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Abstract — Tracking of ground targets presents a number dt is “split”, and each track uses a “fragment” of the mea-
challenges. Target trajectories meet various motion constraintsurement. Linear Multitarget (LM) tracking is a procedure
Substantial non-homogenous clutter is usually present. In mulfsr converting single-target tracking in clutter into multi-
target Sltuatlc_)ns measurement aSSIQnment. may_ be Computatlﬁlrget tracking in clutter by mod|fy|ng clutter measurement
ally challenging as the number of operations increases expgansity according to predicted measurement density of the
nentially with number of tracks and number of measurementSy - fracks. In this paper, the LMIPDA extension to track-
LMIPDA-IMM ai i luti h i . . ) A . . .
aims to provide a solution to these issues Usfnﬁg multiple maneuvering targets in clutter is considered.

of the IMM approach allows tracking ground targets with motion ) T .
constraints and/or maneuvers. LMIPDA calculates the probabil- Recently, automatic track initiation and maintenance for

ity of target existence for false track discrimination to enable a@® Single maneuvering target in clutter was considered and
tomatic track initiation and termination. The robust data assocRn IPDA-IMM filter was proposed in [8]. Here we extend
ation properties of LMIPDA are further enhanced by the use ofthis approach to tackle automatic track initiation and main-
clutter map. LMIPDA provides multi-target data association witlenance of multiple maneuvering targets in clutter. By con-
number of operations linear in the number of tracks and the nusistently combining LMIPDA with an IMM filter, a linearly
ber of measurements. Simulation studies illustrate the effectig-alable LMIPDA-IMM algorithm (the number of opera-
ness of this approach in an environment of heavy non-homogengss linear in the number of tracks and measurements) is
clutter. derived. The non-parametric version, or LMIPDA-IMM,
Keywords: Tracking, Probabilistic data association (PDA), Inassumes no a priori clutter measurement density informa-
tegrated PDA (IPDA), Linear-Multitarget, LMIPDA, Interactingtion. The parametric version, indicated by suffix MAP, as

Multiple Model (IMM). LMIPDA-IMM-MAP [9], uses a priori spacial clutter den-
sity knowledge. Both are presented in this paper.
1 Introduction This paper is organized as follows. Following the intro-

. . . . uction, the problem definition and modelling issues are
Tracking multiple targets in clutter is a well researcheg P g

problem. A range of recursive Bayesian techniques "ke?nsidered in section 2. The LMIPDA and the IMM ap-
- ) A . imati in th text of dat iati I ith
Joint Probabilistic Data Association (JPDA) [1, 2, 3, 4p oximations in the context of data association along wi

. e o e LMIPDA-IMM specific equations are considered in
Joint Integrated Probabilistic Data Association (JIPDA) .. : . . . . i
[5, 6], and Linear Joint Probabilistic Data Associatio ection 3. Simulations are considered in section 4 and con

(LJIPDA) [7] techniques are proposed in literature to a Ausions are drawn in section 5.

dress this problem. The later techniques address automatic Lo .
tracking initiation and maintenance, along with issues & Problem Description and Notation

multi target _data asspmatlon in clutter. LJIPDA IS a mUItI\'/Ve assume that the trajectory of the target can be described
target tracking algorithm, first presented in [7] as a ne any time by one of\/ dynamic models. This allows

approach to multi target tracking in clutter using the PDt acking of maneuvering targets. The dynamic models and

approxmatlon._ JIPDA cor_15|ders "?1” feasible meagur_emeggnsor measurement processes are described by the follow-
to-track allocations to achieve optimal data association p‘ﬁ{g equations

formance. The number of operations for JIPDA grows ex-
ponentially with the number of tracks and measurements. 2, = F(My)zp—1 + ve(My)

For LJIPDA the number of operations is linear in the num- (1)
ber of tracks and measurements, with apparently negligible Y = Hi(Mi)zy + wi (My)

performance penalty compared to JIPDA [7]. In LJIPD here, at timek, My — [1,2,---,M] is the dy-

when a measurement can be allocated to multiple trac Simic/measurement model, is the track statey, is the

LThis research has been supported by the Centre of Experfl@@asurement}, (1) is the state propagation matrix, and
in Networked Decision and Sensor Systems and funded by thk. (1)) is the measurement matrix. Process nojgé\/;,)
Defence Science and Technology Organisation Australia and measurement noisg (M}) are zero mean white and




uncorrelated Gaussian noise sequences with covariance ma- —the a priori measurement pdf function

trices Q (M) and R, (Mj) respectively. In the target Pt (2| My, = 0, ZF1).
tracking applicationsH;, and Ry are often model indepen- )
dent. e Measurement set delivered by the sensor at time

