
Tree Spanners for Bipartite Graphs and Probe
Interval Graphs

Andreas Brandstädt1, Feodor F. Dragan2, Hoang-Oanh Le1, Van Bang Le1,
and Ryuhei Uehara3

1 Institut für Theoretische Informatik, Fachbereich Informatik,
Universität Rostock, 18051 Rostock, Germany.

{ab,hoang-oanh.le,le}@informatik.uni-rostock.de
2 Dept. of Computer Science, Kent State University, Ohio, USA.

dragan@cs.kent.edu
3 Natural Science Faculty, Komazawa University, Tokyo, Japan.

uehara@komazawa-u.ac.jp

Abstract. A tree t-spanner T in a graph G is a spanning tree of
G such that the distance between every pair of vertices in T is at
most t times their distance in G. The tree t-spanner problem asks
whether a graph admits a tree t-spanner, given t. We first substantially
strengthen the known results for bipartite graphs. We prove that the
tree t-spanner problem is NP-complete even for chordal bipartite graphs
for t ≥ 5, and every bipartite ATE–free graph has a tree 3-spanner,
which can be found in linear time. The best known before results were
NP-completeness for general bipartite graphs, and that every convex
graph has a tree 3-spanner. We next focus on the tree t-spanner problem
for probe interval graphs and related graph classes. The graph classes
were introduced to deal with the physical mapping of DNA. From a
graph theoretical point of view, the classes are natural generalizations
of interval graphs. We show that these classes are tree 7-spanner
admissible, and a tree 7-spanner can be constructed in O(m log n) time.

Keywords: Chordal bipartite graph, Interval bigraph, NP-completeness,
Probe interval graph, Tree spanner

1 Introduction

A tree t-spanner T in a graph G is a spanning tree of G such that the distance
between every pair of vertices in T is at most t times their distance in G. The
tree t-spanner problem asks whether a graph admits a tree t-spanner, given t.
The notion is introduced by Cai and Corneil [8,9], which finds numerous ap-
plications in distributed systems and communication networks; for example, it
was shown that tree spanners can be used as models for broadcast operations
[1] (see also [23]). Moreover, tree spanners were used in the area of biology [2],
and approximating the bandwidth of graphs [27]. We refer to [24,26,6] for more
background information on tree spanners.

H.L. Bodlaender (Ed.): WG 2003, LNCS 2880, pp. 106–118, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 107

The tree t-spanner problem is NP-complete in general [9] for any t ≥ 4.
However, it can be solved efficiently for some particular graph classes. Especially,
the complexity of the tree t-spanner problem is well investigated for chordal
graphs and its subclasses. For t ≥ 4 the problem is NP-complete for chordal
graphs [6], strongly chordal graphs are tree 4-spanner admissible [3] (i.e., every
strongly chordal graph has a tree 4-spanner), and the following graph classes are
tree 3-spanner admissible: interval graphs [18], directed path graphs [17], split
graphs [27] (see also [6]).

We first focus on the tree t-spanner problem for bipartite graphs and its sub-
classes. The class of bipartite graphs is wide and important from both practical
and theoretical points of view. However, the known results for the complexity
of the tree t-spanner problem for bipartite graph classes are few comparing to
chordal graph classes. The NP-completeness is only known for general bipartite
graphs (this result can be deduced from the construction in [9]), and the pro-
blem can be solved for regular bipartite graphs, and convex graphs as follows; a
regular bipartite graph is tree 3-spanner admissible if and only if it is complete
[18]; and any convex graph is tree 3-spanner admissible [27].

We substantially strengthen the known results for bipartite graph classes,
and reduce the gap. We show that the tree t-spanner problem is NP-complete
even for chordal bipartite graphs for t ≥ 5. The class of chordal bipartite graphs
is a bipartite analog of chordal graphs, introduced by Golumbic and Goss [13],
and has applications to nonsymmetric matrices [12]. We also show that every
bipartite asteroidal-triple-edge–free (ATE–free) graph has a tree 3-spanner, and
such a tree spanner can be found in linear time. The class of ATE–free graphs
was introduced by Müller [22] to characterize interval bigraphs. The class of
interval bigraphs is a bipartite analog of interval graphs and was introduced by
Harary, Kabell, and McMorris [14].

