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Abstract. We consider a differentiable map f from an open interval I to a

uniformly closed linear subspace A of C(X), the Banach space of all complex-
valued bounded continuous functions on a topological space X . Let ε be a

non-negative real number, λ a complex number so that Reλ 6= 0. Then we
show that f can be approximated by the solution to A-valued differential

equation x
′

(t) = λx(t), if ‖f
′

(t) − λf (t)‖∞ ≤ ε holds for every t ∈ I.

1. Introduction

In this paper, I denotes an open interval of the real number field R, unless the
contrary is explicitly stated. That is I = (a, b) for some −∞ ≤ a < b ≤ +∞.
The letters ε and λ denote a non-negative real number and a complex number,
respectively. Let X be a topological space, C(X) a Banach space of all complex-
valued bounded continuous functions on X with respect to the pointwise operations
and the supremum norm ‖·‖∞ on X. Throughout this paper, A denotes a uniformly
closed linear subspace of C(X).

Definition 1.1. Let B be a Banach space� f a map from I into B. We say that

f is differentiable, if for every t ∈ I there exists an f
′

(t) ∈ B so that

lim
s→0

∥

∥

∥

∥

f(t + s) − f(t)

s
− f

′

(t)

∥

∥

∥

∥

B

= 0,

where ‖ · ‖B denotes the norm on B.

Let f be a differentiable function on I into R. Alsina and Ger [1] gave all the

solutions to the inequality |f ′

(t) − f(t)| ≤ ε for every t ∈ I. Then they showed
that each solution to the inequality above was approximated by a solution to the
differential equation x

′

(t) = x(t). In accordance with [1], we define the Hyers-Ulam
stability of Banach space valued differentiable map:

Definition 1.2. Let B be a Banach space, f a differentiable map on I into B so

that

‖f ′

(t) − λf(t)‖B ≤ ε, (t ∈ I).

We say that the Hyers-Ulam stability holds for f, if there exist a k ≥ 0 and a

differentiable map x on I into B such that

x
′

(t) = λx(t) and ‖f(t) − x(t)‖B ≤ kε

holds for every t ∈ I.
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Let C(X, R) be the Banach space of all real-valued bounded continuous functions
on X and C0(X, R) the Banach space of all functions of C(X, R) which vanish at
infinity. Let r be a non-zero real number. In [2], we considered a differentiable map

f on I into C(X, R) (resp. C0(X, R)) with the inequality ‖f ′

(t) − rf(t)‖∞ ≤ ε.
Then we showed that the Hyers-Ulam stability held for f . That is, f can be
approximated by a solution to C(X, R) (resp. C0(X, R)) valued differential equation

x
′

(t) = rx(t).
In this paper, we consider a differentiable map f on I into A so that the inequality

‖f ′

(t) − λf(t)‖∞ ≤ ε holds for every t ∈ I. Unless Re λ = 0, we show that the
Hyers-Ulam stability holds for f . If Re λ = 0, we give an example so that the
Hyers-Ulam stability does not hold. Also we consider the Hyers-Ulam stability of
an entire function.

2. Preliminaries

We give a characterization of the inequality ‖f ′

(t) − λf(t)‖ ≤ ε.

Proposition 2.1. Let B be a Banach space, f a differentiable map on I into B.

Then the following conditions are equivalent.

(i) ‖f ′

(t) − λf(t)‖B ≤ ε, (t ∈ I).
(ii) There exits a differentiable map g on I into B such that

f(t) = g(t)eλt and ‖g ′

(t)‖B ≤ εe−(Re λ) t,

for every t ∈ I.

Proof. (i) ⇒ (ii) Put g(t) = f(t)e−λt for every t ∈ I. Then we see that g is
differentiable and

g
′

(t) = {f ′

(t) − λf(t)}e−λt , (t ∈ I).

By hypothesis, we have the inequality

‖g ′

(t)‖B ≤ εe−(Re λ) t

for every t ∈ I.
(ii) ⇒ (i) If f(t) = g(t)eλt, we have

f
′

(t) = {g ′

(t) + λg(t)}eλt = g
′

(t)eλt + λf(t)

for every t ∈ I. Since ‖g ′

(t)‖B ≤ εe−(Re λ) t,

‖f ′

(t) − λf(t)‖B ≤ ε

holds for every t ∈ I. �

In particular, if we consider the case where ε = 0, then we have a solution of

Banach space valued differential equation f
′

(t) = λf(t). For the completeness we
give a proof.

