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The Hamiltonian Srw=icture of the Maxwell-V1asov Equations

Jorreld E. Marsden® and Alan Weinstein**
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Abstract

ety = e - e —

Morrison [1980] has shown that the Maxwell-Vlasov and
Vlasov-Poisson equations for a collisionless plasma can be written
in hamiltonian form relative to a certain Poisson bracket. We

derive another (very similar) Poisson structure for these equations

by using general methods of symplectic geometry. The main ingredients

in our construction are the symplectic structure on the co-adjoint

orbits for‘tho grouy of canonical transformations and the symplectic
structure for the phase space of the electromagnetic field regarded
4s a gauge theory. Our construction shows where canonical variables

can be found and can be extended to Yang-Mills gauge theories.

1. Introduction

In this paper we show how to construct a Poisson structure for'
the Maxwell-Vlasov and Vlasov-Poisson equations for collisionless
plasmas by using general methods of symplectic geometry. We shall

compare our structure to that obtained by Morrison [1980].

*Research partially supported by NSF grant MCS-78-06718 and
ARO contract DAAG-29-79-C-0086.
**Research partially supported by NSF grant MCS 77-23579.
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q } We ccasider a plasma consisting of particles with charge e and
mass B moving in Euclidean space R3 with positions x and i
velocities v. For simplicity we consider only one species of ‘
particle; the general case is similar. Let £(x,v,t) be the plasma |
density at time t, and E(x,t) and B(x,t) be the electric and
magnetic field. The Maxwell-Vlasov equations are:
of , . Of , e(p , VxB) 3f
.a_t+vax+m(ﬁ+ c)av 0 (1.1)
%-g-% = - curl E \.;
7 (1.2)
%g—i = curl B - %I vi(x,v,t)dv !
v .
] .
1 divE =p_, wherep_.=e f(x,v,t)dv ,
' f f v !
L o.3)
' div B = 0 5
Letting c » » leads to the Vlasov-Poisson equation:
%
of f e “7f 3f _
3tV mdx v 0 1.4
where
] A¢f & - pf‘ (1-5)
1 ; In what follows we shall set ¢ = 1 in the Maxwell-Viasov system.
i The Hamiltonian for the Maxwell-Vlasov system is
' 1 2 1 2 2
k H(f,E,B) = 3V f(x,v,t)dxdv + 7[E(x,t) + B(x,t) ldx (1.6)
: X,V x

. -, v




while that for the Vlasov-Poisson equation is

N -

H(E) = I Lov2E(x,v, t)dxdv + %I 6 ¢(x)pg(x)dx a.7n
X

X,V

The Poisson bracket used by Morrison is defined on functions

F(f,E,B) of the fields f£,E,B by

SF &G SF 86 _ &G, . SF
{F,G} = Jx’f{“,s }dxdv + L gourl & - curl dx

E.E”- 3-? - 3—'-— 's? dxdv (1-8)

SF pf 8G &G pf SF
* Lv 53 v)3-f' glov * V)5E dxdv

where in the first term { , } denotes the usual Poisson bracket for
functions of (x,v), and where the functional derivatives are defined

in terms of the usual (Fréchet) derivative by
(DF)£' = f e dxdv, ete.
X,V
For the Vlasov-Poisson equation, one keeps only the first term
of (1.8). The equations (1.1) and (1.2) (or (1.4)) are then
equivalent to

F = {F,H} (1.9)

with H given by (1.6) (or (1.7) for the Vlasov-Poisson equation .




Our purpose is to show how another Poisson structure can be
constructed by a general procedure involving reduction (Marsden
and Weinstein [1974]) and coupling of hamiltonian systems to gauge
fields (Weinstein [1978b]). Our Poisson bracket differs from (1.8)
in that the last integral is replaced by
73 168G

