
Sun Microsystems, Inc.
www.sun.com

Porting Guide

Sun Java™ Wireless Client Software 2.2

Java Platform, Micro Edition

December 2008

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, HotSpot, J2ME, J2SE, J2EE, Java Developer Connection, Java Community Process, JCP,
Javadoc, JDK, JavaCall, Java Card, phoneME and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc.
or its subsidiaries in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

OpenGL is a registered trademark of Silicon Graphics, Inc.

The PostScript logo is a trademark or registered trademark of Adobe Systems, Incorporated, which may be registered in certain jurisdictions.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l’adresse http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux États -
Unis et dans d’autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Droits du gouvernement des États-Unis - logiciel commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des elements développés par des tiers.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, HotSpot, J2ME, J2SE, J2EE, Java Developer Connection, Java Community Process, JCP,
Javadoc, JDK, JavaCall, Java Card, phoneME et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc., ou ses filiales, aux États-Unis et dans d’autres pays.

UNIX est une marque déposée aux États-Unis et dans d’autres pays et sous licence exclusive de X/Open Company, Ltd.

Intel est une marque déposée de Intel Corporation ou de sa filiale aux États-Unis et dans d’autres pays.

OpenGL est une marque déposée de Silicon Graphics, Inc.

Le logo PostScript est une marque de fabrique ou une marque déposée de Adobe Systems, Incorporated, laquelle pourrait à déposée dans
certaines juridictions.
Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en matière de
contrôlé des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous embargo des États-Unis, ou
vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de maniéré non exclusive, la liste de personnes
qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par
la législation américaine en matière de contrôlé des exportations et la liste de ressortissants spécifiquement désignes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITÉ MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIÈRE OU A
L’ABSENCE DE CONTREFAÇON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xvii

1. Introduction 1

Packages and Tools 3

2. Overview of the Porting Process 5

The javacall Interfaces 5

Getting Started 6

Part I Porting CLDC and MIDP

3. Porting the Logging Facility 9

APIs To Be Ported 9

Description 9

Quick Workaround 10

4. Porting the Memory System 11

APIs To Be Ported 11

Background 11

Selected API Descriptions 11

Answers to Common Questions 12

Quick Workaround 13
iii

5. Setting Up Time and Timers 15

APIs To Be Ported 15

Background 15

Preparatory Tasks 16

Selected Timer API Descriptions 16

Selected Time API Descriptions 17

Answers to Common Questions 17

Quick Workaround 18

6. Porting the File System APIs 19

APIs To Be Ported 19

Background 19

Preparatory Tasks 20

Selected API Descriptions 20

Answers to Common Questions 21

Quick Workarounds 21

7. Porting the Display (LCD) APIs 23

APIs To Be Ported 23

Background 23

Preparatory Tasks 24

Selected API Descriptions 24

Answers to Common Questions 24

Quick Workaround 25

8. Porting for Event Handling 27

APIs To Be Ported 27

Background 27

Selected API Descriptions 29

Answers to Common Questions 30
iv Porting Guide • December 2008

Quick Workaround 31

9. Porting for Keypress Events 33

APIs To Be Ported 33

Background 33

Preparatory Tasks 34

Selected API Descriptions 34

10. Porting Runtime Lifecycle Events 35

APIs To Be Ported 35

Background 35

Preparatory Tasks 36

JavaTask() Entry Point 36

Passing Events To the Java Platform 36

Selected API Descriptions 36

11. Milestone One: Running a ROMized Interactive MIDlet 39

12. Porting Basic Networking and Socket Communications 41

APIs To Be Ported 41

Background 41

Preparatory Tasks 42

Sequence of Operation 42

Common API Parameters 43

Selected API Descriptions 44

13. Porting for Advanced Networking and Socket Communications 47

APIs To Be Ported 47

Background 47

Selected API Descriptions 48

The javacall_network.h APIs 48
Contents v

The javacall_socket.h APIs 49

14. Porting the Font System 51

APIs To Be Ported 51

Background 51

Definitions of Font Measurements 52

Selected API Descriptions 52

Font Attributes 52

Font Measurements 53

Reporting Font Width 53

Drawing the Font 54

Answers to Common Questions 57

Quick Workaround 58

15. Porting the Annunciator 59

APIs To Be Ported 59

Background 59

Preparatory Tasks 60

Selected API Descriptions 60

Answers to Common Questions 61

16. Porting Predictive Text Input Support (Optional) 63

APIs To Be Ported 63

Background 63

Preparatory Tasks 64

Selected API Descriptions 64

Initialization 64

Keypress 65

Traversal 65

Answers to Common Questions 66
vi Porting Guide • December 2008

Quick Workaround 67

17. Porting the Native Image Decoder (Optional) 69

APIs To Be Ported 69

Background 69

Selected API Descriptions 70

Answers to Common Questions 70

Quick Workaround 70

Part II Porting Optional JSRs

18. Porting JSR 75: File Connection APIs 73

APIs To Be Ported 73

Background 73

Description 74

Preparatory Tasks 74

Directory Operations 75

Optional APIs 75

File/Directory Access API 75

Optional APIs 76

File System Roots and Storage Directories API 76

Optional API 77

Root Additions/Removals Notifications 78

Answers to Common Questions 78

References 78

19. Porting JSR 75: Personal Information Management APIs 79

APIs To Be Ported 79

Background 79

Description 80
Contents vii

Preparatory Tasks 80

Lists and Items APIs 80

Fields and Attributes APIs 81

Categories APIs 81

Quick Workaround 82

References 82

20. Porting JSR 120: Short Message Service APIs 83

APIs To Be Ported 83

Background 83

Preparatory Tasks 84

Selected API Descriptions 84

Support for Message Segments 85

Answers to Common Questions 85

Quick Workaround 86

References 86

21. Porting JSR 205: Multimedia Message Service API 87

APIs To Be Ported 87

Background 87

Description 88

Preparatory Tasks 88

Selected API Descriptions 88

Quick Workaround 89

References 89

22. Porting JSR 135: Mobile Media API 91

APIs To Be Ported 91

Background 91

Overview of MMAPI 92
viii Porting Guide • December 2008

The Player 93

Special Player Types 93

Media Format 93

Supported Mime Types 94

Player Controls 94

Platform Media Capabilities 97

Special Players 98

Player Lifecycle and Player States 98

The javacall_media_destroy() Function 100

The Unrealized State 100

Downloading and Examining Media Data 101

The Realization State 104

The Media Buffering Cycle 104

The Realized State 106

The Pre-Fetching State 106

The PreFetched State 107

Reporting the Media Player Duration 107

The Seek API: Rewind and Fast Forward 108

The Closed State 108

Selected API Descriptions 108

Media Library Initialization API 108

Simple Tones 109

Dual Tones 109

References 109

23. Porting JSR 234: Advanced Multimedia API 111

APIs To Be Ported 111

Background 111

Description 112
Contents ix

Supported and Unsupported AMMS Features 112

Supported SoundSource3D Audio Features 113

Supported Spectator Controls 114

Supported Global Scope Music Effects Features 114

Supported Image Processing Features 115

Supported Camera Control Features 116

Supported Tuner Control Features 116

Selected API Descriptions 117

Setting System Properties 117

The Global Manager 118

Setting 3D Audio and Music Effects 119

Image Processing 120

The Image Filter 120

References 120

24. Porting JSR 211: Content Handler API 121

APIs To Be Ported 121

Background 121

Description 122

Porting to the Platform Registry 122

Enumeration Functions 123

Other Get Functions 125

Porting to the AMS 126

References 126

25. Porting JSR-177: Security and Trust Services API 127

Background 127

The SATSA Security Element 128

SATSA-APDU Implementations 128
x Porting Guide • December 2008

APIs To Be Ported 128

Initialization and Finalization API 129

Data Exchange API 129

Locking API 130

Retrieving Information API 130

Error Handling API 131

Additional SATSA Packages 131

References 131

26. Porting JSR 179: LandmarkStore API 133

APIs To Be Ported 133

Background 133

Description 134

Preparatory Tasks 134

Selected API Descriptions 134

Optional API 136

References 136

27. Porting JSR 179: Location API 137

APIs To Be Ported 137

Background 137

Description 138

Preparatory Tasks 138

Selected API Descriptions 138

Optional APIs 139

References 140

28. Porting JSR 82: Bluetooth API 141

APIs To Be Ported 141

Background 141
Contents xi

Description 142

The Bluetooth Stack 142

Preparatory Tasks 143

JavaCall API Bluetooth Variable Types and Values 143

Selected API Descriptions 144

References 145

29. Porting JSR 256: Mobile Sensor API 147

APIs To Be Ported 147

Background 147

Description 148

Sensor Startup Process 149

NativeExampleSensor Class 149

NativeExampleChannel Class 150

Selected API Descriptions 151

Implementing Non-Native Sensors 153

References 156

30. Milestone Two: Testing Your Completed Port 157

Glossary 159

Index 163
xii Porting Guide • December 2008

Figures

FIGURE 1-1 The SJWC JavaCall Porting Interface, with Native Libraries and Device OS 2

FIGURE 8-1 Virtual Machine Events Passing 28

FIGURE 11-1 Running a Java Platform MIDlet 40

FIGURE 12-1 Typical Sequence Flow for javacall_socket_read() 43

FIGURE 14-1 Terms Used to Describe Fonts 52

FIGURE 14-2 Drawing the Font, Without Clipping 55

FIGURE 14-3 Drawing the Font, With Some Clipping 56

FIGURE 14-4 Drawing the Font, With More Clipping Required 57

FIGURE 22-1 Player Lifecycle and Player States 99

FIGURE 22-2 Downloading and Examining Media Data 102

FIGURE 29-1 Overview of Mobile Sensor API with Native Sensors 148
xiii

xiv Porting Guide • December 2008

Tables

TABLE 22-1 Player Controls and JavaCall API 95

TABLE 23-1 JavaCall API Mapping for LocationControl 119

TABLE 25-1 Four Main Parts of the SATSA Package 127

TABLE 29-1 The SensorDevice Class 154

TABLE 29-2 The ChannelDevice Class 155
xv

xvi Porting Guide • December 2008

Preface

This guide describes how to port Sun Java Wireless Client Software 2.2 to your
mobile device.

Before You Read This Book
To fully use the information in this document, you must have thorough knowledge
of the topics discussed in these documents:

■ JSR 118 Mobile Information Device Profile 2.0

■ JSR 139 Connected Limited Device Configuration 1.1

■ JSR 185 Java Technology for the Wireless Industry

■ JSR 248 Mobile Service Architecture

■ CLDC HotSpot™ Implementation Porting Guide

■ Skin Author’s Guide to Adaptive User Interface Technology

■ JSR 75 Personal Information Management and File Connection API

■ JSR 82 Java APIs for Bluetooth

■ JSR 120 Wireless Messaging API 1.0

■ JSR 135 Mobile Media API

■ JSR 177 Security and Trust Services API for J2ME

■ JSR 179 Location API for J2ME

■ JSR 205 Wireless Messaging API 2.0

■ JSR 211 Content Handler API

■ JSR 234 Advanced Multimedia Supplements API for J2ME

■ JSR 256 Mobile Sensor API
Preface xvii

How This Book Is Organized
This book contains the following chapters and appendices:

Chapter 1 is a basic overview of the Java Wireless Client software and how it works.

Chapter 2 is an overview of the porting process. This chapter provides a high-level
strategy for porting the Java Wireless Client software to your device.

Chapter 3 describes how to port the logging subsystem of the Java Wireless Client
software.

Chapter 4 describes how to port the memory allocation APIs of the Java Wireless
Client software.

Chapter 5 describes how to port the time and timer APIs of the Java Wireless Client
software.

Chapter 6 describes how to port the file system APIs of the Java Wireless Client
software.

Chapter 7 describes how to the port the display APIs of the Java Wireless Client
software.

Chapter 8 describes how to port the event handling APIs of the Java Wireless Client
software.

Chapter 9 describes how to port the keypress event APIs of the Java Wireless Client
software.

Chapter 10 describes how to port the runtime lifecycle events of the Java Wireless
Client software.

Chapter 11 provides a further test of your porting progress by providing instructions
for running an interactive, ROMized MIDlet.

Chapter 12 describes how to port of basic networking and socket communications
APis of the Java Wireless Client software.

Chapter 13 describes how to port more advanced networking and socket
communications of the Java Wireless Client software.

Chapter 14 describes how to port the font system APIs of the Java Wireless Client
software.

Chapter 15 describes how to port the annunciator APIs (e.g., backlight, vibrator,
flash, etc.) of the Java Wireless Client software.
xviii Porting Guide • December 2008

Chapter 16 describes how to port predictive text input support APIs of the Java
Wireless Client software. (Porting of this functionality is optional.)

Chapter 17 describes how to port native image decoder APIs of the Java Wireless
Client software. (Porting of this functionality is optional.)

Chapter 18 describes how to port File Connection APIs (JSR 75) of the Java Wireless
Client software.

Chapter 19 describes how to port Personal Management APIs (JSR 75) of the Java
Wireless Client software.

Chapter 20 describes how to port Wireless Messaging 1.0 (SMS) APIs (JSR 120) of the
Java Wireless Client software.

Chapter 21 describes how to port Wireless Messaging 2.0 (MMS) APIs (JSR 205) of
the Java Wireless Client software.

Chapter 22 describes how to port of Mobile Media APIs (JSR 135) of the Java
Wireless Client software.

Chapter 23 describes how to port Advanced Mobile Media APIs (JSR 234) of the Java
Wireless Client software.

Chapter 24 describes how to port Content Handler APIs (JSR 211) of the Java
Wireless Client software.

Chapter 25 describes how to port Security and Trust Services APIs (JSR 177) of the
Java Wireless Client software.

Chapter 27 describes how to port Location APIs (JSR 179) of the Java Wireless Client
software.

Chapter 26 describes how to port Landmark Store APIs (JSR 179) of the Java Wireless
Client software.

Chapter 28 describes how to port Bluetooth APIs (JSR 82) of the Java Wireless Client
software.

Chapter 29 describes how to port Mobile Sensor APIs (JSR 256) of the Java Wireless
Client software.

Chapter 30 describes how to test your completed Java Wireless Client software port.
Preface xix

Using Operating System Commands
This document does not contain information on basic UNIX® operating system or
Microsoft Windows commands and procedures such as opening a terminal window,
changing directories, and setting environment variables. See the software
documentation that you received with your system for this information.

Typographic Conventions
The following typographic conventions are used in this guide.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
xx Porting Guide • December 2008

Shell Prompts

Related Documentation
The following documentation is included with this release.

In addition, you might find the following documentation helpful:

■ The Java Language Specification (Java Series), Second Edition by James Gosling, Bill
Joy, Guy Steele and Gilad Bracha. Addison-Wesley, 2000,
http://java.sun.com/docs/books/jls/index.html.

■ The Java Specification Request (JSR), (J2ME Connected, Limited Device
Configuration) at http://jcp.org/jsr/detail/30.jsp (JSR 30)

■ Mobile Information Device Profile 2.0, at
http://jcp.org/jsr/detail/118.jsp (JSR 118)

Shell Prompt

C shell %

TABLE P-1 Related Documentation

Application Title

All Release Notes

Building Build Guide

Porting Issues and Overview Architecture and Design Guide

Porting Procedures and Guidelines Porting Guide

Running SJWC Software and Using Tools Tools Guide

Multitasking Integration and Policies Multitasking Guide

Using Adaptive User Interface Technology (skins) Skin Author’s Guide to Adaptive User
Interface Technology

Viewing reference documentation created by the
Javadoc™ tool

Java API Reference

Viewing reference documentation created by the
Doxygen tool

Native API Reference
Preface xxi

http://jcp.org/jsr/detail/118.jsp
http://jcp.org/jsr/detail/30.jsp
http://java.sun.com/docs/books/jls/index.html

■ Java Technology for the Wireless Industry, at
http://jcp.org/jsr/detail/185.jsp (JSR 185)

■ A full list of JSRs for the Java Platform, Micro Edition (Java ME platform),
available at
http://jcp.org/jsr/tech/j2me.jsp

■ KVM Debug Wire Protocol (KDWP) Specification, Sun Microsystems, Inc.,
available as part of the CLDC (Connected Limited Device Configuration)
download package.

Accessing Sun Documentation Online
The Source for Java Developers web site enables you to access Java platform
technical documentation on the web at
http://java.sun.com/reference/docs/index.html.

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. Provide feedback to Sun at
http://java.sun.com/docs/forms/sendusmail.html.
xxii Porting Guide • December 2008

http://java.sun.com/docs/forms/sendusmail.html
http://java.sun.com/reference/docs/index.html
http://jcp.org/jsr/tech/j2me.jsp
http://jcp.org/jsr/detail/185.jsp

1

Introduction

Integrating a Java platform stack onto a small, handheld device, such as a cellular
phone, is a highly complex task. A Mobile Service Architecture (MSA) ready Java
platform stack can access more than 90% of the functionality of a cellular phone and
is able to stress the Application Programming Interface (API) more than any other
software feature of the device.

The Sun Java Wireless Client software (SJWC) provides exactly the capabilities
needed for this kind of robust, small-device computing, and sets the standard for
high performance and high functionality in today’s wireless industry.

FIGURE 1-1 shows the SJWC JavaCallTM Porting Interface and how it is integrated into
the native software stack of your device. The JavaCall API provides a set of uniform
porting layer interfaces that makes mapping the Sun Java Wireless Client software to
your device OS and hardware a straightforward, and much-improved experience,
over previous porting arrangements.

As you will see as you work your way through this Guide, the JavaCall porting layer
is used to port individual pieces of functionality one module at a time, in a
progression, with each piece of functionality building on the prior one, until you
have established a complete port on your device. At each step, the JavaCall porting
interfaces are used to bind the functionality provided by the Sun Java Wireless
Client software to the native libraries and operating system of your device.

Note – The Sun Java Wireless Client software is configured to run in Sun’s Java
Wireless Toolkit (WTK) Windows emulation environment. This guide provides the
instructions you need to port a SJWC implementation to your handheld device.
Chapter 1 Introduction 1

FIGURE 1-1 The SJWC JavaCall Porting Interface, with Native Libraries and Device OS

Assuming that your device platform is stable, you will implement the JavaCall
porting layer APIs one by one and Sun’s Java platform stack will slot right on top.
This document provides guidelines for porting Sun Java Wireless Client
functionality to your device, starting with the simplest operations and proceeding
through the full set of MSA-compliant optional packages provided with this release.

At the end of the Sun Java Wireless Client software porting process, you should
expect to test the quality and functionality of your finished port using industry-
standard Test Compatibility Kits (TCKs).

Note – It is strongly suggested that as you work through the porting process, you
test each piece of functionality as you go. This testing of individual components is
outside the scope of this documentation, so no instructions for conducting these tests
are provided here.
2 Porting Guide • December 2008

Packages and Tools
The primary engineering task during the porting process is to implement the
JavaCall APIs on your device platform.

The port is started by compiling and linking a “stub implementation” of these APIs
for your device. This forms the skeleton of the complete port. This can be found in
the subdirectory javacall/implementation/stubs.
Chapter 1 Introduction 3

4 Porting Guide • December 2008

2

Overview of the Porting Process

The porting process is simple in concept. Porting proceeds through a series of
chapters in this guide. Each chapter has a clear objective, describes how to port
closely related functionalities, and builds on the previous chapters before it.

Note – it is highly recommended that “area experts” participate in the porting of the
APIs with which they are familiar.

Beginning with the simplest and most essential APIs, you will create the necessary
javacall_ functions and compile them to run on your device. At each stage, you
should also plan to write enough tests to ensure that the new functionality ported to
your device works as is expected.

Once a stage is fully completed, work moves on to the next stage. Links in the
documentation will point you to additional resources, as needed.

The javacall Interfaces
The Sun Java Wireless Client software provides you with a well-documented
interface for the integration of Java functionality into your device, called the
javacall interface. JavaCall functions are grouped into subsystems. Examples of
subsystems are Memory, LCD, Font, File and Directory, Sockets, and so on. Each
subsystem may consist of three types of functions:

■ Mandatory JavaCall functions - The device port must implement every
mandatory JavaCall function. Functions that are not implemented will cause Java
platform applications to fail on your device.

■ Optional JavaCall functions - This group of functions can remain unimplemented,
e.g. return a JAVACALL_NOT_IMPLEMENTED constant.
Chapter 2 Overview of the Porting Process 5

However, to expose non-mandatory device capability, relevant optional functions
need to be implemented. For example, on devices that do not have audio or video
recording capabilities, the function javacall_media_start_recording() can
remain unimplemented. On the other hand, if the device supports audio or video
recording, by implementing javacall_media_start_recording(), media
recording will be supported for Java platform applications.

■ Javanotify functions - Javanotify functions are C functions implemented in Sun’s
Java platform library that the device must call in order to communicate with the
Java platform. For example, any device thread can call function
javanotify_pause() to tell the Java platform to enter the paused state.

Getting Started
You begin your development from a “stubs” directory, in which all of the functions
to be implemented exist only as stub functions that do little more than return a
JAVACALL_NOT_IMPLEMENTED value. This is a convenient since the stubs always
compile, and permit the link process to complete successfully while the code is still
in development.

About one hundred javacall functions are needed for basic Java platform
functionality. You link these javacall functions, and the resulting compiled objects,
with your platform.

The chapters that follow describe each of the stages in a logical sequence. It is a good
idea to follow these stages in sequence, since this process has been tried and tested
on many deployments. However, if you are under severe time pressure and have
many engineers, the stages after Chapter 8 can be done in parallel.
6 Porting Guide • December 2008

I Porting CLDC and MIDP

This part covers the following topics:

■ Porting the Logging Facility

■ Porting the Memory System

■ Setting Up Time and Timers

■ Porting the File System APIs

■ Porting the Display (LCD) APIs

■ Porting for Event Handling

■ Porting for Keypress Events

■ Porting Runtime Lifecycle Events

■ Milestone One: Running a ROMized Interactive MIDlet

■ Porting Basic Networking and Socket Communications

■ Porting for Advanced Networking and Socket Communications

■ Porting the Font System

■ Porting the Annunciator

■ Porting Predictive Text Input Support (Optional)

■ Porting the Native Image Decoder (Optional)

3

Porting the Logging Facility

The purpose of this chapter is to provide a means whereby runtime log messages,
test output, and other text can be output.

APIs To Be Ported
The following API must ported:

void javacall_print (const char *s)

More information on the Logging APIs can be found in the following file:

javacall/interface/common/javacall_logging.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Description
The first step in porting Java Wireless Client software to your device is to enable
some basic output from the device.

The javacall_print() function should be mapped as simply as possible, for
example, to a COM channel. The COM channel should not be shared with other
parts of the device.
Chapter 3 Porting the Logging Facility 9

Quick Workaround
There are no quick workarounds for this step. Setting up logging is fundamental to
beginning a successful port.
10 Porting Guide • December 2008

4

Porting the Memory System

The purpose of this chapter is to establish memory space within the virtual machine
and provide APIs for small native allocations.

APIs To Be Ported
The APIs to be ported can be found in the following file:

javacall/interface/common/javacall_memory.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
Porting the memory allocation APIs provides the Java Virtual Machine with a large
memory block for the Java Heap (managed by the Garbage Collection subsystem)
and also provides APIs for small native allocations (immovable native-code
allocations, for which regular pointers can be used).

Selected API Descriptions
The following APIs must be ported:

■ javacall_memory_heap_allocate() - This API is essential and needs to be
created first. It is used to create one, large, contiguous block of memory for use by
the Java platform and it will only be called once while Java is running.
Chapter 4 Porting the Memory System 11

When the Java platform cleans up everything and shuts down completely, the
javacall_memory_heap_deallocate() API will be called.

