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Abstract

In this paper we give an overview of resolution methods for extended propositional modal logics. We
adopt the standard translation approach and consider different resolution refinements which provide
decision procedures for the resulting clause sets. Our procedures are based on ordered resolution
and selection-based resolution. The logics that we cover are multi-modal logics defined over relations
closed under intersection, union, converse and possibly complementation.
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1 Introduction

Modal logics are very popular and appear in various disguises in many areas of com-
puter science, including knowledge representation, the field of logics of programs,
computational linguistics and agent based systems. While decidability is an impor-
tant criterion in many of these areas increasingly more expressive modal logics which
allow complex relational parameters of modal operators are being used. Consider an
example from knowledge representation and linguistics domains. Here the universes
of frames contain arbitrary elements instead of worlds. If E denotes the eats rela-
tion and C is the set of cheeses, then (E)C can be interpreted as denoting the set
of cheese eaters. An expression which requires complex relational parameters is the
set of cheese lovers: [=(E A L)]-C, where L denotes the likes relation. We have
z € [7(E A L)]-C iff for any y € C, both E(z,y) and L(z,y) are true. In words,
cheese lovers are people who eat and like every cheese. The meaning of z € [E A L|C
would be ‘everything that = eats and likes is cheese’. These kinds of expressions can
be formulated in the logics we consider in this paper.

We focus on subsystems of the multi-modal logic K,,)(N,U, ~,~) which is defined
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over families of relations closed under intersection, union, complementation and con-
verse. K(,,,)(N,U, ", ) extends Boolean modal logic [17] with converse on relations.
It encompasses very many standard modal logics such as K, KT, KD, KB, KTB,
and KDB, their independent joins, as well as the basic tense logic K; and logics of
philosophical interest, such as logics expressing inaccessibility, sufficiency, or both ne-
cessity and sufficiency, see e.g. [18, 23, 24]. Certain forms of interactions, for example,
inclusions among relations, are covered as well. K(,,)(N,U, ~, ) is related to the de-
scription logic ALB which was first described in [28] and contains a large class of well
known description logics.

We concentrate on translation-based resolution methods for modal logics. This
means that we take a modal formula, translate it into classical logic through the
Kripke-semantics, and then apply some variant of resolution to it. Translation-based
approaches are sometimes regarded as being inferior to tableaux-based approaches, or
other special-purpose inference approaches. Arguably recent advances in the imple-
mentation of tableaux-based modal theorem provers make it harder to motivate the
endeavour of translation into first-order logic. Another criticism often brought for-
ward is the difficulty of reading resolution proofs (this is not true in general, see [28]).
From our perspective the combination of translation and first-order resolution has
a number of advantages, as this paper aims to show. Some obvious advantages of
translation approaches are the following. Any modal logic which can be embedded
into first-order logic can be treated. The translations are straightforward, and can
be obtained in time O(nlogn), so no engineering effort is needed here. For the reso-
lution part, standard resolution provers can be used, or otherwise they can be used
with small adaptations (for example, Bliksem [10], SPASS [40], and Otter [34]). The
translation approach is generic, it can handle first-order modal logics, undecidable
modal logics, for example, de Rijke’s dynamic modal logic [11], and combinations
of modal and non-modal logics. In all cases we can at least ensure soundness and
completeness. For a large class of expressive modal and description logics, resolu-
tion provers provide decision procedures, and often the same refinements decide also
first-order generalisations such as the guarded fragment or Maslov’s class K [14, 26].

This paper gives an overview of different resolution refinements which provide deci-
sion procedures for first-order fragments corresponding to a variety of extended modal
logics. We will focus on fragments induced by the standard relational translation of
modal logics. Other translation methods exist but, as yet, it is not known how to
treat modal logics with complex modal parameters within the context of these trans-
lation methods. Surveys of the different translation methods are Ohlbach [35, 36] and
Ohlbach, Nonnengart and Gabbay [37].

Regardless as to which translation method is adopted, a crucial decision is the
choice of a suitable refinement of the basic resolution calculus for first-order logic.
Depending on our aims we have various options. Ordering refinements provide de-
cision procedures for very expressive logics, while if we are interested in generating
models for satisfiable formulae selection-based refinements (or hyperresolution) are
more natural (Fermiiller et al. [12, 13], Leitsch [30], Hustadt and Schmidt [28, 29]).
We will describe three resolution decision procedures: an ordered resolution decision
procedure for a class of clauses induced by K(,,,)(N,U, ~,~) (Section 5), an ordering
refinement combined with a selection function for the guarded fragment (Section 6),
and a refinement which relies solely on the selection of negative literals for certain
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extensions of K(,,,)(N,U, ) (Section 7). The latter refinement has the property that
for many modal logics its derivations resemble those of tableaux calculi. As with
tableaux-based procedures our selection-based procedure can be used for the auto-
matic construction of finite models for satisfiable input formulae. In Section 8 we
define a semantic tableaux calculus for the logic K{,,)(N, U, ~) which is derived from
the selection-based resolution procedure. We also consider the relationship to single
step prefixed tableaux calculi and prove a number of simulation results. Preliminary
definitions are given in Sections 2, 3 and 4. Section 2 contains definitions of the no-
tational conventions and basic concepts. Of particular importance is the structural
transformation of formulae. Section 3 defines the syntax and semantics of the logic
K(m)(N,U, ~, ) and specifies the standard translation mapping into first-order logic.
A general framework of ordered resolution and selection is described in Section 4.

This overview is based on the papers [14, 28, 29]. Some results have been improved
and others are new. The definition of the class DL* in Section 5, generalises the
class of DL-clauses from [28]. Section 7 includes a new complexity result. The results
for extensions of Ki,,)(N,U,~) with frame properties are slightly more general than
in [29]. The close correspondence between selection-based resolution (or hyperresolu-
tion) and special purpose tableaux calculi is also mentioned in [13, 28, 29]. A novelty
are the tableaux calculi which we have been able to extract from the selection-based
resolution procedure. These are related to calculi for the corresponding description
logics [22, 21], but they do not compile relational formulae away.

2 Preliminary Definitions and Conventions

Throughout, our notational convention is the following: x,y, z are the letters reserved
for first-order variables, s, t,u,v for terms, a, b for constants, f, g, h for function sym-
bols, p,q,r for propositional symbols, and P, @, R for predicate symbols. A is the
letter reserved for atoms, L for literals, and C, D for clauses. For sets of clauses
we use the letter N. The Greek letters ¢, v, ¢ are reserved for modal or first-order
formulae, and «, 3, are reserved for relational formulae.

A literal is an atom or the negation of an atom. The former is said to be a positive
literal and the latter a negative literal. If the predicate symbol of a literal has arity
one (resp. two) then we call this literal a unary literal (resp. binary literal). A clause
with one literal is a wunit clause (or unit). If this literal is a unary (resp. binary)
literal then the clause will be called a unary (resp. binary) unit clause. In this paper
clauses are assumed to be sets of literals. The empty clause will be denoted by (). The
components in the variable partition of a clause are called split components, that is,
split components do not share variables. A clause which cannot be split further will
be called a mazimally split clause. A positive (resp. megative) clause contains only
positive (resp. negative) literals.

Two formulae or clauses are said to be wariants of each other if they are equal
modulo variable renaming. Variant clauses are assumed to be equal.

The polarity of (occurrences of) modal or first-order subformulae is defined as
usual: Any occurrence of a proper subformula of an equivalence has zero polarity. For
occurrences of subformulae not below a ‘¢+’ symbol, an occurrence of a subformula
has positive polarity if it is one inside the scope of an even number of (explicit or
implicit) negations, and it has negative polarity if it is one inside the scope of an odd
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number of negations.

For any first-order formula ¢, if A is the position of a subformula in ¢, then ¢|y
denotes the subformula of ¢ at position A and ¢[¢) — A] is the result of replacing |
at position A by . The set of all the positions of subformulae of ¢ will be denoted
by Pos(yp).

The structural transformation, also referred to as renaming, associates with each
element A of A C Pos(y) a predicate symbol @ and a literal @y (z1,... ,%,), where
x1, ..., T, are the free variables of |y, the symbol @) does not occur in ¢ and two
symbols @y and Qy are equal only if |y and |y are equivalent formulae.! Let

Deff (o) = Va1 ...z, (Qr(21,... ,2,) = ¢|x) and
Def, () =Va1 ...z, (p[x = Qr(z1,...,2,)).

The definition of @ is the formula

Def (¢) if | has positive polarity,
Def(¢) = < Def; (¢) if |» has negative polarity,
Def} () A Defy (¢) otherwise.

