ON THE HYERS-ULAM STABILITY OF A DIFFERENTIABLE
MAP

TAKESHI MIURA

ABSTRACT. We consider a differentiable map f from an open interval I to a
uniformly closed linear subspace A of C(X), the Banach space of all complex-
valued bounded continuous functions on a topological space X. Let € be a
non-negative real number, A a complex number so that ReX # 0. Then we
show that f can be approximated by the solution to A-valued differential
equation =’ (t) = Az(t), if || () — Af(£)||oo < € holds for every t € I.

1. INTRODUCTION

In this paper, I denotes an open interval of the real number field R, unless the
contrary is explicitly stated. That is I = (a,b) for some —o0 < a < b < +o0.
The letters € and A denote a non-negative real number and a complex number,
respectively. Let X be a topological space, C(X) a Banach space of all complex-
valued bounded continuous functions on X with respect to the pointwise operations
and the supremum norm ||- || on X. Throughout this paper, A denotes a uniformly
closed linear subspace of C'(X).

Definition 1.1. Let B be a Banach space, f a map from I into B. We say that
f is differentiable, if for every t € I there exists an f'(t) € B so that

:0’

where || - || denotes the norm on B.

Let f be a differentiable function on I into R. Alsina and Ger [1] gave all the
solutions to the inequality |f (t) — f(t)| < e for every t € I. Then they showed
that each solution to the inequality above was approximated by a solution to the
differential equation z ' (t) = z(t). In accordance with [1], we define the Hyers-Ulam
stability of Banach space valued differentiable map:

Definition 1.2. Let B be a Banach space, f a differentiable map on I into B so
that

IF' @) =AfDlls <&, (teD).
We say that the Hyers-Ulam stability holds for f, if there exist a kK > 0 and a
differentiable map x on I into B such that
@' (t) = Ao(t) and || () — a(D)]| < ke
holds for every t € I.
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Let C(X,R) be the Banach space of all real-valued bounded continuous functions
on X and Cy(X,R) the Banach space of all functions of C(X,R) which vanish at
infinity. Let  be a non-zero real number. In [2], we considered a differentiable map
f on I into C(X,R) (resp. Co(X,R)) with the inequality | f (£) — rf(t)]|lec < €.

Then we showed that the Hyers-Ulam stability held for f. That is, f can be
approximated by a solution to C'(X,R) (resp. Co(X,R)) valued differential equation
x ' (t) = ra(t).

In this paper, we consider a differentiable map f on I into A so that the inequality
17 () = Af(t)]lso < € holds for every ¢ € I. Unless ReX = 0, we show that the
Hyers-Ulam stability holds for f. If ReA = 0, we give an example so that the
Hyers-Ulam stability does not hold. Also we consider the Hyers-Ulam stability of
an entire function.

2. PRELIMINARIES

We give a characterization of the inequality ||f (£) — Af(t)|| < e.

Proposition 2.1. Let B be a Banach space, f a differentiable map on I into B.
Then the following conditions are equivalent.

@) IF' () = M)l <& (€.
(ii) There exits a differentiable map g on I into B such that

Ft) = g(t)er and ||g (t)||p < ee” RN,
for every t € I.

Proof. (i) = (ii) Put g(t) = f(t)e=** for every t € I. Then we see that g is
differentiable and

g (1) ={f" () =AW}, (tel).
By hypothesis, we have the inequality

lg"(8)]|p < eem (e
for every t € I.
(i) = (i) If f(t) = g(t)e, we have
£ =19’ (1) + M)} = g ()M + Af(1)

for every t € I. Since ||lg’ (t)||p < ee~ReNt,

IF &) = Af(D)lls < e
holds for every t € I. O

In particular, if we consider the case where ¢ = 0, then we have a solution of
Banach space valued differential equation f (t) = Af(t). For the completeness we
give a proof.

Proposition 2.2. Let B be a Banach space, f a differentiable map on I into B.
Then the following conditions are equivalent.