Our results reduce the gap between the upper and lower bounds of the com-
plexity of the tree t-spanner problem for bipartite graph classes since the follo-
wing proper inclusions are known [22,7]; convex graphs ⊂ interval bigraphs ⊂
bip. ATE–free graphs ⊂ chordal bipartite graphs ⊂ bipartite graphs.

We next focus on the tree t-spanner problem on probe interval graphs and
related graph classes. The class of probe interval graphs was introduced by Zhang
to deal with the physical mapping of DNA, which is a problem arising in the
sequencing of DNA (see [28,21,20,29] for background). A probe interval graph is
obtained from an interval graph by designating a subset P of vertices as probes,
and removing the edges between pairs of vertices in the remaining set N of
nonprobes. In the original papers [28,29], Zhang introduced two variations of
probe interval graphs. An enhanced probe interval graph is the graph obtained
from a probe interval graph by adding the edges joining two nonprobes if they are
adjacent to two independent probes. The class of STS-probe interval graphs is a
subset of the probe interval graphs; in those graphs all probes are independent.

From the graph theoretical point of view, it has been shown that all probe
interval graphs are weakly chordal [21], and enhanced probe interval graphs are
chordal [28,29]. In full version, we show that (1) the class of STS-probe interval

108 A. Brandstädt et al.

graphs is equivalent to the class of convex graphs (hence the class is tree 3-
spanner admissible), and (2) the class of the (enhanced) probe interval graphs
is incomparable with the classes of strongly chordal graphs and rooted directed
path graphs.

Hence, from both viewpoints of graph theory and biology, the tree t-spanner
problem for (enhanced) probe interval graphs is worth investigating. Especially,
it is natural to ask that if those graph classes are tree t-spanner admissible for
fixed integer t. We give the positive answer to that question: The classes of probe
interval graphs and enhanced probe interval graphs are tree 7-spanner admissi-
ble. A tree 7-spanner of a (enhanced) probe interval graph can be constructed
in O(m + n log n) time if it is given with an interval model. Therefore, using the
recognition algorithms in [15,19], we can construct a tree 7-spanner for a given
(enhanced) probe interval graph G = (P, N, E) in O(m log n) time.

Due to space limitation, proofs are omitted, and can be found in full version1.

2 Preliminaries

Given a graph G = (V, E) and a subset U ⊆ V , the subgraph of G induced by U
is the graph (U, F), where F = {{u, v}|{u, v} ∈ E for u, v ∈ U}, and denoted by
G[U]. For a subset F of E, we sometimes unify the edge set F and its edge induced
subgraph (U, F) with U = {v|{u, v} ∈ F for some u ∈ V }. For two vertices u and
v on G, the distance of the vertices is the minimum length of the paths joining u
and v, and denoted by dG(u, v). The disk of radius k centered at v is the set of all
vertices with distance at most k to v, Dk(v) = {w ∈ V : dG(v, w) ≤ k}, and the
kth neighborhood Nk(v) of v is defined as the set of all vertices at distance k to v,
that is Nk(v) = {w ∈ V : dG(v, w) = k}. By N(v) we denote the neighborhood of
v, i.e., N(v) := N1(v). More generally, for a subset S ⊆ V let N(S) = ∪v∈SN(v)
denote the neighborhood of S.

A tree t-spanner T in a graph G is a spanning tree of G such that for each pair
u and v in G, dT (u, v) ≤ t · dG(u, v). We say that G is tree t-spanner admissible
if it contains a tree t-spanner. The tree t-spanner problem is to determine, for
given graph and positive integer t, if the graph admits a tree t-spanner. A class
C of graphs is tree t-spanner admissible if every graph in C is tree t-spanner ad-
missible. On the tree t-spanner problem, the following result plays an important
role:

Lemma 1. [9] A spanning tree T of G is a tree t-spanner if and only if for every
edge {u, v} of G, dT (u, v) ≤ t.

It is well known that a graph G is bipartite if and only if G contains no
cycle of odd length [16]. Thus, for each positive integer k, a tree 2k-spanner of a
bipartite graph G is also a tree (2k − 1)-spanner. Hence we will consider a tree
t-spanner for each odd number t for bipartite graphs.