Proposition 2.2. Let B be a Banach space, f a differentiable map on I into B.

Then the following conditions are equivalent.

(i) f
′

(t) = λf(t), (t ∈ I).
(ii) There exists a g ∈ B so that f(t) = geλt, (t ∈ I).
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Proof. It is enough to show that the map g(t) given in the condition (ii) of Propo-

sition 2.1 is constant, if g
′

(t) = 0 for every t ∈ I. Fix any t0 ∈ I, then we define
the function g̃ on I into R as

g̃(t) = ‖g(t) − g(t0)‖B , (t ∈ I).

We see that g̃ is differentiable and g̃
′

(t) = 0 for every t ∈ I, since g
′

(t) = 0.
Therefore, g̃ is a constant function. Since g̃(t0) = 0, we have g(t) = g(t0). Thus
g(t) is a constant function and this completes the proof. �

3. One point case

The results below are proved in case where Re λ > 0, while corresponding ones
hold in case where Re λ < 0 and we omit them. In this section we consider the case
where X is a singleton. In Lemma 3.1 and 3.2, g denotes a differentiable function
on I into C so that

|g ′

(t)| ≤ εe−(Re λ) t

for every t ∈ I. Let u and v be the real part and the imaginary part of g, respec-
tively. Unless Re λ = 0, we define the functions ũ and ṽ on I into C as

ũ(t) = u(t) − ε

Re λ
e−(Re λ) t,

ṽ(t) = v(t) − ε

Re λ
e−(Re λ) t.

Lemma 3.1. Let Re λ 6= 0 and t0 ∈ I. Then we have the inequalities

0 ≤ ũ(s) − ũ(t0) ≤
2ε

Re λ

{

e−(Re λ) t0 − e−(Re λ) s
}

,

0 ≤ ṽ(s) − ṽ(t0) ≤
2ε

Reλ

{

e−(Re λ) t0 − e−(Re λ) s
}

for every s ∈ I with t0 ≤ s.

Proof. Since g
′

(t) = u
′

(t) + iv
′

(t), we have

|u ′

(t)|, |v ′

(t)| ≤ |g ′

(t)| ≤ εe−(Re λ) t

for every t ∈ I. By definition,

ũ
′

(t) = u
′

(t) + εe−(Re λ) t, (t ∈ I).

Hence, we obtain the inequality

0 ≤ ũ
′

(t) ≤ 2εe−(Reλ) t

for every t ∈ I. We define the function U on I into C as

U(s) = −ũ(s) − 2ε

Reλ
e−(Re λ) s + ũ(t0) +

2ε

Reλ
e−(Re λ) t0, (s ∈ I).

Then U is differentiable and

U
′

(s) = −ũ
′

(s) + 2εe−(Re λ) s ≥ 0

for every s ∈ I. Since U(t0) = 0, we have U(s) ≥ 0 if s ≥ t0. Since ũ
′

(s) ≥ 0, the
inequality ũ(t0) ≤ ũ(s) holds if t0 ≤ s. Therefore, we have

0 ≤ ũ(s) − ũ(t0) ≤
2ε

Re λ

{

e−(Re λ) t0 − e−(Re λ) s
}

,
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if t0 ≤ s. In a way similar to the above, we see that

0 ≤ ṽ(s) − ṽ(t0) ≤
2ε

Re λ

{

e−(Re λ) t − e−(Re λ) s
}

holds, if t0 ≤ s and a proof is omitted. �

Lemma 3.2. Let Re λ > 0, then both lims↗sup I ũ(s) and lims↗sup I ṽ(s) exist.

