
Resolution-Based Methods forModal LogisHANS DE NIVELLE, Max-Plank-Institut f�ur Informatik, ImStadtwald, 66123 Saarbr�uken, Germany.E-mail: nivelle�mpi-sb.mpg.deRENATE A. SCHMIDT, Department of Computer Siene, Universityof Manhester, Manhester M13 9PL, United Kingdom.E-mail: shmidt�s.man.a.ukULLRICH HUSTADT, Centre for Agent Researh and Development,Department of Computing and Mathematis, Manhester MetropolitanUniversity, Manhester M1 5GD, United Kingdom.E-mail: U.Hustadt�do.mmu.a.ukAbstratIn this paper we give an overview of resolution methods for extended propositional modal logis. Weadopt the standard translation approah and onsider di�erent resolution re�nements whih providedeision proedures for the resulting lause sets. Our proedures are based on ordered resolutionand seletion-based resolution. The logis that we over are multi-modal logis de�ned over relationslosed under intersetion, union, onverse and possibly omplementation.Keywords: modal logi, solvable lasses, guarded fragment, desription logi, inferene methods,resolution, tableaux, model generation1 IntrodutionModal logis are very popular and appear in various disguises in many areas of om-puter siene, inluding knowledge representation, the �eld of logis of programs,omputational linguistis and agent based systems. While deidability is an impor-tant riterion in many of these areas inreasingly more expressive modal logis whihallow omplex relational parameters of modal operators are being used. Consider anexample from knowledge representation and linguistis domains. Here the universesof frames ontain arbitrary elements instead of worlds. If E denotes the eats rela-tion and C is the set of heeses, then hEiC an be interpreted as denoting the setof heese eaters. An expression whih requires omplex relational parameters is theset of heese lovers: [:(E ^ L)℄:C, where L denotes the likes relation. We havex 2 [:(E ^ L)℄:C i� for any y 2 C, both E(x; y) and L(x; y) are true. In words,heese lovers are people who eat and like every heese. The meaning of x 2 [E ^ L℄Cwould be `everything that x eats and likes is heese'. These kinds of expressions anbe formulated in the logis we onsider in this paper.We fous on subsystems of the multi-modal logi K(m)(\;[;�;`) whih is de�ned265L. J. of the IGPL, Vol. 8 No. 3, pp. 265{292 2000 Oxford University Press



266 Resolution-Based Methods for Modal Logisover families of relations losed under intersetion, union, omplementation and on-verse. K(m)(\;[;�;`) extends Boolean modal logi [17℄ with onverse on relations.It enompasses very many standard modal logis suh as K, KT, KD, KB, KTB,and KDB, their independent joins, as well as the basi tense logi K t and logis ofphilosophial interest, suh as logis expressing inaessibility, suÆieny, or both ne-essity and suÆieny, see e.g. [18, 23, 24℄. Certain forms of interations, for example,inlusions among relations, are overed as well. K(m)(\;[;�;`) is related to the de-sription logi ALB whih was �rst desribed in [28℄ and ontains a large lass of wellknown desription logis.We onentrate on translation-based resolution methods for modal logis. Thismeans that we take a modal formula, translate it into lassial logi through theKripke-semantis, and then apply some variant of resolution to it. Translation-basedapproahes are sometimes regarded as being inferior to tableaux-based approahes, orother speial-purpose inferene approahes. Arguably reent advanes in the imple-mentation of tableaux-based modal theorem provers make it harder to motivate theendeavour of translation into �rst-order logi. Another ritiism often brought for-ward is the diÆulty of reading resolution proofs (this is not true in general, see [28℄).From our perspetive the ombination of translation and �rst-order resolution hasa number of advantages, as this paper aims to show. Some obvious advantages oftranslation approahes are the following. Any modal logi whih an be embeddedinto �rst-order logi an be treated. The translations are straightforward, and anbe obtained in time O(n logn), so no engineering e�ort is needed here. For the reso-lution part, standard resolution provers an be used, or otherwise they an be usedwith small adaptations (for example, Bliksem [10℄, SPASS [40℄, and Otter [34℄). Thetranslation approah is generi, it an handle �rst-order modal logis, undeidablemodal logis, for example, de Rijke's dynami modal logi [11℄, and ombinationsof modal and non-modal logis. In all ases we an at least ensure soundness andompleteness. For a large lass of expressive modal and desription logis, resolu-tion provers provide deision proedures, and often the same re�nements deide also�rst-order generalisations suh as the guarded fragment or Maslov's lass K [14, 26℄.This paper gives an overview of di�erent resolution re�nements whih provide dei-sion proedures for �rst-order fragments orresponding to a variety of extended modallogis. We will fous on fragments indued by the standard relational translation ofmodal logis. Other translation methods exist but, as yet, it is not known how totreat modal logis with omplex modal parameters within the ontext of these trans-lation methods. Surveys of the di�erent translation methods are Ohlbah [35, 36℄ andOhlbah, Nonnengart and Gabbay [37℄.Regardless as to whih translation method is adopted, a ruial deision is thehoie of a suitable re�nement of the basi resolution alulus for �rst-order logi.Depending on our aims we have various options. Ordering re�nements provide de-ision proedures for very expressive logis, while if we are interested in generatingmodels for satis�able formulae seletion-based re�nements (or hyperresolution) aremore natural (Ferm�uller et al. [12, 13℄, Leitsh [30℄, Hustadt and Shmidt [28, 29℄).We will desribe three resolution deision proedures: an ordered resolution deisionproedure for a lass of lauses indued by K(m)(\;[;�;`) (Setion 5), an orderingre�nement ombined with a seletion funtion for the guarded fragment (Setion 6),and a re�nement whih relies solely on the seletion of negative literals for ertain



2. PRELIMINARY DEFINITIONS AND CONVENTIONS 267extensions of K(m)(\;[;`) (Setion 7). The latter re�nement has the property thatfor many modal logis its derivations resemble those of tableaux aluli. As withtableaux-based proedures our seletion-based proedure an be used for the auto-mati onstrution of �nite models for satis�able input formulae. In Setion 8 wede�ne a semanti tableaux alulus for the logi K(m)(\;[;`) whih is derived fromthe seletion-based resolution proedure. We also onsider the relationship to singlestep pre�xed tableaux aluli and prove a number of simulation results. Preliminaryde�nitions are given in Setions 2, 3 and 4. Setion 2 ontains de�nitions of the no-tational onventions and basi onepts. Of partiular importane is the struturaltransformation of formulae. Setion 3 de�nes the syntax and semantis of the logiK(m)(\;[;�;`) and spei�es the standard translation mapping into �rst-order logi.A general framework of ordered resolution and seletion is desribed in Setion 4.This overview is based on the papers [14, 28, 29℄. Some results have been improvedand others are new. The de�nition of the lass DL� in Setion 5, generalises thelass of DL-lauses from [28℄. Setion 7 inludes a new omplexity result. The resultsfor extensions of K(m)(\;[;`) with frame properties are slightly more general thanin [29℄. The lose orrespondene between seletion-based resolution (or hyperresolu-tion) and speial purpose tableaux aluli is also mentioned in [13, 28, 29℄. A noveltyare the tableaux aluli whih we have been able to extrat from the seletion-basedresolution proedure. These are related to aluli for the orresponding desriptionlogis [22, 21℄, but they do not ompile relational formulae away.2 Preliminary De�nitions and ConventionsThroughout, our notational onvention is the following: x; y; z are the letters reservedfor �rst-order variables, s; t; u; v for terms, a; b for onstants, f; g; h for funtion sym-bols, p; q; r for propositional symbols, and P;Q;R for prediate symbols. A is theletter reserved for atoms, L for literals, and C;D for lauses. For sets of lauseswe use the letter N . The Greek letters ';  ; � are reserved for modal or �rst-orderformulae, and �; �;  are reserved for relational formulae.A literal is an atom or the negation of an atom. The former is said to be a positiveliteral and the latter a negative literal. If the prediate symbol of a literal has arityone (resp. two) then we all this literal a unary literal (resp. binary literal). A lausewith one literal is a unit lause (or unit). If this literal is a unary (resp. binary)literal then the lause will be alled a unary (resp. binary) unit lause. In this paperlauses are assumed to be sets of literals. The empty lause will be denoted by ;. Theomponents in the variable partition of a lause are alled split omponents, that is,split omponents do not share variables. A lause whih annot be split further willbe alled a maximally split lause. A positive (resp. negative) lause ontains onlypositive (resp. negative) literals.Two formulae or lauses are said to be variants of eah other if they are equalmodulo variable renaming. Variant lauses are assumed to be equal.The polarity of (ourrenes of) modal or �rst-order subformulae is de�ned asusual: Any ourrene of a proper subformula of an equivalene has zero polarity. Forourrenes of subformulae not below a `$' symbol, an ourrene of a subformulahas positive polarity if it is one inside the sope of an even number of (expliit orimpliit) negations, and it has negative polarity if it is one inside the sope of an odd