A graph (V, E) with V = {v1, v2, · · · , vn} is an interval graph if there is a set
of intervals I = {I1, I2, · · · , In} such that {vi, vj} ∈ E if and only if Ii ∩ Ij �= ∅
1 Full version is available at http://www.komazawa-u.ac.jp/˜uehara/ps/t-span.pdf

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 109

for each 1 ≤ i, j ≤ n. We call the set I interval representation of the graph. For
each interval I, we denote by R(I) and L(I) the right and left endpoints of the
interval, respectively. A bipartite graph (X, Y, E) with X = {x1, x2, · · · , xn1}
and Y = {y1, y2, · · · , yn2} is an interval bigraph if there are families of intervals
IX = {I1, I2, · · · , In1} and IY = {J1, J2, · · · , Jn2} such that {xi, yj} ∈ E if and
only if Ii ∩ Jj �= ∅ for each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. We also call the families
of intervals (IX , IY) interval representation of the graph. We sometimes unify a
vertex vi and its corresponding interval Ii; Iv denotes the interval corresponding
to the vertex v, and R(v) and L(v) denote R(Iv) and L(Iv), respectively.

An edge which joins two vertices of a cycle but is not itself an edge of the
cycle is a chord of that cycle. A graph is chordal if each cycle of length ≥ 4 has
a chord. A graph G is weakly chordal if G and Ḡ contain no induced cycle Ck

with k ≥ 5. A bipartite graph G is chordal bipartite if each cycle of length ≥ 6
has a chord. Let the neighborhood N(e) of an edge e = {v, w} be the union
N(v) ∪ N(w) of the neighborhoods of the end-vertices of e. Three edges of a
graph G form an asteroidal triple of edges (ATE) if for any two of them there is
a path from the vertex set from one to the vertex set of the other that avoids
the neighborhood of the third edge. ATE–free graphs are those graphs which do
not contain any ATE. This class of graphs was introduced in [22], where it was
also shown that any interval bigraph is an ATE–free graph, and any bipartite
ATE–free graph is chordal bipartite.

A graph G = (V, E) is a probe interval graph if V can be partitioned into
subsets P and N (corresponding to the probes and nonprobes) and each v ∈ V can
be assigned to an interval Iv such that {u, v} ∈ E if and only if both Iu ∩ Iv �= ∅
and at least one of u and v is in P . In this paper, we assume that P and N are
given, and we denote the considered probe interval graph by G = (P, N, E). Let
G = (P, N, E) be a probe interval graph. Let E+ be a set of edges {u1, u2} with
u1, u2 ∈ N such that there are two probes v1 and v2 in P such that {v1, u1},
{v1, u2}, {v2, u1}, {v2, u2} ∈ E, and {v1, v2} �∈ E. Each edge in E+ is called an
enhanced edge, and the resulting graph G+ = (P, N, E ∪ E+) is said to be an
enhanced probe interval graph. See [28,21,20,29] for further details.

3 NP-Completeness for Chordal Bipartite Graphs

S1[a, b] S2[a, b] S3[a, b]

a b a b a b

a′ b′

a′ b′
a′ b′

Fig. 1. The graph S�[a, b]

In this section we show that, for
any t ≥ 5, the tree t-spanner
problem is NP-complete for
chordal bipartite graphs. The
proof is a reduction from Mo-
notone 3SAT which consists of
instances of 3SAT such that
each clause contains either only
negated variables or only non-
negated variables (see [11, LO2]). For which the following family of chordal
bipartite graphs will play an important role.

110 A. Brandstädt et al.

First, S0[a, b] is an edge {a, b}, and S1[a, b] is the 4-cycle (a, a′, b′, b, a). Next,
for a fixed integer � > 1, S�+1[a, b] is obtained from one cycle (a, b, b′, a′, a),
S�[a, a′], S�[b, b′], and S�[a′, b′] by identifying the corresponding vertices (see
Fig. 1). We will connect the vertices a and b to other graphs, and use S�[a, b] as
a subgraph of bigger graphs. Sometimes, when the context is clear, we simply
write S� for S�[a, b]. In case � > 0 we write (a, a′, b′, b, a) for the 4-cycle in S�[a, b]
containing the edge {a, b}. Each of the edges {a, a′}, {a′, b′}, {b, b′} belongs to a
unique S�−1, the corresponding S�−1 in S�[a, b] to {a, a′}, {a′, b′}, {b, b′}, respec-
tively. The following observations collect basic facts on S� used in the reduction
later.

Observation 1. For every integer � ≥ 0, S�[a, b] has a tree (2� + 1)-spanner
containing the edge {a, b}.