The corresponding clauses will be called definitional clauses. Now, define Defp (p)
inductively by:

Defy(¢) = ¢ and
Defaugay(¢) = Defa(@[@x(21,. .., 2n) = A]) A Defr (),

where A is maximal in A U {A} with respect to the prefix ordering on positions. A
definitional form of ¢ is Defs(p), where A is a subset of all positions of subformulae
(usually, non-atomic or non-literal subformulae).

Theorem 2.1 (e.g. Plaisted and Greenbaum [39]) Let ¢ be a first-order formula.

1. ¢ is satisfiable iff Def (@) is satisfiable, for any A C Pos(yp).

2. Defa(p) can be computed in polynomial time.

3 The Modal Logic K(,,)(N,U, ,v)

K(my(N,U, 7, ~) is the multi-modal logic defined over families of binary relations
closed under intersection, union, complementation and converse.

The language of K(,,)(N,U, ~, «) is defined over countably many propositional vari-
ables p, p1,po,..., and countably many relational variables r,ry,72,.... A proposi-
tional atom is a propositional variable, T or L. A modal formula is either a proposi-
tional atom or a formula of the form =, @ A ¥, p V 1, (a)p and [a]p, where ¢ is a
modal formula and « is a relational formula. A relational formula is a relational vari-
able or has one of the following forms: a A 3, @ V 8, —«, and a~ (converse), where
a and f are relational formulae. Other connectives are defined to be abbreviations,

]In practice, one may want to use the same symbols for variant subformulae, or subformulae which are obviously
equivalent, for example, ¢ V ¢ and ¢.
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for example, ¢ — ¢ = = V ¢ or the universal modality is [*] = [r; V —r;], for some
relational variable r;.

We will also consider logics with fewer relational operations. Formally, by a logic
in-between K and Ki,,)(N,U, ~,~) we mean a logic Ky (*1,... %) where m > 1,
1 < k <4 and the x; are distinct operations from {N,U, ~,-}.

The semantics of K(,,)(N,U, ,v) is defined in terms of relational structures or
frames. A frame is a tuple (W, R) of a non-empty set W (of worlds) and a mapping
R from relational formulae to binary relations over W satisfying:

R(a A B) = R(e) N R(B) R(-a) = R(a)
R(aV f) = R(a) U R(B) R(a™) = R(a)~.
The defining class of frames of a modal logic determines, and is determined by, a
corresponding class of models. A model (an interpretation) is given by a triple M =
(W, R, 1), where (W, R) is a frame and ¢ is a mapping from modal formulae to subsets
of W satisfying:
L) =10 uT)=w (=) = 1)

e AY) =) @) ({)p) ={z [Ty e W (z,y) € R(a) Ay € 1(p)}

e V) =) Ui@)  ulelp) ={z[Vy e W (z,y) € R(a) =y € 1(¢)}-
A modal formula ¢ is satisfiable if an M exists such that for some = in W, x € 1(p).

The standard translation of K(,,)(N,U, ,+) into first-order logic follows the se-
mantic definition and is therefore given by the following.

m(T,2)=T m(Ll,z) =1

m(pi, ) = Pi(z) m(~p, z) = —m(p, T)
m(px,z) = m(p, ) xm(h,z) for x € {A,V,—, <}
m((a)p,z) =Jy (t(a,z,y) Am(p,y)) w([ap,z) =Vy(r(a, 2, y) = 7(p,y)).

Relational formulae are translated according to:

T(Tj7m7 y) = RJ(Tay)
T(_‘a7'7:7y) = _|T(a7'7:7y) T(a\_/7 m7 y) = T(O/7 y7:1:)
T(axB,z,y) =T(,m,y) x7(B,2,y) for x € {A\,V, =, <}

In the translation each propositional or relational variable (p; or r;) is uniquely asso-
ciated with a unary or binary predicate variable, denoted by the corresponding capital
letter (P; or R;).

By definition, IT maps any modal formula ¢ to 3z 7 (p, z).

Theorem 3.1 Let L be a logic in-between K and K,y (N,U, ~,~). For any modal
formula @, ¢ is satisfiable in L iff U(p) is first-order satisfiable.

In order to keep the presentation simple, modal formulae are assumed to be in
negation normal form. This means that in every subformula of the form —y, ¢ is a
propositional variable. The negation normal form of any modal formula is obtained
as usual, namely, by moving negation symbols inwards as far as possible (using De
Morgan’s laws, =(a)y) < [a]-¢ and —[a]yy & (o)=Y, and —~(a™) + (—a)”) and
eliminating double negations.
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4 The Resolution Framework

In this paper we will make use of A-ordered resolution, extended with selection.
A-ordered resolution is well-known and widely used in resolution decision proce-
dures [12, 13, 5, 34, 30, 26]. It follows from the results in Bachmair and Ganzinger [3, 4]
that A-ordered resolution can be combined with a selection function. This selec-
tion function can override the A-ordering, give preference to inferences with nega-
tive literals. A-ordered resolution with selection is controlled by two parameters:
an A-ordering and a selection function. An A-ordering is an ordering > on atoms,
which satisfies the following condition: For all atoms A, B and for all substitutions o,
A > B implies Ao > Bo. For a literal L = (—)A let at(L) = A. A-orderings are ex-
tended to literals by L = L' iff at(L) > at(L'). If one uses orderings that do not ignore
the negation sign (these are called L-orderings), one does not loose completeness [7].
However L-orderings cannot be combined with selection. Given an A-ordering >, we
define the mazimal literals in a clause in the standard way: A literal L in a clause C
is maximal in C, if there is no literal L' in C, for which L' > L.

Let = be an A-ordering. A selection function S, based on =, is a function which
assigns to each clause C' a non-empty set of its literals, such that one of the following
holds:

(4.1) Either S(C) contains a negative literal, or
(4.2) S(C) contains all the »-maximal literals of C.

No further restrictions are imposed on the selection function. If the selection function
always prefers the second alternative, one has just A-ordered resolution. If the se-
lection function always selects only the negative literals in non-positive clauses, then
the restriction simulates A-ordered hyperresolution. Based on a selection function S,
resolution and factoring can be defined as follows:

CVA —-AyVvD

(CV D)o
provided (i) o is the most general unifier of A; and A,, and (i) 4; €
S(C v Ay) and —=Ay € S(=Ay V D). Then the clause (C V D)o is a

resolvent.

Resolution:

CV A VA,
(C V Al)ﬂ'
provided (i) o is the most general unifier of A; and A,, and (i) 4; €

S(C v Ay V Ay). Then the clause (C' V A;)o is called a factor of
CV AV A,.

Factoring:

The combination of selection-based resolution and factoring forms a complete refuta-
tion system for clause sets.

The premise C' V A; of the resolution rule and premise of the factoring rule will be
referred to as a positive premise, while the premise —A, V D of the resolution rule will
be referred to as a megative premise. The literals resolved upon and factored upon
are called eligible literals.
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Simplification and Splitting

In the previous section we explained where the clauses come from. In this section we
explain how to get rid of them. In order to obtain termination, one needs redundancy
criteria. Let C and D be clauses. Clause C subsumes D if |C| < |D|, and there
exists a substitution o, such that Co C D. Without the length-restriction factors
would be subsumed by their parents. This would result in deletion of all factors.
Since the factoring rule is necessary to completeness, deleting all factors would result
in incompleteness. Determining whether or not clause C subsumes clause D, is NP-
complete. A condensation of C' is a minimal subset D of C, such that D subsumes C'.
One can show that condensations are unique up to renaming. Determining whether
or not a clause is condensed, is NP-complete. Computing the condensation is NP-
hard. In practice, NP-hardness does not cause problems, since the clauses are short
(< loglog) in comparison to the number of clauses. A clause C is a tautology if it
contains a complementary pair of literals A and —A.

Let N be a clause set. A saturation of N is a clause set N, such that, for every
non-tautological clause C in N, there is a clause D in N, such that D subsumes C,
and for each non-tautological clause C, that is derivable from clauses in N, there is
a clause D in N, such that D subsumes C.

For selection based resolution the following holds.

Theorem 4.1 For every clause set N, and every saturation No, of N the following
holds: N is unsatisfiable iff No, contains the empty clause.

This follows from the results in Bachmair and Ganzinger [3, 4]. This completeness
allows us to freely delete tautologies and subsumed clauses, or replace clauses by
condensations. In general it is possible to use stronger notions of redundancy. One
can define a clause to be redundant if it is implied by a finite set of strictly smaller
clauses (under an appropriate extension of > to clauses), see [3, 4].