We model changes in target trajectory as a Markov Chain 1€ measurement set may be empty.

with given transitional probabilities, denoted by ]
3.2 Filter Output

For each track, filter output at timet consists of:

In the cluttered environment, the sensor will return mea- A posteriori probability of target existendg‘k, deliv-
surements created by zero or more targets as well as zero or ered by the LMIPDA part of the algorithm. It is then
more clutter measurements at each scan. The target and |;5ed for confirmation or termination of tracks.

the clutter measurements are referred to as the true and

false measurements respectively. True measurements are Track state estimate and estimate covariaﬁg;@,and
unknown and each is present in the measurement set with plz‘k, delivered by the IMM part of the algorithm.
probability of detectionPp, which may vary from target to

Tn,0 = P{]\/[k: - Q‘Mkfl = 7]}77779 S [17 o aM] (2)

target. e Filter inputs for timek + 1, enumerated in Section 3.1,
Denote byz; the set of validated [4] measurements at ~ ¥j,;, and, for each IMM modeb, ;. (0),
time k, and byzg;; (¢ = 1,---,mg;my, > 0) thei-th Plﬁﬂlk(e),uzﬂw(e) andp® (21| Myy1 = 0, Z%).

measurement of;,, wherem,, is the number of validated
measurements at timie Denote byZ* = 2, |JZ*~! the 3.3 Validation of Measurements

set of all validated measurements, i.e those candidate true o . .
measurements, up to and including tite The validation of measurements is referred to as “gating”.

Given the dynamics Eq. (1) and measuremefits we A Subset of sensor measurements is selected in order that, if
aim to estimate recursively thee posteriori probability of the target exists and is detected, the target measurement will
target existence;,, and the state estimate and its errdre selected with gating probabilitf;. Gating is done for

covariancegy, and Py, respectively. each track separately; thus in the equations of this Section,
the track index will be omitted.
3 LMIPDA-IMM Algorithm Description Gating is initially done for each IMM model separately,

then the results are combined into a single validation gate
The LMIPDA-IMM is a recursive algorithm which com-[6, 10, 11]. The predicted measurement and innovation co-
bines multi-target data association algorithm (LMIPDAYariance matrix for each model is
with maneuvering target state estimation implemented us- R R
ing IMM algorithm. The IMM consists of a filter (usually 21(0) = Hy(0)2y)-1(0); 3)
Kalman or extended Kalman) bank, one for each possible S(0) = Hy(0) Pyji—1(0)Hi,(0)" + Ry, (6).

target trajectory model. o _ '
LMIPDA-IMM algorithm description is presented be-A validation gate is constructed around the predicted mea-

low, denoting current time by, defined as sensor measureSurement; (¢), so that the probability of the true measure-
ment sampling time. For reasons of clarity and simplicitynent (if the target exists and is detected) falling in the gate
the following expressions will assume that each track higsFc- We select the validated measurements (i.e those
the same gating; and detectiorPp probabilities. Itis a inside the validation gate),(¢#) and calculate the volume

trivial exercise to add track indices to these quantities. Vk(f) of the validation gate for each = 1,---, M. The
track validation gate is the union of validation gates for sep-
3.1 Filter Input arate models. The validated set of measuremgnts the
union of sets of validated measurements forddlimodels,
For each track, filter input consists of: M

i.e zx = U 2x(n). One possible approach to calculating
e Predicted probability of target existenag‘k_l, de-
livered by the LMIPDA part of the algorithm in the
previous recursion.

n=1
the volume of the combined validation gate is presented in
[11]. In this paper we follow the approach first presented in
[5]. For non-empty set;, we use the following approxima-

e Predicted state for each IMM modgldelivered by the tion:
IMM part of the algorithm in the previous recursion:

M
my > Vi(n)
— state prediction probability density function _ n=1
(df) p(zx|My = 6,2%1), described by V¢ = M| T Vi) V(M) 0 (4)
its mean !, ,(f) and its error covariance n§1mk(n>

P2 (0),
wheremy(n) is the number of measurements:n(n), and
— predicted model state probabilify;,, ,(6) my, is the number of measurements:;jn Whenz;, is empty
PYM;, =6|Z¥ '} and (my = 0) the volume of the validation gate is not used and

1>



therefore its computation is not considered. The a priori If the estimate of clutter density! is known a priori,
measurement pdf of each selected measureirisnt e.g when using a clutter map [9], we consider the paramet-
ric versions of tracking algorithm, which we denote by the
suffix “MAP” to obtain for example LMIPDA-MAP and
LMIPDA-IMM-MAP.