Proof. As a first step, we show that supt∈I ũ(t) is finite. To this end fix any t0 ∈ I,
then by Lemma 3.1 we have the inequality

ũ(t) ≤ ũ(t0) +
2ε

Reλ

{

e−(Re λ) t0 − e−(Re λ) t
}

< ũ(t0) +
2ε

Reλ
e−(Re λ) t0,

if t0 ≤ t. Since ũ
′

(t) ≥ 0 for every t ∈ I, we obtain ũ(t) ≤ ũ(t0) if t < t0. Therefore,

ũ(t) ≤ ũ(t0) +
2ε

Re λ
e−(Re λ) t0

holds for every t ∈ I. Thus supt∈I ũ(t) is finite.
Next we show that lims↗sup I ũ(s) = supt∈I ũ(t). In fact, for every η > 0 there

exists an s0 ∈ I such that supt∈I ũ(t) − η < ũ(s0). Since ũ
′

(t) ≥ 0 for every t ∈ I,
we have

sup
t∈I

ũ(t) − η < ũ(s) < sup
t∈I

ũ(t) + η,

if s0 ≤ s. Therefore,
lim

s↗sup I
ũ(s) = sup

t∈I

ũ(t)

holds. In a way similar to the above, we see that lims↗sup I ṽ(s) = supt∈I ṽ(t) and
a proof is omitted. �

Theorem 3.3. Let Re λ > 0, f a differentiable function on I into C so that

|f ′

(t) − λf(t)| ≤ ε, (t ∈ I).

Then there exists a θ ∈ C such that

|f(t) − θeλt| ≤
√

2 ε

Re λ

holds for every t ∈ I.

Proof. By Proposition 2.1, there exists a differentiable function g on I into C such
that

f(t) = g(t)eλt and |g ′

(t)| ≤ εe−(Re λ)t, (t ∈ I).

Let u and v be the real part and the imaginary part of g, respectively. We define
the functions on I into C as

ũ(t) = u(t) − ε

Re λ
e−(Re λ) t,

ṽ(t) = v(t) − ε

Re λ
e−(Re λ) t.

Then we see that both limt↗sup I ũ(t) and limt↗sup I ṽ(t) exist, by Lemma 3.2. Note
that for every t ∈ I we have

0 ≤ ũ(s) − ũ(t) <
2ε

Re λ
e−(Re λ) t,
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if t ≤ s, by Lemma 3.1. Therefore, we obtain the inequality
∣

∣

∣

∣

u(t) − lim
s↗sup I

ũ(s)

∣

∣

∣

∣

= lim
s↗sup I

∣

∣

∣
ũ(t) +

ε

Re λ
e−(Re λ)t − ũ(s)

∣

∣

∣

≤ ε

Re λ
e−(Re λ)t

for every t ∈ I. In a way similar to the above, we see that
∣

∣

∣

∣

v(t) − lim
s↗sup I

ṽ(s)

∣

∣

∣

∣

≤ ε

Re λ
e−(Re λ)t, (t ∈ I).

Therefore, we have the inequality
∣

∣

∣

∣

f(t) − lim
t↗sup I

{ũ(t) + iṽ(t)} eλt

∣

∣

∣

∣

=

√

{

u(t) − lim
s↗sup I

ũ(s)

}2

+

{

v(t) − lim
s↗sup I

ṽ(s)

}2

e(Re λ)t

≤
√

2 ε

Re λ
e−(Re λ)t e(Re λ)t =

√
2 ε

Reλ

for every t ∈ I. This completes the proof. �

4. General case

In this section we consider the case where X is any topological space.

Theorem 4.1. Let Re λ > 0, f a differentiable map on I into A so that

‖f ′

(t) − λf(t)‖∞ ≤ ε, (t ∈ I).

If A has constant functions, then there exists a θ ∈ A such that

‖f(t) − θeλt‖∞ ≤
√

2 ε

Reλ

holds for every t ∈ I. Unless A has constant functions, then there exists a θ̃ ∈ A

such that

‖f(t) − θ̃eλt‖∞ ≤ 2
√

2 ε

Re λ
for every t ∈ I.

Proof. For every x ∈ X we define the induced function fx on I into C as

fx(t) = f(t)(x), (t ∈ I).

Then fx is a differentiable function, and for every x ∈ X

(fx)
′

(t) = f
′

(t)(x), (t ∈ I)

holds, by definition. Therefore, for every x ∈ X we see that

|(fx)
′

(t) − λfx(t)| ≤ ‖f ′

(t) − λf(t)‖∞ ≤ ε, (t ∈ I).