Our notion of saturation is not appropriate for building into a real theorem prover,
because it does not model the time aspect. A clause may become redundant only
after some time, after it has been used for deriving clauses that occur in the proof.

The splitting rule is a rule that is borrowed from semantic tableaux. Let N be a
set of clauses containing a clause C, that has two split components C; and Cs. Then,
instead of trying to refute N one tries to refute NU{Cy} and NU{C5>} (or NU{C,}
and N U {Cy,—C1}, if Cy is a ground clause). Note that in both sets, the original
clause C' has become redundant. The splitting rule can be essentially simulated in the
resolution context by introducing a new propositional symbol. If C; V C is a clause
that can be split into two split components C'; and Cs, then it is possible to replace
C1 Vv Cy by two clauses C4 V g, and —q V C5. ¢ is made minimal in the A-ordering,
and —q is selected. In most cases this is easier to implement than the full splitting
rule.

5 Ordered Resolution for K,,)(N,U, ,v)

Many modal logics naturally translate into decidable fragments of first-order logic.
For example the basic logic K translates into the two-variable fragment, and into the
guarded fragment. By constructing decision procedures for these decidable fragments,
one obtains generic decision procedures for modal logics. We consider two classes. One
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is a clause fragment based on the two-variable fragment, called DL*. This fragment is
a variation of the class of DL-clauses, that was introduced in Hustadt and Schmidt [28]
with the purpose of handling expressive description logics. The other one is the
guarded fragment, which was introduced by Andréka, Van Benthem and Németi [2]
as the ‘modal subset of first-order logic’. Although it did not quite meet the ambitious
goals, it is an important fragment, containing many modal logics.

The class of DL*-clauses is related to the class ST in Fermiiller et al. [12]. This class
was introduced there as the clause fragment belonging to the two-variable fragment.
The class ST can only be decided by a non-liftable ordering [8], or by an A-ordering
combined with a rule called monadisation [12]. Since we try to root our approach on
the common basis of liftable orderings, we slightly restrict the class, so that it can be
decided by a liftable ordering. The restriction is still general enough to contain the
clause translations of the II-transformation of the modal formulae in K,,,)(N,U, ~, ).

We now introduce the clause fragment DL*. In order to simplify the exposition, we
assume that all clauses are maximally split. The notions can be easily adopted for
clauses with more than one split component.

Let C be a clause. It is a DL*-clause if

. all literals are unary, or binary,
. there is no nesting of function symbols,
. every functional term in C' contains all the variables of C, and

=~ W N =

. every binary literal (even if it has no functional terms) contains all variables of C.

Observe that 3. implies that if C' contains a functional ground term, then C is ground.
The difference with ST is Condition 4. For S*, Condition 4 would be (4a): Every
clause C has a literal containing all variables of C. Condition 4 forbids the follow-
ing problematic clauses, which are allowed by Condition 4a: P(z,z) V Q(z,y) and
=P(z,z) V R(z,y). In order to stay within ST, one would have to block the inference
based on P(z,z) and —=P(z, ), since this would result in the clause Q(z,y) V R(z, z),
which contains more variables than each of the parent clauses. However no A-ordering
can put Q(z,y) = P(z,z), for all predicate symbols P and Q.
Examples of DL*-clauses include ground clauses, and

=Qo(z) V Q1(z) V =Q2(x) Qo(z) V =Ro(z,y) V Q1(y)
—Qo(z) vV Q1(f()) —Qo(z) V -~ Ro(f(z), )
Ro(z,y) V = Ri(y,z) V Ra(z,y).

The clauses Ro(z,y) V Ro(z, f(z)), Qo(z,z,2) V Q1(f(f(x))) and Ro(x,z) V Ri(z,y)
do not belong to the class of DL*-clauses. The clause Q¢(x) V @1 (a) does in principle
belong to DL*, but is not maximally split.

Theorem 5.1 Ouer a finite signature’ there are only finitely many mazimally split
DL*-clauses (modulo variable renaming).

The proof is similar to the proof for the class of DL-clauses in Hustadt and Schmidt [28].
The proof can be obtained by first observing that there is a fixed upper bound for

2

many variables.

The supply of function symbols and predicate symbols is finite, while there are possibly infinite but countably
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the maximal number of variables in a clause. Then there are only a finite number of
possible literals. Because every clause is a subset of the set of possible literals, there
is a finite set of possible clauses.

Theorem 5.2 The number of possible DL*-clauses is bounded by 22”3), where f is
of order slog(s) and s is the size of the signature.

PROOF. Let a be maximal arity of any function symbol. Because any clause contains
at most a variables, the number of possible terms is bounded by (s +a)+ (s +a)%™" <
(s+a)2t2. The number of possible atoms is then equal to s((s+a)**?)? < (s+a)?¢*5.

The number of possible literals equals 2(s + a)?%*% < (s + a)2976. Consequently, the

. . 2a+6 (2a+6) log(s+a)
number of non-equivalent clauses is bounded by 2(5+2) =22 . [ |

The reduction of modal formulae to sets of DL*-clauses makes use of a structural
transformation introducing new names for subformulae corresponding to non-literal
subformulae of the original modal formula. For a given modal formula ¢ and its
translation into first-order logic ¢’ = II(p), we apply the mapping Def, with

A = {X | there is a non-literal subformula ¢|y of ¢ and ¢'|x = (p|r)}.
For example, the definition corresponding to a subformula (r;)p is
Y (Qryyp() = 3y (B (,9) A P(3)).
The formula
F2Vy (=R (2, ) A Ra(2,y)) = 32 (0R1(y,2) A Ra(y, 2) A P(2))), (%)

which is a translation of the modal formula [—r; Ara](—r1 Ars)p results in the following
set of definitions, together with 3z Q[4)(ayp(2)-

(Qraltayp() = Yy (Qa(®,y) = Qayp(¥)))
(Q(ayp(®) = Fy (Qulz,y) A P(y)))

Vay (Qa(z,y) = (Ri(z,y) A Ra(2,y)))

Vay ((-Ri(z,y) A Ra(z,y)) = Qal(r,y)).

Vz
Vz

Here « is used as an abbreviation for —r; A r5. Notice that one new symbol ), was
used for the positive and negative occurrences of the subformula =Ry (z,y) A Ra(z,y).

Theorem 5.3 Let ¢’ be a first-order formula that results from the translation of a
modal formula ¢ in K(,,)(N,U,~,~). BEvery clause in the clausal normal form of
Defa(p') is a DL*-clause.

Proor. Not difficult. [ |

In order to decide the class DL*, we use the following A-ordering which is similar
to the recursive path ordering. First we define an order >, on terms: s >, t if s is
deeper than t, and every variable that occurs in ¢, occurs deeper in s. Then we define
P(s1,...y8n) = Q(t1,... ytm) as {s1,... 85} >T {t1,... ¢, }. Here > is the
multiset extension of >4 . So we have P(f(z)) > P(a), P(x) and P(z,y) > Q(z), but

3
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not P(f(z)) = P(f(a)). The >, ordering originates from Fermiiller et al. [12]. The
selection function S is completely determined by >, so there is no preferred selection
of negative literals.

We now give the clausal normal form of the formula (*) above. The maximal literals
are marked with *. These are the literals that can potentially be resolved or factored
upon.

*

a a)p(a

a a)p(T

[o]
T¥[a]
[ p(w)
()

)
)

J

V =Qa(7,9)" V Qayp(y)
Qalz, f(x))"
P(f(x))"
olT,y)" V 2Ry (2, y)"
(z,9)" V Ra(z,y)"
)"V =Ry (z,y)" V Qalz,y)”

V
ayp() V
*

J

J
OO0

\Y
-Q, Vv

1(337

In the last three clauses there is more than one maximal literal. This could be
prevented by completing > with an ordering on atoms. In that case it is necessary
to distinguish equivalent from incomparable literals. Instead of =, one would have
to define ». Then A > B would have to be defined as A > B and A A B. In the
case that A > B and A < B, one can try to use a second ordering for establishing a
priority.

In order to prove that the procedure that we described is indeed a decision procedure
we have to show that it is complete, and terminating. The completeness follows from
Theorem 4.1. Termination is a consequence of Theorem 5.1, and the fact that the
restriction derives only clauses that are within DL*, or that can be split. This fact is
obtained by a case analysis, similar as in [28]. Therefore:

Theorem 5.4 Let L be a logic in-between K and K,)(N,U,~,~). Let N be the
clausal form of Def ATl(p), where ¢ is any modal formula in L. Then:

1. Any derivation from N terminates in double exponential time.
2. ¢ is unsatisfiable in L iff the saturation of N contains the empty clause.