In the absence of the a priori clutter density knowledge,
for each mode# where we consider the non-parametric version of the tracking al-

_ . gorithm by assuming homogenous clutter density within the
Pz My = 0, 2571) = N (215 24(0), Sk (0) validation gate of track and calculate

()

pi(6) = P (ki My = 0, Z57Y) 215 € 24(0)
! 0 otherwise

are Gaussian with mea#),(6) and covariancesy(¢) cal- it
_culated in Eq. (3). For any track a priori measurement pdf ol = ?]:f
s
| M i 7 (©)
2 (il 2 = Y e m(n), (6) . :
Di = P\ Zk,i = 1l$k|k71 n)pi(n); mk:Z(H(l_Pi))
n= i=1 s=1

3.4 Linear Multitarget IPDA (LMIPDA) Filter where ! denotes the mean number of selected clutter

LMIPDA is a multi-target tracking filter, submitted to [12] r_neasurements. If_the tracks are far apart,' i.e their valida-
as a new approach to multi-target tracking in clutter. Ofion gates do not intersect) = pj for all i and¢, and
timal approach to multi-target tracking in clutter considersMIPDA reverts to IPDA. _

all feasible measurement-to-track allocations to achieve op--MIPDA input from previous scan consists of the pre-
timal data association performance; under IPDA assunfggted probability of target existencey, ;.

tions it is JIPDA [6]. The number of JIPDA operations -MIPDA input from IMM of previous scan , for each
grows exponentially with the number of tracks and med¥M model, consists of the predicted model probabili-
surements. LMIPDA has the number of operations whidteS: #4jx—1(¢), and predicted state pdf, parameterized by
is linear in the number of tracks and the number of meds;,_, (¢) andP;, _, (9), from which measurement predic-
surements, with apparently negligible performance penattyn pdfpt (2| M = 6, Z*~1), parameterized by (¢) and
compared to JIPDA [12]. St (6) are calculated.

LMIPDA is an IPDA filter to which Linear Multitarget LMIPDA Step 1 is the measurement selection (gating).
(LM) procedure has been applied. LM reduces the com-LMIPDA Step 2 is the probability of target existence
putational complexity of multi target tracking in clutter byand model probabilities update:
eliminating the measurement to target assignment step en-

tirely. Instead, when a single target tracking filter, in this mi L(6)
is appl i 5L(0) = PoPe (1= Py,
case IPDA, is applied to a track, the clutter density at each k(0) = Pp G( Ol )7
measurement point is modified by the pdf of measurements i=1
originating from the neighboring tracks. The LM proce- mj, ot
dure permits use of other measurement features, such as 6, = PpPa(1— Z Q—Zt),
amplitude, [12]; this is omitted here for reasons of clar- i=1 "1
ity and is trivial to add in the fashion of [12]. In other (1= 05) 0k
i, t |k—1
words, other tracks are treated as additional clutter sources wk|k = T sttt (10)
; : - i : 1 5k¢k\k_1
and LM achieves multi—-target tracking capabilities using ’
single—target tracking computational resources. Denote by Bt () = 1- PDPG;
p! the clutter density in the validation gate of tracht co- ’ 1—0,(0)
ordinatezy, ;, then the a priori probability thatth measure- t(g) — PpPs  pi(f) . 0:
ment is the true measurement for trackiven single track Bri(0) = 1-6L(0) ' Qb ¢ >0
tis ’ +
/ot t ot 1—0,(9)
Pl = PDPGi/Jziucqi]t)Z/pl : @) puggi(0) = /lk|k—1(9)w
M
/ot
1; pi/Pi LMIPDA output for IMM  consists of data association
iliti t ) — “ ..
wherep! is defined in (eq. 6). The modified clutter densit)'g’r()b"]‘b'“t'eS for each model; ;(6),¢ = 0,---,my, and

model probabilitiegy; , (6).
LMIPDA output for next recursion consists of the
T s predicted probability of target existence at tife- 1, de-
O =pi+ ) PiT— ps (8) noted byy; . We model target existence as a Markov
g process with known transition probabilities, and distin-
guish betweemMarkov Chain OneandMarkov Chain Two
whereT is the number of track€2! is used instead of clut- [13, 14, 15, 16, 17]. Markov Chain One models the situa-
ter densityp! when calculating data association probabilition in which whenever the target exists it is detected with
ties for tracks [14]. the probability of detectio®p. Markov Chain Two models

for trackt at the point of measuremesy ; is

s=1
s#t



the situation in which if the target exists it may be temporak-
ily invisible (undetected). In this paper we use the Markov R M R
Chain One model for propagation of the target existence, Tkl = Z“klk(n)xk\k(”)
i.e the predicted probability of target existenqz&gﬂlk is =1
calculated as M (14)
Py = Z 1) (1) (Propre (m)+
hrape = Pra¥ige + P (1 — Yhpp), (11) =1
. . T N AT
+ Zrpe (M) gk (n)’) — Th|k L)k