268 Resolution-Based Methods for Modal Logisnumber of negations.For any �rst-order formula ', if � is the position of a subformula in ', then 'j�denotes the subformula of ' at position � and '[ 7! �℄ is the result of replaing 'j�at position � by  . The set of all the positions of subformulae of ' will be denotedby Pos(').The strutural transformation, also referred to as renaming, assoiates with eahelement � of � � Pos(') a prediate symbol Q� and a literal Q�(x1; : : : ; xn), wherex1, : : : , xn are the free variables of 'j�, the symbol Q� does not our in ' and twosymbols Q� and Q�0 are equal only if 'j� and 'j�0 are equivalent formulae.1 LetDef+� (') = 8x1 : : : xn (Q�(x1; : : : ; xn)! 'j�) andDef�� (') = 8x1 : : : xn ('j� ! Q�(x1; : : : ; xn)):The de�nition of Q� is the formulaDef�(') = 8><>:Def+� (') if 'j� has positive polarity,Def�� (') if 'j� has negative polarity,Def+� (') ^ Def�� (') otherwise.The orresponding lauses will be alled de�nitional lauses. Now, de�ne Def�(')indutively by: Def;(') = ' andDef�[f�g(') = Def�('[Q�(x1; : : : ; xn) 7! �℄) ^ Def�(');where � is maximal in � [ f�g with respet to the pre�x ordering on positions. Ade�nitional form of ' is Def�('), where � is a subset of all positions of subformulae(usually, non-atomi or non-literal subformulae).Theorem 2.1 (e.g. Plaisted and Greenbaum [39℄) Let ' be a �rst-order formula.1. ' is satis�able i� Def�(') is satis�able, for any � � Pos(').2. Def�(') an be omputed in polynomial time.3 The Modal Logi K(m)(\;[; �;`)K(m)(\;[;�;`) is the multi-modal logi de�ned over families of binary relationslosed under intersetion, union, omplementation and onverse.The language of K(m)(\;[;�;`) is de�ned over ountably many propositional vari-ables p; p1; p2; : : : , and ountably many relational variables r; r1; r2; : : : . A proposi-tional atom is a propositional variable, > or ?. A modal formula is either a proposi-tional atom or a formula of the form :', ' ^  , ' _  , h�i' and [�℄', where ' is amodal formula and � is a relational formula. A relational formula is a relational vari-able or has one of the following forms: � ^ �, � _ �, :�, and �` (onverse), where� and � are relational formulae. Other onnetives are de�ned to be abbreviations,1In pratie, one may want to use the same symbols for variant subformulae, or subformulae whih are obviouslyequivalent, for example, ' _ ' and '.



3. THE MODAL LOGIC K(M)(\;[;�;`) 269for example, ' !  = :' _  or the universal modality is [�℄ = [rj _ :rj ℄, for somerelational variable rj .We will also onsider logis with fewer relational operations. Formally, by a logiin-between K and K(m)(\;[;�;`) we mean a logi K(m)(?1; : : : ; ?k) where m � 1,1 � k � 4 and the ?i are distint operations from f\;[;�;`g.The semantis of K(m)(\;[;�;`) is de�ned in terms of relational strutures orframes. A frame is a tuple (W;R) of a non-empty set W (of worlds) and a mappingR from relational formulae to binary relations over W satisfying:R(� ^ �) = R(�) \ R(�) R(:�) = R(�)R(� _ �) = R(�) [ R(�) R(�`) = R(�)`:The de�ning lass of frames of a modal logi determines, and is determined by, aorresponding lass of models. A model (an interpretation) is given by a triple M =(W;R; �), where (W;R) is a frame and � is a mapping from modal formulae to subsetsof W satisfying:�(?) = ; �(>) =W �(:') = �(')�(' ^  ) = �(') \ �( ) �(h�i') = fx j 9y 2W (x; y) 2 R(�) ^ y 2 �(')g�(' _  ) = �(') [ �( ) �([�℄') = fx j 8y 2W (x; y) 2 R(�)! y 2 �(')g:A modal formula ' is satis�able if an M exists suh that for some x in W , x 2 �(').The standard translation of K(m)(\;[;�;`) into �rst-order logi follows the se-manti de�nition and is therefore given by the following.�(>; x) = > �(?; x) = ?�(pi; x) = Pi(x) �(:'; x) = :�('; x)�(' ?  ; x) = �('; x) ? �( ; x) for ? 2 f^;_;!;$g�(h�i'; x) = 9y (�(�; x; y) ^ �('; y)) �([�℄'; x) = 8y (�(�; x; y) ! �('; y)):Relational formulae are translated aording to:�(rj ; x; y) = Rj(x; y)�(:�; x; y) = :�(�; x; y) �(�`; x; y) = �(�; y; x)�(� ? �; x; y) = �(�; x; y) ? �(�; x; y) for ? 2 f^;_;!;$gIn the translation eah propositional or relational variable (pi or rj) is uniquely asso-iated with a unary or binary prediate variable, denoted by the orresponding apitalletter (Pi or Rj).By de�nition, � maps any modal formula ' to 9x �('; x).Theorem 3.1 Let L be a logi in-between K and K(m)(\;[;�;`). For any modalformula ', ' is satis�able in L i� �(') is �rst-order satis�able.In order to keep the presentation simple, modal formulae are assumed to be innegation normal form. This means that in every subformula of the form :', ' is apropositional variable. The negation normal form of any modal formula is obtainedas usual, namely, by moving negation symbols inwards as far as possible (using DeMorgan's laws, :h�i $ [�℄: and :[�℄ $ h�i: , and :(�`) $ (:�)`) andeliminating double negations.



270 Resolution-Based Methods for Modal Logis4 The Resolution FrameworkIn this paper we will make use of A-ordered resolution, extended with seletion.A-ordered resolution is well-known and widely used in resolution deision proe-dures [12, 13, 5, 34, 30, 26℄. It follows from the results in Bahmair and Ganzinger [3, 4℄that A-ordered resolution an be ombined with a seletion funtion. This sele-tion funtion an override the A-ordering, give preferene to inferenes with nega-tive literals. A-ordered resolution with seletion is ontrolled by two parameters:an A-ordering and a seletion funtion. An A-ordering is an ordering � on atoms,whih satis�es the following ondition: For all atoms A;B and for all substitutions �,A � B implies A� � B�: For a literal L = (:)A let at(L) = A. A-orderings are ex-tended to literals by L � L0 i� at(L) � at(L0). If one uses orderings that do not ignorethe negation sign (these are alled L-orderings), one does not loose ompleteness [7℄.However L-orderings annot be ombined with seletion. Given an A-ordering �, wede�ne the maximal literals in a lause in the standard way: A literal L in a lause Cis maximal in C, if there is no literal L0 in C, for whih L0 � L.Let � be an A-ordering. A seletion funtion S, based on �, is a funtion whihassigns to eah lause C a non-empty set of its literals, suh that one of the followingholds: Either S(C) ontains a negative literal, or(4.1) S(C) ontains all the �-maximal literals of C.(4.2)No further restritions are imposed on the seletion funtion. If the seletion funtionalways prefers the seond alternative, one has just A-ordered resolution. If the se-letion funtion always selets only the negative literals in non-positive lauses, thenthe restrition simulates A-ordered hyperresolution. Based on a seletion funtion S,resolution and fatoring an be de�ned as follows:C _ A1 :A2 _ D(C _ D)�Resolution:provided (i) � is the most general uni�er of A1 and A2, and (ii) A1 2S(C _ A1) and :A2 2 S(:A2 _ D). Then the lause (C _ D)� is aresolvent. C _ A1 _ A2(C _ A1)�Fatoring:provided (i) � is the most general uni�er of A1 and A2, and (ii) A1 2S(C _ A1 _ A2). Then the lause (C _ A1)� is alled a fator ofC _ A1 _ A2.The ombination of seletion-based resolution and fatoring forms a omplete refuta-tion system for lause sets.The premise C _ A1 of the resolution rule and premise of the fatoring rule will bereferred to as a positive premise, while the premise :A2 _ D of the resolution rule willbe referred to as a negative premise. The literals resolved upon and fatored uponare alled eligible literals.