■ javacall_malloc()/free() - These API functions are needed primarily to
provide small buffers to transfer information from the native context to the Java
platform context. A good example is that of SMS messages passed to the Java
platform while it is not running (referred to as “SMS Push”).

Most of the memory used by the Java platform comes from the single, contiguous
block allocated using the javacall_memory_heap_allocate() API.

These APIs can be deferred to a later stage if malloc() and free() are not
implemented on your platform. However, they are needed for all functions that pass
events and data to and from other contexts (e.g., the event mechanism, networking,
etc.) The APIs must be natively thread-safe.

Many of the other APIs are optional, and can be ignored at this stage.

Answers to Common Questions
The following are common questions asked at this stage of the porting process:

1. What size should be used, initially?

Some operators require 4 MB or more, but this figure can be fine tuned at a later
stage. Should not be less than 1.0MB for initial testing.

2. Where is the memory size set?

The API is an “incoming” API, with Java requesting a desired memory size for
the heap. The subject of memory allocation is complex and should be discussed in
depth with Sun Engineering Services.

3. Does the heap memory have to be contiguous?

Yes - there is no provision for a discontinuous memory heap in this version.

4. Does the memory have to be aligned to 2, 4, 8 bytes?

The Java platform handles this internally. There is no need to ensure any
particular alignment for this method.
12 Porting Guide • December 2008

Quick Workaround
If you wish to try this quickly, without actually implementing anything, do the
following:

■ define a static array of long

■ return a pointer to it inside the function

All the other functions can remain stub implementations.
Chapter 4 Porting the Memory System 13

14 Porting Guide • December 2008

5

Setting Up Time and Timers

The purpose of this chapter is to provide a timebase for measurement and a means
to “wait” for periods of time while running tests.

APIs To Be Ported
The APIs to be ported can be found in the following file:

javacall/interface/common/javacall_time.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
Time and timer functionality is a basic requirement of many platforms, including the
Java platform. In the Java platform, an application can query the current system time
or schedule a time- related task, such as an alarm or a calendar event. It is a widely
used and indispensable function.

The time and timer APIs define the functions for initializing a timer, cancelling a
timer, getting the current time, and getting the local time zone. This chapter
describes what these JavaCall APIs are, how they work, and how to port them.
Chapter 5 Setting Up Time and Timers 15

Preparatory Tasks
Make sure that the accuracy of your system timer APIs are sufficient. In general,
accuracy should be controlled within a few milliseconds.

Ensure that sequential calls to your timer provide values that increase
monotonically. That is, each subsequent call to your timer API MUST return a value
that is equal to or greater than the previous call.

Ensure that the values of time, time-zone, and Daylight Savings adjustments are
properly stored and operational in your system.

Selected Timer API Descriptions
The basic mechanism for timer operation revolves around timer initialization by the
Java platform (to initialize and start a regular or a cyclic timer), and callbacks that
are invoked by the platform when the timer expires.

If multiple simultaneous timers are supported by your OS, the most convenient way
of managing them is by using the OS-provided handle. (See the Windows
implementation as an example of how this is done.) Otherwise, the JavaCall
implementation needs to internally maintain a list of active timer, together with their
callbacks and handles, and invoke each callback as the timers expire or cycle.

Implement the following typedef:

■ typedef void (*javacall_callback_func)(javacall_handle
handle)

This typedef defines a function type with a single handle parameter, that returns
void, and a parameter of this type is passed whenever a timer is initialized, as in
the following function:

javacall_result javacall_time_initialize_timer(

int wakeupInMilliSecondsFromNow,

javacall_bool cyclic,

javacall_callback_func func,

/*OUT*/ javacall_handle *handle)

This creates a native timer to expire in the given time, or less. When the timer
expires, the callback function must be invoked in the system context, with the
correct handle. For non-cyclic timers, the platform must finalize timer resources
after invoking the callback.
16 Porting Guide • December 2008

Selected Time API Descriptions
Ensuring accurate use of time is essential. Implement the following function:

■ char* javacall_time_get_local_timezone(void)

This function should return a string in the form “GMThh:mm”. The symbol "" is
either "+" or "-", and hh:mm is the offset from UTC time. Daylight Savings time
should be handled correctly, i.e., in the United Kingdom (UK) during the Summer
it will return "GMT+01:00", and in San Francisco during the Winter, "GMT-
08:00". The string storage should be static and maintained by the function itself,
and no attempt will be made to free it by the calling function.

■ javacall_time_get_milliseconds_since_1970(void)

Returns number of fine resolution milliseconds elapsed since midnight(00:00:00),
January 1, 1970.

There are two other functions that must be implemented also:

■ javacall_time_get_seconds_since_1970(void)

Returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970.

■ javacall_time_get_clock_milliseconds(void)

Returns the number of clock milliseconds.

The obvious redundancy of these three functions is to allow the Java platform to use
the most suitable API and derive the other values from that API.

Note – An implementation hint: use javacall_time_get_seconds_since_1970
and javacall_time_get_clock_milliseconds to get an accurate result, and
then derive "get_milliseconds_since_1970" from these.

Answers to Common Questions
The following are common questions asked at this stage of the porting process:

1. What accuracy is needed for the native timer?

It is recommended that the accuracy be better than 30 milliseconds.

2. What is the difference between get_millisecond s_since_1970() and
get_clock_milliseconds()?
Chapter 5 Setting Up Time and Timers 17

It is unusual for the system day-date clock to have millisecond accuracy and
resolution. However, some systems provide an additional millisecond-accurate
clock, e.g., one that measures milliseconds from system startup. The Java platform
only uses get_clock_milliseconds for time interval counting.

Quick Workaround
The following APIs are optional:

■ javacall_time_get_seconds_since_1970()

■ javacall_time_get_clock_milliseconds()

If your system can’t get these values directly, you can implement them using
javacall_time_get_milliseconds_since_1970().
18 Porting Guide • December 2008

6

Porting the File System APIs

The purpose of this chapter is to provide the necessary functionality for installing
and executing MIDlets, by porting the file system APIs.

APIs To Be Ported
The APIs to be ported can be found in the following files:

javacall/interface/common/javacall_file.h
javacall/interface/common/javacall_dir.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for these files.

Background
In order to install, execute, and remove MIDlets the Java Virtual Machine (JVM) has
to have access to the file system. During execution, MIDlets store persistent data in
the Record Management System (RMS) storage, which is mapped to the file system.

The Java platform also reads and saves some internal settings, which can be loaded
from the file system during JVM execution.
Chapter 6 Porting the File System APIs 19

Preparatory Tasks
If the file system used by your platform provides POSIX-like file system
functionality, you should have no problems mapping the file system APIs.

Some functions can be implemented internally if not available on the device.

Selected API Descriptions
To establish the file system functionality needed to execute MIDlets on your device,
implement the following APIs:

■ javacall_file_init(void) - This API is used only if your file system
requires initialization before it can be used. In most cases this function can just
return true.

■ javacall_file_finalize(void) - This API is used only if your file system
requires finalization after it was used. In most cases this function can just return
true.

■ javacall_file_seek() - This API should allow moving the implicit file
pointer to a specific place in the file, but it is also used to determine where the file
pointer is now. So, this function should provide current position information also.
If it does not, another function that does should be implemented.

■ javacall_dir_get_free_space_for_java() - This API is called quite a lot
from the Java platform so having some kind of value-caching mechanism (or
some other way to make this function light-weight) is recommended.

■ javacall_file_sizeofopenfile() - This API can be implemented on top of
javacall_file_seek() or javacall_file_read() functions. However,
from a performance point of view, it is better to use a native platform counterpart.

■ javacall_file_sizeof() - This API can be implemented on top of
javacall_file_sizeofopenfile() if there is no relevant function, but will
require opening a file, which is a heavy operation.

■ javacall_file_exist() - This API can be implemented on top of
javacall_file_open() if the READ_ONLY flag is supported for file open, but it
will introduce a performance hit. Also, this function should differentiate between
a directory and a file.

■ javacall_dir_get_root_path()- Returns the root path of your Java
platform’s home directory. In general, all Java platform-related files are located in
the root path.

■ javacall_handle javacall_dir_open() - Opens a specified directory.

■ javacall_utf16* javacall_dir_get_next() - Gets the next directory in a
list of available directories.

■ void javacall_dir_close() - Closes a directory.
20 Porting Guide • December 2008

These following functions are used by the Java platform Application Management
Service (AMS) to access files related to the MIDlet installation process. In order to
implement these functions, your platform must have the ability to browse a
directory and access files in that directory.

■ javacall_get_file_separator() - Returns the file separator character used
by the underlying file system. This is an internal API. There are no similar APIs at
the Java platform level. The accessed directory is specified by the function
javacall_dir_get_root_path().

■ javacall_dir_is_secure_storage() - This API checks if the given path is
located on secure storage. Secure storage is a non-removable storage that cannot
be accessed by the user or overwritten by an insecure application.

Answers to Common Questions
The following is a common question asked at this stage of the porting process:

■ Should the javacall_flush() function be implemented?

If data is not flushed directly during write time and data may be lost, consider
implementing the javacall_flush() function.

Quick Workarounds
For faster results, the following alternate APIs can be used:

■ javacall_file_truncate()- This API is used to make a file smaller (only
smaller) and can be implemented internally using a sequence such as
open/read/write/close/delete/rename. However, it requires more temporary
space on the file system and may introduce a performance hit.

Note – If this scheme is used, it will not be possible to use system-provided file
handles. The file-handle parameter is an input-only parameter to the
javacall_file_truncate() function and changing it here will not change any of
the handles to the original file that are maintained higher up the stack. This applies
to the javacall_file_rename() function as well.

■ javacall_file_rename() - This API is required for MIDlet installation, but
can be implemented internally using a sequence of open/write/close/delete, if
required.
Chapter 6 Porting the File System APIs 21

22 Porting Guide • December 2008

7

Porting the Display (LCD) APIs

The purpose of this chapter is to port the low-level graphics JavaCall primitives.
After this step you will be able to view graphical output on your display.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_lcd.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
The JavaCall interface for low-level graphics is designed to be both high-
performance and easy to port. However, it requires access to the off-screen raster
buffer (backing store) and also a way to flush this buffer to the screen. Once these
basic functions are ported all the graphics can be displayed.

Critical sections of the Java platform’s graphics code have been written in assembly
with performance as the most important criteria. It is worth taking additional time
to ensure that your implementation of these graphical functions (especially the
“flush” functions) is as high-performance as possible.
Chapter 7 Porting the Display (LCD) APIs 23

Preparatory Tasks
Make sure that your Java platform can access the display buffer and directly modify
it.

Selected API Descriptions
To establish the functionality needed to display low-level graphics on your device,
implement the following APIs:

■ javacall_lcd_get_screen() - This API is the essential one that needs to be
created first. It is used to receive the pointer to the LCD off-screen raster and the
dimensions of the currently available screen. In the case that more than one
display is supported on the device, the screenType parameter determines which
screen buffer is requested.

■ javacall_lcd_init()- This API is called during JVM startup, allowing the
platform to perform device-specific initialization.

■ javacall_lcd_flush() - This API is used for flushing the off-screen raster to
the LCD display, and should be implemented as efficiently as possible, for
example by using DMA.

Note – If screen raster lines are smaller than the memory addresses they occupy, the
lcd_flush() and lcd_flush_partial() functions should deal appropriately
with the necessary padding. Internally, the Java platform treats the screen as an
image without taking any padding into account.

Answers to Common Questions
The following are common questions asked at this stage of the porting process:

1. Why is my Display distorted?

Make sure that the implementation of javacall_flush() does not access
memory areas that are not supposed to be modified, such as the status bar. See
also the note below regarding pixel types. If you are using DMA to flush the
screen, please make sure you are flushing the CPU data-cache before running the
DMA copy.
24 Porting Guide • December 2008

2. Why does the device crash every time I flush to the LCD?

Make sure to check the coordinates passed to
javacall_lcd_flush_partial() are inside the LCD dimensions.

3. Why do MIDlets that use full screen mode cause distortion in the display?

Make sure that after javacall_lcd_set_full_screen_mode() is called the
correct screen dimensions are returned by javacall_lcd_get_screen().

Note – RGB2PIXELTYPE-- Most implementations use encoded pixels as two bytes
(RGB 565) format, as shown below.

| 5 bits Red | 6 bits Green | 5 bits Blue |

This macro assumes the screen memory is big-endian. If your screen memory uses
little endian, as shown below, it needs to be changed.

| 3 low bits of Green | 5 bits Blue | 5 bits Red | 3 high bits of Green |

Quick Workaround
Implementing the function javacall_lcd_flush_partial() is mandatory and
intended to increase graphical performance. If your device does not have this
capability, you can ignore the coordinates given and flush the entire buffer.
Chapter 7 Porting the Display (LCD) APIs 25

26 Porting Guide • December 2008

8

Porting for Event Handling

The purpose of this chapter is to allow events to be delivered to the Java platform.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/common/javacall_events.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
The Java platform needs to port the javacall_event APIs to receive and handle
external events. See FIGURE 8-1 for details on how the JVM interacts with the Java
platform via events passing.
Chapter 8 Porting for Event Handling 27

FIGURE 8-1 Virtual Machine Events Passing

In this discussion, the terms “Sun Main Context” is used to refer to the thread of
execution that is the Java platform task, and the term “Platform Context” to refer to
everything else. In the JavaCall model illustrated in FIGURE 8-1, the Java platform
provides an event passing mechanism (such as an OS FIFO queue) through which
events can be passed safely and sequentially.

When an event such as a keypress is to be delivered to the Java platform, your
system platform calls the javanotify_on_keypress() function. This function,
which executes in the Platform Context, then invokes javacall_event_send().
The platform code must store this event in some thread-safe artifact such as an OS
queue.

In the Sun Main Context, where the Java platform is running normally, it invokes
javacall_event_receive() periodically to check if external events have been
delivered. When all Java platform threads are sleeping (i.e., there is no need at this
point in time to execute bytecode) it invokes and blocks on
javacall_event_receive() in order to wait for external events.

If an event is available, javacall_event_receive() consumes the event and
returns it to the Java platform. Internally, the Java platform handles the event.
Usually, this is done by waking the Java platform thread that is registered as waiting
for this event.

customer
code

user pressed
Key “#”

customer
code

Sun
code

javacall_event_send()

javacall_event_receive

Sun Main contextNetwork task context

Event FIFO Queue

Sun

javanotify_on_keypress
28 Porting Guide • December 2008

Selected API Descriptions
The event APIs require fully-functional memory/time/timer JavaCall APIs. Ensure
that these subsystems are working correctly before attempting to port the JavaCall
events subsystem. The underlying event queue must be thread-safe and must
maintain a FIFO ordering.

Note – The messages stored in the queue are generic binary fixed-length messages.

Implement the following two functions:

■ javacall_event_receive() - This function is called by the JVM to receive
platform events such as key press, SMS, Networking, lifecycle, and multimedia
events.

The first parameter, timeTowaitInMillisec, decides how the JVM receives
events. Event receiving can be either in polling mode (timeTowaitInMillisec
= 0), infinite duration blocking mode (timeTowaitInMillisec = -1) or limited
duration blocking mode (timeTowaitInMillisec is a positive value).

In either of the two blocking modes:

■ The Sun Main context is blocked and is not consuming CPU cycles.

■ The display can still be active (and backlit).

■ Other native functions can still be working.

■ Battery can still be consumed.

See Chapter 10 for discussion of pausing or shutting down the Java platform
completely.

The execution style of the Java platform is to block if possible, and poll if
necessary, thus keeping CPU cycle execution to a minimum.

■ javacall_event_send() - This function is called by the JVM to send a
message to a Java platform event FIFO queue dedicated to listening for the task.
The Java platform should put the message into the task event queue as a binary
message. If the Sun Main execution context is blocking on
javacall_event_receive() for events, javacall_event_receive()
should be unblocked and return this message to the Java platform task.

Note – This discussion assumes Master Mode event handling.
Chapter 8 Porting for Event Handling 29

Answers to Common Questions
The following are common questions asked at this stage of the porting process:

1. Why can the Java platform not use blocking APIs?

Blocking APIs are very simple to use - if you are waiting for a keypress event you
call an API that blocks until the event occurs. However, the Java platform allows
many parallel threads of execution to occur at the same time, all running in one
native context. If a native API is called that blocks, the whole Java Virtual
Machine is blocked (not just the Java platform thread that made the call).

For this reason the javacall_event_receive() function MUST be available in
all three modes - poll for event, block with timeout, and block indefinately. Only
in this manner can the Java platform threads be scheduled correctly.

2. Why is a thread-safe FIFO event queue required for the Java platform?

Events always happen in the Platform Context and not in the Sun Main Context,
as the Sun Main event queue is usually shared between multiple tasks. As an
example, events can flow to the Java platform from the networking, keypress and
sound systems independently. So, the Sun Main event queue must be thread-safe
(task-safe). Meanwhile, to make sure a Java platform task will get and handle
events in the correct order, the event queue must be FIFO.

3. What are the requirements on event queue space and the size of individual Java
event?

The Java platform event queue must have the ability to buffer at least 20 event
messages. The platform should also allow the size of individual events to be up to
4K (for the data blocks, which are pointed to by the event struct).

4. How does the JavaCall event APIs’ implementation impact performance?

The Java platform’s response time to external events (such as a keypress) is
directly affected by the efficiency of the native event APIs and the underlying OS
mechanism. Event JavaCall APIs are hot routines and their efficiency seriously
impacts the overall performance of the JVM. In particular,
javacall_event_receive() function must be very efficient.
30 Porting Guide • December 2008

Quick Workaround
Unfortunately, there are no workarounds for the two javacall_event APIs.
javacall_event_send() and javacall_event_receive() must be
implemented.
Chapter 8 Porting for Event Handling 31

32 Porting Guide • December 2008

9

Porting for Keypress Events

The purpose of this chapter is to deliver all standard keypress events to the Java
platform.

APIs To Be Ported
The APIs to be invoked can all be found in the following file:

javacall/interface/midp/javacall_keypress.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
Keypress events use the events subsystem that was ported in Chapter 8. The MIDP
2.0 specification is designed for cellular phones with numeric keyboards, direction
keys, game-keys, and touch-screens. These key events are described in the
documentation for your device.

When a key is pressed, released, or repeated (“long-press”), an event must be
delivered to the Java platform. Keypress events should only be delivered to the Java
platform when it has the “foreground” or “input focus” of your system.
Chapter 9 Porting for Keypress Events 33

Preparatory Tasks
Identify the place in the system software where keypress events are delivered.
Implement any logic used to determine that the Java platform is the current focus of
keypress events.

Selected API Descriptions
There is one API that handles keypress events: javanotify_key_event(). This is
a javanotify_ function call that has already been implemented inside the Java
platform and is invoked in the Platform Context whenever a key is pressed.

Note – In general, javanotify_ APIs are invoked in the Platform Context and
javacall_ APIs are invoked in the Sun Main Context.

Every time a key is pressed, released, or enters the “repeat” mode, an event should
be sent using the following API, which must be implemented:

■ javanotify_key_event(javacall_key key, javacall_keypress_type
type)

For the appropriate values for javacall_key and javacall_keypress_type, see
the header file and documentation.
34 Porting Guide • December 2008

10

Porting Runtime Lifecycle Events

The purpose of this chapter is to port and control the runtime lifecycle events of a
Java platform MIDlet, e.g. Start, Shutdown, Pause and Resume.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_lifecycle.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
The native platform needs to signal the Java platform to start, shutdown, pause and
resume by sending some dedicated events to the JVM. The Java platform provides
javanotify() APIs to send events to the dedicated Sun Main Context (as
described in Chapter 8) and this in turn controls the Java platform start, shutdown,
etc.

After an operation completes, the JVM is switched to be in the new state and notifies
the native platform by invoking javacall_lifecycle_state_changed(). The
state of the native platform is then also changed.
Chapter 10 Porting Runtime Lifecycle Events 35

Preparatory Tasks
The native platform should dedicate a specific task for the Java platform at device
start time and never end it until device shutdown. This task should start the
“external event loop” by calling into function JavaTask(), which never returns.

JavaTask() Entry Point
The JavaTask() is expected to be running throughout device uptime and the
native platform is required to create a dedicated task and execute the Java platform
entry point function in the task. The C entry point for the Java platform task is the
function JavaTask().

In the Java platform implementation, this function waits for a
javanotify_start() signal. Once this is received it will start up the Java
platform. In the native test suite version of JavaTask(), this function can be used
to run native tests.

Passing Events To the Java Platform
The native platform passes event notifications to the Java platform task by calling a
set of functions called javanotify_ functions. For example, the native platform
may call the function javanotify_pause() to request that the JVM be paused, or
javanotify_shutdown() to shutdown the running JVM.

javanotify_ functions are executed in the Platform Context and use the event
passing API (see Chapter 8) to pass a notification to JavaTask().

Selected API Descriptions
The following APIs must be implemented:

■ javanotify_midlet_start() - This function should be invoked by the native
platform in the Platform Context to start a Java platform MIDlet. For example,
this function can be invoked if a native AMS is used and the user selects a
particular MIDlet to run.

■ javanotify_start() - This function should be invoked by the native platform
in the Platform Context to start the Java platform AMS. For example, this function
can be invoked when the user selects the “Games and Applications” main-menu
item.
36 Porting Guide • December 2008

■ javanotify_pause() - This function should be invoked by the native platform
in the Platform Context to pause the Java platform.

■ javanotify_resume() - This function should be invoked by the native
platform in the Platform Context to end, pause, and resume the Java platform.
Chapter 10 Porting Runtime Lifecycle Events 37

38 Porting Guide • December 2008

11

Milestone One: Running a ROMized
Interactive MIDlet

You have reached the point in the porting process where it should be possible to run
one or more applications on your device. In addition to file system capability, menu
mappings, and a simple display, your device also has the ability to handle keypress,
lifecycle, and external events.

To test the capability and stability of your port, run an interactive MIDlet that takes
advantage of these new capabilities, as shown in .
Chapter 11 Milestone One: Running a ROMized Interactive MIDlet 39

FIGURE 11-1 Running a Java Platform MIDlet
40 Porting Guide • December 2008

12

Porting Basic Networking and
Socket Communications

The purpose of this chapter is to enable the Java platform to communicate with other
devices over a socket-based connection.

APIs To Be Ported
The APIs to be ported can be found in the following files:

javacall/interface/midp/javacall_network.h
javacall/interface/midp/javacall_socket.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for these files.

Background
Networking is a critical functionality in the Java platform and is surprisingly
difficult to get right. The APIs described in this section are the minimum APIs
needed for basic client socket communications to function on your device.

Due to the complexity and asynchronous nature of networking stacks on all devices,
platform networking APIs are often asynchronous by design. (In the rare case that
the native APIs are synchronous and blocking, additional native threads must be
used so that the Java platform can continue to run while the operation is in
progress.)

For this reason, the networking API implementations are split into two phases, the
first suffixed with _start and the second with _finish.
Chapter 12 Porting Basic Networking and Socket Communications 41

Preparatory Tasks
It is advisable to write and run a small native program that does the following
things:

■ Initializes a network connection

■ Opens a socket to a fixed IP

■ Writes and reads some data

■ Closes the socket

■ Finalizes the network connection

Such a program can be used to smoke-test the networking stack on the device and
will provide much useful information for the porting effort.

Sequence of Operation
The javacall_socket_read_start() call returns JAVACALL_WOULD_BLOCK in
the case where data is not immediately available. In fact, if all data is available
without need of blocking, the call can return JAVACALL_OK and include data. In this
case, javacall_socket_read_finish() is not called. This behavior is described
in detail in the header files.