(i) [ () =Af(), (teD)
(ii) There exists a g € B so that f(t) = ge*, (t € I).
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Proof. Tt is enough to show that the map g¢(t) given in the condition (ii) of Propo-
sition 2.1 is constant, if g () = 0 for every ¢ € I. Fix any to € I, then we define
the function g on I into R as

g(t) = llg@®) = g(to)llz, (€ I).
We see that § is differentiable and §'(t) = 0 for every t € I, since g (t) = 0.
Therefore, § is a constant function. Since §(tp) = 0, we have g(t) = g(tp). Thus
g(t) is a constant function and this completes the proof. (I

3. ONE POINT CASE

The results below are proved in case where Re A > 0, while corresponding ones
hold in case where Re A < 0 and we omit them. In this section we consider the case
where X is a singleton. In Lemma 3.1 and 3.2, g denotes a differentiable function
on [ into C so that

9" ()] < gem (et

for every t € I. Let u and v be the real part and the imaginary part of g, respec-
tively. Unless Re A = 0, we define the functions 4 and ¥ on I into C as

d(t) _ e—(Re)\)t,

u(t) = Re A
. € _(Re
’U(t) = ’U(t) — m (& R )\)t.

Lemma 3.1. Let Re A # 0 and ty € I. Then we have the inequalities

2 .
0< ’Q(S) _ ’Q(to) < g‘g)\ {e—(Re)\)tO _ 6_(Re)\)6},

0 < i(s) — i(ty) < % {e—(Re)\)tO _ e—(Re)\)s}

for every s € I with tg < s.
Proof. Since g (t) = u'(t) + v (t), we have

Ju'(8)], Jo (O] < |g (8)] < ze RN
for every t € I. By definition,

@' (t)=u (t) +ee" RNt (teT).
Hence, we obtain the inequality

0<a (t) < 2ee” RN

for every t € I. We define the function U on I into C as

2 o 2
— ﬁi\ e”(ReNs 4 di(to) + £ e=(Re) oo (sel).

Re A
Then U is differentiable and
U'(s) = —ii (s) + 2ee~ReNs > ¢

U(s) = —u(s)

for every s € I. Since Ul(tg) = 0, we have U(s) > 0 if s > to. Since @ (s) > 0, the
inequality 4(tg) < @(s) holds if ¢y < s. Therefore, we have

2 X
0 < iifs) — fi(to) < pog {e RN — e eV},
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if tgp < s. In a way similar to the above, we see that
- - 2e _ _ ,
0 < a(s) — (to) < — {e (Re Nt _ (Re)\)s}
holds, if tg < s and a proof is omitted. O
Lemma 3.2. Let Re A > 0, then both limg ssup 1 4(s) and limg ~gup 1 0(s) exist.

Proof. As a first step, we show that sup,c; @(t) is finite. To this end fix any ¢y € I,
then by Lemma 3.1 we have the inequality

2e
) < alt { —(ReX)ty _ —(Re)\)t}
a(t) < alto)+ Rox e e

2e
< a(t —(Re)\)t(),
a(to) + Re €

if o < t. Since @ (t) > 0 for every ¢ € I, we obtain @(t) < @(to) if t < to. Therefore,

2e
~ <7 —(Re ) to
a(t) < alto) + Rox €

holds for every ¢t € I. Thus sup,¢; @(t) is finite.

Next we show that lim, ~sup 7 %(s) = sup,c; @(t). In fact, for every n > 0 there
exists an so € I such that sup,c; a(t) —n < @(so). Since @ (t) > 0 for every t € I,
we have

sup a(t) —n < a(s) < supa(t) +n,
tel tel

if sg < s. Therefore,

lim a(s) =supu(t
im (s) Sup (t)

holds. In a way similar to the above, we see that lims ~sup 1 0(5) = sup,¢; 0(t) and
a proof is omitted. O
Theorem 3.3. Let Re A > 0, f a differentiable function on I into C so that

£ =A@ <& (ted).
Then there exists a 8 € C such that
V2e

_ Pt <« Y22
(1) — 0] < Y25

holds for every t € I.

Proof. By Proposition 2.1, there exists a differentiable function g on I into C such
that

f(t) = g(t)eM and |g ' (t)] < ce=Re Mt (¢ e ).

Let w and v be the real part and the imaginary part of g, respectively. We define
the functions on I into C as

~ _ __& —(ReMt
a(t) = wu(t) 3¢ ,
~ _ __% —(Rent
o(t) = () 3¢ .