5. ORDERED RESOLUTION FOR K(M)(\;[;�;`) 271Simpli�ation and SplittingIn the previous setion we explained where the lauses ome from. In this setion weexplain how to get rid of them. In order to obtain termination, one needs redundanyriteria. Let C and D be lauses. Clause C subsumes D if jCj � jDj, and thereexists a substitution �, suh that C� � D. Without the length-restrition fatorswould be subsumed by their parents. This would result in deletion of all fators.Sine the fatoring rule is neessary to ompleteness, deleting all fators would resultin inompleteness. Determining whether or not lause C subsumes lause D, is NP-omplete. A ondensation of C is a minimal subset D of C, suh that D subsumes C.One an show that ondensations are unique up to renaming. Determining whetheror not a lause is ondensed, is NP-omplete. Computing the ondensation is NP-hard. In pratie, NP-hardness does not ause problems, sine the lauses are short(< log log) in omparison to the number of lauses. A lause C is a tautology if itontains a omplementary pair of literals A and :A:Let N be a lause set. A saturation of N is a lause set N1, suh that, for everynon-tautologial lause C in N; there is a lause D in N1; suh that D subsumes C;and for eah non-tautologial lause C; that is derivable from lauses in N1, there isa lause D in N1, suh that D subsumes C.For seletion based resolution the following holds.Theorem 4.1 For every lause set N; and every saturation N1 of N the followingholds: N is unsatis�able i� N1 ontains the empty lause.This follows from the results in Bahmair and Ganzinger [3, 4℄. This ompletenessallows us to freely delete tautologies and subsumed lauses, or replae lauses byondensations. In general it is possible to use stronger notions of redundany. Onean de�ne a lause to be redundant if it is implied by a �nite set of stritly smallerlauses (under an appropriate extension of � to lauses), see [3, 4℄.Our notion of saturation is not appropriate for building into a real theorem prover,beause it does not model the time aspet. A lause may beome redundant onlyafter some time, after it has been used for deriving lauses that our in the proof.The splitting rule is a rule that is borrowed from semanti tableaux. Let N be aset of lauses ontaining a lause C, that has two split omponents C1 and C2. Then,instead of trying to refute N one tries to refute N [fC1g and N [fC2g (or N [fC1gand N [ fC2;:C1g, if C1 is a ground lause). Note that in both sets, the originallause C has beome redundant. The splitting rule an be essentially simulated in theresolution ontext by introduing a new propositional symbol. If C1 _ C2 is a lausethat an be split into two split omponents C1 and C2, then it is possible to replaeC1 _ C2 by two lauses C1 _ q, and :q _ C2. q is made minimal in the A-ordering,and :q is seleted. In most ases this is easier to implement than the full splittingrule.5 Ordered Resolution for K(m)(\;[; �;`)Many modal logis naturally translate into deidable fragments of �rst-order logi.For example the basi logi K translates into the two-variable fragment, and into theguarded fragment. By onstruting deision proedures for these deidable fragments,one obtains generi deision proedures for modal logis. We onsider two lasses. One



272 Resolution-Based Methods for Modal Logisis a lause fragment based on the two-variable fragment, alled DL�. This fragment isa variation of the lass of DL-lauses, that was introdued in Hustadt and Shmidt [28℄with the purpose of handling expressive desription logis. The other one is theguarded fragment, whih was introdued by Andr�eka, Van Benthem and N�emeti [2℄as the `modal subset of �rst-order logi'. Although it did not quite meet the ambitiousgoals, it is an important fragment, ontaining many modal logis.The lass of DL�-lauses is related to the lass S+ in Ferm�uller et al. [12℄. This lasswas introdued there as the lause fragment belonging to the two-variable fragment.The lass S+ an only be deided by a non-liftable ordering [8℄, or by an A-orderingombined with a rule alled monadisation [12℄. Sine we try to root our approah onthe ommon basis of liftable orderings, we slightly restrit the lass, so that it an bedeided by a liftable ordering. The restrition is still general enough to ontain thelause translations of the �-transformation of the modal formulae in K(m)(\;[;�;`).We now introdue the lause fragment DL�. In order to simplify the exposition, weassume that all lauses are maximally split. The notions an be easily adopted forlauses with more than one split omponent.Let C be a lause. It is a DL�-lause if1. all literals are unary, or binary,2. there is no nesting of funtion symbols,3. every funtional term in C ontains all the variables of C, and4. every binary literal (even if it has no funtional terms) ontains all variables of C:Observe that 3. implies that if C ontains a funtional ground term, then C is ground.The di�erene with S+ is Condition 4. For S+; Condition 4 would be (4a): Everylause C has a literal ontaining all variables of C: Condition 4 forbids the follow-ing problemati lauses, whih are allowed by Condition 4a: P (x; x) _ Q(x; y) and:P (x; x) _ R(x; y). In order to stay within S+, one would have to blok the inferenebased on P (x; x) and :P (x; x); sine this would result in the lause Q(x; y) _ R(x; z),whih ontains more variables than eah of the parent lauses. However no A-orderingan put Q(x; y) � P (x; x); for all prediate symbols P and Q:Examples of DL�-lauses inlude ground lauses, and:Q0(x) _ Q1(x) _ :Q2(x) Q0(x) _ :R0(x; y) _ Q1(y):Q0(x) _ Q1(f(x)) :Q0(x) _ :R0(f(x); x)R0(x; y) _ :R1(y; x) _ R2(x; y):The lausesR0(x; y) _ R0(x; f(x)); Q0(x; x; x) _ Q1(f(f(x))) and R0(x; x) _ R1(x; y)do not belong to the lass of DL�-lauses. The lause Q0(x) _ Q1(a) does in priniplebelong to DL�, but is not maximally split.Theorem 5.1 Over a �nite signature2 there are only �nitely many maximally splitDL�-lauses (modulo variable renaming).The proof is similar to the proof for the lass of DL-lauses in Hustadt and Shmidt [28℄.The proof an be obtained by �rst observing that there is a �xed upper bound for2The supply of funtion symbols and prediate symbols is �nite, while there are possibly in�nite but ountablymany variables.



5. ORDERED RESOLUTION FOR K(M)(\;[;�;`) 273the maximal number of variables in a lause. Then there are only a �nite number ofpossible literals. Beause every lause is a subset of the set of possible literals, thereis a �nite set of possible lauses.Theorem 5.2 The number of possible DL�-lauses is bounded by 22f(s) ; where f isof order s log(s) and s is the size of the signature.Proof. Let a be maximal arity of any funtion symbol. Beause any lause ontainsat most a variables, the number of possible terms is bounded by (s+a)+(s+a)a+1 �(s+a)a+2: The number of possible atoms is then equal to s((s+a)a+2)2 � (s+a)2a+5:The number of possible literals equals 2(s+ a)2a+5 � (s+ a)2a+6: Consequently, thenumber of non-equivalent lauses is bounded by 2(s+a)2a+6 = 22(2a+6) log(s+a) :The redution of modal formulae to sets of DL�-lauses makes use of a struturaltransformation introduing new names for subformulae orresponding to non-literalsubformulae of the original modal formula. For a given modal formula ' and itstranslation into �rst-order logi '0 = �('), we apply the mapping Def� with� = f� j there is a non-literal subformula 'j�0 of ' and '0j� = �('j�0 )g:For example, the de�nition orresponding to a subformula hrjip is8x (Qhrjip(x)! 9y (Rj(x; y) ^ P (y))):The formula9x8y ((:R1(x; y) ^ R2(x; y))! 9z (:R1(y; z) ^ R2(y; z) ^ P (z))); (�)whih is a translation of the modal formula [:r1^r2℄h:r1^r2ip results in the followingset of de�nitions, together with 9xQ[�℄h�ip(x).8x (Q[�℄h�ip(x)! 8y (Q�(x; y)! Qh�ip(y)))8x (Qh�ip(x)! 9y (Q�(x; y) ^ P (y)))8xy (Q�(x; y)! (:R1(x; y) ^ R2(x; y)))8xy ((:R1(x; y) ^ R2(x; y))! Q�(x; y)):Here � is used as an abbreviation for :r1 ^ r2. Notie that one new symbol Q� wasused for the positive and negative ourrenes of the subformula :R1(x; y) ^ R2(x; y).Theorem 5.3 Let '0 be a �rst-order formula that results from the translation of amodal formula ' in K(m)(\;[;�;`). Every lause in the lausal normal form ofDef�('0) is a DL�-lause.Proof. Not diÆult.In order to deide the lass DL�, we use the following A-ordering whih is similarto the reursive path ordering. First we de�ne an order >d on terms: s >d t if s isdeeper than t; and every variable that ours in t; ours deeper in s: Then we de�neP (s1; : : : ; sn) � Q(t1; : : : ; tm) as fs1; : : : ; sng >muld ft1; : : : ; tmg: Here >muld is themultiset extension of >d : So we have P (f(x)) � P (a); P (x) and P (x; y) � Q(x), but



274 Resolution-Based Methods for Modal Logisnot P (f(x)) � P (f(a)): The >d ordering originates from Ferm�uller et al. [12℄. Theseletion funtion S is ompletely determined by �; so there is no preferred seletionof negative literals.We now give the lausal normal form of the formula (*) above. The maximal literalsare marked with �. These are the literals that an potentially be resolved or fatoredupon. Q[�℄h�ip(a)�:Q[�℄h�ip(x) _ :Q�(x; y)� _ Qh�ip(y):Qh�ip(x) _ Q�(x; f(x))�:Qh�ip(x) _ P (f(x))�:Q�(x; y)� _ :R1(x; y)�:Q�(x; y)� _ R2(x; y)�R1(x; y)� _ :R2(x; y)� _ Q�(x; y)�In the last three lauses there is more than one maximal literal. This ould beprevented by ompleting � with an ordering on atoms. In that ase it is neessaryto distinguish equivalent from inomparable literals. Instead of �; one would haveto de�ne �. Then A � B would have to be de�ned as A � B and A 6� B: In thease that A � B and A � B; one an try to use a seond ordering for establishing apriority.In order to prove that the proedure that we desribed is indeed a deision proedurewe have to show that it is omplete, and terminating. The ompleteness follows fromTheorem 4.1. Termination is a onsequene of Theorem 5.1, and the fat that therestrition derives only lauses that are within DL�, or that an be split. This fat isobtained by a ase analysis, similar as in [28℄. Therefore:Theorem 5.4 Let L be a logi in-between K and K(m)(\;[;�;`). Let N be thelausal form of Def��('), where ' is any modal formula in L. Then:1. Any derivation from N terminates in double exponential time.2. ' is unsatis�able in L i� the saturation of N ontains the empty lause.This result overs atually a larger lass of modal logis. Boolean modal logi, andhene also K(m)(\;[;�;`), is expressive enough to allow for frame properties to bespei�ed by relational formulae. Impliation of relational formulae an be de�nedby (� ! �) = [� ^ :�℄? [38℄. Hene, the symmetry of the aessibility relation R1assoiated with r1 an be spei�ed by r1 ! r1̀ .If � is a set of relational frame properties then L� will denote the logi hara-terised by the lass of frames satisfying the onjuntion of properties in �.Corollary 5.5 Let L be a logi in-between K and K(m)(\;[;�;`). Let � be theBoolean ombination of relational inlusions or equivalenes expressed over interse-tion, union, omplementation and onverse. Suppose ' is any modal formula and Nis the lausal form of Def��('). Then:1. Any derivation from N [� terminates in double exponential time.2. ' is unsatis�able in L� i� the saturation of N [� ontains the empty lause.



