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h and 
onsider di�erent resolution re�nements whi
h providede
ision pro
edures for the resulting 
lause sets. Our pro
edures are based on ordered resolutionand sele
tion-based resolution. The logi
s that we 
over are multi-modal logi
s de�ned over relations
losed under interse
tion, union, 
onverse and possibly 
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, inferen
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tionModal logi
s are very popular and appear in various disguises in many areas of 
om-puter s
ien
e, in
luding knowledge representation, the �eld of logi
s of programs,
omputational linguisti
s and agent based systems. While de
idability is an impor-tant 
riterion in many of these areas in
reasingly more expressive modal logi
s whi
hallow 
omplex relational parameters of modal operators are being used. Consider anexample from knowledge representation and linguisti
s domains. Here the universesof frames 
ontain arbitrary elements instead of worlds. If E denotes the eats rela-tion and C is the set of 
heeses, then hEiC 
an be interpreted as denoting the setof 
heese eaters. An expression whi
h requires 
omplex relational parameters is theset of 
heese lovers: [:(E ^ L)℄:C, where L denotes the likes relation. We havex 2 [:(E ^ L)℄:C i� for any y 2 C, both E(x; y) and L(x; y) are true. In words,
heese lovers are people who eat and like every 
heese. The meaning of x 2 [E ^ L℄Cwould be `everything that x eats and likes is 
heese'. These kinds of expressions 
anbe formulated in the logi
s we 
onsider in this paper.We fo
us on subsystems of the multi-modal logi
 K(m)(\;[;�;`) whi
h is de�ned265L. J. of the IGPL, Vol. 8 No. 3, pp. 265{292 2000 
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266 Resolution-Based Methods for Modal Logi
sover families of relations 
losed under interse
tion, union, 
omplementation and 
on-verse. K(m)(\;[;�;`) extends Boolean modal logi
 [17℄ with 
onverse on relations.It en
ompasses very many standard modal logi
s su
h as K, KT, KD, KB, KTB,and KDB, their independent joins, as well as the basi
 tense logi
 K t and logi
s ofphilosophi
al interest, su
h as logi
s expressing ina

essibility, suÆ
ien
y, or both ne-
essity and suÆ
ien
y, see e.g. [18, 23, 24℄. Certain forms of intera
tions, for example,in
lusions among relations, are 
overed as well. K(m)(\;[;�;`) is related to the de-s
ription logi
 ALB whi
h was �rst des
ribed in [28℄ and 
ontains a large 
lass of wellknown des
ription logi
s.We 
on
entrate on translation-based resolution methods for modal logi
s. Thismeans that we take a modal formula, translate it into 
lassi
al logi
 through theKripke-semanti
s, and then apply some variant of resolution to it. Translation-basedapproa
hes are sometimes regarded as being inferior to tableaux-based approa
hes, orother spe
ial-purpose inferen
e approa
hes. Arguably re
ent advan
es in the imple-mentation of tableaux-based modal theorem provers make it harder to motivate theendeavour of translation into �rst-order logi
. Another 
riti
ism often brought for-ward is the diÆ
ulty of reading resolution proofs (this is not true in general, see [28℄).From our perspe
tive the 
ombination of translation and �rst-order resolution hasa number of advantages, as this paper aims to show. Some obvious advantages oftranslation approa
hes are the following. Any modal logi
 whi
h 
an be embeddedinto �rst-order logi
 
an be treated. The translations are straightforward, and 
anbe obtained in time O(n logn), so no engineering e�ort is needed here. For the reso-lution part, standard resolution provers 
an be used, or otherwise they 
an be usedwith small adaptations (for example, Bliksem [10℄, SPASS [40℄, and Otter [34℄). Thetranslation approa
h is generi
, it 
an handle �rst-order modal logi
s, unde
idablemodal logi
s, for example, de Rijke's dynami
 modal logi
 [11℄, and 
ombinationsof modal and non-modal logi
s. In all 
ases we 
an at least ensure soundness and
ompleteness. For a large 
lass of expressive modal and des
ription logi
s, resolu-tion provers provide de
ision pro
edures, and often the same re�nements de
ide also�rst-order generalisations su
h as the guarded fragment or Maslov's 
lass K [14, 26℄.This paper gives an overview of di�erent resolution re�nements whi
h provide de
i-sion pro
edures for �rst-order fragments 
orresponding to a variety of extended modallogi
s. We will fo
us on fragments indu
ed by the standard relational translation ofmodal logi
s. Other translation methods exist but, as yet, it is not known how totreat modal logi
s with 
omplex modal parameters within the 
ontext of these trans-lation methods. Surveys of the di�erent translation methods are Ohlba
h [35, 36℄ andOhlba
h, Nonnengart and Gabbay [37℄.Regardless as to whi
h translation method is adopted, a 
ru
ial de
ision is the
hoi
e of a suitable re�nement of the basi
 resolution 
al
ulus for �rst-order logi
.Depending on our aims we have various options. Ordering re�nements provide de-
ision pro
edures for very expressive logi
s, while if we are interested in generatingmodels for satis�able formulae sele
tion-based re�nements (or hyperresolution) aremore natural (Ferm�uller et al. [12, 13℄, Leits
h [30℄, Hustadt and S
hmidt [28, 29℄).We will des
ribe three resolution de
ision pro
edures: an ordered resolution de
isionpro
edure for a 
lass of 
lauses indu
ed by K(m)(\;[;�;`) (Se
tion 5), an orderingre�nement 
ombined with a sele
tion fun
tion for the guarded fragment (Se
tion 6),and a re�nement whi
h relies solely on the sele
tion of negative literals for 
ertain



2. PRELIMINARY DEFINITIONS AND CONVENTIONS 267extensions of K(m)(\;[;`) (Se
tion 7). The latter re�nement has the property thatfor many modal logi
s its derivations resemble those of tableaux 
al
uli. As withtableaux-based pro
edures our sele
tion-based pro
edure 
an be used for the auto-mati
 
onstru
tion of �nite models for satis�able input formulae. In Se
tion 8 wede�ne a semanti
 tableaux 
al
ulus for the logi
 K(m)(\;[;`) whi
h is derived fromthe sele
tion-based resolution pro
edure. We also 
onsider the relationship to singlestep pre�xed tableaux 
al
uli and prove a number of simulation results. Preliminaryde�nitions are given in Se
tions 2, 3 and 4. Se
tion 2 
ontains de�nitions of the no-tational 
onventions and basi
 
on
epts. Of parti
ular importan
e is the stru
turaltransformation of formulae. Se
tion 3 de�nes the syntax and semanti
s of the logi
K(m)(\;[;�;`) and spe
i�es the standard translation mapping into �rst-order logi
.A general framework of ordered resolution and sele
tion is des
ribed in Se
tion 4.This overview is based on the papers [14, 28, 29℄. Some results have been improvedand others are new. The de�nition of the 
lass DL� in Se
tion 5, generalises the
lass of DL-
lauses from [28℄. Se
tion 7 in
ludes a new 
omplexity result. The resultsfor extensions of K(m)(\;[;`) with frame properties are slightly more general thanin [29℄. The 
lose 
orresponden
e between sele
tion-based resolution (or hyperresolu-tion) and spe
ial purpose tableaux 
al
uli is also mentioned in [13, 28, 29℄. A noveltyare the tableaux 
al
uli whi
h we have been able to extra
t from the sele
tion-basedresolution pro
edure. These are related to 
al
uli for the 
orresponding des
riptionlogi
s [22, 21℄, but they do not 
ompile relational formulae away.2 Preliminary De�nitions and ConventionsThroughout, our notational 
onvention is the following: x; y; z are the letters reservedfor �rst-order variables, s; t; u; v for terms, a; b for 
onstants, f; g; h for fun
tion sym-bols, p; q; r for propositional symbols, and P;Q;R for predi
ate symbols. A is theletter reserved for atoms, L for literals, and C;D for 
lauses. For sets of 
lauseswe use the letter N . The Greek letters ';  ; � are reserved for modal or �rst-orderformulae, and �; �; 
 are reserved for relational formulae.A literal is an atom or the negation of an atom. The former is said to be a positiveliteral and the latter a negative literal. If the predi
ate symbol of a literal has arityone (resp. two) then we 
all this literal a unary literal (resp. binary literal). A 
lausewith one literal is a unit 
lause (or unit). If this literal is a unary (resp. binary)literal then the 
lause will be 
alled a unary (resp. binary) unit 
lause. In this paper
lauses are assumed to be sets of literals. The empty 
lause will be denoted by ;. The
omponents in the variable partition of a 
lause are 
alled split 
omponents, that is,split 
omponents do not share variables. A 
lause whi
h 
annot be split further willbe 
alled a maximally split 
lause. A positive (resp. negative) 
lause 
ontains onlypositive (resp. negative) literals.Two formulae or 
lauses are said to be variants of ea
h other if they are equalmodulo variable renaming. Variant 
lauses are assumed to be equal.The polarity of (o

urren
es of) modal or �rst-order subformulae is de�ned asusual: Any o

urren
e of a proper subformula of an equivalen
e has zero polarity. Foro

urren
es of subformulae not below a `$' symbol, an o

urren
e of a subformulahas positive polarity if it is one inside the s
ope of an even number of (expli
it orimpli
it) negations, and it has negative polarity if it is one inside the s
ope of an odd
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snumber of negations.For any �rst-order formula ', if � is the position of a subformula in ', then 'j�denotes the subformula of ' at position � and '[ 7! �℄ is the result of repla
ing 'j�at position � by  . The set of all the positions of subformulae of ' will be denotedby Pos(').The stru
tural transformation, also referred to as renaming, asso
iates with ea
helement � of � � Pos(') a predi
ate symbol Q� and a literal Q�(x1; : : : ; xn), wherex1, : : : , xn are the free variables of 'j�, the symbol Q� does not o