Observation 2. Let H be an arbitrary graph and let e be an arbitrary edge of
H. Let K be an S�[a, b] disjoint from H. Let G be the graph obtained from H
and K by identifying the edges e and {a, b}; see Fig. 2. Suppose that T is a
tree t-spanner in G, t > 2�, such that the (a, b)-path in T belongs to H. Then
dT (a, b) ≤ t − 2�.

Observation 2 indicates a way to force an edge {x, y} to be a tree edge:
Choosing � =
 t−1

2 � shows that {a, b} must be an edge of T .
We now describe the reduction. Let k ≥ 2 be

an integer, and let F be a 3SAT formula with m
clauses Cj for 1 ≤ j ≤ m, over n variables xi for
1 ≤ i ≤ n.

Definition 1. In a graph G, an edge {a, b} is
said to be forced by an S� if {a, b} appears in
some S�[a, b] (as induced subgraph in G) such
that {a, b} disconnects S�[a, b] from the rest. We
require that each two S�[a, b] and S�′ [c, d] have
at most 2 vertices in {a, b, c, d} in common. An
edge {a, b} is said to be strongly forced if it is
forced by two Sk[a, b].

H

a e b

Fig. 2. The graph obtained
from H and S�[a, b] by iden-
tifying the edge e = {a, b}

By Observation 2, if G has a tree (2k + 1)-spanner T every strongly forced
edge must belong to T .

For each variable xi create the gadget G(xi) as follows: (1) Take 2m + 4 ver-
tices x1

i , . . . , x
m
i , xi

1, . . . , xi
m, pi, qi, ri, si, and (2) for 1 ≤ j, j′ ≤ m, add the ed-

ges {xj
i , xi

j′}, {qi, x
j
i}, {ri, x

j
i}, {pi, xi

j}, {si, xi
j}, and {pi, ri}, {ri, si}, {si, qi}.

Furthermore, (3) each of the edges {pi, ri}, {ri, si}, {si, qi}, and {xj
i , xi

j} with
1 ≤ j ≤ m, is a strongly forced edge, (4) force each edge {a, b} ∈ {{qi, x

j
i} : 1 ≤

j ≤ m} ∪ {{ri, x
j
i} : 1 ≤ j ≤ m} ∪ {{pi, xi

j} : 1 ≤ j ≤ m} ∪ {{si, xi
j} : 1 ≤

j ≤ m} ∪ {{xj
i , xi

j′} : 1 ≤ j, j′ ≤ m, j �= j′} by an Sk−1[a, b]. (See Fig.3; in the
figure, the Sk and Sk−1 are omitted, and thick edges are strongly forced).

The vertex xj
i (xi

j , respectively) will be connected to the clause gadget of
clause Cj if xi (xi, respectively) is a literal in Cj . All edges {ri, x

j
i} (1 ≤ j ≤ m)

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 111

or else all edges {si, xi
j} (1 ≤ j ≤ m) will belong to any tree (2k + 1)-spanner

(if any) of the graph G which we are going to describe.

Definition 2. A clause is positive (negative, respectively) if it contains only
variables (negation of variables).

We note that each clause is either positive or negative since given formula
is an instance of Monotone 3SAT. For each clause Cj , G(Cj) is the 4-cycle
(c+

j , d+
j , d−

j , c−
j , c+

j) where {c+
j , d+

j }, {d+
j , d−

j }, and {d−
j , c−

j } are strongly forced
edges (see Fig.4).

Finally, the graph G = G(F) is obtained from all G(vi) and G(Cj) by iden-
tifying all vertices pi, qi, ri and si to a single vertex p, q, r, and s, respectively
(thus, {p, r}, {r, s} and {s, q} are edges in G), and adding the following edges: (1)
Connect every xj

i with every xi′ j
′
(i �= i′). (2) For every positive clause Cj : If xi

is in Cj then connect xj
i with c+

j and force the edge {xj
i , c

+
j } by an Sk−2[x

j
i , c

+
j].

Connect c−
j with r and force the edge {c−

j , r} by an Sk−2[c−
j , r]. (3) For every

negative clause Cj : If xi is in Cj then connect xi
j with c−

j and force the edge
{xi

j , c−
j } by an Sk−2[xi

j , c−
j]. Connect c+

j with s and force the edge {c+
j , s} by

an Sk−2[c+
j , s].

The description of the graph G = G(F) is complete. Clearly, G can be
constructed in polynomial time. See Fig. 5 for an example.
Lemma 2. G is chordal bipartite.