6. ORDERED RESOLUTION FOR THE GUARDED FRAGMENT 275The deidability result for the lasses DL� and DL allows for a slightly more generalresult, whih inludes reexivity and irreexivity. Modal and relational formulae withpositive ourrenes of relational omposition an also be embedded into the lassDL�. Moreover, relational properties suh as 8xy (R1(x; y) ! R2(x; x)) are overedby the lass S+.6 Ordered Resolution for the Guarded FragmentIn this setion we use ordered resolution with seletion as a deision proedure forthe guarded fragment. The guarded fragment was �rst shown deidable by Andr�eka,N�emeti and Van Benthem [1℄. Gr�adel [20℄ has shown that the satis�ability problemfor the guarded fragment is DEXPTIME-omplete. There it was also shown that theguard ondition is neessary only for the universal quanti�ers, when the formula is innegation normal form. A resolution deision proedure for the guarded fragment was�rst established in de Nivelle [9℄. In Ganzinger and de Nivelle [14℄ the method wasadapted to the guarded fragment with equality. It is shown there that the omplexityof the resolution deision proedure is onsistent with the omplexity given in [20℄.The deision proedure that we give here is based on the one in [14℄.A �rst-order formula is in the guarded fragment if it is funtion free, and everyquanti�ation has form 8x (G!  ); or 9x (G ^  ): Here G is an atom ontaining allfree variables of  ; and x is a sequene of variables.We use the following lausal normal form. A lause C is a guarded lause if1. there is no nesting of funtion symbols,2. every funtional term in C ontains all variables of C, and3. if C ontains variables, then there is a negative, funtion-free literal that ontainsall variables of C: Suh a literal is alled a guard literal.As is the ase with the lass of DL�-lauses, there is only a �nitely bounded set ofguarded lauses.Theorem 6.1 (Ganzinger and de Nivelle [14℄) Over a �nite signature the num-ber of possible guarded lauses is of order 22s , where s is the size of the signature.For the redution to lausal normal form we assume that a guarded formula ' isin negation normal form. The redution of ' into guarded lauses uses a struturaltransformation Def� with� = f� j � is a position in ' of a formula of the form 8x (G!  )g:It an be shown that this strutural transformation preserves the guarded fragment.The de�nitional formula that de�nes a guarded formula 8x (G!  ); has the form8y (Q8x(G! )(y)! 8x (G!  )):Every variable in y and x ours in G: This formula is not guarded by itself but itis equivalent to the following formula, whih is guarded: 8xy (G ! (Q8x(G! )(y)! )):Formulae in K(m)(\;[;`) are translated by � into the guarded fragment. Nega-tions of aessibility relations would be problemati. For example, [:r℄p is trans-lated into 9x8y (:R(x; y) ! P (y)): This formula is not guarded. The formula



276 Resolution-Based Methods for Modal Logis[(r1 ^ r2) _ r3̀ ℄p is translated into 9x8y ((R1(x; y) ^ R2(x; y) ) _ R3(y; x) ! P (y)):This formula is not guarded either, however, it is equivalent to the guarded formula:9x8y (R1(x; y)! (R2(x; y)! P (y))) ^ 8y (R3(y; x)! P (y)):We show that this is in general the ase for formulae in K(m)(\;[;`): The mapping� translates formulae of K(m)(\;[;`) into �rst-order formulae in whih the quan-ti�ations have the form 8x (G !  ): In this, G is a relational expression withoutnegation and funtion symbols, in whih eah atom ontains all free variables of  :This G an be translated into disjuntive normal form,(G1;1 ^ : : : ^ G1;l1) _ : : : _ (Gn;1 ^ : : : ^ Gn;ln):The Gi;j are atoms, ontaining all free variables of  : Then 8x (G!  ) is equivalentto 8x ((G1;1 ^ : : : ^ G1;l1)!  ) ^ : : : ^ 8x ((Gn;1 ^ : : : ^ Gn;ln)!  );whih is in turn equivalent to8x (G1;1 ! (: : :! (G1;l1 !  ))) ^ : : : ^ 8x (Gn;1 ! (: : :! (Gn;ln !  ))):The Gi;1 are well-formed guards.In order to obtain a deision proedure for the guarded fragment, we make use ofthe ordering � of the previous setion, ombined with seletion of negative literals.1. If C is a non-ground lause without funtional terms, then S(C) ontains all guardsof C:2. If C is a lause with funtional terms, then S(C) ontains all literals with fun-tional terms.It is easily heked that this is a valid seletion funtion for guarded lauses. If Cis a non-ground lause, then it has at least one guard. Beause this guard is negative,it is possible to selet it. If C ontains funtional terms, then some of the literalsontaining funtional terms are �-maximal. Beause of this it is possible to seletthese literals.The formula 9x9y (R1(x; y) ^ R2(x; y) ^ 8z (R1(y; z) ! R2(y; z) ! P (z))); whihis a translation of hr1 ^ r2i[r1 ^ r2℄p results in the following formula.9x9y (R1(x; y) ^ R2(x; y) ^ Q[r1^r2℄p(y))^ 8yz ((R1(y; z) ^ R2(y; z))! (Q[r1^r2℄p(y)! P (z))):The lausal normal form onsists of the lausesR1(a; b)�R2(a; b)�Q[r1^r2℄p(b)�:R1(x; y)� _ :R2(x; y)� _ :Q[r1^r2℄p(x) _ P (y):



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 277The literals marked with � are the maximal literals. The restrition ould be om-pleted, as in the previous setion, in order to obtain a more total ordering. Thetermination proof is analogous to the proof for DL-lauses. The main diÆulty isto prove that the restrition preserves the guarded fragment. For this we refer toGanzinger and de Nivelle [14℄. Consequently:Theorem 6.2 Let L be a logi in-between K and K(m)(\;[;`). Let N be the lausalform of Def��('), where ' is any modal formula in L. Then:1. Any derivation from N terminates in double exponential time.2. ' is unsatis�able in L i� the saturation of N ontains the empty lause.7 Seletion-Based Resolution for K(m)(\;[;`)K(m)(\;[;`) and logis below it have the property that they an be deided by are�nement of resolution whih is de�ned solely by a seletion funtion of negativeliterals [29℄.Here new names are introdued for all non-atomi subformulae of the translationof a modal formula, that is, we use Def� where � is the subset of positions in '0 (the�rst-order translation) whih orrespond to non-atomi subformulae of ' (the originalmodal formula). Moreover Def� introdues the same symbol for variant subformulaewith the same polarity. Beause, by assumption, ' is in negation normal form, allourrenes of non-atomi subformulae of '0 with one free variable have positivepolarity. This means Def�('0) = Def+� ('0) for the positions � assoiated with theseourrenes. But subformulae orresponding to relational formulae (subformulae withtwo free variables) an our both positively and negatively. For these Def� introduesone symbol for all variant ourrenes of subformulae orresponding to non-atomirelational subformulae with positive polarity and a di�erent symbol for all variantourrenes with negative polarity.For example, Def� will introdue for the subformulae of [�℄h�ip with � = r1 ^ r2the de�nitions (in addition to 9xQ[�℄h�ip(x)):8x (Q[�℄h�ip(x)! 8y (Qn�(x; y)! Qh�ip(y)))8x (Qh�ip(x)! 9y (Qp�(x; y) ^ P (y)))8xy (Qp�(x; y)! (R1(x; y) ^ R2(x; y)))8xy ((R1(x; y) ^ R2(x; y))! Qn�(x; y)):(7.1)The symbol Qn� (resp. Qp�) is assoiated with the negative (resp. positive) ourreneof �.In order to haraterise the indued lass of lauses we introdue some more nota-tion. We denote introdued prediate symbols by Q and Qp� or Qn�, where Q repre-sents an ourrene of a modal subformula  and Qp=n� represents a positive/negativeourrene of a relational subformula �. We also �nd it onvenient to use the notationP(s) for some literal in fPi(s); Q (s)gi; , andR(s; t) for some literal in fRj(s; t); Rj(t; s); Qp=n� (s; t); Qp=n� (t; s)gj;�.