This result covers actually a larger class of modal logics. Boolean modal logic, and
hence also K(,,,)(N,U, ~,+), is expressive enough to allow for frame properties to be
specified by relational formulae. Implication of relational formulae can be defined
by (@ = 8) = [a A =8]L [38]. Hence, the symmetry of the accessibility relation R
associated with r; can be specified by r; — 7y

If A is a set of relational frame properties then LA will denote the logic charac-
terised by the class of frames satisfying the conjunction of properties in A.

Corollary 5.5 Let L be a logic in-between K and K(,)(N,U,~,~). Let A be the
Boolean combination of relational inclusions or equivalences expressed over intersec-
tion, union, complementation and converse. Suppose  is any modal formula and N
is the clausal form of DefAIl(p). Then:

1. Any derivation from N U A terminates in double exponential time.

2. ¢ is unsatisfiable in LA iff the saturation of N U A contains the empty clause.



6. ORDERED RESOLUTION FOR THE GUARDED FRAGMENT 275

The decidability result for the classes DL* and DL allows for a slightly more general
result, which includes reflexivity and irreflexivity. Modal and relational formulae with
positive occurrences of relational composition can also be embedded into the class
DL*. Moreover, relational properties such as Vay (R (z,y) — Ra(z,z)) are covered
by the class ST.

6 Ordered Resolution for the Guarded Fragment

In this section we use ordered resolution with selection as a decision procedure for
the guarded fragment. The guarded fragment was first shown decidable by Andréka,
Németi and Van Benthem [1]. Grédel [20] has shown that the satisfiability problem
for the guarded fragment is DEXPTIME-complete. There it was also shown that the
guard condition is necessary only for the universal quantifiers, when the formula is in
negation normal form. A resolution decision procedure for the guarded fragment was
first established in de Nivelle [9]. In Ganzinger and de Nivelle [14] the method was
adapted to the guarded fragment with equality. It is shown there that the complexity
of the resolution decision procedure is consistent with the complexity given in [20].
The decision procedure that we give here is based on the one in [14].

A first-order formula is in the guarded fragment if it is function free, and every
quantification has form Vz (G — ), or 3% (G A ¢). Here G is an atom containing all
free variables of 1, and T is a sequence of variables.

We use the following clausal normal form. A clause C is a guarded clause if

1. there is no nesting of function symbols,

2. every functional term in C' contains all variables of C', and

3. if C contains variables, then there is a negative, function-free literal that contains
all variables of C. Such a literal is called a guard literal.

As is the case with the class of DL*-clauses, there is only a finitely bounded set of
guarded clauses.

Theorem 6.1 (Ganzinger and de Nivelle [14]) Over a finite signature the num-
ber of possible guarded clauses is of order 2, where s is the size of the signature.

For the reduction to clausal normal form we assume that a guarded formula ¢ is
in negation normal form. The reduction of ¢ into guarded clauses uses a structural
transformation Def, with

A ={X| Xis a position in ¢ of a formula of the form VZ (G — )}.

It can be shown that this structural transformation preserves the guarded fragment.
The definitional formula that defines a guarded formula VZ (G — 1), has the form

VY (Quz(a—y)([H) = VT (G = 1)).

Every variable in i and T occurs in G. This formula is not guarded by itself but it
is equivalent to the following formula, which is guarded: Vzy (G — (Qvz(a—v) @) —
¥)).

Formulae in K(,,)(N,U, <) are translated by II into the guarded fragment. Nega-
tions of accessibility relations would be problematic. For example, [-r]p is trans-
lated into JzVy (~R(z,y) — P(y)). This formula is not guarded. The formula
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[(r1 A 7o) Vg |p is translated into JzVy ((Ri(z,y) A Ra(z,y) ) V Rs(y,z) — P(y)).
This formula is not guarded either, however, it is equivalent to the guarded formula:

JaVy (Ri(z,y) = (Ra(z,y) = P(y))) A Vy (R3(y,z) = P(y)).

We show that this is in general the case for formulae in K(,,)(N,U, ). The mapping
IT translates formulae of K(,,(N,U, ) into first-order formulae in which the quan-
tifications have the form VZ (G — ). In this, G is a relational expression without
negation and function symbols, in which each atom contains all free variables of 1.
This GG can be translated into disjunctive normal form,

(Gl,l TANSAN Gl,ll) V...V (Gn,l Ao A Gn,l")-

The G; ; are atoms, containing all free variables of ¢. Then VZ (G — ) is equivalent
to

VE(Giai AN .. .ANGigy) 5 O)ANAYE((Gua Ao AGay,) = ),
which is in turn equivalent to
VE(G11 = (.. = (Gryy, = V) Ao AVE(Gog = (.. = (G, = ).

The G;,1 are well-formed guards.
In order to obtain a decision procedure for the guarded fragment, we make use of
the ordering > of the previous section, combined with selection of negative literals.

1. If C'is a non-ground clause without functional terms, then S(C') contains all guards
of C.

2. If C' is a clause with functional terms, then S(C) contains all literals with func-
tional terms.

It is easily checked that this is a valid selection function for guarded clauses. If C
is a non-ground clause, then it has at least one guard. Because this guard is negative,
it is possible to select it. If C' contains functional terms, then some of the literals
containing functional terms are >-maximal. Because of this it is possible to select
these literals.

The formula 323y (R1(x,y) A Ra(x,y) A Vz(R1(y,2) = Ra(y,2) — P(z))), which
is a translation of (ry A r2)[r1 A ro]p results in the following formula.

3z3y (Ri (7, y) A Ra(z,y) A Qi arslp(¥))
AVyz ((Ri(y,z) A Ra(y, 2)) = (Qpryaralp(y) = P(2))).

The clausal normal form consists of the clauses

Q[TI/\T2]p(b)*
~Ri(2,y)" V —Ra(,y)" V _‘Q[TIATQ]p(m) V P(y).
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The literals marked with * are the maximal literals. The restriction could be com-
pleted, as in the previous section, in order to obtain a more total ordering. The
termination proof is analogous to the proof for DL-clauses. The main difficulty is
to prove that the restriction preserves the guarded fragment. For this we refer to
Ganzinger and de Nivelle [14]. Consequently:

Theorem 6.2 Let L be a logic in-between K and K(,,)(N,U,~). Let N be the clausal
form of Def \I1(yp), where ¢ is any modal formula in L. Then:

1. Any derivation from N terminates in double exponential time.

2. ¢ is unsatisfiable in L iff the saturation of N contains the empty clause.

7 Selection-Based Resolution for K,,(N,U, )

K(m)(N,U,~) and logics below it have the property that they can be decided by a
refinement of resolution which is defined solely by a selection function of negative
literals [29].

Here new names are introduced for all non-atomic subformulae of the translation
of a modal formula, that is, we use Defy where A is the subset of positions in ¢' (the
first-order translation) which correspond to non-atomic subformulae of ¢ (the original
modal formula). Moreover Def introduces the same symbol for variant subformulae
with the same polarity. Because, by assumption, ¢ is in negation normal form, all
occurrences of non-atomic subformulae of ¢’ with one free variable have positive
polarity. This means Def (') = Def (¢') for the positions A associated with these
occurrences. But subformulae corresponding to relational formulae (subformulae with
two free variables) can occur both positively and negatively. For these Def introduces
one symbol for all variant occurrences of subformulae corresponding to non-atomic
relational subformulae with positive polarity and a different symbol for all variant
occurrences with negative polarity.

For example, Def will introduce for the subformulae of [a](a)p with a = 1 A 7y
the definitions (in addition to 3z Q[4)(a)p(z)):

Vi (Qlaj(a)p(®) = Yy (Qa(7,y) = Qa)p(y)))
Vi (Qayp () = Fy (Q4(z,y) A P(y)))

Vay (QF (x,y) = (B, y) A Ry(z,y)))

Vay (Ra(z,y) A Ra(z,y)) = Qu(x,y)).

(7.1)

The symbol Q% (resp. Q) is associated with the negative (resp. positive) occurrence
of a.