Lemma 3. Suppose G admits a tree (2k + 1)-spanner. Then F is satisfiable.

Lemma 4. Suppose F is satisfiable. Then G admits a tree (2k + 1)-spanner.

Theorem 3. For every fixed k ≥ 2, the Tree (2k + 1)-Spanner problem is NP-
complete for chordal bipartite graphs.

112 A. Brandstädt et al.

4 Tree 3-Spanners for Bipartite ATE-Free Graphs

In this section we show that any bipartite ATE–free graph admits a tree 3-
spanner.

We say that a vertex u of a graph G has a maximum neighbor if there is a
vertex w in G such that N(N(u)) = N(w). We will need the following result
from [5].

Lemma 5. [5] Any chordal bipartite graph G has a vertex with a maximum
neighbor.

It is easy to deduce from results [4, Lemma 4.4], [5, Corollary 5] and [10,
Corollary 1] that a vertex with a maximum neighbor of a chordal bipartite graph
can be found in linear time by the following procedure.

PROCEDURE NICE-VERTEX. Find a vertex with a maximum neighbor

Input: A chordal bipartite graph G = (X ∪ Y, E).
Output: A vertex with a maximum neighbor.
Method:

initially all vertices v ∈ X ∪ Y are unmarked;
repeat

among unmarked vertices of X select a vertex x such that N(x) contains
the maximum number of marked vertices;

mark x and all its unmarked neighbors;
until all vertices in Y are marked;
output the vertex of Y marked last.

Now let G = (V, E) be a connected bipartite ATE–free graph and u be a
vertex of G which has a maximum neighbor (recall that G is chordal bipartite
and therefore such a vertex u exists).

Lemma 6. Let S be a connected component of a subgraph of G induced by set
V \ Dk−1(u) (k ≥ 1). Then, there is a vertex w ∈ Nk−1(u) such that N(w) ⊃
S ∩ Nk(u).

Lemma 6 suggests the following algorithm for constructing a spanning tree of
G.
PROCEDURE SPAN-ATEG. Tree 3-spanners for bip. ATE–free graphs

Input: A bipartite ATE–free graph G = (V, E) and a vertex u of G with a maximum
neighbor.

Output: A spanning tree T = (V, E′) of G (rooted at u).
Method:

set E′ := ∅;
set q := max{dG(u, v) : v ∈ V };
let sq

i , i ∈ {1, . . . , pq} be the vertices of Nq(u);
for every i ∈ {1, . . . , pq} do

pick a neighbor w of sq
i in Nq−1(u);

add edge {sq
i , w} to E′;

for k := q − 1 downto 1 do

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 113

compute the connected components Sk
1 , . . . , Sk

pk
of

G[Nk(u) ∪ {sk+1
i , i ∈ {1, . . . , pk+1}}];

for every i ∈ {1, . . . , pk} do
set S := Sk

i ∩ Nk(u);
pick a vertex w in Nk−1(u) such that N(w) ⊃ S;
for each v ∈ S add the edge {v, w} to E′;
shrink component Sk

i to a vertex sk
i and make sk

i adjacent in G to
all vertices from N(Sk

i) ∩ Nk−1(u).

It is easy to see that the graph T = (V, E′) constructed by this procedure is
a spanning tree of G and its construction takes only linear time. Moreover, T
is a shortest path tree of G rooted at u since for any vertex x ∈ V , dG(x, u) =
dT (x, u) holds.

Theorem 4. Let T = (V, E′) be a spanning tree of a bipartite ATE–free graph
G = (V, E) output by PROCEDURE SPAN-ATEG. Then, for any x, y ∈ V , we
have dT (x, y) ≤ 3 · dG(x, y) and dT (x, y) ≤ dG(x, y) + 2.

Since any interval bigraph is a bipartite ATE–free graph, and any convex
graph is an interval bigraph, we have the following corollaries.

Corollary 1. Any interval bigraph G = (V, E) admits a spanning tree T such
that dT (x, y) ≤ 3 · dG(x, y) and dT (x, y) ≤ dG(x, y) + 2 hold for any x, y ∈ V .
Moreover, such a tree T can be constructed in linear time.

Corollary 2. [27] Any convex graph G = (V, E) admits a spanning tree T such
that dT (x, y) ≤ 3 · dG(x, y) and dT (x, y) ≤ dG(x, y) + 2 hold for any x, y ∈ V .
Moreover, such a tree T can be constructed in linear time.