Although javacall_socket_read() is given as an example, all of the networking
and socket APIs in this chapter are designed to work asynchronously, so it is
important to thoroughly understand the mechanism.

A typical sequence flow for javacall_socket_read() is shown in FIGURE 12-1.
42 Porting Guide • December 2008

FIGURE 12-1 Typical Sequence Flow for javacall_socket_read()

Common API Parameters
The following are common JavaCall API parameters:

■ javacall_handle* pHandle - The handle is opaque data (a void*) that serves
both to represent an open connection and also as the name for a pending I/O
operation.

The handle is used by the Java platform to keep track of threads that are blocked,
waiting for this I/O operation to complete. The handle must be unique; that is, it
must not be possible for any two currently pending I/O operations to return the
same handle.

read()
completes...

customer
code

customer
code

Sun
code

javacall_event_send

javacall_event_receive

JAVACALL_WOULD_BLOCK

Sun Main contextNetwork task context

javacall_socket_read_finish()

javacall_socket_read_start()

data

Sun

javanotify_socket_event(JAVACALL_EVENT_SOCKET_RECEIVE)
Chapter 12 Porting Basic Networking and Socket Communications 43

■ void **pContext - It is recommended that implementations allocate a context
structure on the C-heap in the _start() function and return a pointer to the
caller. This context structure can contain any platform-specific information
necessary to keep track of the pending I/O operation, such as a return data buffer
and status codes.

The context structure should be freed when the _finish() function completes. If
the implementation of a particular I/O operation has no need for a context, it
must set the context pointer to NULL in the _start() function.

Selected API Descriptions
The specific subset of APIs to be ported in
javacall/interface/midp/javacall_network.h are as follows:

■ javacall_network_init_start() - This function performs platform-specific
initialization of the networking system. Is called ONCE during JVM startup
before opening a network connection. For example, this API can open PPP, or
some similar protocol.

When this asynchronous operation completes, javanotify_network_event()
should be called with JAVACALL_NETWORK_UP. The Java platform then invokes
javacall_network_init_finish() to complete the transaction.

■ javacall_network_init_finish() - This function is invoked by the Java
platform to complete a network transaction, as described in the bullet above.

■ javacall_network_finalize_start() - This function starts a network
finalize operation.

■ javacall_network_finalize_finish() - This function finishes a network
finalize operation.

■ javanotify_network_event() - The function sends a notification callback
about a network event.

The javanotify_network_event() must be invoked by the platform as
necessary. See the header file for a description of the events that should be reported
using this API, and the parameters to use.

Note – All the APIs should fail cleanly; that is, if during network initialization
javacall_network_init_start() allocates some resources, it must attempt to
clean them up (e.g., deallocate buffers, release network resources) before returning a
value of JAVACALL_FAIL. See the header file for a description of the events that
should be reported using this API and the parameters to use.
44 Porting Guide • December 2008

The specific subset of APIs to be ported In
javacall/interface/midp/javacall_socket.h are as follows:

■ javacall_socket_open_start() - This function starts a network socket open
operation.

■ javacall_socket_open_finish() - This function completes a network socket
open operation and signals that the socket is ready to be used.

■ javacall_socket_read_start() - This function starts a read operation over
an open network socket.

■ javacall_socket_read_finish() - This function completes a read operation
over an open network socket.

■ javacall_socket_write_start() - This function starts a write operation
over of an open network socket.

■ javacall_socket_write_finish() - This function completes a write
operation over an open network socket.

■ javacall_socket_close_start() - This function starts a close operation on
an open network socket.

■ javacall_socket_close_finish() - This function completes a close
operation on an open network socket.

■ javanotify_socket_event() - The function sends a notification callback
about a socket event.

The javanotify_socket_event() must be invoked by the platform as necessary.
See the header file for a description of the events that should be reported using this
API, and the parameters to use.
Chapter 12 Porting Basic Networking and Socket Communications 45

46 Porting Guide • December 2008

13

Porting for Advanced Networking
and Socket Communications

The purpose of this chapter is to complete the implementation of networking and
socket communications.

APIs To Be Ported
The APIs to be ported can be found in the following files:

javacall/interface/midp/javacall_network.h
javacall/interface0midp/javacall_socket.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for these files.

Background
Some of the advanced networking and socket communication APIs are essential if
the networking stack is to operate normally. For example, if
javacall_network_gethostbyname() is not provided, each Java platform
application will need to know the IP address of every URL it attempts to open,
together with any proxy information.

However, other advanced networking and socket communication APIs are optional.
For example, if the device cannot support server-sockets, all of the server-socket
related APIs, such as server_socket_open(), server_socket_accept(), and
server_socket_set_notifier(), should return JAVACALL_NOT_IMPLEMENTED.
Chapter 13 Porting for Advanced Networking and Socket Communications 47

Selected API Descriptions
There are many more networking and socket communications APIs than the ones
provided in this section. The APIs shown here the minimal ones that should be
ported to ensure that networking and socket communications can be implemented
on your device.

The javacall_network.h APIs
In javacall/interface/midp/javacall_network.h, the following subset of
APIs must be ported:

■ javacall_network_gethostbyname_start() - This function starts a
network operation to acquire a machine host name.

■ javacall_network_gethostbyname_finish() - This function completes a
network operation to acquire a machine host name.

■ javacall_network_error() - This function transmits the error code for a
network error.

■ javacall_network_get_local_host_name() - This function gets the name
of a local host machine.

■ javacall_network_get_local_ip_address_as_string() - This function
gets the name of a local machine by IP address.

■ javacall_network_get_http_proxy() - This function gets the name of local
network proxy machine.

■ javacall_network_gethostbyaddr_start() - This function starts an
operation to get the name of one or more host machines from the network address
maps.

■ javacall_network_gethostbyaddr_finish() - This function completes an
operation to get the name of one or more host machines from the network address
maps.

■ javacall_network_getsockopt() - This function gets a socket opt.

■ javacall_network_setsockopt() - This function sets a socket opt.

■ javacall_server_socket_set_notifier() - This function sets a notifier to
be returned when an event occurs on a socket.

■ javanotify_network_event() - This function is returned when a network
event occurs on a socket.

The javanotify_network_event() must be invoked by the platform as
necessary. See the header file for a description of the events that should be reported
using this API, and the parameters to use.
48 Porting Guide • December 2008

The javacall_socket.h APIs
In javacall/interface/midp/javacall_socket.h, the following subset of
APIs must be ported:

■ javacall_socket_available() - This function polls a socket to see if it is
available.

■ javacall_socket_shutdown_output() - This function shuts down output
from a socket connection.

■ javacall_socket_getlocaladdr() - This function gets an address for a local
socket.

■ javacall_socket_getremoteaddr() - This function gets an address for a
remote socket.

■ javacall_socket_getlocalport() - This function gets a local port and
associates it with a socket.

■ javacall_server_socket_open_start() - This function begins an open
operation on a socket.

■ javacall_server_socket_open_finish() - This function finishes an open
operation on a socket.

■ javacall_server_socket_accept_start() - This function begins an accept
operation in which it receives input from a socket connection.

■ javacall_server_socket_accept_finish() - This functions finishes an
accept operation in which it completes receiving input from a socket connection.

■ javanotify_socket_event() - This function is returned when an event occurs
on a socket.

The javanotify_socket_event() must be invoked by the platform as necessary.
See the header file for a description of the events that should be reported using this
API and the parameters to use.
Chapter 13 Porting for Advanced Networking and Socket Communications 49

50 Porting Guide • December 2008

14

Porting the Font System

The purpose of this chapter is to the implement the font API on your device.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_font.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
In MIDP, applications request fonts based on font attributes and the platform should
attempt to provide a font that matches the requested attributes as closely as possible.

A font’s attributes are style, size, and face. Values for the style attribute may be
combined using the bit-wise OR operator, whereas values for the other attributes
may not be combined.

The font API provides the information needed to map sequences of characters to
sequences of glyphs, and to render sequences of glyphs to the video memory
(VRAM) or to off screen memory images.
Chapter 14 Porting the Font System 51

Definitions of Font Measurements
Latin-based fonts use terms such as “height,” “ascent,” “descent,” “baseline,” and
“leading” (pronounced led-ing as in the metal “lead”). The following diagram shows
how these terms are used.

FIGURE 14-1 Terms Used to Describe Fonts

In alphabetic fonts (based on Latin or Greek), text rises (ascends) above the baseline,
and drops (descends) below the baseline. The gap between the lowest possible
character and the highest possible character on the next line is the “leading.”
Leading is always below the text.

Selected API Descriptions
The MIDP 2.0 Specification requires a minimum of one font, which all the
combinations of style, size and face can map to. Most modern implementations will
implement many more combinations, though few systems support all 72 variations
of font. However, all of the various size, style, and face combinations MUST be
mapped to an existing font.

Font Attributes
Fonts should be one of three sizes: Small, Medium or Large.

Fonts can have a combination of four styles: Plain, Bold, Italic and Underline. These
are defined with hexadecimal values that can be logically OR-ed together.

Fonts can have one of three faces: System, Monospace, or Proportional.

Ascent

Baseline
Descent

Leading

Height = Ascent + Descent + Leading

Xjp1MS
52 Porting Guide • December 2008

The requested combination of size, style and face are called the “font attributes,” and
are set by calling the javacall_font_set_font() function:

javacall_result javacall_font_set_font(javacall_font_face face,

javacall_font_style style, javacall_font_size size);

These attributes must persist between calls to all LCD functions and between pause
and resume operations.

Font Measurements
Java platform applications need to obtain font measurements. For this, use the
javacall_font_get_info() function, as shown here:

javacall_result javacall_font_get_info(

javacall_font_face face, javacall_font_style style,

javacall_font_size size, /*out*/ int* ascent,

/*out*/ int* descent, /*out*/ int* leading);

The three /*out*/ parameters must provide information about the various areas of
the font’s height, as shown in the diagram above. Ask your graphic designer to
provide you with this information. If the information provided by this function is
incorrect, it can cause layout problems. It is a common cause of misaligned text on
the screen.

Reporting Font Width
The next function returns information about font width, or more precisely string
width. The function is given font attributes and a string, and returns the advance
width of the characters in charArray. The advance width is the horizontal distance
that would be occupied if the characters were to be drawn using this font, including
the inter-character spacing that follows the characters, which is necessary for proper
positioning of any subsequent text.

Note – The charArray is not null terminated.

int javacall_font_get_width(javacall_font_face face,

javacall_font_style style, javacall_font_size size,

const char* charArray, int charArraySize);
Chapter 14 Porting the Font System 53

Drawing the Font
The javacall_font_draw() function is used for drawing the font to a buffer
(which can be either the screen, a back-buffer, or an image), as shown here:

javacall_result javacall_font_draw(javacall_pixel color,

int clipX1,

int clipY1,

int clipX2,

int clipY2,

javacall_pixel* destBuffer,

int destBufferHoriz,

int destBufferVert,

int x,

int y,

const javacall_unicode* text,

int textLen)

Every one of these parameters is necessary and it is up to the function to correctly
clip drawn text to fit within the boundaries set by the parameters of this function.
The parameters describe a color, a destination buffer, a clip-region, a starting
position for the text drawing, and the text to be printed. The following diagrams
show how this works.

Example 1: Simple Call Where Clipping is Not in Use

In this example, as shown in FIGURE 14-2, clipping is not used and all of the text is
drawn:

javacall_unicode abcde[]=[’a’, ’b’, ’c’, ’d’, ’e’];

javacall_font_draw(color,

 30, //clipX1

 30, //clipY1

 450, //clipX2

 250, //clipY2
54 Porting Guide • December 2008

 destBuffer

 400, // destBufferHoriz

 300, // destBufferVert

 40, //x

 100, //y

 abcde,

 5);

FIGURE 14-2 Drawing the Font, Without Clipping

Example 2: Some Clipping Required

In this example, as shown in FIGURE 14-3, the clipping is binding and so only part of
the text is shown:

javacall_font_draw(color,

 30, //clipX1

 30, //clipY1

 100, //clipX2

 250, //clipY2

ABCD

javacall_pixel* destBuffer

(x=40, y=100)

clipX1=30, clipY1=30

clipX2=450, clipY2=250

destBufferHoriz=400, destBufferVert=300)
Chapter 14 Porting the Font System 55

 destBuffer,

 400, // destBufferHoriz

 300, // destBufferVert

 40, //x

 100, //y

 abcde,

 5);

FIGURE 14-3 Drawing the Font, With Some Clipping

 BCD

javacall_pixel* destBuffer

clipX1=30, clipY1=30

destBufferHoriz=400, destBufferVert=300)

clipX2=100, clipY2=250

(x= -20, y=100)
56 Porting Guide • December 2008

FIGURE 14-4 Drawing the Font, With More Clipping Required

Example 3: More Clipping Required

In this example, as shown in , the clipping rectangle is binding, and the x coordinate
is negative.

Note – In , clipping is required in all four directions, if necessary.

Answers to Common Questions
The following are common questions asked at this stage of the porting process:

1. My Indic fonts have a different baseline. Can I use this?

No. Your font will still need to support Romanji (alphabetic) characters, not just
Kanji, Hiragana, Katakana, or Gurmukhi in order to pass TCK. Note also that MIDP
recognizes only the alphabetic baseline and ignores any other baselines of the font
(such as a hanging Indic baseline or an Ideographic baseline).

You have the following options:

AB

javacall_pixel* destBuffer

(x=40, y=100)

clipX1=30, clipY1=30

clipX2=100, clipY2=250

destBufferHoriz=400, destBufferVert=300)
Chapter 14 Porting the Font System 57

■ Create your alphabetic (Romanji) font without descenders. This will look
extremely unusual to native Latin/English readers, but will be MIDP 2.0
compliant.

■ Base all of your Ideographic characters (such as Kanji) on the Descent line and
alphabetic characters on the Baseline. Report (always) the attributes of the
alphabetic characters in the APIs. If your font supports Indic glyphs (such as
Devanagari, Gurmukhi, and Bengali) you should use a different hanging baseline
to create the font, but still report the alphabetic baseline attributes in the APIs.

The second option is recommended.

Quick Workaround
The Java platform has a default glyph, which can be used if no glyphs are available
on the platform. To use the Java platform’s default glyph, just return
JAVACALL_FAIL for all of the Font functions.
58 Porting Guide • December 2008

15

Porting the Annunciator

The purpose of this chapter is to describe porting of the phone vibrator,
flash_backlight, audible tone, and status icons for network, secure connection,
trusted mode, and input mode.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_annunciator.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
The Java Technology for the Wireless Industry and MIDP 2.0 specifications require
the operation of several essential types of indicators, which collectively are called
“annunciators.”. The annunciators described in this chapter are:

■ Vibrate

■ Backlight

■ Input indicator icon

■ Trusted indicator icon

■ Network indicator icon

■ Play preset audible tone

These standard annunciators have clearly defined roles in the Java platform.
Chapter 15 Porting the Annunciator 59

Preparatory Tasks
Since there is no programmatic way to verify that these annunciators are working
correctly, it is a good idea to write small test-programs that operate the annunciators,
to ensure they are working correctly. Be sure you can activate each one of the phone
functions you want the API to control:

■ Vibrator

■ Backlight

■ Input indicator icon

■ Trusted indicator icon

■ Network indicator icon

■ Play preset audible tone

Selected API Descriptions
The following APIs must be implemented:

■ javacall_annunciator_vibrate() - This function turns your device’s
Vibrate on and off.

■ javacall_annunciator_flash_backlight() - This function sets the device
backlight either bright or dim, based on the boolean value provided.

Note that the Java platform specifies a “flashing effect,” which is intended to
attract the user’s attention, or act as a special effect for games. However, there is
no Java platform API that directly controls the state of the backlight (in Java
platform terms, the backlight is either flashing or not flashing). The JavaCall API
sets an absolute setting: the backlight is either bright or dim.

■ javacall_annunciator_display_trusted_icon() - This function turns the
trusted indicator icon off or on, for signed MIDlets.

■ javacall_annunciator_display_network_icon() - This function controls
the network LED or equivalent network indicator.

■ javacall_annunciator_display_secure_network_icon() - This function
controls the secure connection indicator.

■ javacall_annunciator_display_input_mode_icon() - This function
notifies the platform to show the current input mode.

■ javacall_annunciator_play_audible_tone() - This function plays a
sound of the given type.
60 Porting Guide • December 2008

Answers to Common Questions
The following is a common question asked at this stage of the porting process:

1. Should my javacall implementation take the phone mode (“manner mode”)
into account?

Yes. When porting javacall_annunciator_vibrate(), the programmer
needs to take into consideration the current state of the phone. If the phone is in
“silent all” mode, this function should do nothing.
Chapter 15 Porting the Annunciator 61

62 Porting Guide • December 2008

16

Porting Predictive Text Input
Support (Optional)

The purpose of this chapter is to add Predictive Text Input as a Java platform input
method.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_pti.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
Predictive Text Input (PTI) is for small mobile devices that only have numeric
keyboards. Using predictive text input makes it faster and easier to type on small
mobile devices. Users can enter words with a single key press for each character. For
example, to write the word “how,” user can press once “4,” “6” and “9,” eliminating
the need for repeated key presses in standard text entry mode.

Predictive text input is just another text input mode, similar to upper-case text entry
mode, lowercase text entry mode, numerical text entry mode, and foreign language
text entry mode (Japanese, Greek etc.)

The predictive text input mechanism is not mandatory for JTWI-compliance.
However, it may improve the user’s experience on most handsets.
Chapter 16 Porting Predictive Text Input Support (Optional) 63

Preparatory Tasks
Predictive Text Input APIs assume that the handset device already has a PTI
dictionary and corresponding functionality. This API is used to expose the
dictionary for use by the Java platform.

Selected API Descriptions
The APIs in this section assume that PTI is available and working on the handset for
native programs such as SMS text-entry, etc. Consequently the API is designed to
expose the native PTI functionality to the Java platform and not to implement PTI
from scratch.

The PTI API uses the notion of an iterator, which supports three kinds of operations:

■ Adding a keypress - A new keypress can be appended to the iterator. For
example, a digit ’2’ can be added to the iterator by calling
javacall_t9_add_key().

■ Clearing keypresses - A keypress can be cleared from the suffix of the iterator.
Adding keys ’2’ ’3’ , and ’4’ and calling javacall_t9_backspace(handle) will
change the iterator’s state to contain keys ’2’ and ’3’. All keypresses can be
cleared by calling javacall_t9_clear_all().

■ Go Over Completion Options - The PTI API offers functions to go over all
available completion options for the current keypresses.

Initialization
The initialization function is used to initialize Java platform predictive text
input dictionaries. It uses the following APIs:

■ javacall_result javacall_pti_init(void) - This function will be called
only once, during JVM startup, and before any other PTI function is called.

■ javacall_handle javacall_pti_open(void) - Create a new PTI iterator
instance. The language should be set by default to the locale language. Only one
iterator is used concurrently.

■ javacall_result javacall_pti_close(javacall_handle handle) - This
function deletes a PTI iterator.

■ javacall_result javacall_pti_set_dictionary(javacall_handle
handle javacall_pti_dictionary dictionary) - This function sets a
dictionary for a PTI iterator. All newly created iterators are by default set to the
default locale language. This function can be called to change the default language
of the dictionary.
64 Porting Guide • December 2008

Keypress
A PTI iterator holds the state of all entered keypresses. A keypress is a key in the
range ’0’-’9’ that the user presses on the handset device. The following keypress
APIs are used:

■ javacall_result javacall_pti_add_key(javacall_handle handle,
javacall_pti_keycode keyCode) - This function adds a key press to a PTI
iterator.

■ javacall_result javacall_pti_backspace(javacall_handle handle) -
This function removes the last keypress from the end of the list of keypresses.

■ javacall_result javacall_pti_clear_all(javacall_handle handle) -
This function clears all text from the PTI iterator.

Traversal
When traversing for all completion options for the current iterator’s keypresses:

■ First determine if more completions are available

■ Get the next completion

■ Rewind the iterator, so get next completion returns the first completion option

The following functions exist for traversing all completion options for the current
iterator’s keypresses.

■ The function shown here returns the current T9 completion option:

int javacall_pti_completion_get_next(javacall_handle handle,
javacall_utf16* outString, int outStringLen)

■ javacall_pti_completion_has_next(javacall_handle handle) - This
function is used to see if further completion options exist for the current PTI
entry.

■ javacall_pti_completion_rewind(javacall_handle handle) - This
function is used to reset completion options for the current PTI entry.

After this call, the function javacall_pti_completion_get_next() will
return all completion options starting from the 1st option.
Chapter 16 Porting Predictive Text Input Support (Optional) 65

Answers to Common Questions
The following is a common question asked at this stage of the porting process:

1. How does all this tie together?

The following simple coding example shows how PTI is meant to work in
practice:

javacall_pti_init();

void* handle=javacall_call_t9_open();

if (handle!=NULL) {

 javacall_pti_add_key(handle, ’2’);

 javacall_pti_add_key(handle, ’2’);

 javacall_pti_add_key(handle, ’2’);

 // go over all completions for key presses ’2’ ’2’ ’2’ and
// print them

 while(javacall_pti_completion_has_next(handle)) {

 char completion[256];

 javacall_pti_completion_get_next(handle, completion, 256);

 javacall_print(completion);

 }

 javacall_pti_close(handle);

}

The above program should print several strings, for example "aba" (The first three
characters of the word "abandon"), "aca" (start of the word "academy") etc.

Note – The UIDemo MIDlet, freely available with the Wireless Toolkit, can be used
to test predictive-input text entry.
66 Porting Guide • December 2008

Quick Workaround
Predictive Text Input is not a requirement and need not be supported for Java
platform compliance. Just leave the stub implementations that return
JAVACALL_FAIL.
Chapter 16 Porting Predictive Text Input Support (Optional) 67

68 Porting Guide • December 2008

17

Porting the Native Image Decoder
(Optional)

The purpose of this chapter is to pass all image decoding operations to the platform.

This entire chapter is optional. If you choose not to implement these APIs, only the
supported image formats in MIDP will be decoded and displayed.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

javacall/interface/midp/javacall_image.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
Performance is one of the most important qualities in a mobile device. By allowing
direct access to a native image decoder, with optimizations, you can improve the
graphical performance of your implementation.

Implementing the Native Image Decoder improves performance and supports more
image formats than those supported by the Java platform image decoder in MIDP.
Chapter 17 Porting the Native Image Decoder (Optional) 69

Selected API Descriptions
Implement the following APIs:

■ javacall_image_decode_start() - This function is responsible for saving the
memory address of the image source buffer given.

■ javacall_image_decode_finish() - This function is the main function of the
API set. It is responsible for copying the decoded image data and alpha data to
the buffers provided. If the decoded JPEG image does not have alpha blending
information, then the alphaBuf buffer must be initialized to 0xFF.

Answers to Common Questions
The following are common questions at this stage of the porting process:

1. If there is no error while decoding, why is no image displayed?

Make sure you do not return a pointer to the decoded image. You must copy the
decoded information to the buffer given in
javacall_image_decode_finish(). Please ensure that the copy routine is as
efficient as possible.

2. The decoded image is returned properly but I cannot see anything on the
display.

Even if you do not support alpha blending, or the image does not have any alpha
blending information, your implementation must initialize the alphaBuf in
javacall_image_decode_finish() to 0xFF.