ur in ' and twosymbols Q� and Q�0 are equal only if 'j� and 'j�0 are equivalent formulae.1 LetDef+� (') = 8x1 : : : xn (Q�(x1; : : : ; xn)! 'j�) andDef�� (') = 8x1 : : : xn ('j� ! Q�(x1; : : : ; xn)):The de�nition of Q� is the formulaDef�(') = 8><>:Def+� (') if 'j� has positive polarity,Def�� (') if 'j� has negative polarity,Def+� (') ^ Def�� (') otherwise.The 
orresponding 
lauses will be 
alled de�nitional 
lauses. Now, de�ne Def�(')indu
tively by: Def;(') = ' andDef�[f�g(') = Def�('[Q�(x1; : : : ; xn) 7! �℄) ^ Def�(');where � is maximal in � [ f�g with respe
t to the pre�x ordering on positions. Ade�nitional form of ' is Def�('), where � is a subset of all positions of subformulae(usually, non-atomi
 or non-literal subformulae).Theorem 2.1 (e.g. Plaisted and Greenbaum [39℄) Let ' be a �rst-order formula.1. ' is satis�able i� Def�(') is satis�able, for any � � Pos(').2. Def�(') 
an be 
omputed in polynomial time.3 The Modal Logi
 K(m)(\;[; �;`)K(m)(\;[;�;`) is the multi-modal logi
 de�ned over families of binary relations
losed under interse
tion, union, 
omplementation and 
onverse.The language of K(m)(\;[;�;`) is de�ned over 
ountably many propositional vari-ables p; p1; p2; : : : , and 
ountably many relational variables r; r1; r2; : : : . A proposi-tional atom is a propositional variable, > or ?. A modal formula is either a proposi-tional atom or a formula of the form :', ' ^  , ' _  , h�i' and [�℄', where ' is amodal formula and � is a relational formula. A relational formula is a relational vari-able or has one of the following forms: � ^ �, � _ �, :�, and �` (
onverse), where� and � are relational formulae. Other 
onne
tives are de�ned to be abbreviations,1In pra
ti
e, one may want to use the same symbols for variant subformulae, or subformulae whi
h are obviouslyequivalent, for example, ' _ ' and '.



3. THE MODAL LOGIC K(M)(\;[;�;`) 269for example, ' !  = :' _  or the universal modality is [�℄ = [rj _ :rj ℄, for somerelational variable rj .We will also 
onsider logi
s with fewer relational operations. Formally, by a logi
in-between K and K(m)(\;[;�;`) we mean a logi
 K(m)(?1; : : : ; ?k) where m � 1,1 � k � 4 and the ?i are distin
t operations from f\;[;�;`g.The semanti
s of K(m)(\;[;�;`) is de�ned in terms of relational stru
tures orframes. A frame is a tuple (W;R) of a non-empty set W (of worlds) and a mappingR from relational formulae to binary relations over W satisfying:R(� ^ �) = R(�) \ R(�) R(:�) = R(�)R(� _ �) = R(�) [ R(�) R(�`) = R(�)`:The de�ning 
lass of frames of a modal logi
 determines, and is determined by, a
orresponding 
lass of models. A model (an interpretation) is given by a triple M =(W;R; �), where (W;R) is a frame and � is a mapping from modal formulae to subsetsof W satisfying:�(?) = ; �(>) =W �(:') = �(')�(' ^  ) = �(') \ �( ) �(h�i') = fx j 9y 2W (x; y) 2 R(�) ^ y 2 �(')g�(' _  ) = �(') [ �( ) �([�℄') = fx j 8y 2W (x; y) 2 R(�)! y 2 �(')g:A modal formula ' is satis�able if an M exists su
h that for some x in W , x 2 �(').The standard translation of K(m)(\;[;�;`) into �rst-order logi
 follows the se-manti
 de�nition and is therefore given by the following.�(>; x) = > �(?; x) = ?�(pi; x) = Pi(x) �(:'; x) = :�('; x)�(' ?  ; x) = �('; x) ? �( ; x) for ? 2 f^;_;!;$g�(h�i'; x) = 9y (�(�; x; y) ^ �('; y)) �([�℄'; x) = 8y (�(�; x; y) ! �('; y)):Relational formulae are translated a

ording to:�(rj ; x; y) = Rj(x; y)�(:�; x; y) = :�(�; x; y) �(�`; x; y) = �(�; y; x)�(� ? �; x; y) = �(�; x; y) ? �(�; x; y) for ? 2 f^;_;!;$gIn the translation ea
h propositional or relational variable (pi or rj) is uniquely asso-
iated with a unary or binary predi
ate variable, denoted by the 
orresponding 
apitalletter (Pi or Rj).By de�nition, � maps any modal formula ' to 9x �('; x).Theorem 3.1 Let L be a logi
 in-between K and K(m)(\;[;�;`). For any modalformula ', ' is satis�able in L i� �(') is �rst-order satis�able.In order to keep the presentation simple, modal formulae are assumed to be innegation normal form. This means that in every subformula of the form :', ' is apropositional variable. The negation normal form of any modal formula is obtainedas usual, namely, by moving negation symbols inwards as far as possible (using DeMorgan's laws, :h�i $ [�℄: and :[�℄ $ h�i: , and :(�`) $ (:�)`) andeliminating double negations.
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s4 The Resolution FrameworkIn this paper we will make use of A-ordered resolution, extended with sele
tion.A-ordered resolution is well-known and widely used in resolution de
ision pro
e-dures [12, 13, 5, 34, 30, 26℄. It follows from the results in Ba
hmair and Ganzinger [3, 4℄that A-ordered resolution 
an be 
ombined with a sele
tion fun
tion. This sele
-tion fun
tion 
an override the A-ordering, give preferen
e to inferen
es with nega-tive literals. A-ordered resolution with sele
tion is 
ontrolled by two parameters:an A-ordering and a sele
tion fun
tion. An A-ordering is an ordering � on atoms,whi
h satis�es the following 
ondition: For all atoms A;B and for all substitutions �,A � B implies A� � B�: For a literal L = (:)A let at(L) = A. A-orderings are ex-tended to literals by L � L0 i� at(L) � at(L0). If one uses orderings that do not ignorethe negation sign (these are 
alled L-orderings), one does not loose 
ompleteness [7℄.However L-orderings 
annot be 
ombined with sele
tion. Given an A-ordering �, wede�ne the maximal literals in a 
lause in the standard way: A literal L in a 
lause Cis maximal in C, if there is no literal L0 in C, for whi
h L0 � L.Let � be an A-ordering. A sele
tion fun
tion S, based on �, is a fun
tion whi
hassigns to ea
h 
lause C a non-empty set of its literals, su
h that one of the followingholds: Either S(C) 
ontains a negative literal, or(4.1) S(C) 
ontains all the �-maximal literals of C.(4.2)No further restri
tions are imposed on the sele
tion fun
tion. If the sele
tion fun
tionalways prefers the se
ond alternative, one has just A-ordered resolution. If the se-le
tion fun
tion always sele
ts only the negative literals in non-positive 
lauses, thenthe restri
tion simulates A-ordered hyperresolution. Based on a sele
tion fun
tion S,resolution and fa
toring 
an be de�ned as follows:C _ A1 :A2 _ D(C _ D)�Resolution:provided (i) � is the most general uni�er of A1 and A2, and (ii) A1 2S(C _ A1) and :A2 2 S(:A2 _ D). Then the 
lause (C _ D)� is aresolvent. C _ A1 _ A2(C _ A1)�Fa
toring:provided (i) � is the most general uni�er of A1 and A2, and (ii) A1 2S(C _ A1 _ A2). Then the 
lause (C _ A1)� is 
alled a fa
tor ofC _ A1 _ A2.The 
ombination of sele
tion-based resolution and fa
toring forms a 
omplete refuta-tion system for 
lause sets.The premise C _ A1 of the resolution rule and premise of the fa
toring rule will bereferred to as a positive premise, while the premise :A2 _ D of the resolution rule willbe referred to as a negative premise. The literals resolved upon and fa
tored uponare 
alled eligible literals.
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ation and SplittingIn the previous se
tion we explained where the 
lauses 
ome from. In this se
tion weexplain how to get rid of them. In order to obtain termination, one needs redundan
y
riteria. Let C and D be 
lauses. Clause C subsumes D if jCj � jDj, and thereexists a substitution �, su
h that C� � D. Without the length-restri
tion fa
torswould be subsumed by their parents. This would result in deletion of all fa
tors.Sin
e the fa
toring rule is ne
essary to 
ompleteness, deleting all fa
tors would resultin in
ompleteness. Determining whether or not 
lause C subsumes 
lause D, is NP-
omplete. A 
ondensation of C is a minimal subset D of C, su
h that D subsumes C.One 
an show that 
ondensations are unique up to renaming. Determining whetheror not a 
lause is 
ondensed, is NP-
omplete. Computing the 
ondensation is NP-hard. In pra
ti
e, NP-hardness does not 
ause problems, sin
e the 
lauses are short(< log log) in 
omparison to the number of 
lauses. A 
lause C is a tautology if it
ontains a 
omplementary pair of literals A and :A:Let N be a 
lause set. A saturation of N is a 
lause set N1, su
h that, for everynon-tautologi
al 
lause C in N; there is a 
lause D in N1; su
h that D subsumes C;and for ea
h non-tautologi
al 
lause C; that is derivable from 
lauses in N1, there isa 
lause D in N1, su
h that D subsumes C.For sele
tion based resolution the following holds.Theorem 4.1 For every 
lause set N; and every saturation N1 of N the followingholds: N is unsatis�able i� N1 
ontains the empty 
lause.This follows from the results in Ba
hmair and Ganzinger [3, 4℄. This 
ompletenessallows us to freely delete tautologies and subsumed 
lauses, or repla
e 
lauses by
ondensations. In general it is possible to use stronger notions of redundan
y. One
an de�ne a 
lause to be redundant if it is implied by a �nite set of stri
tly smaller
lauses (under an appropriate extension of � to 
lauses), see [3, 4℄.Our notion of saturation is not appropriate for building into a real theorem prover,be
ause it does not model the time aspe
t. A 
lause may be
ome redundant onlyafter some time, after it has been used for deriving 
lauses that o