By Proposition 2.1, for every x ∈ X there corresponds a differentiable function gx

on I into C such that

fx(t) = gx(t)eλt and |(gx)
′

(t)| ≤ εe−(Re λ)t
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for every t ∈ I. Let ux and vx be the real part and the imaginary part of gx,
respectively. We define the functions on I into C as

ũx(t) = ux(t) − ε

Re λ
e−(Re λ) t,

ṽx(t) = vx(t) − ε

Re λ
e−(Re λ) t.

By the proof of Theorem 3.3, for every x ∈ X we have
∣

∣

∣

∣

fx(t) − lim
s↗sup I

{ũx(s) + iṽx(s)} eλs

∣

∣

∣

∣

≤
√

2 ε

Reλ
, (t ∈ I).

We define the function θ on X into C as

θ(x) = lim
s↗sup I

{ũx(s) + iṽx(s)} .

By definition, the inequality

‖f(t) − θeλt‖∞ ≤
√

2 ε

Reλ

holds for every t ∈ I.
Let {tn} be a sequence of I so that tn ↗ sup I. Then we define the function θn

on X into C as

θn(x) = ũx(tn) + iṽx(tn), (x ∈ X).

Since gx(tn) = fx(tn)e−λtn , we see that the function x 7→ gx(tn) belongs to A for
every n ∈ N.

We show that θ is an element of A, if A has constant functions. In fact, θn is an
element of A for every n ∈ N by the definition of ũx and ṽx. Note that

|ũx(s) − ũx(t)|, |ṽx(s) − ṽx(t)| ≤ 2ε

Reλ
|e−(Re λ)s − e−(Re λ)t|,

if t ≤ s, by Lemma 3.1. Therefore, we have

|θ(x) − θn(x)| = lim
s↗sup I

√

|ũx(s) − ũx(tn)|2 + |ṽx(s) − ṽx(tn)|2

≤ 2
√

2 ε

Re λ

∣

∣

∣

∣

lim
s↗sup I

e−(Re λ)s − e−(Re λ)tn

∣

∣

∣

∣

for every x ∈ X and every n ∈ N. Hence θ is a uniform limit of {θn} ⊂ A. Since A

is uniformly closed, θ is an element of A.
Next we consider the case where A does not have constant functions. We define

the functions θ̃ and θ̃n on X into C as

θ̃(x) = θ(x) +
(1 + i)ε

Re λ
lim

s↗sup I
e−(Re λ)s,

θ̃n(x) = θn(x) +
(1 + i)ε

Re λ
e−(Re λ)tn.

Note that θ̃n(x) = gx(tn) holds for every x ∈ X and every n ∈ N, hence {θ̃n} ⊂ A.
Then we have

|θ̃(x) − θ̃n(x)| ≤ |θ(x) − θn(x)| + |1 + i|ε
Reλ

∣

∣

∣

∣

lim
s↗sup I

e−(Re λ)s − e−(Re λ)tn

∣

∣

∣

∣

≤ 3
√

2 ε

Re λ

∣

∣

∣

∣

lim
s↗sup I

e−(Re λ)s − e−(Re λ)tn

∣

∣

∣

∣
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for every x ∈ X and every n ∈ N. Since A is uniform closed, θ̃ belongs to A.
Moreover,

‖f(t) − θ̃eλt‖∞ ≤ ‖f(t) − θeλt‖∞ +
|1 + i|ε
Re λ

∣

∣

∣

∣

lim
s↗sup I

e−(Re λ)s eλt

∣

∣

∣

∣

≤
√

2 ε

Re λ
+

√
2 ε

Reλ
=

2
√

2 ε

Re λ

holds for every t ∈ I. This completes the proof. �

Corollary 4.2. Let Reλ > 0, f a differentiable map on (a, +∞), for some −∞ ≤
a < +∞, into A so that

‖f ′

(t) − λf(t)‖∞ ≤ ε, (t ∈ (a, +∞)) .

Then f is uniquely approximated by a function of A in the sense of Theorem 4.1.