Quick Workaround
Use the built-in Java platform image decoder. The built in decoder is used if the
javacall_image_decode_start() function returns JAVACALL_FAIL.
70 Porting Guide • December 2008

II Porting Optional JSRs

This part covers the following topics:

■ Porting JSR 75: File Connection APIs

■ Porting JSR 75: Personal Information Management APIs

■ Porting JSR 120: Short Message Service APIs

■ Porting JSR 205: Multimedia Message Service API

■ Porting JSR 135: Mobile Media API

■ Porting JSR 234: Advanced Multimedia API

■ Porting JSR 211: Content Handler API

■ Porting JSR-177: Security and Trust Services API

■ Porting JSR 179: LandmarkStore API

■ Porting JSR 179: Location API

■ Porting JSR 82: Bluetooth API

■ Porting JSR 256: Mobile Sensor API

■ Milestone Two: Testing Your Completed Port

18

Porting JSR 75: File Connection APIs

The purpose of this chapter is to implement FileConnection functionality, such as
reading/writing files and directories, getting and setting their attributes, and
managing removable file systems.

APIs To Be Ported
The APIs to be ported can all be found in the following files:

■ javacall-com/interface/jsr75_pim_fc/javacall_fileconnection.h

■ javacall/interface/common/javacall_file.h

■ javacall/interface/common/javacall_dir.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for these files.

Background
The File Connection API (JSR-75) provides access to native file systems. Nearly all
the FileConnection functionality relies on the file system of the underlying platform.
A platform may not support some functionality (e.g. certain file or directory
attributes) and can still be sufficient for implementing the FileConnection APIs.

When porting your FileConnection implementation, it is up to you to decide which
parts of the file system on your device will be available to Java platform
applications.
Chapter 18 Porting JSR 75: File Connection APIs 73

An important concept related to porting FileConnection functionality is that of the
“virtual root,” which represents the top-level directory of a file system subtree
exposed to Java platform applications. The list of roots and their correspondence to
real file system paths are maintained by your implementation.

Description
The FileConnection functionality of JSR 75 relies partly on JavaCall APIs for files and
directories. These are used by the core components of the Java platform stack, such
as MIDP. Other (more advanced) functions are not needed for any components
except JSR-75, so they are located in separate header files.

Most of the API functions described below return javacall_result to indicate
success or failure. If any additional results are required (e.g., the directory size or a
file attribute value), they are returned by means of pointer-type parameters.

Preparatory Tasks
The following questions about your platform should be answered before porting
FileConnection functionality:

■ Which native file system directories will Java platform applications be allowed to
access?

■ What attributes for files and directories will be supported by your
implementation?

Define the following constants in the javacall_platform_defs.h file for the
platform being implemented:

■ JAVACALL_MAX_FILE_NAME_LENGTH - The maximum length of a file name on
the platform.

■ JAVACALL_MAX_ILLEGAL_FILE_NAME_CHARS - The number of characters that
cannot be used in a file name (a buffer of this size is provided to
javacall_fileconnection_get_illegal_filename_chars() function).

■ JAVACALL_MAX_ROOTS_LIST_LENGTH - The maximum size of a list of virtual
roots.

■ JAVACALL_MAX_ROOT_PATH_LENGTH - the maximum length of a native path that
corresponds to a virtual root.

■ JAVACALL_MAX_LOCALIZED_ROOTS_LIST_LENGTH - The maximum size of a list
of localized root names.
74 Porting Guide • December 2008

■ JAVACALL_MAX_LOCALIZED_DIR_NAME_LENGTH - The maximum length of a
localized name of a special storage directory.

The values for these constants must be sufficient to make sure that no buffer
overflow occurs. However, bigger values lead to bigger memory consumption at run
time.

Directory Operations
Implement the following mandatory FileConnection APIs:

■ javacall_fileconnection_create_dir() - This function creates a new
directory.

■ javacall_fileconnection_delete_dir() - This function deletes an existing
empty directory.

■ javacall_fileconnection_dir_exists() - This function is called to check
whether the specified directory exists on the file system.

Optional APIs
The following APIs are optional and are not required for a basic port.

■ javacall_fileconnection_rename_dir() - This function renames an
existing directory.

■ javacall_fileconnection_dir_content_size() - This function counts the
size (in bytes) of all files contained in a directory and, if requested, in all its
subdirectories.

■ javacall_fileconnection_get_free_size() - This function is called to
determine the amount of free storage in the specified directory.

■ javacall_fileconnection_get_total_size() - This function is called to
determine the total size of the storage where the specified directory is located.

File/Directory Access API
Implement the following mandatory APIs:

■ javacall_fileconnection_is_hidden() - This function is called to
determine whether a file or directory has "hidden" attribute.

■ javacall_fileconnection_is_readable() - This function is called to
determine whether a file or directory has "readable" attribute.
Chapter 18 Porting JSR 75: File Connection APIs 75

■ javacall_fileconnection_is_writable() - This function is called to
determine whether a file or directory has "writable" attribute.

■ javacall_fileconnection_get_last_modified() - This function is called
to determine file or directory modification time in seconds since 00:00:00 GMT,
January 1, 1970.

Certain attributes may be unsupported by the file system. In this case, some
meaningful behavior of the corresponding functions should be implemented. For
example, there is no "readable" attribute on Win32, i.e. all files are readable.

Therefore, javacall_fileconnection_is_readable() should return
JAVACALL_OK for all existing files and report that they are readable. For non-
existent files, this function should return JAVACALL_FAIL.

Optional APIs
The following APIs are optional and are not required for a basic port.

■ javacall_fileconnection_set_hidden() - This function sets or resets
"hidden" attribute of a file or directory.

■ javacall_fileconnection_set_readable() - This function sets or resets
"readable" attribute of a file or directory.

■ javacall_fileconnection_set_writable() - This function sets or resets
"writable" attribute of a file or directory.

javacall_fileconnection_set_readable() should silently return
JAVACALL_OK for all existing files. For non-existent files, it should return
JAVACALL_FAIL.

File System Roots and Storage Directories API
Implement the following mandatory APIs:

■ javacall_fileconnection_get_mounted_roots() - This function is called
to determine currently mounted virtual file system roots.

■ javacall_fileconnection_get_path_for_root() - This function maps
each virtual root to actual file system path. For example, / can be mapped to
C:\My Documents on a particular Win32 implementation if needed. This way,
Java platform applications do not have a possibility to access anything above
C:\My Documents, which means that file system access restriction is completely
controlled by the JavaCall implementation.

Some of the special storage directories may be unsupported by the platform. In this
case, the corresponding functions for querying directory location and localized name
must return JAVACALL_FAIL.
76 Porting Guide • December 2008

Optional API
The following APIs are optional and are not required for a basic port.

■ javacall_fileconnection_get_photos_dir() - This function is called to
determine the current location of photos storage directory.

■ javacall_fileconnection_get_videos_dir() - This function is called to
determine the current location of videos storage directory.

■ javacall_fileconnection_get_graphics_dir() - This function is called to
determine the current location of clip art graphics storage directory.

■ javacall_fileconnection_get_tones_dir() - This function is called to
determine the current location of ring tones storage directory.

■ javacall_fileconnection_get_music_dir() - This function is called to
determine the current location of music storage directory.

■ javacall_fileconnection_get_recordings_dir() - This function is called
to determine the current localized name of voice recordings storage directory.

■ javacall_fileconnection_get_private_dir() - This function is called to
determine the current localized name of directory for all Java applications’ private
storages.

■ javacall_fileconnection_get_localized_mounted_roots() - This
function is called to get localized names for all mounted roots. The names must
go in the same order and quantity as the virtual roots in
javacall_fileconnection_get_mounted_roots().

■ javacall_fileconnection_get_localized_photos_dir() - This function
is called to determine the current localized name of photos storage directory.

■ javacall_fileconnection_get_localized_videos_dir() - This function
is called to determine the current localized name of videos storage directory.

■ javacall_fileconnection_get_localized_graphics_dir() - This
function is called to determine the current localized name of clip art graphics
storage directory.

■ javacall_fileconnection_get_localized_tones_dir() - This function
is called to determine the current localized name of ring tones storage directory.

■ javacall_fileconnection_get_localized_music_dir() - This function
is called to determine the current localized name of music storage directory.

■ javacall_fileconnection_get_localized_recordings_dir() - This
function is called to determine the current localized name of voice recordings
storage directory.

■ javacall_fileconnection_get_localized_private_dir() - This
function is called to determine the current localized name for private directories.
Chapter 18 Porting JSR 75: File Connection APIs 77

Root Additions/Removals Notifications
Virtual roots can be added and removed (in other words, mounted and unmounted).
A typical example is inserting or removing a memory card in or from a device.
Whenever this happens, your implementation must have a way to notify the Java
platform about the event by calling
javanotify_fileconnection_root_changed().

This notification should happen as soon as possible - ideally, your implementation
has a mechanism to invoke the callback function immediately upon this change in
root. Subsequent calls to javacall_fileconnection_get_mounted_roots()
and javacall_fileconnection_get_localized_mounted_roots() must
return updated root lists.

Answers to Common Questions
The following question is commonly asked at this point in the porting process:

1. If the platform does not support directory renaming, how should
javacall_fileconnection_rename_dir() be implemented?

It is okay to remove the existing directory and create a new one.

References
For more information about PDA Optional Packages for the J2METM Platform, see
the JSR 75 Specification at:

http://jcp.org/en/jsr/detail?id=75
78 Porting Guide • December 2008

http://jcp.org/en/jsr/detail?id=75

19

Porting JSR 75: Personal
Information Management APIs

The purpose of this chapter is to implement Personal Information Management
(PIM) functionality, such as accessing lists of contacts, calendar events, and “to do”
items.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

■ javacall-com/interface/jsr75_pim_fc/javacall_pim.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for this file.

Background
PIM functionality allows Java applications to access personal information on a
device. This includes device-specific databases used by native applications such as
address book, calendar, and tasks. PIM allows Java platform applications to interact
effectively with these native applications.

Here are some general points about PIM structure:

■ The Java platform can access one or more PIM lists (for example, phone address
book and SIM address book).

■ Each PIM list consists of items (for example, the primary address book consists of
contacts).
Chapter 19 Porting JSR 75: Personal Information Management APIs 79

■ Each item consists of fields with unique ID numbers (for example, a contact has
name, address, phone number, etc.).

■ Each field can have zero or more values.

■ Each PIM item can belong to zero or more categories.

Description
The PIM JavaCall header file, javacall_pim.h, contains many structures and
enumerations for PIM data representation. Your JavaCall implementation should not
rely on constant values or data format that accidentally match platform-specific
constants or data structures.

Most of the API functions described below return javacall_result to indicate
success or failure. If any additional results are required (for example, PIM item
contents), they are returned by means of pointer-type parameters.

Preparatory Tasks
The following platform-dependent constants should be defined in the
javacall_platform_defs.h file for the implementation being ported:

■ JAVACALL_PIM_MAX_ARRAY_ELEMENTS - The maximum number of values in a
single field.

■ JAVACALL_PIM_MAX_ATTRIBUTES - The maximum number of attributes
supported by a PIM list.

■ JAVACALL_PIM_MAX_FIELDS - The maximum number of fields in a PIM item.

Values for these constants must be sufficient to make sure that no buffer overflow
happens. However, bigger values lead to bigger memory consumption at run time.

Lists and Items APIs
Implement the following mandatory APIs:

■ javacall_pim_list_is_supported_type() - This function checks if the
given PIM list type is supported by the platform.

■ javacall_pim_get_lists() - This function is used to retrieve names of all
lists of a specified type.
80 Porting Guide • December 2008

■ javacall_pim_list_open() - This functions opens the PIM list for access. It is
called prior to doing any other operations with the list.

■ javacall_pim_list_close() - This function closes the PIM list. It should free
any platform resources consumed by opening the list.

■ javacall_pim_list_get_next_item() - This function is used for sequential
access to items within an opened list.

■ javacall_pim_list_add_item() - This function adds a new item to an
opened list.

■ javacall_pim_list_remove_item() - This function removes an existing item
from an opened list.

■ javacall_pim_list_modify_item() - This functions alters data of an
existing item and the categories it belongs to. The data is provided in vCard
2.1/3.0 or vCalendar 1.0 format.

Fields and Attributes APIs
Implement the following mandatory APIs:

■ javacall_pim_list_get_fields() - This function is called to determine
what fields are supported by a PIM list. This includes both standard and extended
(OEM) fields. However, it is up to your JavaCall implementation which extended
PIM fields to expose to the Java platform.

■ javacall_pim_list_get_attributes() - This function is called to
determine what attributes are supported by a PIM list.

Categories APIs
The following APIs are optional and are not required for a basic port:

■ javacall_pim_list_add_category() - This function adds a new category to
a PIM list. If the specified category already exists, the call should be considered
successful.

■ javacall_pim_list_remove_category() - This function removes an existing
category from a PIM list. If there is no such category, the call should be
considered successful.

■ javacall_pim_list_rename_category() - This function renames an existing
category. All items that belong to the existing category are reassigned to the new
one.

■ javacall_pim_list_max_categories() - This function is called to
determine the maximum number of categories in a list.
Chapter 19 Porting JSR 75: Personal Information Management APIs 81

■ javacall_pim_list_max_categories_per_item() - This function is called
to determine the maximum number of categories that a list item can belong to.

■ javacall_pim_list_get_categories() - This function is used to get all
categories defined for a PIM list.

If an empty string is not a valid category name on the platform, category functions
must return JAVACALL_FAIL when called with this name.

Quick Workaround
The quickest way to get a working implementation of PIM functionality is to specify
JSR_75_PIM_HANDLER_IMPL=java when building JSR 75. This build setting
implements PIM functionality as a pure Java platform, which stores PIM data in
plain files.

This approach does not provide any access to platform-specific personal data and
does not allow interaction with native applications such as the address book. It can
be viewed as PIM emulation on top of FileConnection.

References
For more information about PDA Optional Packages for the J2ME Platform, see the
JSR 75 Specification at:

http://jcp.org/en/jsr/detail?id=75
82 Porting Guide • December 2008

20

Porting JSR 120: Short Message
Service APIs

The purpose of this chapter is to implement Short Message Service (SMS) and Cell
Broadcast Service (CBS) functionality.

APIs To Be Ported
The APIs to be ported can all be found in the following files:

■ javacall/interface/jsr120_wma/javacall_sms.h

■ javacall/interface/jsr120_wma/javacall_cbs.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for these files.

Background
SMS is an extremely popular way to send short text messages (called “texting”)
between cellular subscribers. JSR 120 provides a Java platform API for sending and
receiving messages via SMS. Java applications can be registered in the “Push
registry,” allowing a correctly addressed incoming message to launch and run a
MIDlet, even if the Java platform itself is not running.

GSM, CDMA or any other underlying protocol that supports SMS is assumed. CBS
is a unidirectional data service where messages are broadcast by a base station and
received by every mobile station listening to that base station. From a porting
perspective the only difference between CBS and SMS is that CBS does not have a
send() method.
Chapter 20 Porting JSR 120: Short Message Service APIs 83

Preparatory Tasks
Make sure your device is connected to the network and can send/receive SMS
messages. If CBS messages are supported, to test them you should have access to a
CBS center.

Selected API Descriptions
Implement the following APIs:

■ javacall_sms_send(type, addr, buf, bufLen, srcPort, destPort,
handle) - This is the main function called to send a message.

■ type - The message encoding type: ASCII / BINARY / UNICODE_UCS2.
ASCII type is supposed to be encoded to GSM 7-bit alphabet to increase useful
payload size up to 160 characters per message.

■ addr - The phone number in msisdn format as shown here:

msisdn ::== “+” digits | digits

digit ::== “0” | “1” | “2” | “3”| “4” | “5” | “6” | “7” | “8”| “9”

digits ::== digit | digit digits

■ srcPort and destPort - These are optional parameters. If destPort is 0
then a message should come to the user inbox and srcPort is not processed.
If destPort is greater than zero, the src/destPort pair is added to the SMS
message. On the recipient side, the message is passed to an application
registered on the given port (destPort). srcPort could be used by the
application to send a response message.

■ handle - Used to notify the platform layer about the results of sending SMS.
See javanotify_sms_send_completed().

■ javacall_sms_add_listening_port(port_number) - This function adds a
port on which to listen for the arrival of SMS messages.

■ javacall_sms_remove_listening_port(port_number) - This function
removes a port from the list of available listening ports.

The platform layer notifies the JavaCall layer on which port it expects to receive a
message. port is a positive value in a range from 1-65535. Messages that come to
a non-registered port should be rejected.

The JavaCall layer has a list of registered ports; any SMS message receiving a call
from the JavaCall layer should check the receiving port. If it matches to one from
the list, javanotify_incoming_sms should be called to notify the platform
layer about the received SMS.
84 Porting Guide • December 2008

■ javacall_sms_get_number_of_segments(type, buf, bufLen, port) -
This function returns the expected number of SMS messages to send given data.
The long data can be split into several messages that are concatenated on the
recipient side. The JSR 120 Specification requires the ability to send at least three
messages. The return value should not exceed the expected number of characters
per message.

■ javanotify_sms_send_completed(result, handle) - This function is used
to notify the platform layer that a javacall_sms_send() call is completed.
javacall_sms_send() should not block the thread. Instead, the non-blocking
javacall_sms_send() implementation should call
javanotify_sms_send_completed.

■ javanotify_incoming_sms(type, addr, buf, bufLen, srcPort,
destPort, timeStamp) - This function is used to notify the platform layer
about a received SMS. The multipart message should be concatenated before
calling the platform layer.

Support for Message Segments
The maximum allowable length of an SMS message is 140 symbols per message.
Longer messages will be split into segments of equal length, with up to three
segments per individual message.

It is assumed that segmentation and aggregation are performed on the platform side,
probably inside javanotify_incoming_sms() or javacall_sms_send().

Answers to Common Questions
The following common questions are asked at this point in the porting process:

1. Why don’t sms_open and close APIs exist?

It is assumed that the platform will manage the SMS subsystem, which is running
at all times. Thus, in this architecture, the Java platform just checks its availability
through javacall_sms_is_service_available().

2. What’s the meaning of the sourcePort parameter in javacall_sms_send()?

The SMS protocol supports a sourcePort field in its message format. The Java
platform uses this field as a way to route messages to specific applications in the
subscriber’s device. If a Java application returns a message received from a
sending server (for example, sms://:50000), the sourcePort in the return
message is 50000.
Chapter 20 Porting JSR 120: Short Message Service APIs 85

Quick Workaround
As a workaround, javacall_sms_send() function can block the thread. However,
it should call javanotify_sms_send_completed() before exit.

References
For more information about SMS and Java Wireless Messaging 1.0, see the JSR 120
Specification at:

http://www.jcp.org/en/jsr/detail?id=120
86 Porting Guide • December 2008

http://www.jcp.org/en/jsr/detail?id=120

21

Porting JSR 205: Multimedia
Message Service API

The purpose of this chapter is to implement sending and receiving of Multimedia
Message Service (MMS) messages.

APIs To Be Ported
The APIs to be ported can be found in the following file:

■ javacall-com/interface/jsr205_wma20/javacall_mms.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for this file.

Background
The Wireless Messaging 2.0 Specification (JSR 205) provides a set of APIs for sending
and receiving MMS messages that is very similar to the API of Wireless Messaging
1.0 (JSR 120). That specification describes the sending and receiving of SMS
messages. The important difference between MMS and SMS is that MMS is intended
for passing much larger amounts of data than just text (e.g., pictures, videos, sound
files, and more).
Chapter 21 Porting JSR 205: Multimedia Message Service API 87

Description
Like short integer ports for SMS, MMS has virtual character ports that are called
yapped. The javacall layer should not accept MMS and pass it to the platform layer,
if the proper appID is not registered.

The most important mechanism of MMS is the fetching mechanism. The MMS client
(for example, a cell phone) first receives a notification about the availability of a
MMS message on the MMS center. The client (e.g., the phone user) can then decide
to download the message or not (receiving bytes of MMS data can cost money).

If the user decides to receive the MMS, the device calls the JavaCall fetch()
mechanism. The fetch() mechanism then downloads the message and the
platform layer is notified.

Preparatory Tasks
Make sure your device (phone) is connected to the network, and can send and
receive MMS messages.

Selected API Descriptions
Implement the following mandatory APIs:

■ javacall_mms_send(headerLen, header, bodyLen, body, toAddr,
appID, handle) - This is the main function that sends MMS message to the
network.

■ header - This is the standard MMS header generated by JSR 205 codes.

■ body - This contains data to be transferred.

■ toAddr, appID - This is the destination phone number and the destination
application ID string. In most cases, the JavaCall implementation can skip
these parameters because all the required data is already packaged in the
standard MMS header. Besides, a “to” address header could also contain “cc”
and “bcc” addresses, the senders application ID string, and a number of other
required parameters.

■ handle - This is the id to be passed to
javanotify_mms_send_completed(handle) callback when sending of the
MMS is completed. Note that javacall_mms_send() should not block the
thread. Instead, it should exit and call
javanotify_mms_send_completed()when the process is finished.
88 Porting Guide • December 2008

■ javanotify_incoming_mms(fromAddress, appID, replyToAppID,
bodyLen, body) - This is the main callback that reports about receiving MMS
messages.

■ fromAddress, appID, replyToAppID are the parameters from the MMS
header. The it implementation parses the header and passes to the platform
layer only those parameters that it needs.

■ javacall_mms_add_listening_appID(string) - This function adds a
listener that accepts a string as an incoming value. The string is the appID of the
sending application.

Quick Workaround
javanotify_incoming_mms_available() callback and the subsequent fetch()
call could be skipped. Data could be fully downloaded and passed to the platform
layer by a single javanotify_incoming_mms() call.

As a workaround, the javacall_mms_send() function can block the thread, but it
should call javanotify_mms_send_completed() before exit.

References
For more information about Wireless Messaging API 2.0, see the JSR 205
Specification at:

http://www.jcp.org/en/jsr/detail?id=205
Chapter 21 Porting JSR 205: Multimedia Message Service API 89

http://www.jcp.org/en/jsr/detail?id=205

90 Porting Guide • December 2008

22

Porting JSR 135: Mobile Media API

The purpose of this chapter is to implement Mobile Media API (MMAPI), such as
audio playback, video playback, and audio and video recording.

APIs To Be Ported
The API to be ported can be found in the following files:

■ javacall/interface/jsr135_mmapi/javacall_multimedia.h

■ javacall/interface/jsr135_mmapi/javanotify_multimedia.h

Detailed descriptions of all necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for these files.

Background
The Mobile Media API (JSR 135) provides a rich set of software controls for
implementing multimedia functionality on your platform. Much of this
functionality, such as audio and video playback, depends on the hardware and
software capabilities of your platform. MMAPI treats the multimedia capabilities of
your platform as a “black box” and operates this box using the JavaCall API for JSR
135.
Chapter 22 Porting JSR 135: Mobile Media API 91

Note – The MMAPI Specification defines a small set of necessary APIs and a large
set of optional features. This purpose of this document is to present the basic APIs.
The optional features you choose to implement are up to you, based on your device
and platform requirements.

Beyond implementing the mandatory APIs, you can choose which optional
functionality to support, based on your native media library and the level of Java
platform support required by your carrier network.

Two JavaCall functions are used to query what is supported in your JavaCall
implementation:

■ javacall_media_get_configuration()

■ javacall_media_get_player_controls()

If some MMAPI functionality is not supported by your platform, it MUST return
JAVACALL_NOT_IMPLEMENTED.

Overview of MMAPI
In order to effectively port your platform’s multimedia capabilities using the
JavaCall porting layer, you must understand the basic concepts of MMAPI:

■ Player - A software entity used to playback media and get access to the playback
process. You interact with the player to play, pause, resume, stop, rewind, adjust
volume, and carry out other audio or video actions.