3|3/ X Bldxdv (1.10)
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Both structures satisfy the Jacobi identity and yield the correct
equations of motion for the hamiltonians we have specified; however,
ours is constructed by general principles rather than being ad hoc,

and it is clear where the canonical variables are to be found. In
addition, the equations div E = 97. and div B = 0 arise naturally from
the gauge symmetry of the problem and need not be postulated separately.
We believe that the presence of the two symplectic structures might
imply the existence of some new conserved quantities. T'Our Poisson
structure fits into a pattern, special cases of which have been

found by others. For example, Arnold [1966] showed that the Euler
equations for a perfect incompressible fluid are a Hamiltonian system
in the canonical Poisson structure associated with the group of

volume preserving diffeomorphisms of a region in Rs. Using Arnold's
methods, one can also see that the compressible equations are
associated to the semidirect product of the group of diffeomorphisms
and the (additive group of) densities on Rs. It is easy to check

that this approach yields the same Poisson structure found for

perfect fluids by Morrison and Greene [1980] and ought to be extendible




to the MHD equations by the methods of this paper. The KdV equation
is associated with the Lie algebra of the group of canonical trans-
formations in the work of, for example, Adler [1979]. (We recall
that there is a standard link between the Maxwell-Vlasov equations
and the KdV equation -- see Davidson [1972]). In Ebin and Marsden
[1970], the functional analytic machinery required to fully justify
Arnold's approach Was given. Itwag proved, for example, that the
volume preserving diffeomorphisms form a true infinite dimensional
manifold which is, in an appropriate sense, a Lie group. It was also
shown that the group of canonical transformations has similar
features, but no physical interpretation was given. The Vlasov
equation provides one.

All of these clues suggest that it is fruitful to find a more
geometric and group-theoretic framework for the basic equations of
plasma physics. Such a framework is provided here. We
shall not deal with the delicate functional analytic issues needed
to make precise all the infinite dimensional geometry, nor shall we
deal with questions of existence and uniqueness (cf. Batt [1977] and

Horst [1980]).
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2. The Poisson Structure for the Density Variables

We begin by explaining the geometrx meaning of the first term

in (1.8), I 4 {‘g—;—, g—g}dxdv. In the following sections, we shall

explain thexé\e’rm for Maxwell's equations (the second integral in
(1.8)), and then finally the coupling terms (the remaining two
integrals).

In the absence of a magnetic field, by normalizing mass, we
can identify velocity with momentum; hence we let R6 denote the
usual position-momentum phase space with coordinates
(xl’XZ’xS’Pl’pZ’ps) and symplectic structure dei ~ dpi. (See
Abraham and Marsden [1978] or Arnold [1978].) Let S denote the
group of canonical transformations of R6 which have polynomial
growth at infinity in the momentum directions. The Lie algebra 4
of S consists of the hamiltonian vector fields on R6 with
polynomial growth in the momentum directions. We can identify
elements of 4 with their generating functions,* so that
4 = C"G!6) ; the (right) Lie algebra structure is given by the negative
of the usual Poisson bracket on phase space. (This follows from
Exercise 4.1G and Corollary 3.3.18 of Abraham and Marsden [1978]).

The dual space 4* can be identified with the distribution
densities on R6 which are rapidly decreasing in the momentum

directions; the pairing between h € s and f € »* is given by

.‘l'he generating function of a hamiltonian vector field is determined
only up to an additive constant. e "correct" group S is really
the group of transformations of R x R preserving the l-form

Ip.dg. + dt (Van Hove [1951]), but we can ignore this technical point
heie hthout encountering any essential difficulties.




(h,f) = L(, hf dxdp . g

(The "density" is really f dxdp, but we denote it simply by f£.) Now
as for any Lie algebra, the dual space 4* carries a natural Poisson
structure which is non-degenerate on the co-adjoint orbits (see, ‘
e.g. Guillemin and Sternberg [1980]). In our case the orbit

through f € s* is l

0 ={n*f | n € s} (2.1

and so the Kirillov-Kostant symplectic form on 0f is given by
wf({f,h},{f,k}) = ( f,{h,k}) (2.2)

where {f,h} = Lth (Lie differentiation) represents a typical

tangent vector to Of at f. (See p. 303 of Abraham and Marsden

[1978] -- two minus signs have cancelled here.) The hamiltonian

vector field XF on 0f determined by a smooth function

F: A* + R satisfies

we(Xp (£),{£,k}) = dF(£)+{f,k} (2.3)

for all k € 4*. We claim that

=-¢g SE
Xg(£) =-'f, 22} (2.4)