278 Resolution-Based Methods for Modal LogisNote the order of the arguments in R(s; t) is not �xed. Two ourrenes of P(s), orR(s; t), need not be idential. For example, :Q (x) _ Pi(x) _ Q�(x) is an instaneof :Q (x) _ P(x) _ P(x), while:Q (x) _ :Rj(y; x) _ Q�(y) and :Q (x) _ :Qn�(x; y) _ Q�(y)are instanes of :Q (x) _ :R(x; y) _ P(y).Thus, all input lauses have one of the following forms.P(a):Q (x)� _ :Pi(x)� if  = :pi:Q (x)� _ P(x) [_ P(x)℄ if  = �1 ^[_℄ �2:Q (x)� _ :R(x; y)� [_ P(y)℄ if  = [�℄� [ = [�℄?℄:Q (x)� _ P(f(x)):Q (x)� _ R(x; f(x)) if  = h�i�:Qp�(x; y)� _ R(x; y) [_ R(x; y)℄ if � = �1 ^[_℄ �2 has pos. polarityQn�(x; y) _ :R(x; y)� [_ :R(x; y)�℄ if � = �1 ^[_℄ �2 has neg. polarity.(7.2)
The literals marked with � are the seleted literals.The minimal alulus whih we will use is based on maximal seletion of negativeliterals. This means the seletion funtion selets exatly the set of all negative literalsin any non-positive lause. An ordering re�nement is optional. The resolution rule isthe following:Resolution with maximal seletion:C1 _ A1 : : : Cn _ An :An+1 _ : : : _ :A2n _ D(C1 _ : : : _ Cn _ D)�provided for any 1 � i � n, (i) � is the most general uni�er of Ai andAn+i, (ii) Ci _ Ai and D are positive lauses, (iii) no Ai ours in Ci,and (iv) Ai;:An+i are seleted.The negative premise is :An+1 _ : : : _ :A2n _ D and the other premises are thepositive premises. The literals Ai and An+i are the eligible literals.The inferene rules of our alulus, denoted by RMOD, are the above resolution rule,positive fatoring, splitting and at least tautology deletion. All derivations in RMODare generated by strategies in whih no appliation of the resolution or fatoring withidential premises and idential onsequene may our twie on the same path in anyderivation. In addition, deletion rules, splitting, and the dedution rules are appliedin this order, exept that splitting is not applied to lauses whih ontain a seletedliteral.As all non-unit lauses of a typial input set (a onrete example is given in Figure 2below) ontain a seleted literal no fatoring steps are possible and all de�nitionallauses an only be used as negative premises of resolution steps. To begin with thereis only one andidate for a positive premise, namely, the ground unit lause Q'(a)representing the input formula '. Inferenes with suh ground unary unit lausesprodue ground lauses onsisting of positive literals only, whih will be split intoground unit lauses.



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 279R1Q[�℄h�ip Qp� Qn� ttQh�ip R2PFig. 1. Dependeny among prediate symbols for (7.1)Lemma 7.1 Maximally split (non-empty) inferred lauses have one of two forms:P(s), or R(s; f(s)), where s is a ground term.Proof. Every resolution inferene step with a de�nitional lause from the input setand ground unit lauses of the form P(s) or R(s; f(s)) yields a ground lause whihan be split into ground unit lauses of the required form.In general, s will be a nested non-onstant funtional ground term, whih is usu-ally undesirable, beause in most situations this auses unbounded omputations.However, as the next theorem proves, for the lass of lauses under onsideration anyderived lause is smaller than its positive parent lauses with respet to a well-foundedordering whih reets the struture of the formula.By de�nition the modal depth of a formula ' is the maximal nesting of modaloperators h�i or [�℄ in '.Theorem 7.2 Let ' be any K(m)(\;[;`)-formula and let N be the lausal form ofDef��('). Then:1. Any RMOD-derivation from N terminates.2. ' is unsatis�able in K(m)(\;[;`) i� the RMOD-saturation of N ontains the emptylause.Proof. 2. follows from the soundness and refutational ompleteness of ordered reso-lution with seletion (Theorem 4.1).For 1., de�ne a dependeny relation �d on the prediate symbols by S1 �d S2, ifthere is a de�nition  ! � in Def��(') suh that S1 ours in  and S2 ours in�. An additional restrition is that if Q is the symbol introdued for a diamondformula  , and Q� is the symbol introdued for a box formula �, and  and �our at the same modal depth in ', then Q �d Q�. Moreover, let tt be a newsymbol smaller than all prediate symbols. (For example, for (7.1) the dependenyrelation is depited in Figure 1. That is, Q[�℄h�ip �d Qh�ip, and so on.) Let �Dbe any ordering on the prediate symbols in Def��(') whih is ompatible with thetransitive losure of �d, that is, �+d � �D. Suh an ordering an always be found.For this, it was important to introdue di�erent prediate symbols for positive andnegative subformulae assoiated with relational subformulae.By de�nition, a prediate symbol Q is assoiated with a funtion symbol f , writtenQf , if there is a lause :Q(x) _ R(x; f(x)) in N . De�ne a measure � as follows:�(C) = 8><>:(P ;P) if C = P(s)(Q;R) if C = R(s; t)(tt; tt) if C = ;,



280 Resolution-Based Methods for Modal Logiswhere Q is the prediate symbol assoiated with the leading funtion symbol of themaximal term in fs; tg. For example, the measure of a lause R(s; f(s)) is (Qf ; R).Complexity measures are ompared by the lexiographi ombination �= (�D;�D).Now, it is routine to verify that any inferene step from positive premises C1; C2 byresolution or fatoring will produe a lause D suh that �(C1) � �(D); �(C2) ��(D). For example, for the inferene stepQ (s)+ R(s; f(s))+ :Q (x)+ _ :R(x; y)+ _ P(y)P(f(s))�(P(f(s))) = (P ;P), �(Q (s)) = (Q ; Q ), and �(R(s; f(s))) = (Qf ;R), where Qfis the symbol introdued for a diamond formula �, say. � annot our at a highermodal depth than  , whih is a box formula. Hene, it follows that Qf (= Q�) �D P .Consequently, �(R(s; f(s))) � �(P(f(s))). Sine Q �D P , by de�nition, we alsohave that �(Q (s)) � �(P(f(s))). ForQ (s)+ :Q (x)+ _ R(x; f(x))R(s; f(s))we have that �(Q (s)) = (Q ; Q ) � (Q ;R) = �(R(s; f(s))), beause Q �D R.For the following inferene, we have that �(R(s; f(s))) = (Qf ;R) � (Qf ; Qn�) =�(Qn�(s; f(s))), sine � ours negatively in ' and thus R �D Qn�.R(s; f(s))+ Qn�(x; y) _ :R(x; y)+Qn�(s; f(s))It follows that any derivation terminates.Theorem 7.3 For any logi in-between K and K(m)(\;[;`), the spae omplexity fortesting the satis�ability of a modal formulae ' with RMOD is bounded by O(ndm), wheren is the number of symbols in ', d is the number of di�erent diamond subformulae in', and m is the modal depth of '.Proof. Suppose ' is an arbitrary formula of K(m)(\;[;`) and N is the assoiatedinput set. ' has at most n subformulae, and hene, the number of lauses belongingto N is O(n). Also, N ontains at most n di�erent prediate symbols (roughly onefor eah subformula), d di�erent unary funtion symbols and one onstant symbol.Reall from Lemma 7.1, split derived lauses are ground unit lauses of a ertain form.As the maximal term depth bound is given by the modal depth of the input formula,there are at most O(ndm) suh split lauses. It follows that the number of di�erentliterals in any derivation tree is bound by O(ndm).For logis without onverse, spae an be onserved by adopting the ommontableaux inferene strategy of onsidering disjuntive branhes and branhes asso-iated with di�erent 3-subformulae in turn. In addition, the inferenes with de�ni-tional lauses assoiated with diamond subformulae need to be postponed until noother inferenes with de�nitional lauses assoiated with Boolean subformulae3 arepossible. This provides a PSPACE resolution proedure for logis in-between K andK(m)(\;[).3In Boolean subformulae the outermost onnetive is a Boolean onnetive.