■ Media Format - The player needs to know the type of content to be played and
how to interact with it. Media format is determined not only by MIME type, but
using the media format identifier defined in the JSR 234 Specification. (For more
information on media formats, see “Media Format” on page 93 and the JSR 234
Specification, as detailed in “References” on page 109.)

■ Controls - The actions a player has available to take on a media format. Not all
players support all possible control functions.

■ Media Capabilities - The ability of your platform to handle playback of different
types of content in different ways. (For more information, see “Platform Media
Capabilities” on page 97.)

Besides understanding these important Mobile Media API concepts, it is also
important to understand the transactional process that occurs in the lifecycle of a
player. Between the time it is created by the Java platform and resources are
assigned to it, and the time it is destroyed and its resources returned to the system,
92 Porting Guide • December 2008

there are several states a player must pass through. During this time, decisions are
made by the player program as to the media format being passed in and the best
ways to handle this format.

The following sections discuss these concepts in more detail.

The Player
A new Player is created with the function javacall_media_create() and
destroyed with the function javacall_media_destroy(). The function
javacall_media_create() returns a handle (of type javacall_handle) to the
newly-created Player. Later, this handle is passed as a parameter to any function
called for by the Player, until it is destroyed.

In most cases, a new Player is created from a given URL or from media data defined
by a specified MIME type.

Special Player Types
In some cases, a special Player is created by passing a special value for a URL
parameter to the javacall_media_create() function. The following are special
URLs:

■ device://midi

■ device://tone

■ capture://video (possibly followed by a video encoding string)

■ capture://audio (possibly followed by an audio encoding string)

■ capture://radio

For further explanation and details on special player types, see the description of the
class javax.microedition.media.Manager class in the JSR-135 Specification.

Media Format
In the JSR 135 (Mobile Media API) Java platform API, MIME type is used to identify
the format of the played media.

It is not always clear which MIME type should be assigned to a certain media
format. For example, some customers require that MP3 format is assigned the MIME
type audio/mpeg. Others require that it be assigned the MIME type audio/mp3.
Chapter 22 Porting JSR 135: Mobile Media API 93

In reverse, it is not always clear which media format is contained in a certain MIME
type. For example, the content type video/mpeg can contain MPEG-1, MPEG-2 or
MPEG-4 format. All the three formats require totally different decoding algorithms.

Note – The JavaCall API definition of “media format” is similar to that used by JSR
234 (Advanced Multimedia Supplements). For more information, see the description
of the FormatControl interface in the JSR 234 Specification.

In the multimedia JavaCall API, “format” is referred to with the typedef
javacall_media_format_type.

Supported Mime Types
The Mobile Service Architecture (JSR 248) and Mobile Media API (JSR 135) require
support for a number of MIME types. Other MIME types are optional. The Sun Java
Wireless Client software supports all required MIME types, as well as some optional
ones.

Player Controls
Control is a subset of the Mobile Media API that may or may not be supported by a
given Player. What controls a player supports can be discovered by calling the
function javacall_media_get_player_controls(). The return value is a bit
mask where a bit is set if, and only if, the corresponding Control is supported.

Each Control corresponds to a group of Mobile Media JavaCall API functions, the
calling of which may or may not be supported for a given Player. The
correspondence between a specific Control functionality and the JavaCall API that
calls it is shown in TABLE 22-1.
94 Porting Guide • December 2008

Note – In TABLE 22-1, the prefix JAVACALL_MEDIA_CTRL_ has been omitted from
the Control names for simplicity.

TABLE 22-1 Player Controls and JavaCall API

Control Affected Functions

VOLUME javacall_media_get_volume

javacall_media_set_volume

javacall_media_is_mute

javacall_media_set_mute

RECORD javacall_media_close_recording

javacall_media_commit_recording

javacall_media_get_record_content_type

javacall_media_get_record_content_type_length

javacall_media_get_recorded_data

javacall_media_get_recorded_data_size

javacall_media_pause_recording

javacall_media_recording_handled_by_native

javacall_media_reset_recording

javacall_media_set_recordsize_limit

javacall_media_start_recording

javacall_media_stop_recording

METADATA javacall_media_get_metadata

javacall_media_get_metadata_key

javacall_media_get_metadata_key_counts

EVENT javacall_media_get_event_data

STOPTIME None
Chapter 22 Porting JSR 135: Mobile Media API 95

VIDEO javacall_media_get_video_size

javacall_media_get_video_snapshot_data

javacall_media_get_video_snapshot_data_size

javacall_media_set_video_color_key

javacall_media_set_video_full_screen_mode

javacall_media_set_video_location

javacall_media_set_video_visible

javacall_media_start_video_snapshot

FRAME_POSITIONING javacall_media_map_frame_to_time

javacall_media_map_time_to_frame

javacall_media_seek_to_frame

javacall_media_skip_frames

TONE None

MIDI javacall_media_get_channel_volume

javacall_media_get_midibank_key_name

javacall_media_get_midibank_list

javacall_media_get_midibank_programe

javacall_media_get_midibank_program_list

javacall_media_get_midibank_program_name

javacall_media_is_midibank_query_supported

javacall_media_long_midi_event

javacall_media_set_channel_volume

javacall_media_set_program

javacall_media_short_midi_event

TABLE 22-1 Player Controls and JavaCall API

Control Affected Functions
96 Porting Guide • December 2008

Note – Simple tones can be played without any Player. For more information, see
“Simple Tones” on page 109.

Platform Media Capabilities
To query for your platform media capabilities, the Java platform calls
javacall_media_get_configuration(). This can happen before any Player is
created and the return value should not change over time. Define the function
javacall_media_get_configuration() accordingly and fill in the fields of the
returned “configuration” structure carefully.

The returned structure defines the following items:

■ The System Properties (except for microedition.media.version, which is
determined by the Java platform. For more information, see the JSR-135
Specification).

■ Which Media Formats, over which protocols, are supported by your JavaCall
implementation (these formats include the pseudo-protocols “whole stream in
memory” and “streaming from memory buffers”)

■ Which MIME types are suitable for a given Media Format (if there is more than
one MIME type, the first in the list is the default)

The Java platform determines from the above information whether player content
should be downloaded completely before playing (full downloading) or whether it
should be downloaded and played in parallel during the download process
(streaming).

PITCH javacall_media_get_max_pitch

javacall_media_get_min_pitch

javacall_media_get_pitch

javacall_media_set_pitch

RATE javacall_media_get_max_rate

javacall_media_get_min_rate

javacall_media_get_rate

javacall_media_set_rate

TEMPO javacall_media_get_tempo

javacall_media_set_tempo

TABLE 22-1 Player Controls and JavaCall API

Control Affected Functions
Chapter 22 Porting JSR 135: Mobile Media API 97

In some cases, both full downloading and streaming can be handled entirely by the
Java platform, without needing to hand off to the native platform via the JavaCall
porting layer. For example, the Animated GIF playback is supported entirely by the
Java platform. (For more information, see the description of the class Manager
methods, the names of which start with “getSupported...”in the JSR-135
Specification.)

Special Players
To indicate which special Players are supported by your implementation and which
are not, fill the following fields of the Configuration accordingly:

■ supportDeviceMIDI

■ supportDeviceTone

■ supportCaptureRadio

■ audioEncoding

■ videoEncoding

■ videoSnapshotEncoding

For more information, see “Platform Media Capabilities” on page 97,

Player Lifecycle and Player States
The primary purpose of a Player in the Mobile Media API is to play some kind of
content, for example a song (audio) or a movie (video). In both cases, the content has
a specific time duration, with an explicit beginning and an explicit ending. However,
sometimes the duration cannot be known to the Player (for example, it is radio) or is
undefined (for example, it is an interactive MIDI player).

When a request for content comes into the Java platform (i.e., a MIDlet calls the class
javax.microedition.media.Manager class method createPlayer()), a new
Player is created. After that, the Player can be closed any time the MIDlet calls the
Player method close(). For more information, see “The Closed State” on page 108.

When the content is finished playing, the Player should generate the event
END_OF_MEDIA. (For more information, see the comments in the file
javanotify_multimedia.h.)

Between the creation of the Player and its closure, the Player can go through several
states, such as unrealized, realization, and realized. The lifecycle and primary
methods used for the Player are illustrated in FIGURE 22-1.
98 Porting Guide • December 2008

FIGURE 22-1 Player Lifecycle and Player States

The javacall_media_create() function creates a new Player and returns a
handle to refer to it. Beside this, this function also does some initialization, but it
MUST NOT try to download and examine media data in any way. However, in
some cases (see “Why Are Some URLs Handled On The Native Platform Side?” on
page 102), the initialization may include trying to connect to a URL in order to check
its availability.

There are two special parameters passed to javacall_media_create():

■ application ID

■ Player ID

Unrealized

Realization

Realized

create()

destroy()

destroy()

destroy()

destroy()

destroy()

destroy()

realize()

prefetch()

acquire_device()release_device()

start()stop()

Prefetching

Prefetched

Started

if
(download_handled_by_device())
then
 immediately
otherwise
 <buffering cycle>
Chapter 22 Porting JSR 135: Mobile Media API 99

Both parameters are integers generated by the Java platform. Later, when notifying
the Java platform about any media event that occurs for the Player, you can use
these values to identify the Player.

If the Player is being created from a URL, then the JavaCall porting layer may decide
to reject the creation for some reason. For example, the creation may be rejected if
you do not want input from a pre-defined “bad” Internet site. In this case, the
function MUST return JAVACALL_FAIL.

The javacall_media_destroy() Function
The inverse of the javacall_media_create() function is
javacall_media_destroy(). This function is called when the Java platform no
longer needs the Player. When calling the javacall_media_destroy() function,
be sure to de-initialize all resources initialized with javacall_media_create().
Also, be sure to free all resources allocated to the Player with this function. (For
more information, see “The Closed State” on page 108).

The Unrealized State
The Unrealized state is the Player state immediately after it is created. In this state
(after javacall_media_create() has just returned), the Java platform calls only
one of the following functions for the Player:

■ javacall_media_get_format() - This function queries for the Player media
format. At this point, the format may still be unknown (equal to
JAVACALL_MEDIA_FORMAT_UNKNOWN), even if the MIME type is given by the
Java platform when creating the Player.

Note – At the Realization stage (or earlier) your JavaCall porting layer
implementation MUST identify the media format or reject it as not supported
(JAVACALL_MEDIA_FORMAT_UNSUPPORTED). If the Player is refused, the function
must also return JAVACALL_MEDIA_FORMAT_UNSUPPORTED).

■ javacall_media_download_handled_by_device() - This function asks
whether a URL passed in to the javacall_media_create() function when the Player
is first initialized is to be handled by the JavaCall porting layer or by your Java
platform.
100 Porting Guide • December 2008

Note – In some cases, a URL is not passed to javacall_media_create().
However, if one is, this question must be answered definitively. For more
information see “Why Are Some URLs Handled On The Native Platform Side?” on
page 102.

■ javacall_media_realize() - This function initiates transition to the next
Player state (Realization). Unlike the Java platform API function realize(),
javacall_media_realize() MUST return immediately. The realization process may
include some initialization work, and it may also include downloading and
examining media data.

Downloading and Examining Media Data
There are two ways for a Player to download and examine media data. They are:

■ Through memory buffers that are filled by the Java platform. In this case, even if
a URL is available, it is connected and handled on the Java platform side.

■ Directly via the URL, if available. In this case, the connection may be handled by
the native platform.

The choice between the two scenarios is determined by the return value of the
function javacall_media_download_handled_by_device(), as shown in
FIGURE 22-2.
Chapter 22 Porting JSR 135: Mobile Media API 101

FIGURE 22-2 Downloading and Examining Media Data

Why Are Some URLs Handled On The Native Platform Side?

There are several reasons why it can be desirable for the JavaCall porting layer to
connect to a URL and download or stream the data by itself:

■ The limited capabilities of the Java layer. For example, in the Sun Java Wireless
Client software, the Java platform does not support streaming using memory
buffers. Moreover, it supports only HTTP protocol to download data. Thus, the
only way to implement some functionality, for example RTSP streaming, is to
connect to RTSP links on the JavaCall porting layer side.

Note – The same is true for HTTP streaming. For more information, see “Full
Downloading vs. Streaming” on page 103.

download_handled_by_device()

get_format()

get_controls()

New Player

URL, if any;
MIME type, if any;

data stream

javacall_media_caps
for the given format

suitable MIME type(s)

streamable or not

URL determines
whether Java or Javacall

downloads the data

The supported controls
(features) are different for

each player

Analyzes the URL, the HTTP
session, or other data to
determine the data format

format
determines
102 Porting Guide • December 2008

■ The need for special actions to be taken. For example, when connecting to some
kinds of media resources, money may be charged without the Java platform being
aware of the charges.

■ Better performance when your Java platform handles some URLs directly. For
example, transmission of data downloaded by the Java platform to a Player
through memory buffers may introduce some overhead in critical resource usage,
such as memory consumption and CPU load.

Full Downloading vs. Streaming

Streaming means that media is played in parallel as the content is being
downloaded.

Some Players may not support this functionality. For those Players, they must have
their entire data stream downloaded in full before they can begin playback.

The JavaCall porting layer MUST indicate those media types for which streaming is
supported and for which types it is not. This is done by assigning the following
fields to the corresponding javacall_media_cap structure (an array of the
javacall_media_cap structures, indexed by media format, is a field in the
structure returned by the function javacall_media_get_configuration(). For
details, see the comments in the file javacall_multimedia.h.):

■ streamingProtocols. This field reports for which protocols streaming is
supported by the JavaCall porting layer for a given media format.

■ wholeProtocols. This field reports for which protocols playback is supported,
but streaming is not for a given media format.

Note – For more information, see “Platform Media Capabilities” on page 97.

In the above fields the pseudo-protocol JAVACALL_MEDIA_MEMORY_PROTOCOL may
be used to indicate whether streaming or playback is supported from memory
buffers filled by the Java platform.

Note – Streaming from memory IS NOT SUPPORTED by the Java platform in the
Sun Java Wireless Client software.
Chapter 22 Porting JSR 135: Mobile Media API 103

The Realization State
The function javacall_media_realize() MUST initiate the realization process.
The realization process may include some initialization work, but it may also include
downloading and examining of media data.

If downloaded media data needs to be examined, the Realization state may
transition media data from the Java platform to the JavaCall porting layer using the
media buffering cycle. (For more information on the media buffering cycle, see “The
Media Buffering Cycle” on page 104 and “The Media Buffering API” on page 105.)

One of two things must happen:

■ If the result of javacall_media_download_handled_by_device()=
JAVACALL_FALSE, the function javacall_media_realize() MUST return
immediately and wait for the media buffering cycle to be completed. The state is
considered to be changed from Realization to Realized when the media buffering
cycle is finished.

■ If the result of javacall_media_download_handled_by_device()=
JAVACALL_TRUE, the function javacall_media_realize() must NOT return
immediately. It may initialize and examine the media data using the URL that has
been passed to the function javacall_media_create(). When the realization
process is finished, the javacall_media_realize() function returns and the
state is changed from Realization to Realized.

Examination of some portion of the media may be needed, for example, to parse the
headers in order to determine the media format. However, a decision about the
format may be made based on just the file extension. This is left to the discretion of
your JavaCall parting layer implementation.

Beside format, other parameters MUST be recognized, for example, by parsing the
headers of the media file. These are:

■ Duration of the media, if available

■ Height and width for video playback

■ MetaData, if supported and available in the beginning of the media

The Media Buffering Cycle
During the media buffering cycle, some amount of media data ia being transferred
from the Java platform to the native platform, via the JavaCall porting layer. This is
done to carry out some action. The buffering cycle is finished as soon as the JavaCall
porting layer signals that the action is completed and no more data is needed.
104 Porting Guide • December 2008

The media buffering cycle may happen in the following two Player states:

■ Realization state

■ Prefetching state

The media buffering cycle happens the same way in both the Realization and
Prefetching states:

1. The Java platform calls the function
javacall_media_get_java_buffer_size(). If the output parameter
first_chunk_size returns 0, then the cycle is finished. If it returns some other
value but 0, step 2 takes place.

2. The Java platform calls the javacall_media_get_buffer_address()
function. Then it calls javacall_media_do_buffering(), using the returned
address as input.

3. If the output parameter need_more_data returns JAVACALL_TRUE, Step 2 is
repeated. If not, the buffering cycle is finished.

When the media buffering cycle is finished, control is passed back to the Realization
or Prefetching state from which it was launched.

The Media Buffering API

The following functions are used to pass input media from the Java platform to the
JavaCall porting layer during the media buffering cycle:

■ javacall_media_get_java_buffer_size() - The Java platform calls this
function to determine the optimal size for its buffers for a given Player.

■ javacall_media_get_buffer_address() - The Java platform calls this
function to get the address and size of the buffer, which it fills with a portion of
input media data.

■ javacall_media_do_buffering() - The Java platform calls this function
when the current buffer is filled and can be used by the JavaCall porting layer.

■ JAVACALL_EVENT_MEDIA_NEED_MORE_MEDIA_DATA - The JavaCall porting
layer returns this event to notify the Java platform that it is ready for more input
data.

■ javacall_media_clear_buffer() - This function clears (deletes) all the
internal buffers of a Player and resets the buffering system. If this function has
not been called, the buffers MUST be freed by javacall_media_destroy().

Note – For more information on these events, see the javanotify_multimedia.h
file.
Chapter 22 Porting JSR 135: Mobile Media API 105

The Realized State
The Realized state is still not suitable to start playback. To get ready for this a Player
must do a prefetch operation. However, a Player in a Realized state can be involved
in other operations. (For more information on this, see the JSR-135 Specification.)

The Pre-Fetching State
The function javacall_media_prefetch() initiates the Prefetching state. The
behavior of this function depends on the return value of the function
javacall_media_download_handled_by_device(). There are two possible
situations:

■ The return value is JAVACALL_FALSE. In this case, the function
javacall_media_realize() should return immediately and a buffering cycle
follows.

■ The return value is JAVACALL_TRUE. In this case, the function
javacall_media_realize() may fill the internal buffers with media data,
using the URL that has been passed to the function
javacall_media_create(), and return only after it is done.

Note – The media buffering cycle used in the Prefetching state is the same as that
used in the Realization state. For more information on the media buffering cycle and
Media Buffering API, see “The Media Buffering Cycle” on page 104 and “The Media
Buffering API” on page 105.

The purposes of the Prefetching state are the following:

■ To fill the internal buffers with media data in order to minimize the Player
start/playback latency.

■ To request acquisition of scarce platform resources needed to start playback (e.g.
audio device, CPU, hardware decoder, screen buffer etc.) The request can be
rejected if the resources are not available or there are not enough resources to
start playback because those resources are being used by other Players.

Actions in the Prefetching state include:

■ Filling the Internal Buffers - It is up to your implementation to decide how much
data to pre-buffer. The extreme case is the whole media.

In order to help your implementation with the decision, the Java platform reports
the size of the whole media, if available. It is done by calling the
javacall_media_set_whole_content_size() function.
106 Porting Guide • December 2008

■ Acquisition of Scarce Resources - This is done by the
javacall_media_acquire_device() function, performed by the Java
platform. If any of the scarce resources are not available, this function MUST
return JAVACALL_FAIL. Otherwise the Player state becomes Prefetched.

The inverse of the javacall_media_acquire_device() function is
javacall_media_release_device(). This function MUST free scarce
resources and make them available for other Players. After this, the Player
becomes Prefetching, since the internal buffers are already pre-filled. (For more
information, see the description of the Player.prefetch() method in the JSR-
135 Specification.)

The PreFetched State
In the Prefetched state the user can control playback by the following functions:

■ javacall_media_start()

■ javacall_media_stop()

■ javacall_media_pause()

■ javacall_media_resume()

Their purposes correspond exactly to their names. For more details, see the file
javacall_multimedia.h. and the JSR-135 Specification.

Reporting the Media Player Duration
A Player may or may not be aware of the total duration of the media played back.
However, this information may become available only in the process of playback.

The following is used to report the duration, if available:

■ javacall_media_get_duration() - This function MUST return
JAVACALL_NO_DATA_AVAILABLE if the duration of playback is still unknown.

■ JAVACALL_EVENT_MEDIA_DURATION_UPDATED - This event should be posted by
the JavaCall porting layer as soon as the Player has information about the
playback duration, if it was not known when javacall_media_prefetch()
was called.

For more information on these functions, see JSR-135 Specification.
Chapter 22 Porting JSR 135: Mobile Media API 107

The Seek API: Rewind and Fast Forward
Some Players may support seeking within a given media time. The following
functions in the JavaCall porting layer are used:

■ javacall_media_get_time()

■ javacall_media_set_time()

For details, see the file javacall_multimedia.h file.

If a Player doesn’t support seek functionality, the javacall_media_set_time()
function MUST return JAVACALL_NOT_IMPLEMENTED.

The Closed State
After javacall_media_close() has returned, the Player is not be used anymore
in any way. You may free some resources using in this function, for example,
memory buffers. However, alternatively, it can be done using the function
javacall_media_destroy().

Selected API Descriptions
The most important functions of the Mobile Media API JavaCall porting layer are
considered in detail in the previous discussion, “Player Lifecycle and Player States”
on page 98. However, the following supplementary functions are also important.

Media Library Initialization API
The function javacall_media_initialize() is called prior to any actions with
the Mobile Media JavaCall API. Please place the initialization needed for the native
media library in this function.

The inverse function is javacall_media_finalize(). It is called after all the
actions with the Mobile Media JavaCall API are completed. Deinitialize in this
function all things initialized in the function javacall_media_initialize().
108 Porting Guide • December 2008

Simple Tones
It is possible to playback simple tones without any player needing to be invoked.
This is done with the following functions:

■ javacall_media_play_tone()

■ javacall_media_stop_tone()

For more details, see the file javacall_multimedia.h.

Dual Tones
It is also possible to play two Simple Tones simultaneously, which is called a Dual
Tone.

The javacall_media_play_dualtone() function is used for this.

This feature is optional and it is uncommon to require support for it. In most cases,
you may just make this function return JAVACALL_NOT_IMPLEMENTED.

References
For more information about Mobile Media API, see the JSR 135 Specification at:

http://jcp.org/en/jsr/detail?id=135

For more information about the Advanced Multimedia Supplements, see Chapter 23
and the JSR 234 Specification at:

http://jcp.org/en/jsr/detail?id=234

For more information about the Advanced Multimedia Supplements API for J2ME
Format Definitions, see:

http://www.forum.nokia.com/main/resources/technologies/java/docu
mentation/java_jsr.html
Chapter 22 Porting JSR 135: Mobile Media API 109

http://jcp.org/en/jsr/detail?id=234
http://jcp.org/en/jsr/detail?id=135

110 Porting Guide • December 2008

23

Porting JSR 234: Advanced
Multimedia API

The purpose of this chapter is to implement Advanced Multimedia Supplements API
(AMMS) functionality, such as 3D audio, music effects, and image processing.

APIs To Be Ported
The API to be ported can all be found in the following file:

■ Javacall-com/
interface/jsr234_amms/javacall_multimedia_advanced.h

■ Javacall-com/
interface/jsr234_amms/javanotify_multimedia_advanced.h

Detailed descriptions of all necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for these files.