Indeed, by (2.3) and (2.2) we need only check that

- <f,{%,k}) = dF(£){f,k} = (%—;,{f,k}) (2.5)

But (2.5) holds by integration by parts. In fact, the following

identity is of general utility:
- (£f,{h,k})=({£,k},h) (2.6)

Thus, the Poisson bracket on 4&* is given by

{F,G}(f) = mf(XF(f),xG(f)) (by definiticw)
= g 16,50, (£,55) (by (2.4))
= ( f,{%—’i, %f_.—}) (by 2.2)

We have proved:

2.1 Proposition. The natural Poisson structure on the dual of the

Lie algebra of the group of canonical transformations is given

by

{F,G} = If{%%. g—g}dxdp (2.7)

et

|
|
}-
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Remarks. 1. Notice that (2.7) coincides with the first term for

the Poisson structure (1.8) if p 1is replaced by v .

2. The bracket (2.7) automatically satisfies the Jacobi
identity since it coincides with the Poisson bracket on each of
the symplectic manifolds Of.

6

3. (a) If f 1is a delta density, 0_. '"coincides" with R .

f
(In a similar way, every symplectic manifold is a co-adjoint orbit.)
For f a sum of n delta functions, 0f is the phase space for

n particles. For continuous plasmas, f is taken to be a
continuous density, in which case 0f can be shown to be a smooth
infinite dimensional manfiold.

3. (b) If f is a density concentrated along a curve, then
Of is identifiable with all curves having a fixed action integral.
This is a reduced form of the loop space, a symplectic manifold used
in the variational principle of Weinstein [1978a]. If f is
concentrated on a Lagrangian torus, then 0f consists of lagrangian
tori with fixed action integrals. This is related to a variational
principle of Percival [1979].

4, By using an appropriate Darboux theorem, (see Marsden [1981],
lecture 1), one can show that 0f admits canonically conjugate
coordinates.

5. The Vlasov-Poisson equation is a hamiltonian system on 4&*
with energy function given by (1.7). If § evolves according to
(1.4) then (1.9) is true. This is a direct calculation, already
noted by Morrison [1980]. More can be learned from our derivation

of the Poisson structure: the equation (1.4) is tangent to each
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orbit Of, so it defines a hamiltonian system on each orbit. This
can be seen directly by noting that (1.4) can be written in terms of
ordinary Poisson brackets as g
i
of
3¢ = (£, H(E)} (1.4)

where
HEED) = g’ + 20,00,

Thus, the evolution of f can be described by

where f0 is the initial value of f, ft is its value at time t
and N, € S. In particular, if F is a function of a single real

variable we get the well-known conservation laws
I 6 F(f.) = constant in time
R t

by the change of variables formula and the fact that each n € § is
volume preserving. (These conservation laws are useful in proving
existence and uniqueness theorems since, as in the case of two-
dimensional ideal incompressible flow, they lead to a priori LP.

estimates.)




6. In Ebin-Marsden [1970] the convective term v+Vv in fluid

; mechanics led to a crucial difference between working spatially
(in the Lie algebra--the "Euler" picture) or materially (on the
group...the ''Lagrange" picture). Here there is no such term, since !
it would be given by {f,f}, which vanishes.

6. Analogies with fluid mechanics raise several interesting
analytical problems: (A) if & times a dissipation term associated

i with collisons is added, do the solutions converge to those of the

Vliasov equation as §+0? (Analogous to the limit of zero viscosity).

Standard techniques (Ebin-Marsden [1970], Kato [1975]) can probably

be used to answer this affimatively for short time. ‘

(B) Can the hamiltonian structure be used to study cha otic or
turbulent dynamics, as was done in, for example, Holmes and Marsden

[1981]°

(C) 1s the time-t map for the Vlasov-Poisson or Maxwell-Vlasov

equations smooth? See Ratiu [197¢] for a discussion of why this

question is of interest for the KdV equation.