In order to characterise the induced class of clauses we introduce some more nota-
tion. We denote introduced predicate symbols by @y and Q% or Q7 , where @y repre-
sents an occurrence of a modal subformula ¢ and Qf/" represents a positive/negative
occurrence of a relational subformula a. We also find it convenient to use the notation

P(s) for some literal in {P;(s), Qy(8)}si,¢, and
R(s,t) for some literal in {R;(s,1), R;j(t,s), Q¥ (s,1), Q%" (t,5)}}.a-
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Note the order of the arguments in R(s,t) is not fixed. Two occurrences of P(s), or
R(s,t), need not be identical. For example, =Qy(z) V P;(z) V Qy(z) is an instance
of =Qy(z) V P(z) V P(z), while

—Qu(r) V -R;(y,2) V Qy(y) and —=Qy(z) V -Q5(z,y) V Qx(y)

are instances of =Qy(z) V =R(z,y) V P(y).
Thus, all input clauses have one of the following forms.

P(a)
=Qy(x)" V =Pi(x)” if ¢ = —p;
—Qu(2)" V P(z) [V P(z)] if Y = ¢1 A[V] @2
(72) =Qy ()" V <R (z,y)" [V P(y)] if ¥ = [a]¢ [¢) = [o] L]

~Qule)’ vV (@) .

—Qu(2)" vV R(z, f(z))

—er(T Y)" VR(x,y) [V R(z,y)] if & = 1 A[V] B2 has pos. polarity
Qi (x,y) V- R(z,y)" [V-R(x,y)*] if a= B A[V] B2 has neg. polarity.

The literals marked with * are the selected literals.

The minimal calculus which we will use is based on maximal selection of negative
literals. This means the selection function selects exactly the set of all negative literals
in any non-positive clause. An ordering refinement is optional. The resolution rule is
the following;:

Resolution with maximal selection:

CiVA ... CoVA, —Api1 V...V=A45, VD
(CiV.. VC,V D)o
provided for any 1 < i < n, (i) ¢ is the most general unifier of A; and
Anti, (i) C; v A; and D are positive clauses, (iii) no A; occurs in Cj,
and (iv) A;,—An4; are selected.

The negative premise is = A,y1 V ... V = A, V D and the other premises are the
positive premises. The literals A; and A,,; are the eligible literals.

The inference rules of our calculus, denoted by R*°”, are the above resolution rule,
positive factoring, splitting and at least tautology deletion. All derivations in RM“P
are generated by strategies in which no application of the resolution or factoring with
identical premises and identical consequence may occur twice on the same path in any
derivation. In addition, deletion rules, splitting, and the deduction rules are applied
in this order, except that splitting is not applied to clauses which contain a selected
literal.

As all non-unit clauses of a typical input set (a concrete example is given in Figure 2
below) contain a selected literal no factoring steps are possible and all definitional
clauses can only be used as negative premises of resolution steps. To begin with there
is only one candidate for a positive premise, namely, the ground unit clause Q(a)
representing the input formula ¢. Inferences with such ground unary unit clauses
produce ground clauses consisting of positive literals only, which will be split into
ground unit clauses.
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p n__,.
Qlaj(a)p QL Wa—tt

~
Q(a)p R»
P

F1G. 1. Dependency among predicate symbols for (7.1)

Lemma 7.1 Mazimally split (non-empty) inferred clauses have one of two forms:
P(s), or R(s, f(s)), where s is a ground term.

PROOF. Every resolution inference step with a definitional clause from the input set
and ground unit clauses of the form P(s) or R(s, f(s)) yields a ground clause which
can be split into ground unit clauses of the required form. [ |

In general, s will be a nested non-constant functional ground term, which is usu-
ally undesirable, because in most situations this causes unbounded computations.
However, as the next theorem proves, for the class of clauses under consideration any
derived clause is smaller than its positive parent clauses with respect to a well-founded
ordering which reflects the structure of the formula.

By definition the modal depth of a formula ¢ is the maximal nesting of modal
operators (a) or [¢] in ¢.

Theorem 7.2 Let ¢ be any K,y (N, U, ~)-formula and let N be the clausal form of
DefpII(p). Then:

1. Any RM°P -derivation from N terminates.

2. @ is unsatisfiable in K, (N, U, ) iff the RMP-saturation of N contains the empty
clause.

PROOF. 2. follows from the soundness and refutational completeness of ordered reso-
lution with selection (Theorem 4.1).

For 1., define a dependency relation =, on the predicate symbols by S; =4 So, if
there is a definition ¢ — ¢ in DefsII(p) such that S; occurs in ¢ and S occurs in
¢. An additional restriction is that if () is the symbol introduced for a diamond
formula ¢, and Q¢ is the symbol introduced for a box formula ¢, and ¢ and ¢
occur at the same modal depth in ¢, then @y >4 @y. Moreover, let tt be a new
symbol smaller than all predicate symbols. (For example, for (7.1) the dependency
relation is depicted in Figure 1. That is, Q[aj(a)p = @(a)p, and so on.) Let >p
be any ordering on the predicate symbols in DefsII(p) which is compatible with the
transitive closure of »,4, that is, >3‘ C >p. Such an ordering can always be found.
For this, it was important to introduce different predicate symbols for positive and
negative subformulae associated with relational subformulae.

By definition, a predicate symbol @ is associated with a function symbol f, written
Qy, if there is a clause =Q(z) V R(z, f(z)) in N. Define a measure p as follows:

(P,P) if C =P(s)
wC) = {(@QR) if C=R(s,t)
(tt,tt) if C =0,
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where () is the predicate symbol associated with the leading function symbol of the
maximal term in {s,¢}. For example, the measure of a clause R(s, f(s)) is (Qr, R).
Complexity measures are compared by the lexicographic combination ».= (>p, >p).
Now, it is routine to verify that any inference step from positive premises C;,Cs by
resolution or factoring will produce a clause D such that u(Ci) =, u(D), u(C2) =
wu(D). For example, for the inference step

Qu(s)™  R(s, f(s))F  —Qu(=)" vV -R(z,y)" VP(y)
P(f(s))

w(P(f(s)) = (P, P), m(Qu(5)) = (Qu; Qu), and u(R(s, f(s))) = (@f,R), where Q
is the symbol introduced for a diamond formula ¢, say. ¢ cannot occur at a higher
modal depth than ¢, which is a box formula. Hence, it follows that Q (= Q4) >p P.
Consequently, u(R(s, f(s))) = u(P(f(s))). Since Qy >p P, by definition, we also

have that u(Qy(s)) = u(P(f(s))). For

Qu(s)t  ~Qu(x)" vV R(z, f(z))
R(s, f(s))

we have that 4(Qy(s)) = (Qu,Qy) ¢ (Qy, R) = u(R(s, f(s))), because Qy >p R.
For the following inference, we have that u(R(s, f(s))) = (Qf,R) »c (Qs, Q%) =
w(Qn (s, f(s))), since a occurs negatively in ¢ and thus R »=p Q7.

Ris, f(s))"  Qalz.y) vV -R(z,y)"
Qa(s, f(s))

It follows that any derivation terminates. [ |

Theorem 7.3 For any logic in-between K and K,,)(N,U, ), the space complexity for
testing the satisfiability of a modal formulae @ with RM°" is bounded by O(nd™), where
n is the number of symbols in @, d is the number of different diamond subformulae in
p, and m is the modal depth of ©.

PROOF. Suppose ¢ is an arbitrary formula of K,,)(N,U,~) and N is the associated
input set. ¢ has at most n subformulae, and hence, the number of clauses belonging
to N is O(n). Also, N contains at most n different predicate symbols (roughly one
for each subformula), d different unary function symbols and one constant symbol.
Recall from Lemma 7.1, split derived clauses are ground unit clauses of a certain form.
As the maximal term depth bound is given by the modal depth of the input formula,
there are at most O(nd™) such split clauses. It follows that the number of different
literals in any derivation tree is bound by O(nd™). ||

For logics without converse, space can be conserved by adopting the common
tableaux inference strategy of considering disjunctive branches and branches asso-
ciated with different <¢-subformulae in turn. In addition, the inferences with defini-
tional clauses associated with diamond subformulae need to be postponed until no
other inferences with definitional clauses associated with Boolean subformulae3 are
possible. This provides a PSPACE resolution procedure for logics in-between K and
K(m) (N, V).

3In Boolean subformulae the outermost connective is a Boolean connective.
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Automatically Generating Models

Any saturated clause set derivable from a given set N allows for the effective con-
struction of a model of N. In general this model will not be finite. However, for
K(m) (N, U, ~) models are given by a finite set of positive ground unit clauses. The
proofs of the results in this subsection are slight modifications of the corresponding
results in Hustadt and Schmidt [29].