IMM Step 4: mixing calculates state estimates at time
given the model at time + 1, (0™ ) and Py, (6™).

wherep!, andpl, are given transition probabilities. The
extension to Markov Chain Two is straightforward and ig
not presented in this paper. The supersctiptas conve-

nient to differentiate between different tracks, but we drop M
it hereafter. pe1(0) = ot (n)
n=1
3.5 The IMM Filter 0k 1 (1)
fiofi+1(n, 0) = ————=
Hk+11k(0)

The IMM filter [18] consists of a bank of (usually
Kalman/extended Kalman) filters, one for each model. It " .
updates a posteriori state estimates and their covariances Trie(0™) = Z“k\kﬂ(”ﬁ)xk\k(”)

for each model, as well as the relative model probabili- =1

ties. Mixing of estimates of models approximates random M

switching between models. IMM calculates the track state Pi(0™) = Z“k\kﬂ(n» 0) (Piye (m)+
estimate and its covariandg,;, and P;, as the combined n=1

state estimate and the covariance for each model. The IMM 2k () Erge (1)) — Eg (0™ k11 (0™)
part of LMIPDA-IMM has the following steps.

IMM Stepl: initialization starts with the state pre-
diction i1 (¢) and error covariance for each model, A .
Py—1(0). From LMIPDA we obtain the set of validated pklkg1(n,0) = P{My, = | My11 = 6,27}
measurements;,, the set of model data association proq-S the probability that the model at tinieis 7,
abilities g ;(#) and the a posteriori model probabilities[he model at timé: - 1 is 6.

M (15)

wherey;, 411 (0) is the predicted model probability, and

given that

furfe(0)- o i IMM Step 5: forward prediction calculates the pre-
IMM Step 2: data association updateof state estimate i ted state and error covariance for each model
2y, (0) and error covariancé®y,, (¢) for each IMM model

using data association estimates. The state estimate is ap- Zx+1[k(0) =Fk+1(0)25x(0™)
proximated by a single Gaussian probability density func- p (0) =Foi1(0) Py (0™) Frop1 (0)T+ (16)
tion [14, 19] with meariy, ,(¢) and covarianceé; (6): ek +—£21k (g)‘k i

+1

IMM output for LMIPDA  consists of the state predic-
tion mean and covariance and the prediction of the model
probability for each model:

Ere(0) =D Bri(0)ini11 (0)
=0

P (0 . 0) (P, 0 (12)
el )—iz:;ﬂk,i( ) (Pijie (0)+ Trp1(0),  Prop1e(0),  pegrjr(0) (17)
+ fﬁk,uk(e)flﬁ,uk(@)T) - i‘k|k(9)=’%k\k(9)T 4 Simulations
wherezy, ;,.(0) and Py ;1. (6) for i = 1,--- ,my, are state Simulations are performed to compare three algorithms:

means and covariances calculated assuming that-the IPDA-IMM presented in [8_], LJIPDA-IMM and LMIPDA-
measurement is true. Foe= 0, i.e when there are no mea- /MM presented here, in the environment of non-

surements, we have homogenous clutter and multiple maneuvering targets with
crossing trajectories. Two targets are simulated as shown in
Tr01k(0) = Trjr—1(0) (13) Fig. 1. Both trajectories consist of 8 segments, 10 seconds

each:

Preok(0) = Priy—1(6),

1. uniform motion with constant velocity d8 m/s for

where &y, (0) is the state prediction an#y, ,(0) is target one and7.12 m/s for target two,

the corrected state prediction error covariance matrix. For a
gating probabilityP; > 0.99 this is approximately equalto 2. exponential acceleration motion, with acceleration
the state prediction error covariance matfly;_ (¢)[10]. a = vpaexp(at), wherev, is velocity at the start of

IMM Step 3: output combination estimates the state of the segment; denotes time since segment start, and
the tracker by combining the state estimates for each model. « = 0.05 s~! for the first targete = 0.04 s~ for the
The result is used as an output of the tracking filter at time second,



8.

