation. In this work, we fo-
cus primarily on the heuristics and use the ALP solution with
random constraints as the baseline method.

Figures 7, 8, and 9 summarize the results of the exper-
iments and comparisons. The graphs capture the quality
of solution policies and running times of different methods
while varying the number of state-space samples M . Since
every sample defines |A| different constraints and all are
used in the ALP, the total number of constraints is M |A|.
To evaluate the quality of every method we use averages
over 30 different runs of the algorithm. The quality of the
policy generated by each algorithm is estimated via simula-
tion. To compute the estimate we use average of cummula-
tive discounted rewards obtained for 100 simulation trajec-
tories, each of length 50.

We run three sets of experiments. The objective of the
first experiment was to evaluate the benefit of the state-
simulation heuristic. Figure 7 shows the results for the 24-
ring problem. The results obtained for other two network
topologies (25-star and 24-ring-of-rings) are very similar
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Figure 7: Comparison of the ALP with random constraints
(ALP + random), the ALP-iterative with the state-simulation
heuristic (ALP + MC), and the grid-based MDP (GMDP).
Panel (a) shows the estimate of expected rewards of poli-
cies found by different methods and panel (b) their running
times.
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Figure 8: Comparison of the ALP with random constraints
(ALP + random), the greedy incremental ALP (GI-ALP)
with random constraints (GI-ALP + random), and the grid-
based MDP (GMDP). Panel (a) shows the estimate of ex-
pected rewards of policies found by different methods and
panel (b) their running times.
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Figure 9: Comparison of estimated expected rewards of policies obtained through three heuristic methods and their running
times on three network architectures. The ALP with random constraints is used as the baseline of the comparison.

and are not shown. Figure 7a compares the quality of poli-
cies obtained by the ALP with random constraint genera-
tion and the ALP with the iterative constraint search (ALP-
iterative) powered with the state simulation heuristic. As
a baseline we also include the results of the grid-based ap-
proximation (GMDP). The comparison shows that the ALP-
iterative with the state simulation heuristic is able to improve
over the ALP with random constraints. In terms of the qual-
ity of generated policies, both ALP methods outperform the
GMDP approach. Figure 7b compares running times that are
needed to solve the problem for different sample sizes. We
see that the running time performance of the ALP-iterative
with the state simulation heuristic is worse than the perfor-
mance of the ALP with random constraints. This behavior
is expected since the iterative method solves a sequence of
ALPs, each of which is of the same size as the ALP solved
by the random constraint generation. The GMDP is infe-
rior to the ALP methods in terms of both the quality and the
running times.

The objective of the second set of experiments was to
compare the greedy incremental implementation of the ALP
(GI-ALP) with random constraints to the standard ALP with
random constraints. The GI-ALP uses exponentially in-
creasing partitions as described earlier in the paper. Again,
the corresponding grid-based approximation (GMDP) is
used for the comparison. Figures 8a and 8b show the quality
of generated policies and running times for all three algo-

rithms. The results show that the GI-ALP is slightly worse
in terms of solution quality when compared to the ALP, but
at the significant savings in the running times. This evidence
supports the intuition that the greedy constraint filtering is
able to eliminate a large portion of unimportant constraints,
and thus, to speed up the algorithm, while the solution qual-
ity drop due to the elimination of useful constraints is rela-
tively small. Once again the GMDP is inferior both in terms
of the solution quality and the running times.

The first experiment clearly shows the benefit of the state
simulation in terms of the solution quality, but at the expense
of the increase in the running time. On the other hand, the
GI-ALP demonstrates the potential of a tremendous speed-
up at the expense of the solution quality. An immediate
question that arises is whether the combination of the two
heuristics would be able to offset their individual deficien-
cies. To explore this issue, we have built an iterative version
of the ALP powered with the state simulation heuristic such
that every ALP to be solved inside the iterative procedure
is solved using the GI-ALP method. Figure 9 compares the
results of the new heuristic method with the two previous
heuristics and the standard ALP with random constraints.
The benefit of the new heuristic is evident. The quality of
the solution on all three network topologies is very close to
the one of the ALP with the state simulation heuristic. The
running time of the new heuristic drops below the running
times of ALPs without greedy constraint filtering.



Conclusions and future work
We have developed and tested two different heuristics for
improving the performance of the ALP solvers for factored
continuous-state MDPs. The improvements were achieved
by appropriate selections of constraints: in the first case
through Monte Carlo state simulations, which leads to a bet-
ter coverage of more likely regions of the state space; and
in the second case by rapid filtering of a large number of
inactive constraints.

Despite of the recent progress in solving factored CMDPs,
a number of issues remain open and have to be further ex-
plored. One promising direction is the application of lo-
cal search methods that can be used to gradually optimize a
fixed number of constraints. In such a case, each constraint
is parameterized, and the parameters are optimized. Local
search techniques based on gradient ascent represent one
possible approach. The proof of sample complexity bounds
for the ALP with random constraints remains another impor-
tant open issue. We expect that the proof along the lines of
the proof by (de Farias & Van Roy 2001) for discrete MDPs
may be possible.
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