ur in the proof.The splitting rule is a rule that is borrowed from semanti
 tableaux. Let N be aset of 
lauses 
ontaining a 
lause C, that has two split 
omponents C1 and C2. Then,instead of trying to refute N one tries to refute N [fC1g and N [fC2g (or N [fC1gand N [ fC2;:C1g, if C1 is a ground 
lause). Note that in both sets, the original
lause C has be
ome redundant. The splitting rule 
an be essentially simulated in theresolution 
ontext by introdu
ing a new propositional symbol. If C1 _ C2 is a 
lausethat 
an be split into two split 
omponents C1 and C2, then it is possible to repla
eC1 _ C2 by two 
lauses C1 _ q, and :q _ C2. q is made minimal in the A-ordering,and :q is sele
ted. In most 
ases this is easier to implement than the full splittingrule.5 Ordered Resolution for K(m)(\;[; �;`)Many modal logi
s naturally translate into de
idable fragments of �rst-order logi
.For example the basi
 logi
 K translates into the two-variable fragment, and into theguarded fragment. By 
onstru
ting de
ision pro
edures for these de
idable fragments,one obtains generi
 de
ision pro
edures for modal logi
s. We 
onsider two 
lasses. One
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sis a 
lause fragment based on the two-variable fragment, 
alled DL�. This fragment isa variation of the 
lass of DL-
lauses, that was introdu
ed in Hustadt and S
hmidt [28℄with the purpose of handling expressive des
ription logi
s. The other one is theguarded fragment, whi
h was introdu
ed by Andr�eka, Van Benthem and N�emeti [2℄as the `modal subset of �rst-order logi
'. Although it did not quite meet the ambitiousgoals, it is an important fragment, 
ontaining many modal logi
s.The 
lass of DL�-
lauses is related to the 
lass S+ in Ferm�uller et al. [12℄. This 
lasswas introdu
ed there as the 
lause fragment belonging to the two-variable fragment.The 
lass S+ 
an only be de
ided by a non-liftable ordering [8℄, or by an A-ordering
ombined with a rule 
alled monadisation [12℄. Sin
e we try to root our approa
h onthe 
ommon basis of liftable orderings, we slightly restri
t the 
lass, so that it 
an bede
ided by a liftable ordering. The restri
tion is still general enough to 
ontain the
lause translations of the �-transformation of the modal formulae in K(m)(\;[;�;`).We now introdu
e the 
lause fragment DL�. In order to simplify the exposition, weassume that all 
lauses are maximally split. The notions 
an be easily adopted for
lauses with more than one split 
omponent.Let C be a 
lause. It is a DL�-
lause if1. all literals are unary, or binary,2. there is no nesting of fun
tion symbols,3. every fun
tional term in C 
ontains all the variables of C, and4. every binary literal (even if it has no fun
tional terms) 
ontains all variables of C:Observe that 3. implies that if C 
ontains a fun
tional ground term, then C is ground.The di�eren
e with S+ is Condition 4. For S+; Condition 4 would be (4a): Every
lause C has a literal 
ontaining all variables of C: Condition 4 forbids the follow-ing problemati
 
lauses, whi
h are allowed by Condition 4a: P (x; x) _ Q(x; y) and:P (x; x) _ R(x; y). In order to stay within S+, one would have to blo
k the inferen
ebased on P (x; x) and :P (x; x); sin
e this would result in the 
lause Q(x; y) _ R(x; z),whi
h 
ontains more variables than ea
h of the parent 
lauses. However no A-ordering
an put Q(x; y) � P (x; x); for all predi
ate symbols P and Q:Examples of DL�-
lauses in
lude ground 
lauses, and:Q0(x) _ Q1(x) _ :Q2(x) Q0(x) _ :R0(x; y) _ Q1(y):Q0(x) _ Q1(f(x)) :Q0(x) _ :R0(f(x); x)R0(x; y) _ :R1(y; x) _ R2(x; y):The 
lausesR0(x; y) _ R0(x; f(x)); Q0(x; x; x) _ Q1(f(f(x))) and R0(x; x) _ R1(x; y)do not belong to the 
lass of DL�-
lauses. The 
lause Q0(x) _ Q1(a) does in prin
iplebelong to DL�, but is not maximally split.Theorem 5.1 Over a �nite signature2 there are only �nitely many maximally splitDL�-
lauses (modulo variable renaming).The proof is similar to the proof for the 
lass of DL-
lauses in Hustadt and S
hmidt [28℄.The proof 
an be obtained by �rst observing that there is a �xed upper bound for2The supply of fun
tion symbols and predi
ate symbols is �nite, while there are possibly in�nite but 
ountablymany variables.
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lause. Then there are only a �nite number ofpossible literals. Be
ause every 
lause is a subset of the set of possible literals, thereis a �nite set of possible 
lauses.Theorem 5.2 The number of possible DL�-
lauses is bounded by 22f(s) ; where f isof order s log(s) and s is the size of the signature.Proof. Let a be maximal arity of any fun
tion symbol. Be
ause any 
lause 
ontainsat most a variables, the number of possible terms is bounded by (s+a)+(s+a)a+1 �(s+a)a+2: The number of possible atoms is then equal to s((s+a)a+2)2 � (s+a)2a+5:The number of possible literals equals 2(s+ a)2a+5 � (s+ a)2a+6: Consequently, thenumber of non-equivalent 
lauses is bounded by 2(s+a)2a+6 = 22(2a+6) log(s+a) :The redu
tion of modal formulae to sets of DL�-
lauses makes use of a stru
turaltransformation introdu
ing new names for subformulae 
orresponding to non-literalsubformulae of the original modal formula. For a given modal formula ' and itstranslation into �rst-order logi
 '0 = �('), we apply the mapping Def� with� = f� j there is a non-literal subformula 'j�0 of ' and '0j� = �('j�0 )g:For example, the de�nition 
orresponding to a subformula hrjip is8x (Qhrjip(x)! 9y (Rj(x; y) ^ P (y))):The formula9x8y ((:R1(x; y) ^ R2(x; y))! 9z (:R1(y; z) ^ R2(y; z) ^ P (z))); (�)whi
h is a translation of the modal formula [:r1^r2℄h:r1^r2ip results in the followingset of de�nitions, together with 9xQ[�℄h�ip(x).8x (Q[�℄h�ip(x)! 8y (Q�(x; y)! Qh�ip(y)))8x (Qh�ip(x)! 9y (Q�(x; y) ^ P (y)))8xy (Q�(x; y)! (:R1(x; y) ^ R2(x; y)))8xy ((:R1(x; y) ^ R2(x; y))! Q�(x; y)):Here � is used as an abbreviation for :r1 ^ r2. Noti
e that one new symbol Q� wasused for the positive and negative o

urren
es of the subformula :R1(x; y) ^ R2(x; y).Theorem 5.3 Let '0 be a �rst-order formula that results from the translation of amodal formula ' in K(m)(\;[;�;`). Every 
lause in the 
lausal normal form ofDef�('0) is a DL�-
lause.Proof. Not diÆ
ult.In order to de
ide the 
lass DL�, we use the following A-ordering whi
h is similarto the re
ursive path ordering. First we de�ne an order >d on terms: s >d t if s isdeeper than t; and every variable that o

urs in t; o

urs deeper in s: Then we de�neP (s1; : : : ; sn) � Q(t1; : : : ; tm) as fs1; : : : ; sng >muld ft1; : : : ; tmg: Here >muld is themultiset extension of >d : So we have P (f(x)) � P (a); P (x) and P (x; y) � Q(x), but
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snot P (f(x)) � P (f(a)): The >d ordering originates from Ferm�uller et al. [12℄. Thesele
tion fun
tion S is 
ompletely determined by �; so there is no preferred sele
tionof negative literals.We now give the 
lausal normal form of the formula (*) above. The maximal literalsare marked with �. These are the literals that 
an potentially be resolved or fa
toredupon. Q[�℄h�ip(a)�:Q[�℄h�ip(x) _ :Q�(x; y)� _ Qh�ip(y):Qh�ip(x) _ Q�(x; f(x))�:Qh�ip(x) _ P (f(x))�:Q�(x; y)� _ :R1(x; y)�:Q�(x; y)� _ R2(x; y)�R1(x; y)� _ :R2(x; y)� _ Q�(x; y)�In the last three 
lauses there is more than one maximal literal. This 
ould beprevented by 
ompleting � with an ordering on atoms. In that 
ase it is ne
essaryto distinguish equivalent from in
omparable literals. Instead of �; one would haveto de�ne �. Then A � B would have to be de�ned as A � B and A 6� B: In the
ase that A � B and A � B; one 
an try to use a se
ond ordering for establishing apriority.In order to prove that the pro
edure that we des
ribed is indeed a de
ision pro
edurewe have to show that it is 
omplete, and terminating. The 
ompleteness follows fromTheorem 4.1. Termination is a 
onsequen
e of Theorem 5.1, and the fa
t that therestri
tion derives only 
lauses that are within DL�, or that 
an be split. This fa
t isobtained by a 
ase analysis, similar as in [28℄. Therefore:Theorem 5.4 Let L be a logi
 in-between K and K(m)(\;[;�;`). Let N be the
lausal form of Def��('), where ' is any modal formula in L. Then:1. Any derivation from N terminates in double exponential time.2. ' is unsatis�able in L i� the saturation of N 
ontains the empty 
lause.This result 
overs a
tually a larger 
lass of modal logi
s. Boolean modal logi
, andhen
e also K(m)(\;[;�;`), is expressive enough to allow for frame properties to bespe
i�ed by relational formulae. Impli
ation of relational formulae 
an be de�nedby (� ! �) = [� ^ :�℄? [38℄. Hen
e, the symmetry of the a