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 281Automatially Generating ModelsAny saturated lause set derivable from a given set N allows for the e�etive on-strution of a model of N . In general this model will not be �nite. However, forK(m)(\;[;`) models are given by a �nite set of positive ground unit lauses. Theproofs of the results in this subsetion are slight modi�ations of the orrespondingresults in Hustadt and Shmidt [29℄.Formally, a model of a lause set is a set I of ground atoms. The presene of anatom A in I means A is true in I , and the absene of A means :A is true in I . Ingeneral, a lause C is true in I i� for all ground substitutions � there is a literal L inC� whih is true in I . Falsehood is de�ned dually.Lemma 7.4 Let ' be a K(m)(\;[;`)-formula. Let N be the lausal form of Def��('),and let N1 denote the RMOD-saturated lause set derivable from N . Let I be the setof positive ground unit lauses in N1. If N1 does not ontain the empty lause thenI is a model of N1 and N .Now it is an easy matter to onstrut a modal model M = (W;R; �) for ' from I .Essentially, the set of worlds is de�ned by the set of ground terms ourring in I . Theinterpretation of relational formulae is determined by the set of Ri literals in I . ForanyRi, if Ri(s; t) is in I then (s; t) 2 R(ri), whih an be extended to a homomorphismfor omplex relational formulae. The interpretation of modal formulae an be de�nedsimilarly. For any unary literal Pi(s) (resp. Q (s)) in I , s 2 �(pi) (resp. s 2 �( )),that is, pi (resp.  ) is true in the world s. This is homomorphially extended asexpeted. Consequently:Theorem 7.5 For any modal formula satis�able in K(m)(\;[;`) a �nite modal modelan be e�etively onstruted on the basis of RMOD.Corollary 7.6 Let L be any logi in-between K and K(m)(\;[;`). Then, L has the�nite model property.GeneralisationResults 7.2, 7.5 and 7.6 an be generalised.Theorem 7.7 Let L be a logi in-between K and K(m)(\;[;`). Let � be a �niteRMOD-saturated set of lauses onsisting of two kinds of split omponents.Clauses with at most two free variables, whih are built from �nitely manybinary prediate symbols Rj , no funtion symbols, and ontaining at leastone guard literal (that is, this literal is negative and inludes all the variablesof the lause).(7.3) Clauses built from one variable, �nitely many funtion symbols (inludingonstants), and �nitely many binary prediate symbols Rj , with the restri-tion that (i) the argument multisets of all non-ground literals oinide, and(ii) eah literal whih ontains a onstant is ground.(7.4)Suppose ' is an L-formula and N is the lausal form of Def��('). Then:1. Any RMOD-derivation from N [� terminates.



282 Resolution-Based Methods for Modal Logis2. ' is unsatis�able in L� i� the RMOD-saturation of N [ � ontains the emptylause.Proof. Soundness and ompleteness follows by the general soundness and omplete-ness result of ordered resolution with seletion (Theorem 4.1).For the problem of termination we �rst onsider what kind of lauses we are dealingwith. Input lauses have the form (7.2), (7.3) or (7.4). To begin with we onsiderthe saturation of all theory lauses and the subset of lauses in N whih ontain onlybinary prediate symbols. The latter have the form::Qp�(x; y)+ _ R(x; y) [_ R(x; y)℄ and Qn�(x; y) _ :R(x; y)+ [_ :R(x; y)+℄:(0)We will prove that (non-empty maximally split) inferred lauses inlude ground unitlauses (more preisely, lauses of the form [:℄R(s; t), where s and t are ground terms),and lauses whih are spei�ed by (7.4), exept that they may be de�ned over thegiven Rj symbols and the introdued Qp=n� symbols. Call suh lauses (7.4)+. Let Kdenote the lass of lauses (0), (7.3), (7.4)+ and ground unit lauses, de�ned over a�nite signature. W.l.o.g. we onsider only maximally split lauses.Claim 1: Inferenes with lauses satisfying (7.3) and lauses (0) or ground unitlauses produe ground lauses only. Assume C is a (7.3) lause. C partiipatesin inferene steps as a negative premise and the only potential partners are groundlauses. As at least one of the eligible literals in C is a guard literal the result of suhan inferene step is a ground resolvent.Claim 2: Inferenes with lauses satisfying (7.3) and (7.4)+ produe lauses withground or (7.4)+ split omponents. The proof is not diÆult. Observe that theonlusion of a resolution step in RMOD is always a positive lause.Claim 3: Inferenes with (7.4)+ lauses and (0) lauses or ground unit lauses pro-due either ground lauses or (7.4)+ lauses. First onsider any positive (7.4)+ lauseC. Clearly, the fator of C is again a lause satisfying (7.4)+. Now onsider thepossibilities for resolution inferenes with C.1. Assume C is resolved with a lause of the form :Q (x)+ _ :R(x; y)+ _ P(y).The other positive premise besides C will be a ground unit lause Q (s)+. Regardlessof whether C is ground or not the onlusion will be a ground lause (beause thesingle variable that may our in C will be instantiated with a ground term).2. Another possibility is that C is resolved with a lause Qn�(x; y) _ :R(x; y)+,or a lause Qn�(x; y) _ :R(x; y)+ _ :R0(x; y)+. In the �rst ase the resolvent is avariation of C, namely C with the prediate symbol of the eligible literal replaedby Qn� and possibly the arguments exhanged. In the seond ase the form of theresolvent depends on the seond positive premise. If the seond premise is groundthen the resolvent will also be ground (beause if C is not ground then the singlevariable of C will be instantiated with a ground term). The seond premise C 0 maybe a (7.4)+ lause whih is not ground. In this ase a resolution step is only possible ifthe multisets of arguments of the eligible literals of C and C 0 are idential. It followsthat any resolvent satis�es the onditions of (7.4)+. Notie that no term depth growthours.3. The third possibility is that C is resolved with a lause (7.3). This possibility isovered by Claim 2.Seond, onsider the ase that C is a non-positive (7.4)+ lause. C an only bea negative premise in a resolution inferene step. The only resolution partners are



7. SELECTION-BASED RESOLUTION FOR K(M)(\;[;`) 283ground unit lauses and positive (7.4)+ lauses. In the �rst ase the onlusion is aground lause, and in the latter ase the onlusion is again a (7.4)+ lause.Claim 4: Inferenes with input lauses (0) and ground unit lauses produe groundlauses. The argument is similar as for Lemma 7.4.Claims 1 to 4 prove that the lass K is losed under inferenes in RMOD. Now thesaturation �0 of � and the set of (0) lauses in N is a subset of K. �0 is boundedbeause inferred lauses ontain at most two variables and there is no inrease of theterm depth.We now establish that, onlusions of further inferenes are ground. No inferenesare possible between theory lauses satisfying ondition (7.3) and lauses in N . In-ferenes with lauses not in �0 are with ground lauses, and produe ground lauses.Similarly, inferenes with lauses (7.4)+ and lauses not in �0 are with ground lauses,and produe ground lauses. The remaining inferenes are as in Lemma 7.1. It followsthat non-empty split ground onlusions have the formP(s); (:)R(s; f(s)); (:)R(s; s) or (:)R(b; ):Termination of any derivation from N[� is now shown as follows. Let T, tt be newsymbols whih do not our in either N or �. Again, we use a dependeny relation�d on the prediate symbols. It is de�ned almost as in the proof of Theorem 7.2, butwith subtle di�erenes: S1 �d S2, if there is a de�nition  ! � in Def��(') suhthat S1 ours in  and S2 ours in �. In addition, all relational symbols Rj whihdo not our in N are smaller than any unary prediate symbols. Let T be the largestsymbol with respet to �d, and tt the smallest symbol. As before, let �D be anyordering ompatible with the transitive losure of �d. In addition, de�ne�(T ) = f(:)R(s; t) j s; t 2 T and R is a binary prediate symbolg:Let NC denote the set of lauses derived prior to C, and C itself. Now, de�ne ameasure on (a subset of) lauses in a derivation by:�(C) =8><>:(P ; ;) if C = P(s)(Q;�(fs; tg) nNC) if C = (:)R(s; t)(tt; ;) if C = ;,where Q is the prediate symbol assoiated with the leading funtion symbol of themaximal term in fs; tg, whenever suh a symbol exists, and T otherwise. Here, max-imality is with respet to the proper subterm ordering. The ordering on the om-plexity measures � of positive premises and onlusions is de�ned to be the lexi-ographi ombination of �D and the proper superset relationship. This ordering iswell-founded. Now we need to verify that split ground onlusions are stritly smallerthan their positive premises, whih is routine. Termination follows.Theorem 7.8 Let L and � be as in the previous theorem. For any modal formulasatis�able in L� a �nite modal model an be e�etively onstruted on the basis ofRMOD.Proof. The onstrution of a modal model M is as above from the set of groundunit literals in the saturation of N [ �. It remains to onsistently omplete M in