§3. Maxwell's Equations and Reduction

Before coupling the Vlasov equation to the electromagnetic
field equations, we shall review the hamiltonian description of
Maxwell's equations. The appropriate Poisson bracket for the E
and B fields (the second term in (1.8)) will be constructed by reduction
(Marsden and Weinstein [1974]).
Let P + M be a given principal S1 bundle over a manifold M.
In our case M = Rs and P = S1 st. Let & denote the (affine)
space of all connections for this bundle. Let G denote the group
of gauge transformations; i.e. bundle automorphisms of P -+ M.

Elements of G may be denoted ew where ¢: M +R. There is a

natural action of G on & given by
(l?,4) » A + do (3.1)

Consider T*0t, the cotangent bundle of ¢ with the canonical
symplectic structure. Elements of T%Y may be identified with pairs
(A,E) where A 1is a connection and E is a vector field density
on M. The canonical symplectic structure w on T*X is given by

w((A;,E,), (A),E))) = f (Ey+A; - E;+A))dx (3.2)

M

with associated Poisson bracket given by

(F,G} = I SF 86 OE &G,
v A 8E © 3 3K




Maxwell's equations in terms of E and A are Hamilton's equations

on T*X relative to (3.2) for the hamiltonian
H(A,E) = ;—Ilﬁlzdx . ;-IldAlzdx

Now G acts on & by (3.1) and hence on T*{. It has a
momentum map J: TYX *g* where g/, the Lie algebra of G, is
identified with the real valued functions on M. The momentum map
may be determined by a standard formula (Abraham and Marsden f1978,

Corollary 4.2.11]) to be:
J(A,E)*¢ = f’\E'd@dﬂ-I@iv E*d) ™~
Thus J'l(O) = {(A,E) € T* |div E = 0} . By a general theorem on

reduction (Marsden and Weinstein [1974]), the manifold J'I(O)/G

has a naturally induced symplectic structure.

3.1. Proposition. We may identify J 1(0)/6 with
M= {(E,B) | div E = 0, div B = 0}. The Poisson bracket on M is_

given by
{F,G} = I \-g% curl '?B - %g— curl -g%‘:?dx
M
Maxwell's equations in the vacuum are Hamilton's equations for .

H(E,B) = 3 IIElzdx . %—Ilslzdx

12

(3.3)

(3.4)

(3.5)

(3.6)
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Proof. The identification between J'l(O)/G and M is by the
equation B = curl A. (We assume M has trivial first cohomology,
as is the case here; for Yang Mills fields, B is the '"curvature”
of A.) Let F,G:M+R. We may regard F and G as G-invariant

functions E, G on T*Y by B = curl A. Since Poisson brackets push

down under reduction we have
{?.3}0 = {F,G} (3.7)

whers 0 means the induced function on M. Now in the canonical

structure on T*OU we have

A 6F 8G _ G 6F .
(F,G} = jnﬁ "I/ dx (3.8)

The chain rule and the definition of functional derivatives give the

identity
Ig-;‘-A'dx-I%Eo curl A'dx=- IA'curl g—:-dx (3.9)

Substitution of (3.9) in (3.8) gives (3.5). The rest is readily
checked. B

This formalism generalizes readily to Yang-Mills fields and
to these fields coupled to gravity; see Amms [1979].
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§4. A General Construction for Interacting Systems

The work of Weinstein [1978b] on the equations of motion for a
particle in a Yang-Mills field uses the following general set-up.
Let m: B+ M be a principal G-bundle and Q a hamiltonian G-space
(or a Poisson manifold which is a union of hamiltonian G-spaces).
Then G acts on T*B and on Q, so it acts on Q x T*B . This action

has a momentum map J and so may be reduced at O0:
» -1
QxT B)o =J "(0)/G

The reduced manifold carries a symplectic (or Poissom, if Q was
a Poisson manifold) structure naturally induced from those of Q
and T*B.

For a particle in a Yang-Mills field one chooses B to be a
G-bundle over 3-space M and Q a co-adjoint orbit for G (the
internal variables). The hamiltonian is constructed using a
connection (i.e. a Yang-Mills field) for B. For electromagnetism

1

G=S and Q= {e} is a point.