Background
The functionality provided by the Advanced Multimedia Supplements (JSR 234) is
intended to extend and enhance the multimedia capabilities provided by the Mobile
Media API (JSR 135). In MMAPI, you were given the ability to launch a single
Player, then define and manage a specific set of audio and video controls for it. In
AMMS, you have the ability to launch a number of Players, group them together,
and then interact with them as a source of sound in 3D space (for example, by
applying sound affects to them).
Chapter 23 Porting JSR 234: Advanced Multimedia API 111

Although AMMS provides an extended set of controls for each individual Player, the
ability to group Players also allows many new, interesting possibilities. 3D audio,
music effects such as reverb and location control, and enhanced image processing
for video, are all possible with AMMS. Taken together, the JSR 234 optional package
extends the range and multimedia capabilities of your Java platform.

Most of AMMS functionality, such as 3D audio, depends on the hardware and
software capabilities of your platform. The AMMS implementation provided by the
Sun Java Wireless Client software treats the multimedia capabilities of your platform
as a “black box” and operates this box using the JSR-234 JavaCall API.

Description
The Advanced Multimedia (JSR 234) JavaCall API consists of the following two
parts, which differ slightly from each other:

■ 3D Audio and Sound Effects (aka Music Capability)

■ Image processing

Both of these features are described in detail in the subsections “Supported
SoundSource3D Audio Features” on page 113 and “Image Processing” on page 120.

Some features of the Advanced Multimedia Supplements API are mandatory and
others are optional. The main focus of this chapter are the mandatory APIs that must
be implemented to have a working JSR 234 port.

Note – The Sun Java Wireless Client software provides support for a number of
AMMS features. It is up to you to decide which of these features your hardware and
software implementation will support.

Supported and Unsupported AMMS Features
The Sun Java Wireless Client software supports all JSR-234 features required by the
Mobile Services Architecture (MSA 248) Specification. However, the AMMS
Specification (JSR 234) provides a large set of optional features, some of which are
not supported in the Sun Java Wireless Client software.

The Sun Java Wireless Client software supports the following JSR 234 features:

■ Camera Control features

■ Tuner Control features

For more information, see “Supported Camera Control Features” on page 116 and
“Supported Tuner Control Features” on page 116.
112 Porting Guide • December 2008

Note – Management of the supported 3D Audio, Spectator, and Music Effects
features described in the following sections are handled through the Global Manager
(javax.microedition.amms.GlobalManager). For more information on the
Global Manager, see “The Global Manager” on page 118.

Supported SoundSource3D Audio Features
SoundSource3D represents a sound source in a virtual acoustical space. The Sun Java
Wireless Client software supports some 3D audio features of the Advanced
Multimedia Supplements Specification. Only the following controls can be obtained
from SoundSource3D:

■ DistanceAttenuationControl

■ LocationControl

■ ReverbSourceControl

A Player of any media format can be added to the SoundSource3D, if it supported
by your hardware and software platform. If supported, a MIDI channel can also be
added to the SoundSource3D.

Note – All other features of JSR 234 3D Audio are not supported.

Supported SoundSource3D Features on Your Platform

Use the following functions to tell which SoundSource3D features are supported on
your platform:

■ The function javacall_amms_local_manager_create_sound_source3d()
should return JAVACALL_NOT_IMPLEMENTED if SoundSource3D creation is not
supported.

■ Use the function
javacall_audio3d_get_supported_soundsource3d_player_types() to
indicate which media formats can be played back with SoundSource3D effects. If
a player of any other format is added to a SoundSource3D with the function
javacall_audio3d_soundsource3d_add_midi_channel(), it should return
JAVACALL_NOT_IMPLEMENTED. For more information, see the function
descriptions.

■ Use the function javacall_audio3d_soundsource3d_get_controls() and
javacall_audio3d_soundsource3d_get_control() to indicate which
Controls (of the three in the list above) are supported for SoundSource3D. For
more information, see the function descriptions.
Chapter 23 Porting JSR 234: Advanced Multimedia API 113

■ The function javacall_audio3d_soundsource3d_add_midi_channel()
should return JAVACALL_NOT_IMPLEMENTED if addition of MIDI channels to
SoundSource3D is not supported.

Supported Spectator Controls
In the Advanced Multimedia Supplements Specification, the Spectator represents the
listener in a virtual acoustical space. The Sun Java Wireless Client software provides
support for only the following Spectator controls:

■ LocationControl

■ OrientationControl

Supported Spectator Features on Your Platform

Use the following functions to tell which Spectator features are supported on your
platform:

■ The function javacall_amms_local_manager_get_spectator() should
return JAVACALL_NOT_IMPLEMENTED if getting the Spectator is not supported.

■ Use the functions javacall_audio3d_spectator_get_control() and
javacall_audio3d_spectator_get_controls() to indicate which controls
(from the two in the list above) are supported by your platform. For more
information, see the function descriptions.

Supported Global Scope Music Effects Features
In the Advanced Multimedia Supplements Specification, “effects” provide a way for
sound to be modified during audio playback. For example, adding reverb to a song
gives it a wavering effect when played, but does not change the song itself. The Sun
Java Wireless Client software supports the following globally-applied Music Effects
features:

■ AudioVirtualizerControl

■ ChorusControl

■ EqualizerControl

■ ReverbControl

■ javax.microedition.media.VolumeControl

Note – For globally-applied Music Effects features, the scope in which it is applied
is the Java platform application.
114 Porting Guide • December 2008

Supported Music Effects Features on Your Platform

Use the following functions to tell which Music Effects features are supported on
your platform:

■ Use the functions javacall_amms_local_manager_get_control() and
javacall_amms_local_manager_get_controls() to indicate which of the
controls (of the five in the list above) are supported on your platform. For more
information, see the function descriptions.

Supported Image Processing Features
Only the following AMMS Image Encoding and Post-Processing features are
supported in the Sun Java Wireless Client software:

■ A MediaProcessor can be created for raw images

■ A MediaProcessor can be created for any image format if supported by your
platform

■ A MediaProcessor can provide:

■ ImageEffectControl

■ ImageTransformControl

■ OverlayControl

■ ImageFormatControl capable of encoding images to any format, if supported
by your platform

Note – Other features of AMMS Image Encoding and Post-Processing cannot be
supported.

Supported Image Processing Features on Your Platform

Use the following functions to tell which Image Processing features are supported
on your platform:

■ The function javacall_image_filter_create() should return
JAVACALL_NOT_IMPLEMENTED if, and only if, one of the following items is true:

■ The control (from those in the list above) that corresponds to the passed
filter_type is not supported.

■ Your platform does not support processing of the MIME type passed as
source_mime_type.

■ Your platform does not support conversion of images to the MIME type passed
as dest_mime_type.
Chapter 23 Porting JSR 234: Advanced Multimedia API 115

■ Use the function
javacall_image_filter_get_supported_dest_mime_types() to indicate
which MIME types are supported by a given Image Filter.

■ Use the function
javacall_image_filter_get_supported_source_mime_types() to
indicate which MIME types are supported by a given Image Filter process.

■ Use the function javacall_image_filter_get_supported_presets() to
indicate which presets are supported by a given Image Filter.

■ Use the function javacall_image_filter_get_int_values() to indicate
which integer values are supported by a given Image Filter.

■ Use the function javacall_image_filter_get_str_values() to indicate
which string values are supported by a given Image Filter.

Supported Camera Control Features
The following optional AMMS camera controls are supported in Sun Java Wireless
Client software:

■ CameraControl

■ FlashControl

■ FocusControl

■ SnapshotControl

■ ZoomControl

■ ExposureControl

The method javacall_amms_camera_control_is_supported() determines if
CameraControl is supported for a given camera. The functionality for this is
implemented by a set of javacall_amms_camera_control_*** APIs.

Note – Only capture://video players are queried by the Java Wireless Client
software.

Other controls (e.g., FlashControl, FocusControl, SnapshotControl,
ZoomControl, and ExposureControl) follow similar rules as those described for
CameraControl.

Supported Tuner Control Features
The following optional AMMS camera controls are supported in Sun Java Wireless
Client software:
116 Porting Guide • December 2008

■ TunerControl

■ RDSControl

The method javacall_amms_tuner_control_is_supported() determines if
TunerControl is supported for a given camera. The functionality for this is
implemented by a set of javacall_amms_tuner_control_*** APIs.

Note – Only capture://radio players are queried by the Java Wireless Client
software.

The RDSControl follows similar rules as those described for TunerControl.

Selected API Descriptions
According to the capabilities of your hardware platform and JavaCall API
implementation, system properties can be assigned. System properties are set in the
following file:

jsr234/build/cldc_application/config/properties_jsr234.xml

For more information about the properties_jsr234.xml file, see “Setting System
Properties” on page 117.

Setting System Properties
The system properties file, properties_jsr234.xml, defines JSR 234 System
Properties, as shown in the following example.

For each property there is a Key, which means the System Property name. The
property defines the specific Value, which is the System Property value, and Scope,
which should always equal to “system.”

For example, for the Key=microedition.amms.version, the system is being told
to reckon the JSR 234 (AMMS) version implemented on your platform as “1.1.”

<property Key=microedition.amms.version” Value=”1.1”
Scope=”system”/>
.....
<property Key=”audio.samplerates” Value=”48000 44100 32000 22050
16000 11025 8000” Scope=”system”/>
Chapter 23 Porting JSR 234: Advanced Multimedia API 117

For a complete list of properties to assign to your JSR 234 implementation, see the
JSR 234 Specification. (For the complete JSR 234 URL, see “References” on page 120.)

The Global Manager
In JSR 234, the GlobalManager class provides methods for the following
functionalities:

■ Creating SoundSource3Ds

■ Creating MediaProcessors

■ Getting globally-applied Controls

■ Getting the Spectator

To carry out these functionalities, the following Global Manager methods are
supported:

■ createSoundSource3D()

■ createMediaProcessor(String)

■ getControls()

■ getSpectator()

■ getSupportedMediaProcessorInputTypes()

■ getSupportedSoundSource3DPlayerTypes()

The corresponding JavaCall API methods are as follows (see the
javacall_multimedia_advanced.h file for details).
118 Porting Guide • December 2008

Setting 3D Audio and Music Effects
This section describes how to map JavaCall APIs to corresponding Java platform
APIs for 3D audio and music effects in your implementation of JSR 234. For
example, the Java API interface LocationControl maps as follows.

Here are some exceptions to this mapping structure:

■ The AMMS GlobalManager maps to javacall_amms_local_manager. This is
because, if more than one MIDlet runs in parallel, each has its own
GlobalManager. The scope of each GlobalManager is not global for the native
layer, because the native layer must handle the Java applications running at the
same moment.

■ The JSR-135 Player maps to javacall_handle. For more information about
Mobile Media API and the JSR-135 Player, see Chapter 22.

For more information about direct mapping for this part of the AMMS, see JSR-234
Specification. (For the complete JSR 234 URL, see “References” on page 120.)

TABLE 23-1 JavaCall API Mapping for LocationControl

Java API JavaCall API

Control javacall_amms_control_t

LocationControl javacall_amms_location_control_t

a Control that is a
LocationControl

javacall_amms_control_t, where the structure fields are as follows:
-ptr is a pointer to javacall_amms_location_control_t
- type equals to javacall audio_3d_eLocationControl

LocationControl.get
Cartesian()

javacall_audio3d_location_control_get_cartesian()

LocationControl_set
Cartesian()

javacall_audio3d_location_control_set_cartesian()

LocationControl.setS
pherical

javacall_audio3d_location_control_set_spherical()
Chapter 23 Porting JSR 234: Advanced Multimedia API 119

Image Processing
When it comes to image processing in your AMMS implementation, the API
mapping from Java platform APIs to JavaCall porting layer APIs is not as
straightforward as it is for 3D Audio and Music.

The following items make mapping image processing APIs different:

■ Though javacall_media_processor is a mapping of the Java API
MediaProcessor, it is not created from javacall_amms_local_manager, unlike
in the Java platform API. Instead, Javacall_media_processor is created by
the function javacall_media_processor_create(), which has nothing to do
with the Local Manager.

■ A new entity was introduced in the JSR-234 JavaCall API. It is the Image Filter
(javacall_image_filter) as described in “The Image Filter” on page 120.

For complete information, see the javacall_multimedia_advanced.h file.

The Image Filter
Image Filter is an entity designed to process an image in one certain, pre-defined
way. This way is determined by the Image Filter Type, the enum
javacall_amms_image_filter_type.

A Media Processor (javacall_media_processor) can include one or more
consecutive Image Filters, which defines exactly how an image is processed by the
Media Processor.

References
For more information about Advanced Multimedia Supplements, see the JSR 234
Specification at:

http://jcp.org/en/jsr/detail?id=234
120 Porting Guide • December 2008

http://jcp.org/en/jsr/detail?id=234

24

Porting JSR 211: Content Handler
API

The purpose of this chapter is to port the Content Handler API (CHAPI) to your
platform.

APIs To Be Ported
The APIs to be ported can all be found in the following files:

■ javacall/interface/jsr211_chapi/javacall_chapi_invoke.h

■ javacall/interface/jsr211_chapi/javacall_chapi_registry.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for these files.

Background
A content handler is a MIDlet designed to process a specific type of content, for
example, a picture or an e-mail message. Content handlers are registered in the
platform Registry. When some application in your system needs to process specific
content, it calls the implementation of CHAPI and hands off one of the following
things:

■ A request for a specific handler, identified by handlerID

■ A general request to handle a specific type of content, for example, a .jpg image
file
Chapter 24 Porting JSR 211: Content Handler API 121

The application requesting the handler passes other information to the CHAPI
implementation with its request:

■ The data to be processed

■ The action to be taken on the data

The CHAPI implementation calls the platform Registry for the appropriate content
handler, passing in a specific identifier or a general request for the type of content to
be handled. The Registry returns the handler, which is passed to the Application
Management System (AMS) to start up.

Once the content handler is started, the CHAPI implementation tells it what action
to take on what data and the handler processes the content. When processing is
finished, the handler shuts down. If results need to be returned to the calling
application, they are passed back via the CHAPI implementation.

Description
The CHAPI implementation provides two kinds of JavaCall porting interfaces:

■ Interfaces for porting to the platform Registry

■ Interfaces for porting to the AMS

The interfaces and functions needed for both these ports are described in the
following sections.

Porting to the Platform Registry
Implement the following APIs:

■ javacall_result javacall_chapi_init_registry(void) - This function
is called every time the CHAPI subsystem is initialized.

■ void javacall_chapi_finalize_registry(void) - This function is called
every time CHAPI subsystem is shut down. It is the last call to the system and
frees allocated resources.

■ javacall_result javacall_chapi_register_handler() - This function
registers a new content handler in the Registry. The information passed in as
parameters should be stored and returned when requested by a specific “getter”
function. For more information, see
javax.microedition.content.Registry.register().
122 Porting Guide • December 2008

Enumeration Functions
The following enumeration functions should return some set of handlers that satisfy
a specific condition. All these functions have a pos_id parameter, which provides a
pointer to an integer value. Initially, the value of the parameter is a pointer to zero
value.

Every enum function should modify this value to know what handler from the set
should be returned next. If an enum method has the ability to extract all handlers
simultaneously, it makes sense to store the result in some memory block and return
its address as a value of pos_id.

An enum function should return a handler id value via the output parameters
handler_id_out and length. If the length of the buffer pointed at by
handler_id_out is less than required for storing the next handler id, the function
must return an ERROR_BUFFER_TOO_SMALL error code. The parameter length
must point to a required buffer size value.

Each enumeration function is called in sequence, using the output of the function as
input to the next enumeration function until all functions have been called and the
sequence of functions is finished.

Note – In the following enum functions, the comment /*OUT*/ indicates the output
that is passed to the next enum function.

Implement the following primary enumeration functions:

■ javacall_result javacall_chapi_enum_handlers(int* pos_id,
/*OUT*/ javacall_utf16* handler_id_out, int* length) - This
function begins the process of enumeration for all handlers.

■ void javacall_chapi_enum_finish(int pos_id) - This function is called
every time an enumeration of handlers is completed.

Implement the following specific enumeration functions:

■ javacall_result
javacall_chapi_enum_handlers_by_suffix(javacall_const_utf16_st
ring suffix, int* pos_id, /*OUT*/ javacall_utf16*
handler_id_out, int* length) - This function enumerates content handlers
by the specified suffix.

■ javacall_result
javacall_chapi_enum_handlers_by_type(javacall_const_utf16_stri
ng content_type, int* pos_id, /*OUT*/ javacall_utf16*
handler_id_out, int* length) - This function enumerates content handlers
by the specified type.
Chapter 24 Porting JSR 211: Content Handler API 123

■ javacall_result
javacall_chapi_enum_handlers_by_action(javacall_const_utf16_st
ring action, int* pos_id, /*OUT*/ javacall_utf16*
handler_id_out, int* length) - This function enumerates content handlers
by the specified action.

■ javacall_result javacall_chapi_enum_handlers_by_suite_id(
javacall_const_utf16_string suite_id, int* pos_id, /*OUT*/
javacall_utf16* handler_id_out, int* length) - This function
enumerates content handlers by the specified suite_id.

■ javacall_result
javacall_chapi_enum_handlers_by_prefix(javacall_const_utf16_st
ring id, int* pos_id, /*OUT*/ javacall_utf16* handler_id_out,
int* length) - This function enumerates content handlers by the specified
prefix.

Implement the following enumeration functions:

■ javacall_result
javacall_chapi_enum_suffixes(javacall_const_utf16_string
content_handler_id, int* pos_id, /*OUT*/ javacall_utf16*
suffix_out, int* length) - This function enumerates all suffixes being
registered with the specified content handler as the first parameter of the function
(content_handler_id).

■ javacall_result
javacall_chapi_enum_types(javacall_const_utf16_string
content_handler_id, /*OUT*/ int* pos_id, javacall_utf16*
type_out, int* length) - This function enumerates all types being registered
with the specified content handler as the first parameter of the function
(content_handler_id).

■ javacall_result
javacall_chapi_enum_actions(javacall_const_utf16_string
content_handler_id, /*OUT*/ int* pos_id, javacall_utf16*
action_out, int* length) - This function enumerates all actions being
registered with the specified content handler as the first parameter of the function
(content_handler_id).

■ javacall_result
javacall_chapi_enum_action_locales(javacall_const_utf16_string
content_handler_id, /*OUT*/ int* pos_id, javacall_utf16*
locale_out, int* length) - This function enumerates all locales being
registered with the specified content handler as the first parameter of the function
(content_handler_id).

■ javacall_result
javacall_chapi_enum_access_allowed_callers(javacall_const_utf1
6_string content_handler_id, int* pos_id, /*OUT*/
124 Porting Guide • December 2008

javacall_utf16* access_allowed_out, int* length) - This function
enumerates all allowed callers registered with the specified content handler as the
first parameter of the function (content_handler_id).

Other Get Functions
The following functions are get functions, which return some information about a
specific handler.

Implement the following functions:

■ javacall_result
javacall_chapi_get_local_action_name(javacall_const_utf16_stri
ng content_handler_id, javacall_const_utf16_string action,
javacall_const_utf16_string locale, /*OUT*/ javacall_utf16*
local_action_out, int* length) - This function gets a local action name.

■ javacall_result
javacall_chapi_get_content_handler_friendly_appname(javacall_c
onst_utf16_string content_handler_id, /*OUT*/ javacall_utf16*
handler_friendly_appname_out, int* length) - This function gets a
friendly appname.

■ javacall_result
javacall_chapi_get_handler_info(javacall_const_utf16_string
content_handler_id, /*OUT*/ javacall_utf16* suite_id_out,
int* suite_id_len, javacall_utf16* classname_out, int*
classname_len, javacall_chapi_handler_registration_type
*flag_out) - This function gets handler info.

■ javacall_bool
javacall_chapi_is_access_allowed(javacall_const_utf16_string
content_handler_id, javacall_const_utf16_string caller_id) -
This function finds out if access is allowed to a certain handler.

■ javacall_bool
javacall_chapi_is_action_supported(javacall_const_utf16_string
content_handler_id, javacall_const_utf16_string action) - This
function finds out if a certain action is supported.

■ javacall_result
javacall_chapi_unregister_handler(javacall_const_utf16_string
content_handler_id) - This function removes all information about a handler
from the registry.
Chapter 24 Porting JSR 211: Content Handler API 125

Porting to the AMS
Implement the following APIs:

■ javacall_result javacall_chapi_ams_launch_midlet(int suite_id,
javacall_const_utf16_string class_name, /*OUT*/
javacall_bool* should_exit) - This function starts a content handler, but
should not start a second copy of the application. (This function should only be
provided if a native AMS is used.)

■ javacall_result javacall_chapi_platform_invoke(int invoc_id,
const javacall_utf16_string handler_id,
javacall_chapi_invocation* invocation, /*OUT*/ javacall_bool*
without_finish_notification, /*OUT*/ javacall_bool*
should_exit) - This function starts a native content handler.

■ void javanotify_chapi_platform_finish(int invoc_id,
javacall_utf16_string url, int argsLen,
javacall_utf16_string* args, int dataLen, void* data,
javacall_chapi_invocation_status status) - This function informs the
CHAPI subsystem that a native handler is finished with processing some
invocation.

■ void javanotify_chapi_java_invoke(const javacall_utf16_string
handler_id, javacall_chapi_invocation* invocation, int
invoc_id) - This function allows an external application to create a CHAPI
invocation.

■ javacall_result javacall_chapi_java_finish(int invoc_id,
javacall_const_utf16_string url,int argsLen,
javacall_const_utf16_string* args, int dataLen, void* data,
javacall_chapi_invocation_status status, /* OUT */
javacall_bool* should_exit) - This function signals that a content handler
is finished with invocation processing.

References
For more information about Content Handler API, see the JSR 211 Specification at:

http://www.jcp.org/en/jsr/detail?id=211
126 Porting Guide • December 2008

http://www.jcp.org/en/jsr/detail?id=211

25

Porting JSR-177: Security and Trust
Services API

The purpose of this chapter is to implement the functionality of the Security and
Trust Services API (SATSA), such as exchanging data with smart cards and other
security devices.

Background
The JSR-177 (SATSA) API consists of four packages, as described in TABLE 25-1.

Note – Only one of the four SATSA packages is ported using the JavaCall porting
layer. This is the Application Protocol Data Unit (APDU) package.

TABLE 25-1 Four Main Parts of the SATSA Package

Part Description

APDU Supports data exchange with smart cards. Used by other
parts of the system to access security elements. Porting is
required for any type of security element.

Java Card RMI Provides RMI support for on-card applets.

PKI Supports the public key infrastructure and wireless
identity module.

CRYPTO Provides interfaces for cryptographic algorithms for
encoding and decoding data and generating and
verifying signatures.
Chapter 25 Porting JSR-177: Security and Trust Services API 127

The SATSA Security Element
The SATSA specification introduces a Security Element (SE) as a “device” that holds
the user’s credentials and is used to cipher and sign messages. This device could be
a smart card or a smart card reader. You can access the SE by two means:

■ File access - Available for smart cards that support an on-card file system.

■ Application oriented access - Available for smart cards that are compatible with
Java CardTM technology or with the (U)SIM Application Toolkit specifications.

Both methods use APDU commands to communicate with the SE. The SATSA-
APDU package provides data exchange with the SE.

SATSA-APDU Implementations
The SATSA-APDU package has two implementations:

■ CardDevice - This implementation can support any number of devices. It
provides different interfaces for card devices developed in both C and Java
programming languages. Both types of card devices can be used simultaneously.
This implementation is comprehensive and contains a number of classes and
methods.

■ Simple - This implementation can support only one device and provides only a C
interface. It contains only a few classes.

APIs To Be Ported
The APIs to be ported can be found in the following file:

■ javacall/interface/jsr177_satsa/javacall_carddevice.h

Detailed descriptions of all necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for this file.