284 Resolution-Based Methods for Modal Logisaordane with the bakground theory �. This is always possible beause � ontainsno lauses requiring the reation of new worlds. For example, if � = fRi(x; f(x))gthen add (s; s) 2 R(ri) for eah dead end world s. Only propositional literals will betrue in s.Corollary 7.9 Let L and � be as in the previous theorem. Then, L� has the �nitemodel property.Whih extended modal logis satisfy the onditions of Theorem 7.7? Relationalframe properties whih an be desribed by the above lausal form inlude reexivity,irreexivity, seriality, symmetry, inlusions among relations, for example, R1 � R2 orR1 � (R2̀ \ R3), as well as, for example,8x9y :R(x; y), 8x9y (R(x; y) _ R(y; x)), or 8xy (R(x; y)! R(x; x)).Thus, familiar logis overed by the above results inlude KT, KD, KB, KTB, andKDB, but also the basi tense logi K t. The results also over a variety of desriptionlogis, for example, ALC endowed with role onjuntion, role disjuntion and inverseroles, ayli TBox statements, and both onept and role ABox statements.By re�ning RMOD with an ordering restrition whih would prefer to resolve uponliterals ontaining funtional terms of the theory lauses in � we expet that theabove deidability result an be improved onsiderably.Finally, let us look at a sample derivation, in Figure 2, and make a few observations.R is assumed to be reexive, for otherwise not many inferene steps are possible. First,notie how the orrespondene to modal subformulae is retained during inferene inRMOD. For example, 14.1.1 and 14.2.1 say that p and 3p are true in the initial worlda, 14.2.2, 14.2.3 and 14.2.4 say that p and p _ 3p are true in a suessor world of a.Seond, notie the similarity of this derivation to the derivation of a lassial tableauxproedure. This onnetion will be formally disussed in the next setion.8 Tableaux CaluliSeletion re�nements of resolution (and hyperresolution) are losely related to stan-dard modal tableaux aluli and desription logi systems [13, 27, 28, 29℄. In thissetion, we exploit this onnetion and present tableaux aluli for the modal logiK(m)(\;[;`), and logis below it. These aluli resemble and enhane those om-monly used in desription logi systems [22, 21℄. We also investigate the relationshipbetween our seletion-based resolution proedure and single-step pre�xed tableauxaluli.Tableaux Caluli for Subsystems of K(m)(\;[;`)A tableaux is a �nitely branhing tree whose nodes are sets of labelled formulae. Giventhat ' is a formula to be tested for satis�ability the root node is the set fa : 'g.Suessor nodes are onstruted in aordane with a set of expansion rules. A ruleXX1 j ::: j Xn �res for a seleted formula F in a node if F is an instane of the numeratorX , or more generally, F together with other formulae in the node are instanes ofthe formulae in X . n suessor nodes are reated whih ontain the formulae ofthe urrent node and the appropriate instanes of Xi. It is assumed that no rule is



8. TABLEAUX CALCULI 2851: Q'(a)2: :Q'(x)+ _ Q2(x)3: :Q'(x)+ _ Q:(x)4: :Q2(x)+ _ :R(x; y)+ _ Q_(y)5: :Q_(x)+ _ P (x) _ Q3(x)6: :Q3(x)+ _ R(x; f(x))7: :Q3(x)+ _ P (f(x))8: :Q:(x)+ _ :P (x)+9: R(x; x)10: Q2(a) [1, 2℄11: Q:(a) [1, 3℄12: Q_(a) [4, 9, 10℄13: P (a) _ Q3(a) [5, 12℄14:1:1: P (a) [13, split℄14:1:2: ; [8, 11, 14.1.1℄ 14:2:1: Q3(a) [13, split℄14:2:2: R(a; f(a)) [6, 14.2.1℄14:2:3: P (f(a)) [7, 14.2.1℄14:2:4: Q_(f(a)) [4, 10, 14.2.2℄14:2:5: P (f(a)) _ Q3(f(a)) [5, 14.2.4℄14:2:5:1:1: P (f(a)) [14.2.5, split℄ 14:2:5:1:2: Q3(f(a)) [14.2.5, split℄Fig. 2. Derivation tree for testing the satis�ability of ' = 2(p _ 3p) ^ :p in KT.applied twie to the same instane of the numerator. In the following we assume ' isa formula in negation normal form.Figure 3 lists the expansion rules for the logi K(m)(\;[;`), while for any logi Lin-between K and K(m)(\;[;`) the expansion rules are given by appropriate subsets,see Figure 4. The rules forK(m)(\;[;`) inlude the lash rule (?), seven `elimination'rules (^), (_), (3), (2), (`), (^r), and (_r) for positive ourrenes of subformulae,and three `introdution' rules (`I), (^rI ) and (_rI) for negative ourrenes of subfor-mulae. The side onditions for the introdution rules ensure that formulae are notintrodued unneessarily. Conjuntion and disjuntion are assumed to be assoiativeand ommutative operations. Note that only the disjuntion rules are \don't know"nondeterministi and require the use of baktraking.To avoid unneessary dupliation and superuous inferenes we de�ne a notion ofredundany whih is in the spirit of Bahmair and Ganzinger [3℄. A labelled formulaF is redundant in a node if the node ontains labelled formulae F1; : : : ; Fn (for n � 0)whih are smaller than F and j=L (F1 ^ : : : ^ Fn)! F . In this ontext a formula  is smaller than a formula � if  is a subformula of �, but a more general de�nitionbased on an admissible ordering in the sense of [3, 4℄ may be hosen. The appliationof a rule is redundant if its onlusion(s) is (are) redundant in the urrent node. Forexample, for any s, s : > is redundant, and if a node inludes s :  and s :  _ �,then the (_) rule need not be applied, and no new branhes are introdued.



286 Resolution-Based Methods for Modal Logis(?) s :  ; s : : s : ? (^) s :  ^ �s :  ; s : � (_) s :  _ �s :  j s : �(3) s : h�i (s; t) : �; t :  with t new to the branh (2) (s; t) : �; s : [�℄ t :  (`) (s; t) : �`(t; s) : � (^r) (s; t) : � ^ �(s; t) : �; (s; t) : � (_r) (s; t) : � _ �(s; t) : � j (s; t) : �(`I) (t; s) : �(s; t) : �` (^rI ) (s; t) : �; (s; t) : �(s; t) : � ^ � (_rI ) (s; t) : �(s; t) : � _ �For the rules (`I), (^rI ) and (_rI) the side onditions are that the formulae in thedenumerator, i.e. �`, � ^ � or � _ �, our as subformulae of the parameter  of abox formula s : [℄ on the urrent branh.Fig. 3. Tableaux expansion rules for K(m)(\;[;`).For K(m): (?); (^); (_); (3); (2)For K(m)(`): (?); (^); (_); (3); (2); (`); (`I )For K(m)(\): (?); (^); (_); (3); (2); (^r); (^rI)For K(m)([): (?); (^); (_); (3); (2); (_r); (_rI)For K(m)(\;[): (?); (^); (_); (3); (2); (^r); (^rI); (_r); (_rI )... ...Fig. 4. Tableaux aluli for logis in-between K(m) and K(m)(\;[;`).Theorem 8.1 A formula ' is satis�able in K(m)(\;[;`) i� a tableaux ontaining abranh B an be onstruted with the rules of Figure 3 suh that B does not ontainthe falsum (s : ? for some s) and eah rule appliation is redundant.Proof. By soundness, ompleteness and termination of the seletion re�nement RMOD(Theorem 7.2), and the observation that the tableaux rules are maro inferene stepsof RMOD on the setN = N 0 [ f:Qp�(x; y)+ _ Qn�(x; y) j � is a non-atomi relational formula in 'g;where N 0 is the lausal form of Def��('), and � is as de�ned at the beginning ofthe previous setion. For this extended N the termination argument is the same asin Theorem 7.2.De�ne a mapping h0 from labelled formulae to ground unit lauses by (h0 is in fata bijetion) h0(s :  ) = h( )(h(s))h0((s; t) : �) = h(�)(h(s); h(t));where  denotes a modal formula, � a relational formula. h is de�ned by: h(pi) = Pi,h(rj) = Rj , h( ) = Q , h(�) = Qp�, h(a) = a, and h(t) = fh�i (h(s)) where s : h�i is the formula for whih t was introdued and fh�i is the Skolem funtion assoiatedwith h�i .



8. TABLEAUX CALCULI 287The RMOD-derivation orresponding to an appliation of the (3)-rule is: fromQh�i (h(s)), :Qh�i (x)+ _ Qp�(x; f(x)) and :Qh�i (x)+ _ Q (f(x)), derive theunits Qp�(h(s); f(h(s))) and Q (f(h(s))) in two resolution steps. For (`I) the resol-vent of Qn�(h(s); h(t)) (or Qp�(h(s); h(t)) and :Qp�(x; y)+ _ Qn�(x; y)) and Qn�`(x; y) _:Qn�(y; x)+, is Qn�`(h(t); h(s)). Similarly, for the other rules.Apart from fatoring there are no inferene steps in RMOD whih are not involved insome maro inferene step. Due to the fat that all positive premises are ground andthus subjet to the appliation of splitting, fatoring is not needed for ompleteness,and is thus optional.Corollary 8.2 The appropriate subsets (see Figure 4) of the rules from Figure 3provide sound, omplete and terminating tableaux aluli for logis in-between K andK(m)(\;[;`).An immediate onsequene of Theorem 7.5 is:Corollary 8.3 If L is a logi in-between K and K(m)(\;[;`) and ' is satis�able in Lthen a �nite modal model an be e�etively onstruted on the basis of the appropriatetableaux alulus for L.Simulation of Single-Step Pre�xed TableauxWe distinguish between two notions of polynomial simulation (or p-simulation). Byde�nition, a proof system A p-simulates derivations of a proof system B i� there isa funtion g, omputable in polynomial time, whih maps derivations in B for anygiven formula ', to derivations in A for '. We also say system A p-simulates searhof a system B i� there is a polynomial funtion g suh that for any formula ', g mapsderivations from ' in A to derivations from ' in B. The �rst notion generalises thenotion of p-simulation found in [6℄, who are only onerned with the p-simulationof proofs (that is, suessful derivations leading to a proof). Simulation of searhis a relationship in the opposite diretion. It implies that A does not perform anyinferene steps for whih no orresponding inferene steps exist in B. To show that Ap-simulates proofs or derivations of B it is suÆient to prove that for every formula' and every derivation D2 of ' in B, there exists a derivation D1 of ' in A suhthat the number of appliations of inferene rules in D1 is polynomially bounded bythe number of appliations of inferene rules in D2. This an be ahieved by showingthat there exists a number n suh that eah appliation of an inferene rule in D1orresponds to at most n appliations of inferene rules in D2. It follows that thelength of D2 is polynomially bounded by the length of D1. We all this a step-wisesimulation of B by A. Note that a step-wise simulation is independent of whether theonsidered derivations are proofs or not.The single-step pre�xed tableaux aluli of Massai [31, 33℄ for subsystems of S5are de�ned by Figures 5 and 6. (Remember KT = KDT, S4 = KT4, KB4 = KB5,S5 = KTB4 = KDB4 = KT5.) The basi entities are formulae labelled with pre�xes.A labelled (pre�xed) formula has the form � : ', where � is a sequene of positiveintegers and ' is a modal formula. � represents a world in whih ' is true. Tableauxderivations have a tree struture and begin with the formula, 1 : ' in the root node.Suessor nodes are then onstruted by the appliation of expansion rules. The