essibility relation R1asso
iated with r1 
an be spe
i�ed by r1 ! r1̀ .If � is a set of relational frame properties then L� will denote the logi
 
hara
-terised by the 
lass of frames satisfying the 
onjun
tion of properties in �.Corollary 5.5 Let L be a logi
 in-between K and K(m)(\;[;�;`). Let � be theBoolean 
ombination of relational in
lusions or equivalen
es expressed over interse
-tion, union, 
omplementation and 
onverse. Suppose ' is any modal formula and Nis the 
lausal form of Def��('). Then:1. Any derivation from N [� terminates in double exponential time.2. ' is unsatis�able in L� i� the saturation of N [� 
ontains the empty 
lause.
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idability result for the 
lasses DL� and DL allows for a slightly more generalresult, whi
h in
ludes re
exivity and irre
exivity. Modal and relational formulae withpositive o

urren
es of relational 
omposition 
an also be embedded into the 
lassDL�. Moreover, relational properties su
h as 8xy (R1(x; y) ! R2(x; x)) are 
overedby the 
lass S+.6 Ordered Resolution for the Guarded FragmentIn this se
tion we use ordered resolution with sele
tion as a de
ision pro
edure forthe guarded fragment. The guarded fragment was �rst shown de
idable by Andr�eka,N�emeti and Van Benthem [1℄. Gr�adel [20℄ has shown that the satis�ability problemfor the guarded fragment is DEXPTIME-
omplete. There it was also shown that theguard 
ondition is ne
essary only for the universal quanti�ers, when the formula is innegation normal form. A resolution de
ision pro
edure for the guarded fragment was�rst established in de Nivelle [9℄. In Ganzinger and de Nivelle [14℄ the method wasadapted to the guarded fragment with equality. It is shown there that the 
omplexityof the resolution de
ision pro
edure is 
onsistent with the 
omplexity given in [20℄.The de
ision pro
edure that we give here is based on the one in [14℄.A �rst-order formula is in the guarded fragment if it is fun
tion free, and everyquanti�
ation has form 8x (G!  ); or 9x (G ^  ): Here G is an atom 
ontaining allfree variables of  ; and x is a sequen
e of variables.We use the following 
lausal normal form. A 
lause C is a guarded 
lause if1. there is no nesting of fun
tion symbols,2. every fun
tional term in C 
ontains all variables of C, and3. if C 
ontains variables, then there is a negative, fun
tion-free literal that 
ontainsall variables of C: Su
h a literal is 
alled a guard literal.As is the 
ase with the 
lass of DL�-
lauses, there is only a �nitely bounded set ofguarded 
lauses.Theorem 6.1 (Ganzinger and de Nivelle [14℄) Over a �nite signature the num-ber of possible guarded 
lauses is of order 22s , where s is the size of the signature.For the redu
tion to 
lausal normal form we assume that a guarded formula ' isin negation normal form. The redu
tion of ' into guarded 
lauses uses a stru
turaltransformation Def� with� = f� j � is a position in ' of a formula of the form 8x (G!  )g:It 
an be shown that this stru
tural transformation preserves the guarded fragment.The de�nitional formula that de�nes a guarded formula 8x (G!  ); has the form8y (Q8x(G! )(y)! 8x (G!  )):Every variable in y and x o

urs in G: This formula is not guarded by itself but itis equivalent to the following formula, whi
h is guarded: 8xy (G ! (Q8x(G! )(y)! )):Formulae in K(m)(\;[;`) are translated by � into the guarded fragment. Nega-tions of a

essibility relations would be problemati
. For example, [:r℄p is trans-lated into 9x8y (:R(x; y) ! P (y)): This formula is not guarded. The formula
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s[(r1 ^ r2) _ r3̀ ℄p is translated into 9x8y ((R1(x; y) ^ R2(x; y) ) _ R3(y; x) ! P (y)):This formula is not guarded either, however, it is equivalent to the guarded formula:9x8y (R1(x; y)! (R2(x; y)! P (y))) ^ 8y (R3(y; x)! P (y)):We show that this is in general the 
ase for formulae in K(m)(\;[;`): The mapping� translates formulae of K(m)(\;[;`) into �rst-order formulae in whi
h the quan-ti�
ations have the form 8x (G !  ): In this, G is a relational expression withoutnegation and fun
tion symbols, in whi
h ea
h atom 
ontains all free variables of  :This G 
an be translated into disjun
tive normal form,(G1;1 ^ : : : ^ G1;l1) _ : : : _ (Gn;1 ^ : : : ^ Gn;ln):The Gi;j are atoms, 
ontaining all free variables of  : Then 8x (G!  ) is equivalentto 8x ((G1;1 ^ : : : ^ G1;l1)!  ) ^ : : : ^ 8x ((Gn;1 ^ : : : ^ Gn;ln)!  );whi
h is in turn equivalent to8x (G1;1 ! (: : :! (G1;l1 !  ))) ^ : : : ^ 8x (Gn;1 ! (: : :! (Gn;ln !  ))):The Gi;1 are well-formed guards.In order to obtain a de
ision pro
edure for the guarded fragment, we make use ofthe ordering � of the previous se
tion, 
ombined with sele
tion of negative literals.1. If C is a non-ground 
lause without fun
tional terms, then S(C) 
ontains all guardsof C:2. If C is a 
lause with fun
tional terms, then S(C) 
ontains all literals with fun
-tional terms.It is easily 
he
ked that this is a valid sele
tion fun
tion for guarded 
lauses. If Cis a non-ground 
lause, then it has at least one guard. Be
ause this guard is negative,it is possible to sele
t it. If C 
ontains fun
tional terms, then some of the literals
ontaining fun
tional terms are �-maximal. Be
ause of this it is possible to sele
tthese literals.The formula 9x9y (R1(x; y) ^ R2(x; y) ^ 8z (R1(y; z) ! R2(y; z) ! P (z))); whi
his a translation of hr1 ^ r2i[r1 ^ r2℄p results in the following formula.9x9y (R1(x; y) ^ R2(x; y) ^ Q[r1^r2℄p(y))^ 8yz ((R1(y; z) ^ R2(y; z))! (Q[r1^r2℄p(y)! P (z))):The 
lausal normal form 
onsists of the 
lausesR1(a; b)�R2(a; b)�Q[r1^r2℄p(b)�:R1(x; y)� _ :R2(x; y)� _ :Q[r1^r2℄p(x) _ P (y):
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tion 
ould be 
om-pleted, as in the previous se
tion, in order to obtain a more total ordering. Thetermination proof is analogous to the proof for DL-
lauses. The main diÆ
ulty isto prove that the restri
tion preserves the guarded fragment. For this we refer toGanzinger and de Nivelle [14℄. Consequently:Theorem 6.2 Let L be a logi
 in-between K and K(m)(\;[;`). Let N be the 
lausalform of Def��('), where ' is any modal formula in L. Then:1. Any derivation from N terminates in double exponential time.2. ' is unsatis�able in L i� the saturation of N 
ontains the empty 
lause.7 Sele
tion-Based Resolution for K(m)(\;[;`)K(m)(\;[;`) and logi
s below it have the property that they 
an be de
ided by are�nement of resolution whi
h is de�ned solely by a sele
tion fun
tion of negativeliterals [29℄.Here new names are introdu
ed for all non-atomi
 subformulae of the translationof a modal formula, that is, we use Def� where � is the subset of positions in '0 (the�rst-order translation) whi
h 
orrespond to non-atomi
 subformulae of ' (the originalmodal formula). Moreover Def� introdu
es the same symbol for variant subformulaewith the same polarity. Be
ause, by assumption, ' is in negation normal form, allo

urren
es of non-atomi
 subformulae of '0 with one free variable have positivepolarity. This means Def�('0) = Def+� ('0) for the positions � asso
iated with theseo

urren
es. But subformulae 
orresponding to relational formulae (subformulae withtwo free variables) 
an o

ur both positively and negatively. For these Def� introdu
esone symbol for all variant o

urren
es of subformulae 
orresponding to non-atomi
relational subformulae with positive polarity and a di�erent symbol for all varianto

urren
es with negative polarity.For example, Def� will introdu
e for the subformulae of [�℄h�ip with � = r1 ^ r2the de�nitions (in addition to 9xQ[�℄h�ip(x)):8x (Q[�℄h�ip(x)! 8y (Qn�(x; y)! Qh�ip(y)))8x (Qh�ip(x)! 9y (Qp�(x; y) ^ P (y)))8xy (Qp�(x; y)! (R1(x; y) ^ R2(x; y)))8xy ((R1(x; y) ^ R2(x; y))! Qn�(x; y)):(7.1)The symbol Qn� (resp. Qp�) is asso
iated with the negative (resp. positive) o

urren
eof �.In order to 
hara
terise the indu
ed 
lass of 
lauses we introdu
e some more nota-tion. We denote introdu
ed predi
ate symbols by Q and Qp� or Qn�, where Q repre-sents an o

urren
e of a modal subformula  and Qp=n� represents a positive/negativeo

urren
e of a relational subformula �. We also �nd it 
onvenient to use the notationP(s) for some literal in fPi(s); Q (s)gi; , andR(s; t) for some literal in fRj(s; t); Rj(t; s); Qp=n� (s; t); Qp=n� (t; s)gj;�.
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sNote the order of the arguments in R(s; t) is not �xed. Two o