Proof. By Theorem 4.1, it is enough to show that if θ1, θ2 ∈ A so that

‖f(t) − θj eλt‖∞ ≤ kj ε, (t ∈ (a, +∞))

for some kj ≥ 0, (j = 1, 2) then θ1 = θ2. In fact,

‖θ1 − θ2‖∞ ≤ ‖θ1 − f(t)e−λt‖∞ + ‖f(t)e−λt − θ2‖∞
≤ (k1 + k2)εe

−(Re λ)t → 0, (t → +∞).

Thus we have θ1 = θ2. This completes the proof. �

In general, the Hyers-Ulam stability does not hold if Re λ = 0.

Example 4.1. Let I = (0, +∞), ε > 0 and f be the function on I into C defined

by

f(t) = εteit, (t ∈ I).

Then the inequality |f ′

(t) − if(t)| = ε holds for every t ∈ I. On the other hand,

the Hyers-Ulam stability does not hold. In fact, assume to the contrary that there

exist a c ∈ C and k ≥ 0 such that

|f(t) − ceit| ≤ kε, (t ∈ I).

By the triangle inequality

|f(t)| ≤ kε + |c|
holds for every t ∈ I. Though this is a contradiction, since |f(t)| = εt and since

I = (0, +∞).

If we consider the case where I is a finite interval, then the situation is different:

Theorem 4.3. Let I = (a, b), where −∞ < a < b < +∞, ε ≥ 0 and λ ∈ C with

Re λ = 0. If f is a differentiable map on I into A so that

‖f ′

(t) − λf(t)‖∞ ≤ ε, (t ∈ I),

then there exists a θ ∈ A such that

‖f(t) − θeλt‖∞ ≤ (b − a)ε√
2

holds for every t ∈ I.

Proof. Let fx, gx, ux and vx be the differentiable function on I into C, defined in
the proof of Theorem 4.1. Then for every x ∈ X we see that
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fx(t) = gx(t)eλt and |(gx)
′

(t)| ≤ ε, (t ∈ I),

by definition. Apply the mean value theorem to ux and vx respectively, then we
have

∣

∣

∣

∣

gx(t) − gx

(

a + b

2

)∣

∣

∣

∣

=

∣

∣

∣

∣

(ux)
′

(p)

(

t − a + b

2

)

+ i(vx)
′

(q)

(

t − a + b

2

)∣

∣

∣

∣

<
√

2 ε
b − a

2
=

(b − a)ε√
2

for some p, q ∈ I. Since Re λ = 0, the inequality
∥

∥

∥

∥

f(t) − g

(

a + b

2

)

eλt

∥

∥

∥

∥

∞

≤ (b − a)ε√
2

holds for every t ∈ I. �

5. Hyers-Ulam stability of an Entire function

Recall that a function is entire if it is holomorphic in the whole plane C. We
may consider the Hyers-Ulam stability of an entire function.

Theorem 5.1. Let f be an entire function so that

|f ′

(z) − λf(z)| ≤ ε, (z ∈ C).

Unless λ = 0, there exists a θ ∈ C such that

|f(z) − θeλz | ≤ ε

|λ|
holds for every z ∈ C. If we consider the case where λ = 0, then the Hyers-Ulam

stability holds for f if and only if f is a constant function.

Proof. In a way similar to the proof of Proposition 2.1, we see that the inequality
|f ′

(z) − λf(z)| ≤ ε holds for every z ∈ C if and only if there corresponds an entire
function g so that

f(z) = g(z)eλz and |g ′

(z)| ≤ ε|e−λz |, (z ∈ C).

Therefore g
′

(z)eλz is a bounded entire function. Thus g
′

(z)eλz is constant, by

Liouville’s theorem. Put c1 = g
′

(z)eλz , then |c1| ≤ ε.
Unless λ = 0, there exists a c2 ∈ C such that

g(z) = c2 −
c1

λ
e−λz , (z ∈ C).

Therefore, we have the equality

f(z) = c2e
λz − c1

λ

for every z ∈ C. Hence

|f(z) − c2e
λz | ≤ ε

|λ| , (z ∈ C).

Next we consider the case where λ = 0. Then there exists a c3 ∈ C so that

g(z) = c1z + c3, (z ∈ C).

Therefore f(z) = c1z + c3 for every z ∈ C, since λ = 0. Then it is easy to see that
the Hyers-Ulam stability holds for f , if and only if f is a constant function, and a
proof is omitted. �
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