Formally, a model of a clause set is a set I of ground atoms. The presence of an
atom A in I means A is true in I, and the absence of A means —A is true in I. In
general, a clause C is true in [ iff for all ground substitutions o there is a literal L in
Co which is true in I. Falsehood is defined dually.

Lemma 7.4 Let  be a K(,,)(N, U, —)-formula. Let N be the clausal form of DefxTI(y),
and let Noo denote the RV°P -saturated clause set derivable from N. Let I be the set

of positive ground unit clauses in No. If N does not contain the empty clause then
I is a model of Ny and N.

Now it is an easy matter to construct a modal model M = (W, R, 1) for ¢ from I.
Essentially, the set of worlds is defined by the set of ground terms occurring in I. The
interpretation of relational formulae is determined by the set of R; literals in I. For
any R;,if R;(s,t) isin I then (s,t) € R(r;), which can be extended to a homomorphism
for complex relational formulae. The interpretation of modal formulae can be defined
similarly. For any unary literal P;(s) (resp. Qy(s)) in I, s € «(p;) (resp. s € 1(v))),
that is, p; (resp. ) is true in the world s. This is homomorphically extended as
expected. Consequently:

Theorem 7.5 For any modal formula satisfiable in K(,,,)(N, U, ~) a finite modal model
can be effectively constructed on the basis of RVP.

Corollary 7.6 Let L be any logic in-between K and K(,,)(N,U,~). Then, L has the
finite model property.

Generalisation
Results 7.2, 7.5 and 7.6 can be generalised.

Theorem 7.7 Let L be a logic in-between K and K, (N,U,~). Let A be a finite
RMOP _saturated set of clauses consisting of two kinds of split components.

(7.3)  Clauses with at most two free variables, which are built from finitely many
binary predicate symbols R;, no function symbols, and containing at least
one guard literal (that is, this literal is negative and includes all the variables
of the clause).

(7.4)  Clauses built from one variable, finitely many function symbols (including
constants), and finitely many binary predicate symbols R;, with the restric-
tion that (i) the argument multisets of all non-ground literals coincide, and
(ii) each literal which contains a constant is ground.

Suppose  is an L-formula and N is the clausal form of DefpIl(p). Then:

1. Any RMP -derivation from N U A terminates.



282 Resolution-Based Methods for Modal Logics

2. ¢ is unsatisfiable in LA iff the RMP-saturation of N U A contains the empty
clause.

PROOF. Soundness and completeness follows by the general soundness and complete-
ness result of ordered resolution with selection (Theorem 4.1).

For the problem of termination we first consider what kind of clauses we are dealing
with. Input clauses have the form (7.2), (7.3) or (7.4). To begin with we consider
the saturation of all theory clauses and the subset of clauses in N which contain only
binary predicate symbols. The latter have the form:

() ~Qh(=y)" VR(z,y) [VR(z,y)] and Qi(z,y) V-R(z,y)" [V -R(z,y)"].

We will prove that (non-empty maximally split) inferred clauses include ground unit
clauses (more precisely, clauses of the form [-]R (s, t), where s and ¢ are ground terms),
and clauses which are specified by (7.4), except that they may be defined over the

given R; symbols and the introduced Q¥/™ symbols. Call such clauses (7.4)T. Let K
denote the class of clauses ('), (7.3), (7.4)" and ground unit clauses, defined over a
finite signature. W.l.o.g. we consider only maximally split clauses.

Claim 1: Inferences with clauses satisfying (7.3) and clauses (') or ground unit
clauses produce ground clauses only. Assume C is a (7.3) clause. C participates
in inference steps as a negative premise and the only potential partners are ground
clauses. As at least one of the eligible literals in C' is a guard literal the result of such
an inference step is a ground resolvent.

Claim 2: Inferences with clauses satisfying (7.3) and (7.4)" produce clauses with
ground or (7.4)T split components. The proof is not difficult. Observe that the
conclusion of a resolution step in RM°? is always a positive clause.

Claim 3: Inferences with (7.4)" clauses and (') clauses or ground unit clauses pro-
duce either ground clauses or (7.4)" clauses. First consider any positive (7.4)" clause
C. Clearly, the factor of C is again a clause satisfying (7.4)*. Now consider the
possibilities for resolution inferences with C.

1. Assume C is resolved with a clause of the form —Q,(z)* V =R(z,y)* V P(y).
The other positive premise besides C' will be a ground unit clause Q4 (s)™. Regardless
of whether C' is ground or not the conclusion will be a ground clause (because the
single variable that may occur in C' will be instantiated with a ground term).

2. Another possibility is that C' is resolved with a clause Q% (z,y) V —-R(z,y)",
or a clause Q%(z,y) V =R(z,y)T V =R'(z,y)T. In the first case the resolvent is a
variation of C'; namely C' with the predicate symbol of the eligible literal replaced
by @7 and possibly the arguments exchanged. In the second case the form of the
resolvent depends on the second positive premise. If the second premise is ground
then the resolvent will also be ground (because if C' is not ground then the single
variable of C' will be instantiated with a ground term). The second premise C' may
be a (7.4)" clause which is not ground. In this case a resolution step is only possible if
the multisets of arguments of the eligible literals of C' and C" are identical. It follows
that any resolvent satisfies the conditions of (7.4)". Notice that no term depth growth
occurs.

3. The third possibility is that C is resolved with a clause (7.3). This possibility is
covered by Claim 2.

Second, consider the case that C is a non-positive (7.4)" clause. C can only be
a negative premise in a resolution inference step. The only resolution partners are
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ground unit clauses and positive (7.4)T clauses. In the first case the conclusion is a
ground clause, and in the latter case the conclusion is again a (7.4)" clause.

Claim 4: Inferences with input clauses (') and ground unit clauses produce ground
clauses. The argument is similar as for Lemma 7.4.

Claims 1 to 4 prove that the class K is closed under inferences in RM°”. Now the
saturation A’ of A and the set of (') clauses in N is a subset of K. A’ is bounded
because inferred clauses contain at most two variables and there is no increase of the
term depth.

We now establish that, conclusions of further inferences are ground. No inferences
are possible between theory clauses satisfying condition (7.3) and clauses in N. In-
ferences with clauses not in A’ are with ground clauses, and produce ground clauses.
Similarly, inferences with clauses (7.4)" and clauses not in A’ are with ground clauses,
and produce ground clauses. The remaining inferences are as in Lemma 7.1. It follows
that non-empty split ground conclusions have the form

P(s), (R(s.f(s)), (D)R(s.5) or (D)R(b,).

Termination of any derivation from NUA is now shown as follows. Let T, tt be new
symbols which do not occur in either N or A. Again, we use a dependency relation
>4 on the predicate symbols. It is defined almost as in the proof of Theorem 7.2, but
with subtle differences: Sy =4 So, if there is a definition ) — ¢ in Def,II(¢) such
that S; occurs in ¢ and S» occurs in ¢. In addition, all relational symbols R; which
do not occur in N are smaller than any unary predicate symbols. Let T be the largest
symbol with respect to =4, and tt the smallest symbol. As before, let = be any
ordering compatible with the transitive closure of ;. In addition, define

I(T) = {(—)R(s,t) | s,t € T and R is a binary predicate symbol}.

Let N denote the set of clauses derived prior to C, and C itself. Now, define a
measure on (a subset of) clauses in a derivation by:

(P, 0) if C=P(s)
n(C) = ¢ (Q,T({s,t})\Ne) if C = (2)R(s,1)
(tt,0) if C =0,

where () is the predicate symbol associated with the leading function symbol of the
maximal term in {s,¢}, whenever such a symbol exists, and T otherwise. Here, max-
imality is with respect to the proper subterm ordering. The ordering on the com-
plexity measures >. of positive premises and conclusions is defined to be the lexi-
cographic combination of >p and the proper superset relationship. This ordering is
well-founded. Now we need to verify that split ground conclusions are strictly smaller
than their positive premises, which is routine. Termination follows. [ |

Theorem 7.8 Let L and A be as in the previous theorem. For any modal formula

satisfiable in LA a finite modal model can be effectively constructed on the basis of
RMO’D.

PRrOOF. The construction of a modal model M is as above from the set of ground
unit literals in the saturation of N U A. It remains to consistently complete M in
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accordance with the background theory A. This is always possible because A contains
no clauses requiring the creation of new worlds. For example, if A = {R;(z, f(z))}
then add (s, s) € R(r;) for each dead end world s. Only propositional literals will be
true in s. [ |

Corollary 7.9 Let L and A be as in the previous theorem. Then, LA has the finite
model property.