urren
es of P(s), orR(s; t), need not be identi
al. For example, :Q (x) _ Pi(x) _ Q�(x) is an instan
eof :Q (x) _ P(x) _ P(x), while:Q (x) _ :Rj(y; x) _ Q�(y) and :Q (x) _ :Qn�(x; y) _ Q�(y)are instan
es of :Q (x) _ :R(x; y) _ P(y).Thus, all input 
lauses have one of the following forms.P(a):Q (x)� _ :Pi(x)� if  = :pi:Q (x)� _ P(x) [_ P(x)℄ if  = �1 ^[_℄ �2:Q (x)� _ :R(x; y)� [_ P(y)℄ if  = [�℄� [ = [�℄?℄:Q (x)� _ P(f(x)):Q (x)� _ R(x; f(x)) if  = h�i�:Qp�(x; y)� _ R(x; y) [_ R(x; y)℄ if � = �1 ^[_℄ �2 has pos. polarityQn�(x; y) _ :R(x; y)� [_ :R(x; y)�℄ if � = �1 ^[_℄ �2 has neg. polarity.(7.2)
The literals marked with � are the sele
ted literals.The minimal 
al
ulus whi
h we will use is based on maximal sele
tion of negativeliterals. This means the sele
tion fun
tion sele
ts exa
tly the set of all negative literalsin any non-positive 
lause. An ordering re�nement is optional. The resolution rule isthe following:Resolution with maximal sele
tion:C1 _ A1 : : : Cn _ An :An+1 _ : : : _ :A2n _ D(C1 _ : : : _ Cn _ D)�provided for any 1 � i � n, (i) � is the most general uni�er of Ai andAn+i, (ii) Ci _ Ai and D are positive 
lauses, (iii) no Ai o

urs in Ci,and (iv) Ai;:An+i are sele
ted.The negative premise is :An+1 _ : : : _ :A2n _ D and the other premises are thepositive premises. The literals Ai and An+i are the eligible literals.The inferen
e rules of our 
al
ulus, denoted by RMOD, are the above resolution rule,positive fa
toring, splitting and at least tautology deletion. All derivations in RMODare generated by strategies in whi
h no appli
ation of the resolution or fa
toring withidenti
al premises and identi
al 
onsequen
e may o

ur twi
e on the same path in anyderivation. In addition, deletion rules, splitting, and the dedu
tion rules are appliedin this order, ex
ept that splitting is not applied to 
lauses whi
h 
ontain a sele
tedliteral.As all non-unit 
lauses of a typi
al input set (a 
on
rete example is given in Figure 2below) 
ontain a sele
ted literal no fa
toring steps are possible and all de�nitional
lauses 
an only be used as negative premises of resolution steps. To begin with thereis only one 
andidate for a positive premise, namely, the ground unit 
lause Q'(a)representing the input formula '. Inferen
es with su
h ground unary unit 
lausesprodu
e ground 
lauses 
onsisting of positive literals only, whi
h will be split intoground unit 
lauses.



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 279R1Q[�℄h�ip Qp� Qn� ttQh�ip R2PFig. 1. Dependen
y among predi
ate symbols for (7.1)Lemma 7.1 Maximally split (non-empty) inferred 
lauses have one of two forms:P(s), or R(s; f(s)), where s is a ground term.Proof. Every resolution inferen
e step with a de�nitional 
lause from the input setand ground unit 
lauses of the form P(s) or R(s; f(s)) yields a ground 
lause whi
h
an be split into ground unit 
lauses of the required form.In general, s will be a nested non-
onstant fun
tional ground term, whi
h is usu-ally undesirable, be
ause in most situations this 
auses unbounded 
omputations.However, as the next theorem proves, for the 
lass of 
lauses under 
onsideration anyderived 
lause is smaller than its positive parent 
lauses with respe
t to a well-foundedordering whi
h re
e
ts the stru
ture of the formula.By de�nition the modal depth of a formula ' is the maximal nesting of modaloperators h�i or [�℄ in '.Theorem 7.2 Let ' be any K(m)(\;[;`)-formula and let N be the 
lausal form ofDef��('). Then:1. Any RMOD-derivation from N terminates.2. ' is unsatis�able in K(m)(\;[;`) i� the RMOD-saturation of N 
ontains the empty
lause.Proof. 2. follows from the soundness and refutational 
ompleteness of ordered reso-lution with sele
tion (Theorem 4.1).For 1., de�ne a dependen
y relation �d on the predi
ate symbols by S1 �d S2, ifthere is a de�nition  ! � in Def��(') su
h that S1 o

urs in  and S2 o

urs in�. An additional restri
tion is that if Q is the symbol introdu
ed for a diamondformula  , and Q� is the symbol introdu
ed for a box formula �, and  and �o

ur at the same modal depth in ', then Q �d Q�. Moreover, let tt be a newsymbol smaller than all predi
ate symbols. (For example, for (7.1) the dependen
yrelation is depi
ted in Figure 1. That is, Q[�℄h�ip �d Qh�ip, and so on.) Let �Dbe any ordering on the predi
ate symbols in Def��(') whi
h is 
ompatible with thetransitive 
losure of �d, that is, �+d � �D. Su
h an ordering 
an always be found.For this, it was important to introdu
e di�erent predi
ate symbols for positive andnegative subformulae asso
iated with relational subformulae.By de�nition, a predi
ate symbol Q is asso
iated with a fun
tion symbol f , writtenQf , if there is a 
lause :Q(x) _ R(x; f(x)) in N . De�ne a measure � as follows:�(C) = 8><>:(P ;P) if C = P(s)(Q;R) if C = R(s; t)(tt; tt) if C = ;,
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swhere Q is the predi
ate symbol asso
iated with the leading fun
tion symbol of themaximal term in fs; tg. For example, the measure of a 
lause R(s; f(s)) is (Qf ; R).Complexity measures are 
ompared by the lexi
ographi
 
ombination �
= (�D;�D).Now, it is routine to verify that any inferen
e step from positive premises C1; C2 byresolution or fa
toring will produ
e a 
lause D su
h that �(C1) �
 �(D); �(C2) �
�(D). For example, for the inferen
e stepQ (s)+ R(s; f(s))+ :Q (x)+ _ :R(x; y)+ _ P(y)P(f(s))�(P(f(s))) = (P ;P), �(Q (s)) = (Q ; Q ), and �(R(s; f(s))) = (Qf ;R), where Qfis the symbol introdu
ed for a diamond formula �, say. � 
annot o

ur at a highermodal depth than  , whi
h is a box formula. Hen
e, it follows that Qf (= Q�) �D P .Consequently, �(R(s; f(s))) �
 �(P(f(s))). Sin
e Q �D P , by de�nition, we alsohave that �(Q (s)) �
 �(P(f(s))). ForQ (s)+ :Q (x)+ _ R(x; f(x))R(s; f(s))we have that �(Q (s)) = (Q ; Q ) �
 (Q ;R) = �(R(s; f(s))), be
ause Q �D R.For the following inferen
e, we have that �(R(s; f(s))) = (Qf ;R) �
 (Qf ; Qn�) =�(Qn�(s; f(s))), sin
e � o

urs negatively in ' and thus R �D Qn�.R(s; f(s))+ Qn�(x; y) _ :R(x; y)+Qn�(s; f(s))It follows that any derivation terminates.Theorem 7.3 For any logi
 in-between K and K(m)(\;[;`), the spa
e 
omplexity fortesting the satis�ability of a modal formulae ' with RMOD is bounded by O(ndm), wheren is the number of symbols in ', d is the number of di�erent diamond subformulae in', and m is the modal depth of '.Proof. Suppose ' is an arbitrary formula of K(m)(\;[;`) and N is the asso
iatedinput set. ' has at most n subformulae, and hen
e, the number of 
lauses belongingto N is O(n). Also, N 
ontains at most n di�erent predi
ate symbols (roughly onefor ea
h subformula), d di�erent unary fun
tion symbols and one 
onstant symbol.Re
all from Lemma 7.1, split derived 
lauses are ground unit 
lauses of a 
ertain form.As the maximal term depth bound is given by the modal depth of the input formula,there are at most O(ndm) su
h split 
lauses. It follows that the number of di�erentliterals in any derivation tree is bound by O(ndm).For logi
s without 
onverse, spa
e 
an be 
onserved by adopting the 
ommontableaux inferen
e strategy of 
onsidering disjun
tive bran
hes and bran
hes asso-
iated with di�erent 3-subformulae in turn. In addition, the inferen
es with de�ni-tional 
lauses asso
iated with diamond subformulae need to be postponed until noother inferen
es with de�nitional 
lauses asso
iated with Boolean subformulae3 arepossible. This provides a PSPACE resolution pro
edure for logi
s in-between K andK(m)(\;[).3In Boolean subformulae the outermost 
onne
tive is a Boolean 
onne
tive.
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ally Generating ModelsAny saturated 
lause set derivable from a given set N allows for the e�e
tive 
on-stru
tion of a model of N . In general this model will not be �nite. However, forK(m)(\;[;`) models are given by a �nite set of positive ground unit 
lauses. Theproofs of the results in this subse
tion are slight modi�
ations of the 
orrespondingresults in Hustadt and S
hmidt [29℄.Formally, a model of a 
lause set is a set I of ground atoms. The presen
e of anatom A in I means A is true in I , and the absen
e of A means :A is true in I . Ingeneral, a 
lause C is true in I i� for all ground substitutions � there is a literal L inC� whi
h is true in I . Falsehood is de�ned dually.Lemma 7.4 Let ' be a K(m)(\;[;`)-formula. Let N be the 
lausal form of Def��('),and let N1 denote the RMOD-saturated 
lause set derivable from N . Let I be the setof positive ground unit 
lauses in N1. If N1 does not 
ontain the empty 
lause thenI is a model of N1 and N .Now it is an easy matter to 
onstru
t a modal model M = (W;R; �) for ' from I .Essentially, the set of worlds is de�ned by the set of ground terms o