0
. left turn with angular velocityr/9 rad/s for the first @= 41 0 0 %T?’ T2 0
1
0

. exponential deceleration, with acceleratian = Transition probability matrix of IMM models is:

voaexp(at), wherew is velocity at the start of the
. . 0.91 0.03 0.03 0.03
segment} denotes time since segment start ane- 0.03 091 003 0.03

—0.05 s~! for the first targetp = —0.04 s~ for the II = 18)
second, 0.05 0.05 0.9 0

0.06 005 O 0.9

. right turn with the angular velocity of /9 rad/s for The state vector is modelled as

the first targetyr/8.8 rad/s for the second,

. . e T
r=(¢ € ¢ ¢ & (19)
. . . - 1 . .
- exponential accelera_tllon with = 0.05s7" for the \yhere(¢, () denote Cartesian coordinates. All models have
first targeta = 0.06 s™ for the second, white plant noise with covariance matrix:
. exponential deceleration with = —0.05 s~! for the %T“ irts o 0 1717
first targeta = —0.06 s~! for the second, ;1% T 0 0 T

31 0 o0 4Tt 373

N|—=
—oNNOoO
(V]

(20)

target,=/10 rad/s for the second, and ir? T 0 0
o o i T

uniform motion. N
where sampling interval’ = 1 s.

Targets start moving at the same time and approach eacffrack existence is modelled by Markov Chain One with
other at~ 21 degrees as shown in Fig. 1. For this scenarf§2nsition probabilities

the target trajectories intersect at the same time twice. P11 = 0.98 andps; = 0. (21)
A two dimensional radar surveillance system is modelled.
B T “Ciutter The simulated measurement noise had standard deviation
w08 By = }::g:i; I of 5 m in range and mrad in bearing at the rangekm.

Probability of target detection is chosen toBg = 0.9.
Tracks are initiated using measurements at each time
step, using the two-point differencing track initialization al-
gorithm [13, 9]. The initial probability of target existence
for each track is calculated using algorithm in [9]. Both true
ol Ay 3 L and false tracks were initiated and the probability of target
e TR T S existence with fixed track confirmation and track termina-
e il A . R tion thresholds was used to confirm and terminate tracks.
The thresholds and initial probability of target existence for
each algorithm were calculated separately to optimize the
Fig. 1: Test Tracks and Clutter Distribution performance.
Each simulation experiment consisted of 500 runs. The

53003 ." Heavy Clutter Re

52501  ®

5200

0 % | % 4 L L R =y K L
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

Clutter measurements are generated in clusters as sh@¥@raged position and velocity RMSE (root mean square er-
in Fig. 1. We simulated two rectangular regions of heaV{p") are represented in Fig. 2 for target one and Fig. 3 for
clutter. The rest of the clutter is light and is distributed unfarget two. The number of confirmed true tracks is repre-
formly in the surveillance area. Every second the numbggnted in Fig. 4. The number of confirmed false track scans
of clutter measurements is selected from a Poisson disfRl ach algorithm is< 24 for all runs.
bution to maintain average clutter densty > m~2 in the One of the practically significant improvements achieved
light clutter regions ande=4m~=2 in the heavy clutter re- Py LMIPDA-IMM is its ability to retain larger percentage
gions. The algorithms had no a priori knowledge of cluttélf tracks than LIIPDA-IMM and IPDA-IMM at instances
densities; i.e the non- parametric versions were applied. involving tracking targets with near or crossing trajectories

IMM filter consists of four models of target motion: N @n environment of heavy and non-uniform clutter and

1.

significant maneuvers while maintaining the low confirmed
Uniform motion: target moves on a Straight line Wiﬂﬁalse track statistics (Flg 4) When the tracks are well sep-
constant velocity. arated, the RMSE differences are negligible between algo-

rithms, as expected. LMIPDA-IMM shows a small RMSE

. Acceleration: target moves with constant acceleratidfcrease in target crossing situations; IPDA-IMM on the

other hand shows a large increase in RMSE during the

. Target is executing a left coordinated turn with corfarget crossing situations. When targets (and tracks) are

stant angular velocity = 7 /9 rad/s. well separated, LMIPDA-IMM matches the performance of
IPDA-IMM. During target crossing situations multi-target

. Target is executing a right coordinated turn with cortracking capabilities of LMIPDA-IMM improve the track-

stant angular velocity = /9 rad/s. ing performance significantly.
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5 Conclusion

A new recursive tracking filter, the LMIPDA-IMM, for au-
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Fig. 4: Number of Confirmed True Tracks

LMIPDA-IMM we have demonstrated that it is possible to
improve the true track confirmation statistics while main-
taining the false track confirmation statistics. In addition,
RMSE performance of LMIPDA-IMM - especially in sit-
uations involving multiple crossing maneuvering targets in
dense non-uniform clutter - is significantly better than both
LJIPDA-IMM and IPDA-IMM.
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