288 Resolution-Based Methods for Modal Logis(?) � :  ; � : : � : ? (^) � :  ^ �� :  ; � : � (_) � :  _ �� :  j � : �(3) � : 3 �:n :  with �:n new to the urrent branh(2) � : 2 �:n :  (D) � : 2 � : 3 (T ) � : 2 � :  (B) �:n : 2 � :  (4) � : 2 �:n : 2 (4r) �:n : 2 � : 2 (4d) �:n : 2 �:n:m : 2 (5) 1:n : 2 1 : 22 Fig. 5. Single step pre�xed tableaux expansion rules for subsystems of S5.For K : (?); (^); (_); (3); (2)For KD : (?); (^); (_); (3); (2); (D)For KT : (?); (^); (_); (3); (2); (T )For KB : (?); (^); (_); (3); (2); (B)For K4 : (?); (^); (_); (3); (2); (4)For K5 : (?); (^); (_); (3); (2); (4r); (4d); (5)For KDB : (?); (^); (_); (3); (2); (D); (B)For KD4 : (?); (^); (_); (3); (2); (D); (4)For KD5 : (?); (^); (_); (3); (2); (D); (4r); (4d); (5)For KTB : (?); (^); (_); (3); (2); (T ); (B)For S4 : (?); (^); (_); (3); (2); (T ); (4)For KB4 : (?); (^); (_); (3); (2); (B); (4); (4r)For K45 : (?); (^); (_); (3); (2); (4); (4r); (4d)For KD45 : (?); (^); (_); (3); (2); (D); (4); (4r); (4d)For S5 : (?); (^); (_); (3); (2); (T ); (4); (4r)Fig. 6. Tableaux aluli for subsystems of S5.pre�xes in the expansion rules, exept for �:n of the (3)-rule, are assumed to bepresent on the urrent branh.Theorem 8.4 (Massai [31, 33℄, Gor�e [19℄) Let � � fD;T;B; 4; 5g. A formula' is satis�able in a logi K� i� a tableaux ontaining a branh B an be onstrutedby the tableaux alulus for K� suh that B does not ontain the falsum and furtherrule appliations are redundant.The �rst-order bakground theories for the di�erent axiom shemas are determined



8. TABLEAUX CALCULI 289by the following.TK = ; TKD = fR(x; f(x))+g TKT = fR(x; x)+gTKB = f:R(x; y)+ _ R(y; x)g TK4 = f:R(x; y)+ _ :R(y; z) _ R(x; z)gTK5 = f:R(x; y) _ :R(x; z) _ R(y; z);:R(x; y) _ R(y; y)gFor modal logis losed under more than one additional axiom shema the bakgroundtheories are de�ned by the union of the orresponding lause sets, for example, TKD4 =TKD [ TK4.Observe that for 4 and 5 only ertain negative literals will be seleted in the theorylauses. In the ase of 5 we do not selet any literal.Theorem 8.5 Let � � fD;T;B; 4; 5g. Resolution p-simulates derivations of singlestep pre�x tableaux for K�.Proof. Suppose we are interested in the satis�ability of the modal formula '. Wewill show that RMOD p-simulates single step pre�x tableaux step-wise.Similar as in the proof of Theorem 8.1 de�ne a mapping (bijetion) h0 from pre�xedformulae to ground unit lauses by h0(� :  ) = h( )(h(�)), where h is de�ned by:h(pi) = Pi, h(rj) = Rj , h( ) = Q for  a modal subformula of ', h(1) = a, andh(�:n) = f3 (h(�)) where 3 is the formula for whih n was introdued and f3 isthe Skolem funtion assoiated with 3 . For example, the unit lause assoiated (byh0) with the formula 1 : ' ontained in the root node is Q'(a).Now show that eah tableaux inferene step an be simulated by a onstant num-ber of RMOD-inferene steps. For instane, the derivation of ? by the lash ruleorresponds to one resolution inferene step applied to Q (h(�)), Q: (h(�)) and:Q: (x)+ _ :Q (x)+, whih generates the empty lause. For the simulation of theappliation of the (3) rule to � : 3 we may assume that Q3 (h(�)) is present inthe lauses set. Also present are the de�nitional lauses :Q3 (x)+ _ R(x; f(x)), and:Q3 (x)+ _ Q (f(x)). Then an appliation of the (3) rule orresponds to perform-ing two resolution inferene steps produing R(h(�); f(h(�))) and Q (f(h(�))). Theterm f(h(�)) orresponds to the new pre�x �:n. The interested reader may �ll in thedetails for the other rules, see also [29℄.For the modal logis K� with � � fD;T;Bg there is a near bisimulation betweenthe tableaux aluli and RMOD. If fatoring rules are added to the tableaux aluli thentableaux p-simulates also derivations of the seletion-based resolution re�nement. Itfollows that:Theorem 8.6 RMOD p-simulates searh in single step pre�x tableaux for K� with� � fD;T;Bg.This is not true for logis in whih 4 and 5 are theorems. For 4 and 5 terminationin single step pre�xed tableaux is ensured by a loop heking mehanism [31, 33℄.One a loop is deteted in a branh no further rules are applied. In RMOD furtherinferene steps will be performed. To prevent this we have to provide the meansby whih the resolution proedure an reognise the redundany of further inferenesteps. This may possibly be realised by soft typing [16℄ or some form of blokingwhih is analogous to loop heking [27℄.



290 Resolution-Based Methods for Modal LogisIn this setion we have foussed on single-step pre�xed tableaux aluli, but thishoie is arbitrary. Our tehnique an also be applied for obtaining simulation resultsof modal tableaux aluli with impliit or expliit aessibility relation and analytimodal KE tableaux [25, 32℄, or even sequent proof systems. Simulation results oftableaux aluli for desription logis by resolution an be found in Hustadt andShmidt [27, 28℄.9 Conluding RemarksThe approah purported in this overview paper is that modal logis an be seen tobe fragments of �rst-order logi and inferene systems for modal logis an be devel-oped and studied within the framework of �rst-order resolution. Several issues wereonsidered. In partiular, we have foussed on the deision problem for a range ofexpressive extended modal logis and have desribed resolution proedures of varyingnature. We have looked at using resolution methods for automatially generatingmodels. Exploiting the link between seletion-based resolution and tableaux meth-ods, we have proposed a new tableaux alulus for multi-modal logis de�ned overrelations losed under union, intersetion and onverse. And, we have presented simu-lation results whih give us an understanding of modal tableaux methods in the widerontext of �rst-order logi and resolution.Some important modal logis for whih we have not presented a deision proedureare modal logis with transitive modalities. To deide extensions of K4 one possibilityis to modify the alulus and add ordered haining rules for transitive relations [15℄.Another possibility is to use the resolution proedures desribed in this paper butblok further inferenes with lauses ontaining terms in whih the level of nestingexeeds a pre-omputed term depth bound. In pratie this solution is rather poor,as are solutions enoding K4 or S4 problems in K or KT.AknowledgementsWe thank the referees for valuable and detailed omments.Referenes[1℄ H. Andr�eka, I. N�emeti, and J. van Benthem. Modal languages and bounded fragments ofprediate logi. J. of Philosophial Logi, 27(3):217{274, 1998.[2℄ H. Andr�eka, J. van Benthem, and I. N�emeti. Bak and forth between modal logi and lassiallogi. Bull. IGPL, 3(5):685{720, 1995.[3℄ L. Bahmair and H. Ganzinger. Rewrite-based equational theorem proving with seletion andsimpli�ation. J. of Logi and Computation, 4(3):217{247, 1994.[4℄ L. Bahmair and H. Ganzinger. Resolution theorem proving. In J. A. Robinson and A. Voronkov,editors, Handbook of Automated Reasoning. Elsevier, 2000. To appear.[5℄ C.-L. Chang and R. C.-T. Lee. Symboli Logi and Mehanial Theorem Proving. ComputerSiene Classis Series. Aademi Press, New York, 1973.[6℄ S. A. Cook and R. A. Rekhow. The relative eÆieny of propositional proof systems. J. ofSymboli Logi, 44(1):36{50, 1979.[7℄ H. de Nivelle. Ordering Re�nements of Resolution. PhD thesis, Delft University of Tehnology,1995.
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