urring in I . Theinterpretation of relational formulae is determined by the set of Ri literals in I . ForanyRi, if Ri(s; t) is in I then (s; t) 2 R(ri), whi
h 
an be extended to a homomorphismfor 
omplex relational formulae. The interpretation of modal formulae 
an be de�nedsimilarly. For any unary literal Pi(s) (resp. Q (s)) in I , s 2 �(pi) (resp. s 2 �( )),that is, pi (resp.  ) is true in the world s. This is homomorphi
ally extended asexpe
ted. Consequently:Theorem 7.5 For any modal formula satis�able in K(m)(\;[;`) a �nite modal model
an be e�e
tively 
onstru
ted on the basis of RMOD.Corollary 7.6 Let L be any logi
 in-between K and K(m)(\;[;`). Then, L has the�nite model property.GeneralisationResults 7.2, 7.5 and 7.6 
an be generalised.Theorem 7.7 Let L be a logi
 in-between K and K(m)(\;[;`). Let � be a �niteRMOD-saturated set of 
lauses 
onsisting of two kinds of split 
omponents.Clauses with at most two free variables, whi
h are built from �nitely manybinary predi
ate symbols Rj , no fun
tion symbols, and 
ontaining at leastone guard literal (that is, this literal is negative and in
ludes all the variablesof the 
lause).(7.3) Clauses built from one variable, �nitely many fun
tion symbols (in
luding
onstants), and �nitely many binary predi
ate symbols Rj , with the restri
-tion that (i) the argument multisets of all non-ground literals 
oin
ide, and(ii) ea
h literal whi
h 
ontains a 
onstant is ground.(7.4)Suppose ' is an L-formula and N is the 
lausal form of Def��('). Then:1. Any RMOD-derivation from N [� terminates.
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s2. ' is unsatis�able in L� i� the RMOD-saturation of N [ � 
ontains the empty
lause.Proof. Soundness and 
ompleteness follows by the general soundness and 
omplete-ness result of ordered resolution with sele
tion (Theorem 4.1).For the problem of termination we �rst 
onsider what kind of 
lauses we are dealingwith. Input 
lauses have the form (7.2), (7.3) or (7.4). To begin with we 
onsiderthe saturation of all theory 
lauses and the subset of 
lauses in N whi
h 
ontain onlybinary predi
ate symbols. The latter have the form::Qp�(x; y)+ _ R(x; y) [_ R(x; y)℄ and Qn�(x; y) _ :R(x; y)+ [_ :R(x; y)+℄:(0)We will prove that (non-empty maximally split) inferred 
lauses in
lude ground unit
lauses (more pre
isely, 
lauses of the form [:℄R(s; t), where s and t are ground terms),and 
lauses whi
h are spe
i�ed by (7.4), ex
ept that they may be de�ned over thegiven Rj symbols and the introdu
ed Qp=n� symbols. Call su
h 
lauses (7.4)+. Let Kdenote the 
lass of 
lauses (0), (7.3), (7.4)+ and ground unit 
lauses, de�ned over a�nite signature. W.l.o.g. we 
onsider only maximally split 
lauses.Claim 1: Inferen
es with 
lauses satisfying (7.3) and 
lauses (0) or ground unit
lauses produ
e ground 
lauses only. Assume C is a (7.3) 
lause. C parti
ipatesin inferen
e steps as a negative premise and the only potential partners are ground
lauses. As at least one of the eligible literals in C is a guard literal the result of su
han inferen
e step is a ground resolvent.Claim 2: Inferen
es with 
lauses satisfying (7.3) and (7.4)+ produ
e 
lauses withground or (7.4)+ split 
omponents. The proof is not diÆ
ult. Observe that the
on
lusion of a resolution step in RMOD is always a positive 
lause.Claim 3: Inferen
es with (7.4)+ 
lauses and (0) 
lauses or ground unit 
lauses pro-du
e either ground 
lauses or (7.4)+ 
lauses. First 
onsider any positive (7.4)+ 
lauseC. Clearly, the fa
tor of C is again a 
lause satisfying (7.4)+. Now 
onsider thepossibilities for resolution inferen
es with C.1. Assume C is resolved with a 
lause of the form :Q (x)+ _ :R(x; y)+ _ P(y).The other positive premise besides C will be a ground unit 
lause Q (s)+. Regardlessof whether C is ground or not the 
on
lusion will be a ground 
lause (be
ause thesingle variable that may o

ur in C will be instantiated with a ground term).2. Another possibility is that C is resolved with a 
lause Qn�(x; y) _ :R(x; y)+,or a 
lause Qn�(x; y) _ :R(x; y)+ _ :R0(x; y)+. In the �rst 
ase the resolvent is avariation of C, namely C with the predi
ate symbol of the eligible literal repla
edby Qn� and possibly the arguments ex
hanged. In the se
ond 
ase the form of theresolvent depends on the se
ond positive premise. If the se
ond premise is groundthen the resolvent will also be ground (be
ause if C is not ground then the singlevariable of C will be instantiated with a ground term). The se
ond premise C 0 maybe a (7.4)+ 
lause whi
h is not ground. In this 
ase a resolution step is only possible ifthe multisets of arguments of the eligible literals of C and C 0 are identi
al. It followsthat any resolvent satis�es the 
onditions of (7.4)+. Noti
e that no term depth growtho

urs.3. The third possibility is that C is resolved with a 
lause (7.3). This possibility is
overed by Claim 2.Se
ond, 
onsider the 
ase that C is a non-positive (7.4)+ 
lause. C 
an only bea negative premise in a resolution inferen
e step. The only resolution partners are



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 283ground unit 
lauses and positive (7.4)+ 
lauses. In the �rst 
ase the 
on
lusion is aground 
lause, and in the latter 
ase the 
on
lusion is again a (7.4)+ 
lause.Claim 4: Inferen
es with input 
lauses (0) and ground unit 
lauses produ
e ground
lauses. The argument is similar as for Lemma 7.4.Claims 1 to 4 prove that the 
lass K is 
losed under inferen
es in RMOD. Now thesaturation �0 of � and the set of (0) 
lauses in N is a subset of K. �0 is boundedbe
ause inferred 
lauses 
ontain at most two variables and there is no in
rease of theterm depth.We now establish that, 
on
lusions of further inferen
es are ground. No inferen
esare possible between theory 
lauses satisfying 
ondition (7.3) and 
lauses in N . In-feren
es with 
lauses not in �0 are with ground 
lauses, and produ
e ground 
lauses.Similarly, inferen
es with 
lauses (7.4)+ and 
lauses not in �0 are with ground 
lauses,and produ
e ground 
lauses. The remaining inferen
es are as in Lemma 7.1. It followsthat non-empty split ground 
on
lusions have the formP(s); (:)R(s; f(s)); (:)R(s; s) or (:)R(b; 
):Termination of any derivation from N[� is now shown as follows. Let T, tt be newsymbols whi
h do not o

ur in either N or �. Again, we use a dependen
y relation�d on the predi
ate symbols. It is de�ned almost as in the proof of Theorem 7.2, butwith subtle di�eren
es: S1 �d S2, if there is a de�nition  ! � in Def��(') su
hthat S1 o

urs in  and S2 o

urs in �. In addition, all relational symbols Rj whi
hdo not o

ur in N are smaller than any unary predi
ate symbols. Let T be the largestsymbol with respe
t to �d, and tt the smallest symbol. As before, let �D be anyordering 
ompatible with the transitive 
losure of �d. In addition, de�ne�(T ) = f(:)R(s; t) j s; t 2 T and R is a binary predi
ate symbolg:Let NC denote the set of 
lauses derived prior to C, and C itself. Now, de�ne ameasure on (a subset of) 
lauses in a derivation by:�(C) =8><>:(P ; ;) if C = P(s)(Q;�(fs; tg) nNC) if C = (:)R(s; t)(tt; ;) if C = ;,where Q is the predi
ate symbol asso
iated with the leading fun
tion symbol of themaximal term in fs; tg, whenever su
h a symbol exists, and T otherwise. Here, max-imality is with respe
t to the proper subterm ordering. The ordering on the 
om-plexity measures �
 of positive premises and 
on
lusions is de�ned to be the lexi-
ographi
 
ombination of �D and the proper superset relationship. This ordering iswell-founded. Now we need to verify that split ground 
on
lusions are stri
tly smallerthan their positive premises, whi
h is routine. Termination follows.Theorem 7.8 Let L and � be as in the previous theorem. For any modal formulasatis�able in L� a �nite modal model 
an be e�e
tively 
onstru
ted on the basis ofRMOD.Proof. The 
onstru
tion of a modal model M is as above from the set of groundunit literals in the saturation of N [ �. It remains to 
onsistently 
omplete M in
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sa