The JavaCall API for SATSA consists of five functional groups:

■ Initialization and finalization

■ Data exchange

■ Locking

■ Retrieving information

■ Error handling

Porting of all five functional groups is mandatory.
128 Porting Guide • December 2008

Initialization and Finalization API
Implement the following APIs:

■ javacall_carddevice_init() - This function must initialize the card device.
If the SATSA-APDU optional package is implemented on a device that does not
have functional smart card slots this function must return
JAVACALL_NOT_IMPLEMENTED.

■ javacall_carddevice_finalize() - This function must finalize the card
device. If no special finalization actions are required, it may do nothing.

■ javacall_carddevice_set_property() - This function is used for setting
properties. If a JavaCall implementation doesn’t support a given property it must
return JAVACALL_NOT_IMPLEMENTED.

■ javacall_carddevice_select_slot() - This function must select a
“current” slot for use. If a card device has only one slot, this method may do
nothing. This method is called only when the card device is locked (see the
locking group).

Data Exchange API
There are two operations with a smart card that require data exchange:

■ Reset - This operation powers up the device and receives an answer-to-reset
(ATR).

■ Transfer data - This operation allows sending and receiving data (APDU) to and
from a card.

Data exchange operations may take some time. In this case, a data exchange method
must return JAVACALL_WOULD_BLOCK. When the operation is completed, a JavaCall
implementation must call the javanotify_carddevice_event() callback
method. Then, the corresponding _finish() method is called. It must either return
JAVACALL_WOULD_BLOCK or fill given buffer with received data.

■ javacall_carddevice_reset_start() and
javacall_carddevice_reset_finish() reset and return an ATR.

■ javacall_carddevice_xfer_data_start() and
javacall_carddevice_xfer_data_finish() exchange an APDU.
Chapter 25 Porting JSR-177: Security and Trust Services API 129

Locking API
Before any data exchange operation is performed a card device must be locked. The
SATSA implementation uses following scenario:

1. javacall_carddevice_lock() is called.

2. javacall_carddevice_select_slot() is called.

3. Some card operation is performed (is called).

4. javacall_carddevice_unlock() is called.

The javacall_carddevice_lock() method may return
JAVACALL_WOULD_BLOCK. In this case, your JavaCall implementation must call
javanotify_carddevice_event() when the device can be locked.

A JavaCall implementation must guarantee that native applications cannot access
the card device when it has been locked.

■ javacall_carddevice_lock() - This function is used to lock the card device.

■ javacall_carddevice_unlock() - This function is used to unlock the card
device.

Retrieving Information API
The following APIs must be implemented:

■ javacall_carddevice_get_slot_count() - This function returns the
number of device slots. This method is called once at initialization time.

■ javacall_carddevice_is_sat_start() - This function may require data
exchange with a smart card. If data exchange operations are used and they take
time, this method must return JAVACALL_WOULD_BLOCK.

When the operation is completed, a JavaCall implementation must call the
javanotify_carddevice_event() callback method. Then, the corresponding
javacall_carddevice_is_sat_finished() method is called. It must return
JAVACALL_WOULD_BLOCK or return a boolean value that represents if the slot is a
SAT slot.

■ javacall_carddevice_card_movement_events()- This function must
report which insertion/withdrawals are performed with a card. This method is
called before and after any card operation.
130 Porting Guide • December 2008

Error Handling API
If an error is believed to have occurred, the SATSA implementation sends a text
message into the error handling system. In that case, an error state must be set. The
SATSA implementation must then retrieve all messages (if allowed by memory
limitations) concatenated to one string and separated by new line characters. After
receiving this message string, the error state must be cleared.

■ javacall_carddevice_clear_error() - This function is used to clear the
error state.

■ javacall_carddevice_set_error() - This function receives a message and
sets the error state.

■ javacall_carddevice_get_error() - This function returns the concatenated
message string and clears the error state.

Additional SATSA Packages
The other three SATSA packages (RMI, PKI, and SATSA-CRYPTO) are not ported
using the JavaCall porting layer. Discussing their use is outside the scope of this
document.

References
For more information about Security and Trust Services API for J2METM see the JSR
177 Specification at:

http://jcp.org/en/jsr/detail?id=177
Chapter 25 Porting JSR-177: Security and Trust Services API 131

http://jcp.org/en/jsr/detail?id=177

132 Porting Guide • December 2008

26

Porting JSR 179: LandmarkStore API

The purpose of this chapter is to implement the LandmarkStore database.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

■ javacall-com/
interface/jsr179_location/javacall_landmarkstore.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for this file.

Background
The SR-179 API provides access to a native database of known landmarks stored in
the device. It is up to you to decide what parts of the LandmarkStore database is
implemented via the JavaCall porting layer, and where, and in which format, the
LandmarkStore database is stored on the platform.
Chapter 26 Porting JSR 179: LandmarkStore API 133

Description
Currently there are two implementations of the LandmarkStore:

■ The java_global implementation provides all functionality necessary for the
JSR-179 LandmarkStore. This implementation is platform independent and does
not have any interfaces to the platform.

■ The platform_global implementation has special dedicated native interfaces
used as a porting layer. The platform_global implementation is used if the
LandmarkStore database is shared with the native platform.

Preparatory Tasks
Implementation of the LandmarkStore is chosen at build time by assigning
appropriate values to the JSR_179_STORE_IMPL option in the
build/subsystem.gmk file. Also, the following internal properties should be
defined in the
<jsr179_root>/src/share/config/common/properties_jsr179.xml file,
where <jsr179_root> is the location where you have installed the JSR 179 source:

■ com.sun.j2me.location.CreateLandmarkStoreSupported - Set the value
of this to true if creation of the new LandmarkStore is supported.

■ com.sun.j2me.location.DeleteLandmarkStoreSupported - Set the value
of this to true if removal of the LandmarkStores is supported.

■ com.sun.j2me.location.CreateCategorySupported - Set the value of this
to true if creating a landmark Category is supported.

■ com.sun.j2me.location.DeleteCategorySupported - Set the value of this
to true if removal of a landmark Category is supported.

Selected API Descriptions
In case of a platform_global implementation of LandmarkStore, the following
JavaCall functions should be implemented.

Note – In all functions below, a NULL landmarkStoreName means the default
LandmarkStore.
134 Porting Guide • December 2008

Implement the following mandatory APIs.

■ javacall_landmarkstore_landmark_add_to_landmarkstore()- This
function should a add new landmark to an existing LandmarkStore. It returns a
unique landmark identifier.

■ javacall_landmarkstore_landmark_add_to_category() - This function
adds an existing landmark to an existing landmark category.

■ javacall_landmarkstore_landmark_update() - This function updates an
existing landmark in the LandmarkStore.

■ javacall_landmarkstore_landmark_delete_from_landmarkstore() -
This function deletes a landmark from the LandmarkStore.

■ javacall_landmarkstore_landmark_delete_from_category() - This
function deletes a landmark from a category only. It does not remove a landmark
from the LandmarkStore.

■ javacall_landmarkstore_list_open() - This function provides a list of
existing LandmarkStores and returns a handle to the list. Only one
LandmarkStore name is returned by each call. If no more LandmarkStores are
available, this call should return NULL.

■ javacall_landmarkstore_list_next() - This function uses the handle
provided by javacall_landmarkstore_list_open() to provide
LandmarkStore names. The LandmarkStore name returned by
javacall_landmarkstore_list_next() should be valid until the next
javacall_landmarkstore_list_next() call, or until
javacall_landmarkstore_list_close() is called.

■ javacall_landmarkstore_list_close() - This function deallocates all
allocated memory.

■ javacall_landmarkstore_landmarklist_open() - This function returns all
landmarks belonging to a provided LandmarkStore. If a categoryName is not
NULL, only landmarks belonging to a provided category inside a LandmarkStore
are returned.

■ javacall_landmarkstore_landmarklist_next() - This function assumes
that the returned landmark memory block is valid until the next function call. It
returns NULL if no more landmarks are in the list.

■ javacall_landmarkstore_landmarklist_close() - This function
deallocates all allocated memory.

■ javacall_landmarkstore_categorylist_open() - This function returns a
list of category names in a specified landmark store.

■ javacall_landmarkstore_categorylist_next() - This function assumes
that the returned landmark memory block is valid until the next function call. It
returns NULL if no more categories are in the list.

■ javacall_landmarkstore_categorylist_close() - This function
deallocates all allocated resources.
Chapter 26 Porting JSR 179: LandmarkStore API 135

Optional API

The following optional APIs are not needed to create a basic, functional working
port:

■ javacall_landmarkstore_create() - This function must be implemented if
CreateLandmarkStoreSupported is set to true in the
src/share/config/common/properties_jsr179.xml file.

■ javacall_landmarkstore_delete() - this function should be implemented if
DeleteLandmarkStoreSupported is set to true in the
src/share/config/common/properties_jsr179.xml file.

■ javacall_landmarkstore_category_add() - This function should be
implemented if CreateCategorySupported is set to true in the
src/share/config/common/properties_jsr179.xml file.

■ javacall_landmarkstore_category_delete() - This function should be
implemented if DeleteCategorySupported is set to true in the
src/share/config/common/properties_jsr179.xml file.

References
For more information about the Landmark Store API for J2ME Platform, see the JSR
179 Specification at:

http://jcp.org/en/jsr/detail?id=179
136 Porting Guide • December 2008

http://jcp.org/en/jsr/detail?id=179

27

Porting JSR 179: Location API

The purpose of this chapter is to implement the Location API.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

■ javacall-com/interface/jsr179_location/javacall_location.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for this file.

Background
JSR-179 provides access to location services such as obtaining information about the
present geographic location and orientation of a device. Location information is
platform dependent, as access to specific platform libraries, or even hardware, may
be required.
Chapter 27 Porting JSR 179: Location API 137

Description
The native platform can provide several methods to access location services, such as
satellites (Standalone GPS), CellID, or Assisted GPS. Every method should be
implemented as a separate LocationProvider.

Porting of the LocationProvider to the native implementation hides interactions
with the location device and is intended to be a porting layer for an efficient
platform-dependent implementation of the LocationProvider.

Additionally, there are two implementations of atan2 math function for Location
API:

■ The java_global platform independent implementation. This implementation is
platform independent and does not require porting to new platforms.

■ The platform_global implementation has a native interface that can be used as
a porting layer. This implementation is available if an optimized implementation
of atan2 is present on the platform

Preparatory Tasks
The following internal properties should be defined in the
<jsr179_root>/src/share/config/common/properties_jsr179.xml file,
where <jsr179_root> is the location where you have installed the JSR 179 source:

■ com.sun.j2me.location.ProximitySupported - Set the value of this to
true if proximity monitoring is supported.

Selected API Descriptions
Implement the following mandatory APIs:

■ javacall_location_property_get() - This function returns a list of
Location Providers supported by the platform. If more then one Location
Provider is supported, they should be separated by commas.

If this function is called with the JAVACALL_LOCATION_ORIENTATION_LIST
parameter, it should return the Orientation Provider name. If returned as NULL,
the orientation functionality is not supported.

■ javacall_location_provider_getinfo() - This function returns
information about the Location Provider.
138 Porting Guide • December 2008

■ javacall_location_provider_open() - This function opens a Location
Provider. In the most cases, initialization of a Location Provider requires long
term operations. In this case, javacall_location_provider_open() should
return JAVACALL_WOULD_BLOCK and continue initialization in the background.

After initialization is completed, the JavaCall implementation should call the
javanotify_location_event(JAVACALL_EVENT_LOCATION_OPEN_COMPLET
ED) function, an with appropriate status code. If
javacall_location_provider_open() calls for an already opened Location
Provider, the function should return it quickly, without reinitialization.

■ javacall_location_provider_close() - This function closes a Location
Provider. Your platform should calculate the number of opened Location Provider
instances and, if all instances are closed, release the Location Provider.

■ javacall_location_provider_state() -This function returns the state of a
Location Provider:

■ JAVACALL_LOCATION_AVAILABLE

■ JAVACALL_LOCATION_OUT_OF_SERVICE

■ JAVACALL_LOCATION_TEMPORARILY_UNAVAILABLE

■ javacall_location_update_set() - This function initiates obtaining new
coordinates and should return JAVACALL_WOULD_BLOCK.

As soon as new coordinates are obtained, your platform should call
javanotify_location_event() with
JAVACALL_EVENT_LOCATION_UPDATE_ONCE. If timeout expires before obtaining
the new coordinates, javanotify_location_event() should be called with
JAVACALL_LOCATION_RESULT_TIMEOUT.

■ javacall_location_update_cancel() - This function should cancel a
javacall_location_update_set() request. In this case,
javanotify_location_event() should be called with
JAVACALL_LOCATION_RESULT_CANCELED.

■ javacall_location_get() - This function returns location information,
obtained via the javacall_location_update_set() function.

Optional APIs

The following APIs are optional and do not need to be implemented to achieve a
basic working port:

■ javacall_location_get_extrainfo() - This function returns additional
information about an obtained location, if javacall_location_update_set()
has completed successfully, or return a reason for the failure.
Chapter 27 Porting JSR 179: Location API 139

Your platform should indicate ExtraInfo in the extraInfoSize field of the last
received Location Information. There are three predefined mime-types for
ExtraInfo:

■ application/X-jsr179-location-nmea

■ application/X-jsr179-location-lif

■ text/plain

If your platform supports another mime-type for Extra Info, it should be
indicated in the outMimeTypeBuffer field.

■ javacall_location_get_addressinfo() - This function returns Address
Info related to the latest received Location Information. Your platform should
indicate AddressInfo presence in the addressInfoFieldNumber field of the
received Location Information.

■ javacall_location_orientation_update() - This function initiates
obtaining of new orientation information and should return
JAVACALL_WOULD_BLOCK. As soon as orientation is obtained, your platform
should call javanotify_location_event() with
JAVACALL_EVENT_LOCATION_ORIENTATION_COMPLETED.

■ javacall_location_orientation_get() - This function returns orientation
information, obtained via javacall_location_orientation_update().

■ javacall_location_atan2() - This function calculates atan from two
parameters. Your platform should use this function to override the default atan2
implementation by your platform optimized version.

References
For more information about the Location API for J2ME Platform, see the JSR 179
Specification at:

http://jcp.org/en/jsr/detail?id=179
140 Porting Guide • December 2008

http://jcp.org/en/jsr/detail?id=179

28

Porting JSR 82: Bluetooth API

The purpose of this chapter is to implement Bluetooth functionality.

APIs To Be Ported
The APIs to be ported can all be found in the following files:

■ javacall-com/interface/jsr82_bt/javacall_bt.h

■ javacall-com/interface/jsr82_bt/javanotify_bt.h

Detailed descriptions of all of the necessary APIs can be found in the Sun Java
Wireless Client Javadoc for these files.

Background
The Bluetooth Specification provides a standard set of Java programming language
APIs that enables low-power, handheld devices such as cell phones, pagers, PDAs,
and other small devices to share functionality over a peer-to-peer wireless
connection. Bluetooth wireless technology allows for heterogeneous connections
between different kinds of devices (for example, between a cell phone and a PDA).
Chapter 28 Porting JSR 82: Bluetooth API 141

Description
Bluetooth technology supports three categories of basic functionality, including the
following:

■ Discovery - The process of seeking and finding other Bluetooth-enabled objects,
which can include the following:

■ Devices, such as other cell phones, headsets, or PDAs.

■ Services, such as applications available from a Bluetooth server.

■ Registering services, for example, making Bluetooth-enabled applications
available for discovery by other Bluetooth-enabled devices or applications.

■ Communication - The process of establishing connection with another Bluetooth-
enabled device and using that connection to exchange data between the devices.

■ Device management - The process of managing and controlling connectivity
between Bluetooth-enabled devices.

The Bluetooth Stack
This API covers the three parts that make up the Bluetooth stack:

■ Bluetooth Control Center (BCC) and the BluetoothStack interface - This part
provides a means for device management and security, including:

■ Device inquiry

■ Retrieval of a remote device name

■ Authentication

■ Updating the Service Discovery Database (SDDB) service records

■ Service Discovery and Registration - This part provides a means to discover
services that are available on a service discovery server. A service discovery
server is responsible for advertising services to client devices, including:

■ Creating service records to advertise services

■ Updating service records if services change

■ Removing service records when services are no longer available

■ Logical Link and Control Application Protocol (L2CAP) and Bluetooth Serial Port
Profile (BTSPP) - This part provides a means to discover if data packets are in the
input queue and return them for reading, using different packaging formats.
142 Porting Guide • December 2008

Preparatory Tasks
The major work related to the JSR82 porting lies in implementation of the JavaCall
API for the target platform.

The Javacall API contains two parts:

■ JavaCall functions called from the JSR level, which should be ported on the target
platform. All JavaCall API Bluetooth functions and variable types have the prefix
javacall_bt_.

■ javanotify functions provided by the JSR, which are called by the target
platform to communicate with the JSR level. All javanotify functions have the
prefix javanotify_bt_.

Constants related to the Bluetooth implementation are located in the file
properties_jsr82.xml. Configuration parameters related to the Bluetooth
implementation are in the file subsystem.gmk.

Depending on your implementation of JSR 82, it is possible to configure the
following parameters:

■ The JSR 82 reference implementation contains an emulator that allows you to
work without having access to a real Bluetooth device. To use this option, you
must set the following variable in the subsystem.gmk file:
USE_JSR_82_EMULATOR=true.

■ The JSR 82 reference implementation provides the Service Discovery Data Base
(SDDB) that supports the Service Discovery protocol. However, many bluetooth
devices have their own implementation of SDDB.

You can choose to use the SDDB implementation that comes with the JSR 82
reference implementation or the one that comes with the native platform. If you
choose the JSR 82 SDDB reference implementation, you must set the following
variable in the subsystem.gmk file: USE_NATIVE_SDDB=false. If you choose
the native platform implementation, you must set USE_NATIVE_SDDB=true.

JavaCall API Bluetooth Variable Types and Values
Most JavaCall API Bluetooth functions return the result value. The type of it is the
same as for other JSRs and it has name javacall_result. Most often the values
are as follows:

■ JAVACALL_OK - This means an action has finished correctly.

■ JAVACALL_FAIL - This indicates an error occurred during execution.

■ JAVACALL_WOULD_BLOCK - this means that the function starts an asynchronous
operation and a function is called when the operation has finished.
Chapter 28 Porting JSR 82: Bluetooth API 143

Selected API Descriptions
Implement the following APIs:

■ Notification functions (prefix javanotify_bt_) - Notification functions shall be
called by the target platform when an appropriated event occurs. Data structures
and functions headers are defined in the javanotify_bt.h file.

■ Bluetooth Control Center (prefix javacall_bt_bcc_) - Please refer to the
javacall_bt.h file for more information. Everything you need to know is well-
explained in that file.

■ Bluetooth Stack (prefix javacall_bt_stack_)

■ javacall_bt_stack_start_inquiry() - This function is asynchronous. A
device is discovered via the javanotify_bt_device_discovered() call.
Notification about a completed inquiry is sent via the
javanotify_bt_inquiry_complete() call.

■ javacall_bt_stack_ask_friendly_name() - This function shall be
asynchronous. The notification about discovered device - via the
javanotify_bt_remote_name_complete() call.

■ javacall_bt_stack_authenticate() - This function is asynchronous. The
notification about a discovered device - via the
javanotify_bt_authentication_complete() call.

■ javacall_bt_stack_encrypt() - This function is asynchronous. The
notification about discovered device - via the
javanotify_bt_encryption_change() call.

■ Service Discovery Database (prefix javacall_bt_sddb_)

■ javacall_bt_sddb_update_psm()- This function is required for the push
implementation only.

■ javacall_bt_sddb_get_records() - This function returns not
javacall_result but number of entries available/saved to the array, or 0 if
an error occurs.

■ Service Discovery Protocol (prefix javacall_bt_sdp_) - These functions
provide an access to the native Service Discovery Protocol (SDP) implementation
that is provided by the target platform. Implementation of these functions is
required in case the USE_NATIVE_SDDB variable is set in the build system to the
true.

■ javacall_bt_sdp_request() - This function provides transfer of the
required parameters to the native SDP implementation to form a service
discovery request. The notification about discovered service - via the
javanotify_bt_service_result() call, notification about service search
completed via the javanotify_bt_service_complete() call.

■ javacall_bt_sdp_get_service()- This function reads a service record
from the service search result. The returned data shall be in the bluetooth PDU
format.
144 Porting Guide • December 2008

■ L2CAP protocol (prefix javacall_bt_l2cap_) - Please refer to the
javacall_bt.h file for more information. Everything you need to know is well-
explained in that file.

■ RFCOMM protocol (prefix javacall_bt_rfcomm_) - Please refer to the
javacall_bt.h file for more information. Everything you need to know is well-
explained in that file.

References
For more information about the Bluetooth API 1.1, see the JSR 82 Specification at:

http://jcp.org/en/jsr/detail?id=82
Chapter 28 Porting JSR 82: Bluetooth API 145

http://jcp.org/en/jsr/detail?id=82

146 Porting Guide • December 2008

29

Porting JSR 256: Mobile Sensor API

The purpose of this chapter is to implement Mobile Sensor functionality.

APIs To Be Ported
The APIs to be ported can all be found in the following file:

■ javacall-com/interface/jsr256_sensor/javacall_sensor.h

Detailed descriptions of all of necessary APIs can be found in the Sun Java Wireless
Client software Javadoc for this file.

Background
A sensor is a device designed to read specific kinds of information. For example, a
sensor may read temperature, pressure, longitude, or many other kinds of data.

A sensor may consist of one or several channels. Each channel can read data of a
determined type. To implement sensor functionality into your system, you need to
take the following two general steps:

■ Set the properties of each sensor and their channels

■ Implement the simplest sensor functions (initialization, reading data, etc.)

Sensor functionality can be implemented on the native platform or strictly at the
Java platform layer. This chapter covers primarily the native platform layer, which
requires porting specific functions using the JavaCall porting layer interfaces.
Chapter 29 Porting JSR 256: Mobile Sensor API 147

Note – Information about creating sensors strictly on the Java platform layer is
included in this chapter, but it is not the primary focus of this discussion.

The following figure provides an overview of the Mobile Sensor API and its
relationship to the native sensors on your device. The hardware layer of your device
may have one to n number of sensors, each designed to monitor or respond to
specific conditions or data. Your Java platform JSR 256 implementation uses the
JavaCall porting interfaces to call your native sensors and receive data from them.

FIGURE 29-1 Overview of Mobile Sensor API with Native Sensors

The JavaCall functions you need to implement the relationship between your native
sensors and your Java platform are described in this chapter.

Description
You must set sensor properties for them to be recognized by your system. Properties
are required for all sensors regardless of their interface (that is, regardless of whether
they are implemented at the Java platform or native platform layer).

Mobile sensor properties are defined in the following file:

$HOME/src/share/config/common/properties_jsr256_default.xml

Many properties can be defined for each sensor. Properties are set first for the
individual sensor, followed by property settings for each channel on the sensor.
Additional sensors are defined in the same way. For example, if your device has three
native sensors, you define the properties for each sensor and channels in the
properties_jsr_256_default.xml file for sensors 0, 1, and 2.

Mobile Sensor API

JavaCall Porting Layer

native sensorsn
0

Native
Sensor

1

Native
Sensor
148 Porting Guide • December 2008

Sensor Startup Process
When your device starts up, the properties defined in the
properties_jsr_256_default.xml file are read into memory for each sensor.
The sensor class creates an instance of sensor0 and calls the JavaCall porting layer
to retrieve a sensorID from the first native sensor. When sensorID is returned, the
sensor0 instance is ready to receive data from the first native sensor.