Then we see that both lim; rsup, 7 @(t) and limg ~gyp 1 0(¢) exist, by Lemma 3.2. Note
that for every ¢t € I we have

2¢
<7 ~ (Re M)t
0 <a(s)—at) < Ro X e ;
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if t < s, by Lemma 3.1. Therefore, we obtain the inequality
- L ‘~ ~(ReX)t _ =~
S ECRRT o)

< € o—(Re )t
~— Rel

for every t € I. In a way similar to the above, we see that

u(t) — s}l;rllp ; (s)

_E_ RNt (pe ),

— i v <
v(t) im o(s)| < RoX

s,/ 'sup I

Therefore, we have the inequality

F(t) = dim fa(t) +i0(t)} e

- \/{U(t) - s/lﬂisrﬁjlil(s)}Q + {v(t) — 8}15%15(5)}26(Rex)t

< V2e o—(Re M)t j(Re Nt _ V2e
~ Rel Re

for every t € I. This completes the proof. Il

4. GENERAL CASE
In this section we consider the case where X is any topological space.
Theorem 4.1. Let Re X > 0, f a differentiable map on I into A so that
£ () = MOl <& (tET).
If A has constant functions, then there exists a 0 € A such that

1£0) — 0¥ < V25

holds for every t € I. Unless A has constant functions, then there exists a 6 € A

such that /s
~ 2V2¢
17() ~ B fow < 22

for every t € I.
Proof. For every x € X we define the induced function f, on I into C as
fa(t) = f()(x), (t ).
Then f, is a differentiable function, and for every z € X
(fe) @)= f (B)(x), (tel)
holds, by definition. Therefore, for every x € X we see that
() (8) = Ma@)] < NIF (1) = M(Dlle <& (£€T)

By Proposition 2.1, for every x € X there corresponds a differentiable function g,
on [ into C such that

fo(t) = g2 (t)e and |(g.) ()] < ce~(ReMt
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for every t € I. Let u, and v, be the real part and the imaginary part of g,
respectively. We define the functions on I into C as

- £  _
ul(t) = ul(t) — m@ (Re )\)t,
- £ _
Up(t) = wu(t) — Rox® (ReA)t,

By the proof of Theorem 3.3, for every x € X we have

Folt)— tim () + (o)) ] < W25 e,

We define the function § on X into C as
O(z) = lm {d,(s)+i0,(s)}.
s,/ 'sup I

By definition, the inequality

V2e
_ PNt < Yo-
17~ 0 < Y25

holds for every t € I.

Let {t,} be a sequence of I so that t,, /" supI. Then we define the function 6,
on X into C as

On () = Up(tn) +i05(tn), (x€ X).

Since g.(tn) = fu(tn)e ", we see that the function = +— g,(¢,) belongs to A for
every n € N.

We show that 0 is an element of A, if A has constant functions. In fact, #,, is an
element of A for every n € N by the definition of , and 0,. Note that

N - - - 2e | _ s —
|G (5) = e ()], [B2(5) = Ba(t)] < - |e7 RN — =RV,

Re A e
if t <s, by Lemma 3.1. Therefore, we have
0(@) = ()] = lim VN (s) = @ (t)]? + [0(5) — Da(tn) 2
2V2e lim e~ (BeNs _ —(ReA)ts
Re)\ |s /supI

for every z € X and every n € N. Hence 6 is a uniform limit of {6,} C A. Since A
is uniformly closed, € is an element of A.