ordan
e with the ba
kground theory �. This is always possible be
ause � 
ontainsno 
lauses requiring the 
reation of new worlds. For example, if � = fRi(x; f(x))gthen add (s; s) 2 R(ri) for ea
h dead end world s. Only propositional literals will betrue in s.Corollary 7.9 Let L and � be as in the previous theorem. Then, L� has the �nitemodel property.Whi
h extended modal logi
s satisfy the 
onditions of Theorem 7.7? Relationalframe properties whi
h 
an be des
ribed by the above 
lausal form in
lude re
exivity,irre
exivity, seriality, symmetry, in
lusions among relations, for example, R1 � R2 orR1 � (R2̀ \ R3), as well as, for example,8x9y :R(x; y), 8x9y (R(x; y) _ R(y; x)), or 8xy (R(x; y)! R(x; x)).Thus, familiar logi
s 
overed by the above results in
lude KT, KD, KB, KTB, andKDB, but also the basi
 tense logi
 K t. The results also 
over a variety of des
riptionlogi
s, for example, ALC endowed with role 
onjun
tion, role disjun
tion and inverseroles, a
y
li
 TBox statements, and both 
on
ept and role ABox statements.By re�ning RMOD with an ordering restri
tion whi
h would prefer to resolve uponliterals 
ontaining fun
tional terms of the theory 
lauses in � we expe
t that theabove de
idability result 
an be improved 
onsiderably.Finally, let us look at a sample derivation, in Figure 2, and make a few observations.R is assumed to be re
exive, for otherwise not many inferen
e steps are possible. First,noti
e how the 
orresponden
e to modal subformulae is retained during inferen
e inRMOD. For example, 14.1.1 and 14.2.1 say that p and 3p are true in the initial worlda, 14.2.2, 14.2.3 and 14.2.4 say that p and p _ 3p are true in a su

essor world of a.Se
ond, noti
e the similarity of this derivation to the derivation of a 
lassi
al tableauxpro
edure. This 
onne
tion will be formally dis
ussed in the next se
tion.8 Tableaux Cal
uliSele
tion re�nements of resolution (and hyperresolution) are 
losely related to stan-dard modal tableaux 
al
uli and des
ription logi
 systems [13, 27, 28, 29℄. In thisse
tion, we exploit this 
onne
tion and present tableaux 
al
uli for the modal logi
K(m)(\;[;`), and logi
s below it. These 
al
uli resemble and enhan
e those 
om-monly used in des
ription logi
 systems [22, 21℄. We also investigate the relationshipbetween our sele
tion-based resolution pro
edure and single-step pre�xed tableaux
al
uli.Tableaux Cal
uli for Subsystems of K(m)(\;[;`)A tableaux is a �nitely bran
hing tree whose nodes are sets of labelled formulae. Giventhat ' is a formula to be tested for satis�ability the root node is the set fa : 'g.Su

essor nodes are 
onstru
ted in a

ordan
e with a set of expansion rules. A ruleXX1 j ::: j Xn �res for a sele
ted formula F in a node if F is an instan
e of the numeratorX , or more generally, F together with other formulae in the node are instan
es ofthe formulae in X . n su

essor nodes are 
reated whi
h 
ontain the formulae ofthe 
urrent node and the appropriate instan
es of Xi. It is assumed that no rule is



8. TABLEAUX CALCULI 2851: Q'(a)2: :Q'(x)+ _ Q2(x)3: :Q'(x)+ _ Q:(x)4: :Q2(x)+ _ :R(x; y)+ _ Q_(y)5: :Q_(x)+ _ P (x) _ Q3(x)6: :Q3(x)+ _ R(x; f(x))7: :Q3(x)+ _ P (f(x))8: :Q:(x)+ _ :P (x)+9: R(x; x)10: Q2(a) [1, 2℄11: Q:(a) [1, 3℄12: Q_(a) [4, 9, 10℄13: P (a) _ Q3(a) [5, 12℄14:1:1: P (a) [13, split℄14:1:2: ; [8, 11, 14.1.1℄ 14:2:1: Q3(a) [13, split℄14:2:2: R(a; f(a)) [6, 14.2.1℄14:2:3: P (f(a)) [7, 14.2.1℄14:2:4: Q_(f(a)) [4, 10, 14.2.2℄14:2:5: P (f(a)) _ Q3(f(a)) [5, 14.2.4℄14:2:5:1:1: P (f(a)) [14.2.5, split℄ 14:2:5:1:2: Q3(f(a)) [14.2.5, split℄Fig. 2. Derivation tree for testing the satis�ability of ' = 2(p _ 3p) ^ :p in KT.applied twi
e to the same instan
e of the numerator. In the following we assume ' isa formula in negation normal form.Figure 3 lists the expansion rules for the logi
 K(m)(\;[;`), while for any logi
 Lin-between K and K(m)(\;[;`) the expansion rules are given by appropriate subsets,see Figure 4. The rules forK(m)(\;[;`) in
lude the 
lash rule (?), seven `elimination'rules (^), (_), (3), (2), (`), (^r), and (_r) for positive o

urren
es of subformulae,and three `introdu
tion' rules (`I), (^rI ) and (_rI) for negative o

urren
es of subfor-mulae. The side 
onditions for the introdu
tion rules ensure that formulae are notintrodu
ed unne
essarily. Conjun
tion and disjun
tion are assumed to be asso
iativeand 
ommutative operations. Note that only the disjun
tion rules are \don't know"nondeterministi
 and require the use of ba
ktra
king.To avoid unne
essary dupli
ation and super
uous inferen
es we de�ne a notion ofredundan
y whi
h is in the spirit of Ba
hmair and Ganzinger [3℄. A labelled formulaF is redundant in a node if the node 
ontains labelled formulae F1; : : : ; Fn (for n � 0)whi
h are smaller than F and j=L (F1 ^ : : : ^ Fn)! F . In this 
ontext a formula  is smaller than a formula � if  is a subformula of �, but a more general de�nitionbased on an admissible ordering in the sense of [3, 4℄ may be 
hosen. The appli
ationof a rule is redundant if its 
on
lusion(s) is (are) redundant in the 
urrent node. Forexample, for any s, s : > is redundant, and if a node in
ludes s :  and s :  _ �,then the (_) rule need not be applied, and no new bran
hes are introdu
ed.



286 Resolution-Based Methods for Modal Logi
s(?) s :  ; s : : s : ? (^) s :  ^ �s :  ; s : � (_) s :  _ �s :  j s : �(3) s : h�i (s; t) : �; t :  with t new to the bran
h (2) (s; t) : �; s : [�℄ t :  (`) (s; t) : �`(t; s) : � (^r) (s; t) : � ^ �(s; t) : �; (s; t) : � (_r) (s; t) : � _ �(s; t) : � j (s; t) : �(`I) (t; s) : �(s; t) : �` (^rI ) (s; t) : �; (s; t) : �(s; t) : � ^ � (_rI ) (s; t) : �(s; t) : � _ �For the rules (`I), (^rI ) and (_rI) the side 
onditions are that the formulae in thedenumerator, i.e. �`, � ^ � or � _ �, o

ur as subformulae of the parameter 
 of abox formula s : [
℄ on the 
urrent bran
h.Fig. 3. Tableaux expansion rules for K(m)(\;[;`).For K(m): (?); (^); (_); (3); (2)For K(m)(`): (?); (^); (_); (3); (2); (`); (`I )For K(m)(\): (?); (^); (_); (3); (2); (^r); (^rI)For K(m)([): (?); (^); (_); (3); (2); (_r); (_rI)For K(m)(\;[): (?); (^); (_); (3); (2); (^r); (^rI); (_r); (_rI )... ...Fig. 4. Tableaux 
al
uli for logi
s in-between K(m) and K(m)(\;[;`).Theorem 8.1 A formula ' is satis�able in K(m)(\;[;`) i� a tableaux 
ontaining abran
h B 
an be 
onstru
ted with the rules of Figure 3 su
h that B does not 
ontainthe falsum (s : ? for some s) and ea
h rule appli
ation is redundant.Proof. By soundness, 
ompleteness and termination of the sele
tion re�nement RMOD(Theorem 7.2), and the observation that the tableaux rules are ma
ro inferen
e stepsof RMOD on the setN = N 0 [ f:Qp�(x; y)+ _ Qn�(x; y) j � is a non-atomi
 relational formula in 'g;where N 0 is the 
lausal form of Def��('), and � is as de�ned at the beginning ofthe previous se
tion. For this extended N the termination argument is the same asin Theorem 7.2.De�ne a mapping h0 from labelled formulae to ground unit 
lauses by (h0 is in fa
ta bije
tion) h0(s :  ) = h( )(h(s))h0((s; t) : �) = h(�)(h(s); h(t));where  denotes a modal formula, � a relational formula. h is de�ned by: h(pi) = Pi,h(rj) = Rj , h( ) = Q , h(�) = Qp�, h(a) = a, and h(t) = fh�i (h(s)) where s : h�i is the formula for whi
h t was introdu
ed and fh�i is the Skolem fun
tion asso
iatedwith h�i .