A second instance of the sensor class is created, the JavaCall porting layer is called to
retrieve a sensorID from the second sensor, and when the sensorID is returned,
the sensor1 instance is ready to receive data from the second native sensor. This
process is followed for all sensors defined in the
properties_jsr_256_default.xml.

Preparatory Tasks
When integrating your sensors with the JavaCall porting layer, the classes for sensor
and channel instances are predefined. These predefined classes are:

■ NativeExampleSensor

■ NativeExampleChannel

There is no need to change the implementation of any listed classes.

NativeExampleSensor Class
Each JavaCall sensor has an unique number called sensorType. The
DeviceFactory.generateSensor(...) method should contain the following
code, as shown below. numberSensor is passed in as an argument by the
generateSensor method.

In the above example, several possible return cases exist. In the return function,
SENSOR_CURRENT_BEARER is equal to the unique number of an individual sensor.

■ Case 1

switch (numberSensor) {

.

return new
NativeExampleSensor(numberSensor,channelCount,SENSOR_CURRENT_
BEARER);
Chapter 29 Porting JSR 256: Mobile Sensor API 149

■ Case 2

■ Case 3

■ Case 4

The third argument of the NativeExampleSensor class constructor is sensorType
declared above. The contents of the NativeExampleSensor class do not need to
change.

NativeExampleChannel Class
The DeviceFactory.generateChannel(...) method should contain the
following code, as shown below.

In the above example, several possible return cases exist. In the return function,
SENSOR_CURRENT_BEARER is equal to the unique number of an individual sensor.

return new
NativeExampleSensor(numberSensor,channelCount,SENSOR_BATTERY_
LEVEL);

return new
NativeExampleSensor(numberSensor,channelCount,SENSOR_BATTERY_
CHARGE);

return TestingSensor.getInstance(numberSensor,channelCount);.
..................

default:
}
return null;

}

public static ChannelDevice generateChannel(int numberSensor,
int numberChannel) {

switch (numberSensor) {

.
150 Porting Guide • December 2008

■ Case 1

■ Case 2

The third argument of NativeExampleChannel class constructor is sensorType
declared above. The contents of NativeExampleChannel class does not need to be
changed.

Selected API Descriptions
Implement the following JavaCall APIs:

■ javacall_result
javacall_sensor_is_available(javacall_sensor_type sensor) - This
function is called by the system and checks if a sensor is available. Returns
JAVACALL_OK when a sensor is available else. If not available, it returns
JAVACALL_FAIL.

■ javacall_result javacall_sensor_open(javacall_sensor_type
sensor, void** pContext) - This function is called by the system and opens a
sensor. It returns:

■ JAVACALL_OK if successful.

// Bearer Sensor - javacall

switch (numberChannel) {

case 0: // First channel

return new NativeExampleChannel(numberSensor, numberChannel,
SENSOR_CURRENT_BEARER);

}

break;

switch (numberChannel) {

case 0: // First channel

return new NativeExampleChannel(numberSensor, numberChannel,
SENSOR_BATTERY_LEVEL);

}

break;

.
Chapter 29 Porting JSR 256: Mobile Sensor API 151

■ JAVACALL_FAIL if there’s an error.

■ JAVACALL_WOULD_BLOCK when the system needs notification to continue.

■ javacall_result javacall_sensor_close(javacall_sensor_type
sensor, void** pContext) - This function is called by the system and closes
a sensor. It returns:

■ JAVACALL_OK if successful.

■ JAVACALL_FAIL if there’s an error.

■ JAVACALL_WOULD_BLOCK when the system needs notification to continue.

■ void javanotify_sensor_connection_completed(
javacall_sensor_type sensor, javacall_bool isOpen, int
errCode) - This function is called by the porting implementation and provides
notification to the system that the sensor open and close process has been
completed. (Notification is provided only after JAVACALL_WOULD_BLOCK has
been returned.)

■ javacall_result javacall_sensor_get_channel_data(
javacall_sensor_type sensor, int channel,
javacall_sensor_channel_data* data, int* dataCount, void**
pContext) - This function is called by the system and gets channel data from a
native sensor. The return values are the same as the javacall_sensor_open
function.

■ javacall_result
javacall_sensor_start_measuring_data(javacall_sensor_type
sensor) - This function is called by the system to start measuring sensor data.
After this function has been called, the native platform should call
javanotify_sensor_channel_data_available() to notify the JVM when
there is data available.

■ javacall_result
javacall_sensor_stop_measuring_data(javacall_sensor_type
sensor) - This function is called by the system to stop measuring sensor data.
After this function is called, the VM will no longer be notified when there is
sensor data available.

■ javacall_result
javanotify_sensor_channel_data_available(javacall_sensor_type
sensor, int channel, int errCode) - This function is called by the
porting implementation to notify the system that data is available or that an error
has occurred.

■ javacall_result
javacall_sensor_start_monitor_availability(javacall_sensor_typ
e sensor) - This function is called by the system to start monitoring a specified
sensor’s availability. If the monitored sensor’s state is changed, the native
platform should notify JVM by calling javanotify_sensor_availability().
152 Porting Guide • December 2008

■ javacall_result
javacall_sensor_stop_monitor_availability(javacall_sensor_type
sensor) - This function is called by the system to stop monitoring a specified
sensor’s availability. The JVM is no longer be notified if there are state changes for
the specified sensor.

■ void javanotify_sensor_availability(javacall_sensor_type
sensor, javacall_bool isAvailable) - This functions is called by the
porting implementation to notify the Java platform that the monitored sensor’s
available state is changed.

Implementing Non-Native Sensors
A sensor can be implemented on your device without requiring porting of JavaCall
methods to talk to the native hardware layer. The implementation of software
sensors can be done entirely in the Java programming language.

Each sensor and channel is represented in the system by an instance of a special
class. This class contains the abstract methods for initializing, reading data, etc.
Implementation of these methods for any sensor is a way to plug a sensor and its
channels into the Java platform.

Note – This section provides only a brief overview of the Java programming
language interfaces used to implement software sensors. For more detail, see the Sun
Java Wireless Client software Javadoc.

TABLE 29-1 describes the abstract methods used to implement the
com.sun.javame.sensor.SensorDevice class.
Chapter 29 Porting JSR 256: Mobile Sensor API 153

When the Java platform receives sensor properties as input, it calls the static method
DeviceFactory.generateSensor(int numberSensor, int
channelCount). This method returns the instance of an appropriate sensor class
(or returns null when the input parameters are wrong).

numberSensor contains the base-0 number of the sensor. channelCount contains
the number of channels for the sensor.

TABLE 29-2 describes the abstract methods used to implement the
com.sun.javame.sensor.ChannelDevice class.

When the Java platform receives channel properties as input, it calls the static
method DeviceFactory.generateChannel(int numberSensor, int
numberChannel). This method returns the instance of appropriate channel class (or
returns null when the input parameters are wrong).

TABLE 29-1 The SensorDevice Class

Name, Return Type, and Arguments Call When Description

public abstract boolean initSensor(); Connector.open(“se
nsor:...”)

Implementation needs
contain sensor
initialization (e.g.
signal exchange with
sensor) or be empty
when initialization is
not need.

public abstract boolean finishSensor(); SensorConnection.cl
ose()

Same as above

public abstract boolean isAvailable; SensorInfo.isAvailab
le()

Returns true when
sensor is available else
returns false.

public abstract void
startMonitoringAvailability (Availability
Listener listener);

SensorManager.add
SensorListener(...)

Sends signal to sensor
for activate
availability
monitoring or empty
when sensor doesn’t
support availability
monitoring.

public abstract void
stopMonitoringAvailability();

SensorManager.rem
oveSensorListener(..
.)

Sends signal to sensor
for terminate
availability
monitoring or empty
when sensor doesn’t
support availability
monitoring.
154 Porting Guide • December 2008

numberSensor contains the base-0 number of the sensor. channelCount contains
the base-0 number of the channel for this sensor.

TABLE 29-2 The ChannelDevice Class

Name, Return Type, and
Arguments Call When Description

public abstract boolean
initChannel();

SensorDevice.initSe
nsor() for each
channel

Implementation needs contain channel
initialization (e.g. signal exchange with
sensor) or be empty when initialization
is not need.

protected abstract int
measureData(int
numberSensor, int
numberChannel, int
sensorType);

System tries to read
data from channel
(SensorConnection.g
etData(...),
SensorConnection.se
tDataListener(...),
etc.)

Porting engineer implements here the
data reading process from channel. This
method saves data in the internal storage
and returns the code of reading:

/** Error code: read data is OK. */
public static final int

DATA_READ_OK = 0;

/** Error code: channel is busy. */
public static final int

CHANNEL_BUSY = 1;

/** Error code: buffer is overflow. */
public static final int

BUFFER_OVERFLOW = 2;

/** Error code: sensor becomes
unavailable. */

public static final int
SENSOR_UNAVAILABLE = 3;
or any other error codes.
Chapter 29 Porting JSR 256: Mobile Sensor API 155

References
For more information about the Mobile Sensor API, see the JSR 256 Specification at:

http://jcp.org/en/jsr/detail?id=256

protected abstract
Object[] getData(int
numberSensor, int
numberChannel);

Please see previous
string

This method returns the array of last
data measured by measureData()
method. When the data type of channel
is integer, the elements of returned array
are instances of Integer, when data type
is double, elements are Double.

protected abstract float
getUncertainty(int
numberSensor, int
numberChannel);

Please see previous
string

This method returns the uncertainty of
last read data.

protected abstract
boolean getValidity(int
numberSensor, int
numberChannel);

Please see previous
string

This method returns the uncertainty of
last read data.

TABLE 29-2 The ChannelDevice Class

Name, Return Type, and
Arguments Call When Description
156 Porting Guide • December 2008

http://jcp.org/en/jsr/detail?id=256

30

Milestone Two: Testing Your
Completed Port

At this point in the porting process, there is sufficient Sun Java Wireless Client
software functionality in your device to warrant an initial run of the Java Technology
Compatibility Kit (TCK) test suites.

Running the test suites for the first time is an informative process and provides
much new information about the current state of your ported components.

Note – Instructions for running the Java Technology Compatibility Kit test suites are
outside the scope of this document. For more information on Java ME TCKs, see
http://java.sun.com/javame/meframework/index.jsp.
Chapter 30 Milestone Two: Testing Your Completed Port 157

http://java.sun.com/javame/meframework/index.jsp

158 Porting Guide • December 2008

Glossary

API Application Programming Interface. A set of classes used by programmers to
write applications, which provide standard methods and interfaces and
eliminate the need for programmers to reinvent commonly used code.

AMS Application Management Service. The system functionality that completes
tasks such as installing applications, updating applications, and switching
foregrounds.

Application list The screen that lists all of the installed applications. The user gets to this screen
by pressing the Apps soft key on the home screen. The application list uses text
color to show which applications are running. It also provides a system menu
that enables the user to perform application management tasks on the
highlighted application.

Background An application state in which the application does not receive events from its
input stream and its displayable is not rendered to the screen.

CDC Connected Device Configuration. A Java ME platform configuration for
devices, it requires a minimum of 2 megabytes of memory and a network
connection that is always on.

CLDC Connected Limited Device Configuration. A Java ME platform configuration
for devices with less than 512 kilobytes of RAM and an intermittent (limited)
network connection, it uses a stripped-down Java virtual machine called the
KVM, as well as several minimalist Java platform APIs for application services.

Configuration Defines the minimum Java runtime environment (for example, the combination
of a Java virtual machine and a core set of Java platform APIs) for a family of
Java ME platform devices.

Foreground The application state in which the application is rendered to the device display
and the input stream is passed to it.

Foreground switching Changing which application is in the foreground by shifting the focus from one
application to another.

GCF Generic Connection Framework. A part of CLDC, it improves network
connectivity for wireless devices.
Glossary 159

Home screen The main screen of the application manager. This is the screen the user sees
after they exit an application.

HTTP HyperText Transfer Protocol. The most commonly used Internet protocol,
based on TCP/IP, which is used to fetch documents and other hypertext
objects from remote hosts.

HTTPS Secure HyperText Transfer Protocol. A protocol for transferring encrypted
hypertext data using Secure Socket Layer (SSL) technology.

JAD file Java Application Descriptor file. A file provided in a MIDlet suite that contains
attributes used by application management software (AMS) to manage the
MIDlet’s life cycle, as well as other application-specific attributes used by the
MIDlet suite itself.

JAR file Java Archive file. A platform-independent file format that aggregates many
files into one. Multiple applications written in the Java programming language
and their required components (.class files, images, sounds, and other
resource files) can be bundled in a JAR file and provided as part of a MIDlet
suite.

Java Community
ProcessTM (JCPTM)

program Java Community Process program. An open organization of international
developers and licensees who develop and revise Java platform specifications,
reference implementations, and technology compatibility kits using a formal
submission and approval process.

Java ME platform Java Platform, Micro Edition. A group of specifications and technologies that
pertain to running the Java platform on small devices, such as cell phones,
pagers, PDAs, and set-top boxes. More specifically, the Java ME platform
consists of a configuration (such as CLDC or CDC) and a profile (such as MIDP
or Personal Basis Profile) tailored to a specific class of device.

Java Specification
Request (JSR) A proposal for developing new Java platform technology, which is reviewed,

developed, and finalized into a formal specification by the JCP program.

Java Virtual Machine A software “execution engine” that safely and compatibly executes the byte
codes in Java class files on a microprocessor.

KVM A Java virtual machine designed to run in small devices, such as cell phones
and pagers. The CLDC configuration is designed to run in a KVM.

LCD Liquid Crystal Display. A common kind of screen display often used in small
devices.

LCDUI Liquid Crystal Display User Interface. A user interface toolkit for interacting
with LCD screens in small devices. More generally, a shorthand way of
referring to the MIDP user interface APIs.

MIDlet An application written for MIDP.
160 Porting Guide • December 2008

MIDlet suite A way of packaging one or more midlets for easy distribution and use. Each
MIDlet suite contains a Java application descriptor file (.jad), which lists the
class names and files names for each MIDlet, and a Java Archive file (.jar),
which contains the class files and resource files for each MIDlet.

MIDP Mobile Information Device Profile. A specification for a Java ME platform
profile, running on top of a CLDC configuration, which provides APIs for
application life cycle, user interface, networking, and persistent storage in
small devices.

Obfuscation A technique used to complicate code by making it harder to understand when
it is de-compiled. Obfuscation makes it harder to reverse-engineer applications
and therefore, steal them.

Optional Package A set of Java ME platform APIs that provides additional functionality by
extending the runtime capabilities of an existing configuration and profile.

PNG Portable Network Graphics. An image format commonly used with MIDP that
can be compressed, transmitted, and stored without losing image quality.

Preemption Taking a resource, such as the foreground, from another application.

Preverification Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is
preverification and done off-device using the preverify tool. The second part,
which is verification, is done on the device at runtime.

Profile A set of APIs added to a configuration to support specific uses of a mobile
device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning A mechanism for providing services, data, or both to a mobile device over a
network.

Push Registry The list of inbound connections, across which entities can push data,
maintained by the Java Wireless Client software. Each item in the list contains
the URL (protocol, host, and port) for the connection, the entity permitted to
push data through the connection, and the application that receives the
connection.

RMI Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS Record Management System. A simple record-oriented database that enables a
MIDlet to persistently store information and retrieve it later. MIDlets can also
use the RMS to share data.

SMS Short Message Service. A protocol allowing transmission of short text-based
messages over a wireless network.
Glossary 161

SOAP Simple Object Access Protocol. An XML-based protocol that allows objects of
any type to communicate in a distributed environment, it is most commonly
used to develop web services.

SSL Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both
public and private keys.

Sun Java Device Test
Suite A set of Java programming language tests developed specifically for the

wireless marketplace, providing targeted, standardized testing for CLDC and
MIDP on small and handheld devices.

SVM Single Virtual Machine. A mode of the Java Wireless Client software, it can run
only one MIDlet at a time.

task At the platform level, each separate application that runs within a single Java
virtual machine is called a task. The API used to instantiate each task is a
stripped-down version of the Isolate API defined in JSR 121. See the CLDC
HotSpot Implementation Architecture Guide for more information.

TCP/IP Transmission Control Protocol/Internet Protocol. A fundamental Internet
protocol that provides for reliable delivery of streams of data from one host to
another.

WAE Wireless Application Environment. It provides an application framework for
small devices, by leveraging other technologies such as WAP, WTP, and WSP.

WAP Wireless Application Protocol. A protocol for transmitting data between a
server and a client (such as a cell phone) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

WMA Wireless Messaging API. A set of classes for sending and receiving Short
Message Service messages.

(x) button The button the user presses to end a task. On a real device this is the End key.
On Windows it is the End key and sometimes the power key on the phone
skin.
162 Porting Guide • December 2008

Index
A
Advanced Multimedia API, 111
AMMS, 111
annunciator, 59

B
Bluetooth, 141

C
CHAPI, 121
Content Handler, 121

D
display, 23

E
event handling, 27

F
File Connection, 73
file system, 19
font system, 51

G
graphics, 23

J
javacall interfaces, 5
JavaCall porting layer, 2
JSR 120, 83
JSR 135, 91

JSR 177, 127
JSR 179, 133, 137
JSR 205, 87
JSR 211, 121
JSR 234, 111
JSR 256, 147
JSR 75, 73, 79
JSR 82, 141

K
keypress events, 33

L
Landmark Store, 133
lifecycle events, 35
Location API, 137
logging, 9

M
memory system, 11
MIDlet, 39
MMAPI, 91
MMS, 87
Mobile Media API, 91
Mobile Sensor API, 147
Multimedia Message Service, 87

N
native image decoder, 69
networking, 41, 47
163

P
Personal Information Management, 79
predictive text, 63

S
SATSA, 127
Security and Trust Services, 127
Short Message Service, 83
SMS, 83
socket, 41, 47
Sun Java Wireless Client software, 1

T
testing, 157
time functionality, 15
timer functionality, 15
164 Porting Guide • December 2008

	Porting Guide
	Contents
	Figures
	Tables
	Preface
	Introduction
	Packages and Tools

	Overview of the Porting Process
	The javacall Interfaces
	Getting Started

	I Porting CLDC and MIDP
	Porting the Logging Facility
	APIs To Be Ported
	Description

	Quick Workaround

	Porting the Memory System
	APIs To Be Ported
	Background
	Selected API Descriptions

	Answers to Common Questions
	Quick Workaround

	Setting Up Time and Timers
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected Timer API Descriptions
	Selected Time API Descriptions

	Answers to Common Questions
	Quick Workaround

	Porting the File System APIs
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions

	Answers to Common Questions
	Quick Workarounds

	Porting the Display (LCD) APIs
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions

	Answers to Common Questions
	Quick Workaround

	Porting for Event Handling
	APIs To Be Ported
	Background
	Selected API Descriptions

	Answers to Common Questions
	Quick Workaround

	Porting for Keypress Events
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions

	Porting Runtime Lifecycle Events
	APIs To Be Ported
	Background
	Preparatory Tasks
	JavaTask() Entry Point
	Passing Events To the Java Platform

	Selected API Descriptions

	Milestone One: Running a ROMized Interactive MIDlet
	Porting Basic Networking and Socket Communications
	APIs To Be Ported
	Background
	Preparatory Tasks
	Sequence of Operation
	Common API Parameters
	Selected API Descriptions

	Porting for Advanced Networking and Socket Communications
	APIs To Be Ported
	Background
	Selected API Descriptions
	The javacall_network.h APIs
	The javacall_socket.h APIs

	Porting the Font System
	APIs To Be Ported
	Background
	Definitions of Font Measurements

	Selected API Descriptions
	Font Attributes
	Font Measurements
	Reporting Font Width
	Drawing the Font

	Answers to Common Questions
	Quick Workaround

	Porting the Annunciator
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions

	Answers to Common Questions

	Porting Predictive Text Input Support (Optional)
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions
	Initialization
	Keypress
	Traversal

	Answers to Common Questions
	Quick Workaround

	Porting the Native Image Decoder (Optional)
	APIs To Be Ported
	Background
	Selected API Descriptions

	Answers to Common Questions
	Quick Workaround

	II Porting Optional JSRs
	Porting JSR 75: File Connection APIs
	APIs To Be Ported
	Background
	Description
	Preparatory Tasks
	Directory Operations
	Optional APIs

	File/Directory Access API
	Optional APIs

	File System Roots and Storage Directories API
	Optional API

	Root Additions/Removals Notifications

	Answers to Common Questions
	References

	Porting JSR 75: Personal Information Management APIs
	APIs To Be Ported
	Background
	Description
	Preparatory Tasks
	Lists and Items APIs
	Fields and Attributes APIs
	Categories APIs
	Quick Workaround

	References

	Porting JSR 120: Short Message Service APIs
	APIs To Be Ported
	Background
	Preparatory Tasks
	Selected API Descriptions
	Support for Message Segments

	Answers to Common Questions
	Quick Workaround
	References

	Porting JSR 205: Multimedia Message Service API
	APIs To Be Ported
	Background
	Description
	Preparatory Tasks
	Selected API Descriptions

	Quick Workaround
	References

	Porting JSR 135: Mobile Media API
	APIs To Be Ported
	Background
	Overview of MMAPI
	The Player
	Special Player Types

	Media Format
	Supported Mime Types

	Player Controls
	Platform Media Capabilities
	Special Players

	Player Lifecycle and Player States
	The javacall_media_destroy() Function
	The Unrealized State
	Downloading and Examining Media Data

	The Realization State
	The Media Buffering Cycle

	The Realized State
	The Pre-Fetching State
	The PreFetched State
	Reporting the Media Player Duration
	The Seek API: Rewind and Fast Forward

	The Closed State

	Selected API Descriptions
	Media Library Initialization API
	Simple Tones
	Dual Tones

	References

	Porting JSR 234: Advanced Multimedia API
	APIs To Be Ported
	Background
	Description
	Supported and Unsupported AMMS Features
	Supported SoundSource3D Audio Features
	Supported Spectator Controls
	Supported Global Scope Music Effects Features
	Supported Image Processing Features

	Supported Camera Control Features
	Supported Tuner Control Features

	Selected API Descriptions
	Setting System Properties
	The Global Manager
	Setting 3D Audio and Music Effects
	Image Processing
	The Image Filter

	References

	Porting JSR 211: Content Handler API
	APIs To Be Ported
	Background
	Description
	Porting to the Platform Registry
	Enumeration Functions
	Other Get Functions

	Porting to the AMS

	References

	Porting JSR-177: Security and Trust Services API
	Background
	The SATSA Security Element
	SATSA-APDU Implementations

	APIs To Be Ported
	Initialization and Finalization API
	Data Exchange API
	Locking API
	Retrieving Information API
	Error Handling API
	Additional SATSA Packages

	References

	Porting JSR 179: LandmarkStore API
	APIs To Be Ported
	Background
	Description
	Preparatory Tasks
	Selected API Descriptions
	Optional API

	References

	Porting JSR 179: Location API
	APIs To Be Ported
	Background
	Description
	Preparatory Tasks
	Selected API Descriptions
	Optional APIs

	References

	Porting JSR 82: Bluetooth API
	APIs To Be Ported
	Background
	Description
	The Bluetooth Stack
	Preparatory Tasks
	JavaCall API Bluetooth Variable Types and Values

	Selected API Descriptions

	References

	Porting JSR 256: Mobile Sensor API
	APIs To Be Ported
	Background
	Description
	Sensor Startup Process
	NativeExampleSensor Class
	NativeExampleChannel Class

	Selected API Descriptions

	Implementing Non-Native Sensors
	References

	Milestone Two: Testing Your Completed Port
	Glossary
	Index