Next we consider the case where A does not have constant functions. We define
the functions @ and 6,, on X into C as

n _ (1 + i>€ . —(ReX)s
bla) = b@) + oy e

~ 14+14)e _(pe
O () :6’"(1:)—1—7( Re)\> e (ReNtn

Note that 6, (x) = g.(t,) holds for every z € X and every n € N, hence {6, } C A.
Then we have

- ~ 1+1e . _ s _

0@) @) < |9(e) — O (z)] 4] Re)\| i RN (ReAs
3v2¢ lim e~ (ReMs _ o—(ReM)tn
Re\ |s7supI
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for every z € X and every n € N. Since A is uniform closed, 8 belongs to A.
Moreover,

|1+ ile

ALt < Pt —(ReA)s At
1) = 0N e < 15(E) = 06 oo + | lim RV
< V2e  \2e _ 2V2¢
~— ReXd Rel  Rel
holds for every ¢t € I. This completes the proof. Il

Corollary 4.2. Let ReX > 0, f a differentiable map on (a, +00), for some —oo <
a < +o0o, into A so that

1F°(8) = A @)loe <&, (t € (a,+00)).
Then f is uniquely approximated by a function of A in the sense of Theorem 4.1.
Proof. By Theorem 4.1, it is enough to show that if 6;, 602 € A so that
1£(8) =65 Moo < kje,  (t€ (a,+00))
for some k; > 0, (j = 1,2) then 6; = 0. In fact,
161 = O2llc0 < 1161 = F(D)e M loo + [/ (D) — boflo
< (k14 ko)eem BNt L0 (1 — 400).
Thus we have 8, = 05. This completes the proof. O
In general, the Hyers-Ulam stability does not hold if Re A = 0.

Example 4.1. Let I = (0,+00), € > 0 and f be the function on I into C defined
by

f@t) =cte, (tel).
Then the inequality |f (t) —if(t)| = e holds for every t € I. On the other hand,

the Hyers-Ulam stability does not hold. In fact, assume to the contrary that there
exist a ¢ € C and k > 0 such that

|f(t) — ce'| < ke, (tel).
By the triangle inequality
|f)] < ke + |c]
holds for every t € I. Though this is a contradiction, since |f(t)| = et and since
I=(0,400).

If we consider the case where [ is a finite interval, then the situation is different:

Theorem 4.3. Let I = (a,b), where —co < a < b < 400, € > 0 and A € C with
ReA = 0. If f is a differentiable map on I into A so that

IF°(8) = M)l <& (D),
then there exists a 0 € A such that

b—a)

1) — M|, < P e

I1£(2) lloo < 7

holds for every t € I.

Proof. Let f., 9., u, and v, be the differentiable function on I into C, defined in
the proof of Theorem 4.1. Then for every x € X we see that
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fo(t) = ga()eM and [(92) (8) <, (€ ),

by definition. Apply the mean value theorem to u, and v, respectively, then we

have
9 (t) — 9 (a;b>‘ = |(ug) (p) (t— a;b> +i(vg) (q) (t— a;rb>‘

b—a (b—a)
< \/55 5 :T

for some p, q € I. Since Re A = 0, the inequality
< (b—a)e

a+b\
s -a(“57) | <
‘ 2 o V2
holds for every t € I. O

5. HYERS-ULAM STABILITY OF AN ENTIRE FUNCTION

Recall that a function is entire if it is holomorphic in the whole plane C. We
may consider the Hyers-Ulam stability of an entire function.

Theorem 5.1. Let f be an entire function so that

F'(2) =M@l <e, (z€0).
Unless A = 0, there exists a 6 € C such that
€
f(2) = 0| <
A
holds for every z € C. If we consider the case where A = 0, then the Hyers-Ulam
stability holds for f if and only if f is a constant function.

Proof. In a way similar to the proof of Proposition 2.1, we see that the inequality
|£'(2) = \f(2)| < € holds for every z € C if and only if there corresponds an entire
function g so that

f(z) = g(z)e** and |g'(2)| <ele™™], (z €C).

Therefore g (z)e** is a bounded entire function. Thus g (z)e** is constant, by
Liouville’s theorem. Put ¢; = g (2)e*?, then |e;] < e.
Unless A = 0, there exists a ¢ € C such that
c
g(z) =ca — Xle_)‘z, (z € C).

Therefore, we have the equality

9 = e - %

for every z € C. Hence

£

Al”

Next we consider the case where A = 0. Then there exists a ¢z € C so that
g(z) =c1z+c3, (2€C).

Therefore f(z) = c¢12 4 c3 for every z € C, since A = 0. Then it is easy to see that
the Hyers-Ulam stability holds for f, if and only if f is a constant function, and a
proof is omitted. O

f(2) = c2e™| < (z € C).
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