Which extended modal logics satisfy the conditions of Theorem 7.77 Relational
frame properties which can be described by the above clausal form include reflexivity,
irreflexivity, seriality, symmetry, inclusions among relations, for example, R; C R» or
R, C (R; N Ry), as well as, for example,

Vz3dy ~R(x,y), Va3y(R(x,y)V R(y,z)), or Vay(R(z,y)— R(z,z)).

Thus, familiar logics covered by the above results include KT, KD, KB, KTB, and
KDB, but also the basic tense logic K;. The results also cover a variety of description
logics, for example, ALC endowed with role conjunction, role disjunction and inverse
roles, acyclic TBox statements, and both concept and role ABox statements.

By refining RM? with an ordering restriction which would prefer to resolve upon
literals containing functional terms of the theory clauses in A we expect that the
above decidability result can be improved considerably.

Finally, let us look at a sample derivation, in Figure 2, and make a few observations.
R is assumed to be reflexive, for otherwise not many inference steps are possible. First,
notice how the correspondence to modal subformulae is retained during inference in
RM°P | For example, 14.1.1 and 14.2.1 say that p and ©p are true in the initial world
a, 14.2.2, 14.2.3 and 14.2.4 say that p and p V Op are true in a successor world of a.
Second, notice the similarity of this derivation to the derivation of a classical tableaux
procedure. This connection will be formally discussed in the next section.

8 Tableaux Calculi

Selection refinements of resolution (and hyperresolution) are closely related to stan-
dard modal tableaux calculi and description logic systems [13, 27, 28, 29]. In this
section, we exploit this connection and present tableaux calculi for the modal logic
K1) (M, U, ~), and logics below it. These calculi resemble and enhance those com-
mounly used in description logic systems [22, 21]. We also investigate the relationship
between our selection-based resolution procedure and single-step prefixed tableaux
calculi.

Tableauz Calculi for Subsystems of K,y (N, U, )

A tableauz is a finitely branching tree whose nodes are sets of labelled formulae. Given
that o is a formula to be tested for satisfiability the root node is the set {a : ¢}.
Successor nodes are constructed in accordance with a set of expansion rules. A rule
ﬁ fires for a selected formula F in a node if F' is an instance of the numerator
X, or more generally, F' together with other formulae in the node are instances of
the formulae in X. n successor nodes are created which contain the formulae of

the current node and the appropriate instances of X;. It is assumed that no rule is
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L Qy(a)
2. ~Qu(r)* V Qol(r)
3. ~Qu(2)* v Q-(x)
4. =Qno(z)" V =Rz, y)* vV Qu(y)
5. ~Qv(z)* Vv P(z) V Qo(x)
6. ~Qo(#)* V Rz, f(2))
7. ~Qo(2)* V P(f(x))
8 —Q-(z)t v -P(zx)*
9. R(z,x)
10.  Qo(a) [1, 2]
11. Q-(a) [1, 3]
12, Qv(a) [4, 9, 10]
13.  P(a)V Qo(a) [5, 12]
14.1.1. P(a) fé)]it] 14.2.1. Qo(a) [13, split]
14.1.2. 0 8, 11, 14.1.1] 14.2.2. R(a, f(a)) 6, 14.2.1]
14.2.3. P(f(a)) [7, 14.2.1]
14.2.4. Qv(f(a)) [4, 10, 14.2.2]

14.2.5. P(f(a)) Vv QO(\f(a)) [5, 14.2.4]
\

\
14.2.5.1.1. P(f(a)) [14.2.5, split] 14.2.5.1.2. Qo(f(a)) [14.2.5, split]

F1G. 2. Derivation tree for testing the satisfiability of ¢ = O(p V ©p) A =p in KT.

applied twice to the same instance of the numerator. In the following we assume ¢ is
a formula in negation normal form.

Figure 3 lists the expansion rules for the logic K(,,)(N,U, ~), while for any logic L
in-between K and K(,,)(N, U, ~) the expansion rules are given by appropriate subsets,
see Figure 4. The rules for K(,,)(N,U, <) include the clash rule (L), seven ‘elimination’
rules (A), (V), (), (O), (~), (A"), and (V") for positive occurrences of subformulae,
and three ‘introduction’ rules (~), (A}) and (V7}) for negative occurrences of subfor-
mulae. The side conditions for the introduction rules ensure that formulae are not
introduced unnecessarily. Conjunction and disjunction are assumed to be associative
and commutative operations. Note that only the disjunction rules are “don’t know”
nondeterministic and require the use of backtracking.

To avoid unnecessary duplication and superfluous inferences we define a notion of
redundancy which is in the spirit of Bachmair and Ganzinger [3]. A labelled formula
F is redundant in a node if the node contains labelled formulae Fy, ... , F, (for n > 0)
which are smaller than F' and =1 (Fi A ... A F,) — F. In this context a formula 1
is smaller than a formula ¢ if ¢ is a subformula of ¢, but a more general definition
based on an admissible ordering in the sense of [3, 4] may be chosen. The application
of a rule is redundant if its conclusion(s) is (are) redundant in the current node. For
example, for any s, s : T is redundant, and if a node includes s : ) and s : ¥ V ¢,
then the (V) rule need not be applied, and no new branches are introduced.
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(1) 2L () e V) S
(©) —(S,;):;?lf;zp with ¢ new to the branch () ('*=t):t“:=;:[a]¢
B st oot
(o) gkt () Lol DBy e

For the rules (~7), (A}) and (V}) the side conditions are that the formulae in the
denumerator, i.e. a~, a A 8 or a V 3, occur as subformulae of the parameter v of a
box formula s : [y]1) on the current branch.

F1G. 3. Tableaux expansion rules for K(,,)(N,U,-).

For K(m) (J_),(/\),(V),(O),(D)

For K(m)(v) (L)7(/\)7(V)7(<>)7(|:|),(v ,(\/[)

For K(m)(m) (L)7(/\)7(V)7(<>)7(D)=(/\r)7(/\;)

For K(m)(U) (L)7(/\)7(V)7(<>)7(|:|),(Vr)7(V7;)

For K(m)(ma U) (J-)a (/\)7 (V)7 (0)7 (D)a (/\r), (/\7;)7 (Vr)a (V?)

F1G. 4. Tableaux calculi for logics in-between K(,,) and K(,,)(N,U, ).

Theorem 8.1 A formula ¢ is satisfiable in K, (N, U, <) iff a tableaux containing a
branch B can be constructed with the rules of Figure 3 such that B does not contain
the falsum (s : L for some s) and each rule application is redundant.

PROOF. By soundness, completeness and termination of the selection refinement R
(Theorem 7.2), and the observation that the tableaux rules are macro inference steps
of RM°P on the set

N =N U{-Q%(z,y)" V Q%(x,y) | a is a non-atomic relational formula in ¢},

where N’ is the clausal form of DefpIl(y), and A is as defined at the beginning of
the previous section. For this extended N the termination argument is the same as
in Theorem 7.2.

Define a mapping A’ from labelled formulae to ground unit clauses by (A’ is in fact
a bijection)

W(s: ) = h(e)(h(s))
W((s,8) ) = h()(h(s), h(t)),

where 1 denotes a modal formula, « a relational formula. h is defined by: h(p;) = P;,

h(r;) = Rj, h(¥)) = Qy, h(a) = Q%, h(a) = a, and h(t) = fia)y(h(s)) where s : (a)y
is the formula for which # was introduced and f(4)y is the Skolem function associated

with ().
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The RM°P-derivation corresponding to an application of the (<)-rule is: from
Q(a)w(h’(s))7 ﬁQ(a)l/)(m)_F \Y% QQ(T, f(T)) and ﬁQ(a)l/)(m)_F \Y% sz(f(T)); derive the
units Q% (h(s), f(h(s))) and Q(f(h(s))) in two resolution steps. For (~;) the resol-
vent of Q7 (h(s), h(t)) (or Q% (h(s), h(t)) and ~Q (z,y)* V Q4 (z,y)) and Q- (z,y) V
“QI(y,z)t, is Q"_(h(t), h(s)). Similarly, for the other rules.

Apart from factoring there are no inference steps in R*°” which are not involved in
some macro inference step. Due to the fact that all positive premises are ground and
thus subject to the application of splitting, factoring is not needed for completeness,
and is thus optional. [ |

Corollary 8.2 The appropriate subsets (see Figure /) of the rules from Figure 3
provide sound, complete and terminating tableaux calculi for logics in-between K and
K(m) (ﬂ, U, V)

An immediate consequence of Theorem 7.5 is:

Corollary 8.3 If L is a logic in-between K and K(,,)(N,U, <) and  is satisfiable in L
then a finite modal model can be effectively constructed on the basis of the appropriate
tableaur calculus for L.