For the Vlasov-Maxwell system we choose our gauge bundle to be
B+ M

where M = {(E,B) |div B = 0} , with G=G the gauge grouwp
described in the previous section.
We now choose S to be the group of canonical transformations

of T'M (= Rs). We can let Q be eitnar the symplectic manifold

P ———

——
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T*S or the Poisson manifold 4*. It remains to specify an action
of G on T*S. Weset e=1 and let G act on S by
(¢,n) » n + ddomon 4.1)

where : R6 -»]RS is the projection (x,p) » x; i.e. we translate the

momentum space at x by d¢(x). A simple computation gives:
4.1. Lemma. The action of G induces an action on s4* given by

(eu,f)o-v fcv-rd¢

where Td¢ €S is translation by d¢ . The momentum map J: &* + G*

for this action is given by

J(£)e¢p = - Jf(x.pn(x)dxdp

To construct the interaction space we need to compute the
momentum map for the corresponding action of G on 4* x T*® given

by

(e} (£,4,E)) » (£o14y.A + 40,E) (4.2)

4.2. Lemma. This momentum map is given by




J(£,A,E)*¢ = I £(x,p)o(x)dxdp + JE'd¢dx
X,p

= I pf(x)¢(x)dx - I div E ¢(x)dx
x

X

Again this is a straightforward calculation. Our reduced

(interaction) space J'I(OJ/G may now be identified with
WM = {(£,B,E) | div E = p., div B = 0}

where

3710y = {(£,A,B) | aiv E = p}.

16

(4.3)




§5. Computation of the Poisson Structure

By reduction, tﬁe space VM defined by (4.3) has a natural

Poisson structure; we now compute it.

5.1. Theorem. The Poisson structure on VM is given by

{F,G} = f g-; g%}dxdp

+ L(%% curl %ﬁ- %g curl 3-5)

+ [I (g— %_;)(a a ldiv gg)dxdp

- I . (3 55)-;(‘3 div T)udp]

Proof. Having identified J'I(O)/G with UM , one checks

(s.1)

that the natural projection m: J'I(O) + UM is given by

n(£,A,E) = (for, , curl A, E) (5.2)

“A
where

6, = -A"1(div A) (5.3)

and, as before, T is translation by d¢, .
do, A

sinatnifiio
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Next, define a projection map
X: 8% x T + J-1(0); X(£,AE) = (£,A,E + Vo, o) (5.4)
where ¢, . = A} (o. - div E)
f,E £ *
Now if F,G :UM + R, we can extend F,G to maps on 4* X T
by
F = FolloX, G = GolloX (5.5)
If we denote the map [Ilox by
(£,A,E) » (2,B,E)

we have, from (5.2) and (5.4),

£ = for

B=curl A (5.6)

E-£+v¢f5

Since J'I(O) is co-isotropic, Poisson brackets can be computed
in 4* X T*), and the answer is independent of how F and G are

extended to &* X T%{ . We chose the specific map X to effect

the extension explicitly.
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. Using the definition of functional derivatives and the chain
rule, one finds the following relationships

6F _SF -1 SF
= OF _ p°1 g4y SE
L2

6

2%,

.-I 3 s taiv (5"“ p - curl &E (5.7)
P 6f a3p éB

6F _SF 3 §F

= - 50, di (-1
8" s X X ot

Substituting (5.7) into the Poisson structure on 4* x T*J obtained

from that on 4* (see 2.7) plus that on T*X (see 3.2), i.e. into

o e[ ol Ll [(F 5 H 8L (5.
X,p b
we obtain formula (5.1). B

Note: In carrying out the substitution of (5.7) into (5.8), some
cancellation occurs since %(- A;ldivxv is the gradient part of V,

which is Lz-orthogonal on R to divergence-free vector fields.

The Poisson structure (5.1) automatically satisfies the Jacobi
identity, since it is the structure associated with reduced manifolds,

which are symplectic.
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The hamiltonian for the Vlasov-Maxwell equations in the momentum
space representation is the function H on 4* x T%! given by

H(E,ALE) = I 5=(p-A) £ (x,p)dxdp + %I (E2 + (curl A)})dx (5.9)
X

x,p
This hamiltonian is gauge-invariant; i.e. it is invariant under the
action of G given by (4.2). Thus H produces a well-defined
hamiltonian H0 on UM . We find that

2
Hy(£,B,E) = I B £(x,p-v x A" 1B)dxdp + %sz + B)dx (5.10)

X,p

5.2. Theorem. The hamiltonian (5.10) in_the Poisson structure (5.1)

yields the Vlasov-Maxwell equations in momentum representation.