8. TABLEAUX CALCULI 287The RMOD-derivation 
orresponding to an appli
ation of the (3)-rule is: fromQh�i (h(s)), :Qh�i (x)+ _ Qp�(x; f(x)) and :Qh�i (x)+ _ Q (f(x)), derive theunits Qp�(h(s); f(h(s))) and Q (f(h(s))) in two resolution steps. For (`I) the resol-vent of Qn�(h(s); h(t)) (or Qp�(h(s); h(t)) and :Qp�(x; y)+ _ Qn�(x; y)) and Qn�`(x; y) _:Qn�(y; x)+, is Qn�`(h(t); h(s)). Similarly, for the other rules.Apart from fa
toring there are no inferen
e steps in RMOD whi
h are not involved insome ma
ro inferen
e step. Due to the fa
t that all positive premises are ground andthus subje
t to the appli
ation of splitting, fa
toring is not needed for 
ompleteness,and is thus optional.Corollary 8.2 The appropriate subsets (see Figure 4) of the rules from Figure 3provide sound, 
omplete and terminating tableaux 
al
uli for logi
s in-between K andK(m)(\;[;`).An immediate 
onsequen
e of Theorem 7.5 is:Corollary 8.3 If L is a logi
 in-between K and K(m)(\;[;`) and ' is satis�able in Lthen a �nite modal model 
an be e�e
tively 
onstru
ted on the basis of the appropriatetableaux 
al
ulus for L.Simulation of Single-Step Pre�xed TableauxWe distinguish between two notions of polynomial simulation (or p-simulation). Byde�nition, a proof system A p-simulates derivations of a proof system B i� there isa fun
tion g, 
omputable in polynomial time, whi
h maps derivations in B for anygiven formula ', to derivations in A for '. We also say system A p-simulates sear
hof a system B i� there is a polynomial fun
tion g su
h that for any formula ', g mapsderivations from ' in A to derivations from ' in B. The �rst notion generalises thenotion of p-simulation found in [6℄, who are only 
on
erned with the p-simulationof proofs (that is, su

essful derivations leading to a proof). Simulation of sear
his a relationship in the opposite dire
tion. It implies that A does not perform anyinferen
e steps for whi
h no 
orresponding inferen
e steps exist in B. To show that Ap-simulates proofs or derivations of B it is suÆ
ient to prove that for every formula' and every derivation D2 of ' in B, there exists a derivation D1 of ' in A su
hthat the number of appli
ations of inferen
e rules in D1 is polynomially bounded bythe number of appli
ations of inferen
e rules in D2. This 
an be a
hieved by showingthat there exists a number n su
h that ea
h appli
ation of an inferen
e rule in D1
orresponds to at most n appli
ations of inferen
e rules in D2. It follows that thelength of D2 is polynomially bounded by the length of D1. We 
all this a step-wisesimulation of B by A. Note that a step-wise simulation is independent of whether the
onsidered derivations are proofs or not.The single-step pre�xed tableaux 
al
uli of Massa

i [31, 33℄ for subsystems of S5are de�ned by Figures 5 and 6. (Remember KT = KDT, S4 = KT4, KB4 = KB5,S5 = KTB4 = KDB4 = KT5.) The basi
 entities are formulae labelled with pre�xes.A labelled (pre�xed) formula has the form � : ', where � is a sequen
e of positiveintegers and ' is a modal formula. � represents a world in whi
h ' is true. Tableauxderivations have a tree stru
ture and begin with the formula, 1 : ' in the root node.Su

essor nodes are then 
onstru
ted by the appli
ation of expansion rules. The
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s(?) � :  ; � : : � : ? (^) � :  ^ �� :  ; � : � (_) � :  _ �� :  j � : �(3) � : 3 �:n :  with �:n new to the 
urrent bran
h(2) � : 2 �:n :  (D) � : 2 � : 3 (T ) � : 2 � :  (B) �:n : 2 � :  (4) � : 2 �:n : 2 (4r) �:n : 2 � : 2 (4d) �:n : 2 �:n:m : 2 (5) 1:n : 2 1 : 22 Fig. 5. Single step pre�xed tableaux expansion rules for subsystems of S5.For K : (?); (^); (_); (3); (2)For KD : (?); (^); (_); (3); (2); (D)For KT : (?); (^); (_); (3); (2); (T )For KB : (?); (^); (_); (3); (2); (B)For K4 : (?); (^); (_); (3); (2); (4)For K5 : (?); (^); (_); (3); (2); (4r); (4d); (5)For KDB : (?); (^); (_); (3); (2); (D); (B)For KD4 : (?); (^); (_); (3); (2); (D); (4)For KD5 : (?); (^); (_); (3); (2); (D); (4r); (4d); (5)For KTB : (?); (^); (_); (3); (2); (T ); (B)For S4 : (?); (^); (_); (3); (2); (T ); (4)For KB4 : (?); (^); (_); (3); (2); (B); (4); (4r)For K45 : (?); (^); (_); (3); (2); (4); (4r); (4d)For KD45 : (?); (^); (_); (3); (2); (D); (4); (4r); (4d)For S5 : (?); (^); (_); (3); (2); (T ); (4); (4r)Fig. 6. Tableaux 
al
uli for subsystems of S5.pre�xes in the expansion rules, ex
ept for �:n of the (3)-rule, are assumed to bepresent on the 
urrent bran
h.Theorem 8.4 (Massa

i [31, 33℄, Gor�e [19℄) Let � � fD;T;B; 4; 5g. A formula' is satis�able in a logi
 K� i� a tableaux 
ontaining a bran
h B 
an be 
onstru
tedby the tableaux 
al
ulus for K� su
h that B does not 
ontain the falsum and furtherrule appli
ations are redundant.The �rst-order ba
kground theories for the di�erent axiom s
hemas are determined



8. TABLEAUX CALCULI 289by the following.TK = ; TKD = fR(x; f(x))+g TKT = fR(x; x)+gTKB = f:R(x; y)+ _ R(y; x)g TK4 = f:R(x; y)+ _ :R(y; z) _ R(x; z)gTK5 = f:R(x; y) _ :R(x; z) _ R(y; z);:R(x; y) _ R(y; y)gFor modal logi
s 
losed under more than one additional axiom s
hema the ba
kgroundtheories are de�ned by the union of the 
orresponding 
lause sets, for example, TKD4 =TKD [ TK4.Observe that for 4 and 5 only 
ertain negative literals will be sele
ted in the theory
lauses. In the 
ase of 5 we do not sele
t any literal.Theorem 8.5 Let � � fD;T;B; 4; 5g. Resolution p-simulates derivations of singlestep pre�x tableaux for K�.Proof. Suppose we are interested in the satis�ability of the modal formula '. Wewill show that RMOD p-simulates single step pre�x tableaux step-wise.Similar as in the proof of Theorem 8.1 de�ne a mapping (bije
tion) h0 from pre�xedformulae to ground unit 
lauses by h0(� :  ) = h( )(h(�)), where h is de�ned by:h(pi) = Pi, h(rj) = Rj , h( ) = Q for  a modal subformula of ', h(1) = a, andh(�:n) = f3 (h(�)) where 3 is the formula for whi
h n was introdu
ed and f3 isthe Skolem fun
tion asso
iated with 3 . For example, the unit 
lause asso
iated (byh0) with the formula 1 : ' 
ontained in the root node is Q'(a).Now show that ea
h tableaux inferen
e step 
an be simulated by a 
onstant num-ber of RMOD-inferen
e steps. For instan
e, the derivation of ? by the 
lash rule
orresponds to one resolution inferen
e step applied to Q (h(�)), Q: (h(�)) and:Q: (x)+ _ :Q (x)+, whi
h generates the empty 
lause. For the simulation of theappli
ation of the (3) rule to � : 3 we may assume that Q3 (h(�)) is present inthe 
lauses set. Also present are the de�nitional 
lauses :Q3 (x)+ _ R(x; f(x)), and:Q3 (x)+ _ Q (f(x)). Then an appli
ation of the (3) rule 
orresponds to perform-ing two resolution inferen
e steps produ
ing R(h(�); f(h(�))) and Q (f(h(�))). Theterm f(h(�)) 
orresponds to the new pre�x �:n. The interested reader may �ll in thedetails for the other rules, see also [29℄.For the modal logi
s K� with � � fD;T;Bg there is a near bisimulation betweenthe tableaux 
al
uli and RMOD. If fa
toring rules are added to the tableaux 
al
uli thentableaux p-simulates also derivations of the sele
tion-based resolution re�nement. Itfollows that:Theorem 8.6 RMOD p-simulates sear
h in single step pre�x tableaux for K� with� � fD;T;Bg.This is not true for logi
s in whi
h 4 and 5 are theorems. For 4 and 5 terminationin single step pre�xed tableaux is ensured by a loop 
he
king me
hanism [31, 33℄.On
e a loop is dete
ted in a bran
h no further rules are applied. In RMOD furtherinferen
e steps will be performed. To prevent this we have to provide the meansby whi
h the resolution pro
edure 
an re
ognise the redundan
y of further inferen
esteps. This may possibly be realised by soft typing [16℄ or some form of blo
kingwhi
h is analogous to loop 
he
king [27℄.
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sIn this se
tion we have fo
ussed on single-step pre�xed tableaux 
al
uli, but this
hoi
e is arbitrary. Our te
hnique 
an also be applied for obtaining simulation resultsof modal tableaux 
al
uli with impli
it or expli
it a

essibility relation and analyti
modal KE tableaux [25, 32℄, or even sequent proof systems. Simulation results oftableaux 
al
uli for des
ription logi
s by resolution 
an be found in Hustadt andS
hmidt [27, 28℄.9 Con
luding RemarksThe approa
h purported in this overview paper is that modal logi
s 
an be seen tobe fragments of �rst-order logi
 and inferen
e systems for modal logi
s 
an be devel-oped and studied within the framework of �rst-order resolution. Several issues were
onsidered. In parti
ular, we have fo
ussed on the de
ision problem for a range ofexpressive extended modal logi
s and have des
ribed resolution pro
edures of varyingnature. We have looked at using resolution methods for automati
ally generatingmodels. Exploiting the link between sele
tion-based resolution and tableaux meth-ods, we have proposed a new tableaux 
al
ulus for multi-modal logi
s de�ned overrelations 
losed under union, interse
tion and 
onverse. And, we have presented simu-lation results whi
h give us an understanding of modal tableaux methods in the wider
ontext of �rst-order logi
 and resolution.Some important modal logi
s for whi
h we have not presented a de
ision pro
edureare modal logi
s with transitive modalities. To de
ide extensions of K4 one possibilityis to modify the 
al
ulus and add ordered 
haining rules for transitive relations [15℄.Another possibility is to use the resolution pro
edures des
ribed in this paper butblo
k further inferen
es with 
lauses 
ontaining terms in whi
h the level of nestingex
eeds a pre-
omputed term depth bound. In pra
ti
e this solution is rather poor,as are solutions en
oding K4 or S4 problems in K or KT.A
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