Simulation of Single-Step Prefized Tableauz

We distinguish between two notions of polynomial simulation (or p-simulation). By
definition, a proof system A p-simulates derivations of a proof system B iff there is
a function g, computable in polynomial time, which maps derivations in B for any
given formula ¢, to derivations in A for . We also say system A p-simulates search
of a system B iff there is a polynomial function g such that for any formula ¢, g maps
derivations from ¢ in A to derivations from ¢ in B. The first notion generalises the
notion of p-simulation found in [6], who are only concerned with the p-simulation
of proofs (that is, successful derivations leading to a proof). Simulation of search
is a relationship in the opposite direction. It implies that A does not perform any
inference steps for which no corresponding inference steps exist in 5. To show that A
p-simulates proofs or derivations of B it is sufficient to prove that for every formula
@ and every derivation Dy of ¢ in B, there exists a derivation Dy of ¢ in A such
that the number of applications of inference rules in Dy is polynomially bounded by
the number of applications of inference rules in Dy. This can be achieved by showing
that there exists a number n such that each application of an inference rule in D,
corresponds to at most n applications of inference rules in Ds. It follows that the
length of D, is polynomially bounded by the length of D;. We call this a step-wise
simulation of B by A. Note that a step-wise simulation is independent of whether the
considered derivations are proofs or not.

The single-step prefixed tableaux calculi of Massacci [31, 33] for subsystems of S5
are defined by Figures 5 and 6. (Remember KT = KDT, S} = KT/, KB/ = KB5,
S5= KTB/ = KDBJ = KT5.) The basic entities are formulae labelled with prefixes.
A labelled (prefixed) formula has the form o : ¢, where o is a sequence of positive
integers and ¢ is a modal formula. o represents a world in which ¢ is true. Tableaux
derivations have a tree structure and begin with the formula, 1 : ¢ in the root node.
Successor nodes are then constructed by the application of expansion rules. The



288 Resolution-Based Methods for Modal Logics

O GRS Pt
(©) % with .n new to the current branch

() 22 (D) Lt ) 2o

(B) T ) R
1) o 6) om0

Fia. 5. Single step prefixed tableaux expansion rules for subsystems of S4.

For K: (L), (A), (V), (€), (D)

For KD: (L), (A), (V),(©),(O), (D)

For KT: (L), (A), (V), (©),(O),(T)

For KB: (L), (AN), (V), (), (O),(B)

For K4: (L), (A), (V), (€©), (), (4)

For K5: (L), (A), (V), (©), (D), (47), (4, (5)

For KDB: (1),(A),(V), (<), (0), (D), (B)

For KD4: (1), (A),(V),(€), (D), (D), (4)

For KD5: (L), (A),(V),(®), (D), (D), (4"), (4%), (5)
For KTB: (1),(A),(V),(<),(0),(T),(B)

For S4: (L), (A), (V), (€©),(0),(T), (4)

For KBf:  (1),(A),(V),(<),(0),(B),(4),(4")

For K45:  (1),(A),(V),(€),(0),(4),(47), (4

For KD45: (L), (A),(V),(©),(0), (D), (4),(4"), (4)
For 55: (L), (A), (V), (), (8),(T), (4), (47)

F1G. 6. Tableaux calculi for subsystems of S5.

prefixes in the expansion rules, except for o.n of the (¢)-rule, are assumed to be
present on the current branch.

Theorem 8.4 (Massacci [31, 33], Goré [19]) Let ¥ C {D,T,B,4,5}. A formula
p 1s satisfiable in a logic KX iff a tableauz containing a branch B can be constructed
by the tableauz calculus for KX such that B does not contain the falsum and further
rule applications are redundant.

The first-order background theories for the different axiom schemas are determined



8. TABLEAUX CALCULI 289

by the following.

Tk=0 Tkp= {R(z,f(z))"} Txr={R(z,2)"}
Txp = {-R(z,y)" V R(y, )} Tk, = {-R(z,y)* V =R(y,2) V R(z, 2)}
Tks = {_'R(w7y) \Y% —|R(ZE72’) \Y% R(y72)7_'R($=y) \ R(yay)}

For modal logics closed under more than one additional axiom schema the background
theories are defined by the union of the corresponding clause sets, for example, Txp; =
TKD U TK4.

Observe that for 4 and 5 only certain negative literals will be selected in the theory
clauses. In the case of 5 we do not select any literal.

Theorem 8.5 Let ¥ C {D,T, B,4,5}. Resolution p-simulates derivations of single
step prefix tableaur for KX.

PROOF. Suppose we are interested in the satisfiability of the modal formula ¢. We
will show that RM°” p-simulates single step prefix tableaux step-wise.

Similar as in the proof of Theorem 8.1 define a mapping (bijection) A’ from prefixed
formulae to ground unit clauses by h'(o : ¢) = h(v))(h(0)), where h is defined by:
h(p;) = P;, h(r;) = R;, h(¢p) = Qy for ¢ a modal subformula of ¢, h(1) = a, and
h(o.n) = foy(h(o)) where G4 is the formula for which n was introduced and foy is
the Skolem function associated with &), For example, the unit clause associated (by
h') with the formula 1 : ¢ contained in the root node is @, (a).

Now show that each tableaux inference step can be simulated by a constant num-
ber of RM“P-inference steps. For instance, the derivation of L by the clash rule
corresponds to one resolution inference step applied to Qy(h(0)), Q-y(h(s)) and
=Q-y(z)T V =Qy(z)*, which generates the empty clause. For the simulation of the
application of the (<) rule to o : $9) we may assume that Qoy(h(o)) is present in
the clauses set. Also present are the definitional clauses ~Qoy(z)" V R(z, f(z)), and
“Qoyp(x)T V Qu(f(z)). Then an application of the (<) rule corresponds to perform-
ing two resolution inference steps producing R(h(c), f(h(0))) and Qy(f(h(c))). The
term f(h(c)) corresponds to the new prefix o.n. The interested reader may fill in the
details for the other rules, see also [29]. ||

For the modal logics KX with ¥ C {D, T, B} there is a near bisimulation between
the tableaux calculi and RM®”. If factoring rules are added to the tableaux calculi then
tableaux p-simulates also derivations of the selection-based resolution refinement. It
follows that:

Theorem 8.6 RM°" p-simulates search in single step prefix tableaux for KX with

Y C {D,T,B}.

This is not true for logics in which 4 and 5 are theorems. For 4 and 5 termination
in single step prefixed tableaux is ensured by a loop checking mechanism [31, 33].
Once a loop is detected in a branch no further rules are applied. In RM°” further
inference steps will be performed. To prevent this we have to provide the means
by which the resolution procedure can recognise the redundancy of further inference
steps. This may possibly be realised by soft typing [16] or some form of blocking
which is analogous to loop checking [27].
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In this section we have focussed on single-step prefixed tableaux calculi, but this
choice is arbitrary. Our technique can also be applied for obtaining simulation results
of modal tableaux calculi with implicit or explicit accessibility relation and analytic
modal KE tableaux [25, 32], or even sequent proof systems. Simulation results of
tableaux calculi for description logics by resolution can be found in Hustadt and
Schmidt [27, 28].

9 Concluding Remarks

The approach purported in this overview paper is that modal logics can be seen to
be fragments of first-order logic and inference systems for modal logics can be devel-
oped and studied within the framework of first-order resolution. Several issues were
considered. In particular, we have focussed on the decision problem for a range of
expressive extended modal logics and have described resolution procedures of varying
nature. We have looked at using resolution methods for automatically generating
models. Exploiting the link between selection-based resolution and tableaux meth-
ods, we have proposed a new tableaux calculus for multi-modal logics defined over
relations closed under union, intersection and converse. And, we have presented simu-
lation results which give us an understanding of modal tableaux methods in the wider
context of first-order logic and resolution.

Some important modal logics for which we have not presented a decision procedure
are modal logics with transitive modalities. To decide extensions of K4 one possibility
is to modify the calculus and add ordered chaining rules for transitive relations [15].
Another possibility is to use the resolution procedures described in this paper but
block further inferences with clauses containing terms in which the level of nesting
exceeds a pre-computed term depth bound. In practice this solution is rather poor,
as are solutions encoding K4 or S4 problems in K or KT.
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