This can be checked directly; however, to facilitate comparison
with Morrison's results we shall transform our Poisson structure to

produce a velocity space verson of 5.2,




§6. Transformation to Velocity Representation

To compare our bracket (5.1) with Morrison's (1.8), we transform
(5.1) to velocity space. Let us denote the space defined by (4.3)

by UMP to emphasize that f is a density on position-momentum

space. We write VMV for the corresponding space (4.3) for f a
density on position-velocity space. We shall take e=1, m=1

for simplicity. Define the transformation

P : VMV + VMP
by

(£,B,E) » (£,B,E)
where

£(x,p) = £(xp + ¥ x A"1B(x) )
B=B (6.1)

and E=E
6.1. Theorem. The transformation (6.1) transforms the bracket (5.1) u

to (1.8) with the last two terms replaced by (1.10). Both brackets

yield the correct equations of motion; i.e. (1.1)-(1.3) imply that

(1.9) holds.
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Sketch of Proof. We make these remarks: (a) Transforming the

first term of (5.1) produces the first term of (1.8) plus the ‘
i
term (1.10). This is seen using the chain rule and the equation !

p + vxa'lp = v.

(b) The second and third terms of (5.1) both produce extra

terms via the chain rule. These recombine to give the second and
third terms of 1.8\

(c) In the special case in which G is the Hamiltonian (1.6},
both (1.10) and the last term of (1.8) give the same expression. This

is why both structures give the same equations of motion. B




§7.

Additional Remarks

(A)

covectors to vectors.

given by

|

P

P

divergence free part.

*
f x
v

==

p

in momentum representation, where P

Poisson structures may be viewed as bundle maps taking

(In this guise, they are called "cosymplectic

structures.”) Viewed this way, Morrison's bracket is the map

(f*,B*,E*) » (6£,6B,SE)

Sf = -{£,6*} - g-v":-e" - g% (v x B¥)

(

v)f'dv - curl E*

8E = J 32 f*dv + curl B*
v
while our cosymplectic structure is given by

§f = -{£,6* + p~} div E*}

§B = - curl E
SE -Pf £e %—fd'p + curl B*
P

is the projection to the

In velocity representation, (7.2) becomes

(7.1)

(7.2)
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66 = -{£,6% « A7) div E*) - gvf—@? x 8)
6B = - curl E (7.3)
§E = Jp %§ f*dv + curl B*

Thus (7.1) and (7.3) differ only in the terms

{ 3
v x B* verses éﬁ x B
v

From (7.2) we see explicitly that &f is tangent to co-adjoint

orbits in S. (This fact is obscured in velocity representation.)
On the other hand, when Morrison's structure (7.1) is transformed
to momentum space, §f is not tangent to co-adjoint orbits of S.

(B) A "cold plasma" may be defined as one for which f is a
§ measure supported on the graph of a vector field p = 6(x). This
property persists as f evolves by composition with a canonical
transformation. In fact, the property that 6 is curl-free is also main-
tained, since this corresponds to the graph's being a lagrangian
submanifold. After a long time, the submanifold may no longer be
a graph. This is the "shock'" phenomenon, leading to multiple
streaming (Davidson [1972] .) We remark that Maslov ([1976], p. 44)
has already noticed this evolution of lagrangian submanifolds for the

. Vlasov-Poisson equation.

(C) We would like to understand in general terms the contraction !

of one hamiltonian system to another. Examples are the passage to the
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restricted three body problem from the full three body problem and

the limit ¢ + » to get the Vlasov-Poisson equation. It would also
be of interest to realize both the Vlasov-Maxwell and MHD equations
as limiting cases of a grand hamiltonian system constructed from
the Boltzmann equation.

(D) We have remarked that our formalism readily generalizes
to Yang-Mills interactions. Is such a hamiltonian structure useful

in nuclear physics for Yang-Mills plasmas?
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