5 Tree 7-Spanners for (Enhanced) Probe Interval Graphs

In this section we show that any (enhanced) probe interval graph admits a tree
7-spanner.

Let G = (P, N, E) be a connected probe interval graph. We assume that
an interval representation of G is given (if not, an interval model for G can be
constructed by a method described in [19] in O(m log n) time, where n = |P |+|N |
and m = |E|). Let I = {Ix : x ∈ P} be the intervals in the interval model
representing the probes and J = {Jy : y ∈ N} be the intervals representing the
nonprobes.

First we discuss two simple special cases. If N = ∅ then clearly G = (P, E)
is an interval graph. It is known (see [25]) that for any interval graph G and
any vertex u of G there is a shortest path spanning tree T of G rooted at u
such that dT (x, y) ≤ dG(x, y) + 2 holds for any x, y. In fact, a procedure similar
to PROCEDURE SPAN-ATEG produces such a spanner in linear time for any
interval graph G and any start vertex u. Evidently, T is a tree 3-spanner of G.

To describe other special case, we will need the following notion. A connected
probe interval graph G = (P, N, E) is superconnected if for any two intersecting

114 A. Brandstädt et al.

intervals Iv, Iw ∈ I there is always an interval Jy ∈ J such that Iv ∩ Iw ∩
Jy �= ∅. For a superconnected probe interval graph G, a tree 4-spanner can be
constructed easily. First we ignore all edges in G[P] to get an interval bigraph
G′ = (X = P, Y = N, E′) and then run PROCEDURE SPAN-ATEG on G′.
We claim that a spanning tree T of G′, produced by that procedure, is a tree
4-spanner of G. Indeed, for any edge {x, y} of G such that x ∈ P and y ∈ N ,
dT (x, y) ≤ 3 holds by Corollary 1; it is an edge of G′, too. Now consider an edge
{v, w} of G with v, w ∈ P . Since G is superconnected, there is a vertex y ∈ N
such that Iv ∩ Iw ∩ Jy �= ∅, i.e., dG′(v, w) = 2. Then, by Corollary 1, we have
dT (v, w) ≤ dG′(v, w) + 2 = 2 + 2 = 4. Consequently, T is a tree 4-spanner of G.

To get a tree 7-spanner for an arbitrary connected probe interval graph G =
(P, N, E), we will use the following strategy. First we decompose the graph G
into subgraphs G0, G1, . . . , Gk such that Gi and Gj (i �= j) share at most one
common vertex and each Gi is either an interval graph or a superconnected probe
interval graph. Then iteratively, given a tree 7-spanner T i for G0 ∪ G1 ∪ . . . ∪ Gi

(i < k) and a tree t-spanner Ti+1 (t ≤ 4) of Gi+1, we will extend T i to a tree
7-spanner T i+1 for G0 ∪ G1 ∪ . . . ∪ Gi ∪ Gi+1 by either making all vertices of
Gi+1 adjacent in T i+1 to a common neighbor in G0 ∪ G1 ∪ . . . ∪ Gi (if it exists)
or by gluing trees T i and Ti+1 at a common vertex.

Now we give a formal description of the decomposition algorithm. Let
S0, S1, . . . , Sq be segments of the union ∪y∈NJy. (see Fig. 3 for an illustration).

Fig. 3. Segments and a decomposition of a probe interval
graph

Clearly, all probe
interval graphs
G2i+1 (i = 1, . . ., q)
are superconnected
and a decomposition
of G into G0,G1,. . .,
G2q+2 can be done
in linear time if
endpoints of the
intervals I ∪ J are
sorted.

PROCEDURE DECOMP. A decomposition of a probe interval graph
Input: A probe interval graph G and its interval representation (I, J).
Output: Subgraphs G0, G1, . . . , G2q+2 of G, where G2i (i ∈ {0, . . . , q + 1}) is an

interval graph and G2i+1 (i ∈ {0, . . . , q}) is a superconnected probe interval graph,
and special vertices uj (j = 1, . . . , 2q + 2), where uj belongs to Gj−1 and Gj .

Method:
for i = 0 to q do

/* define an interval graph */
set X := {Ix ∈ I : L(x) ≤ L(Si)};
on intervals X define an interval graph G2i;
let I∗ be an interval from X with maximum R(·) value;
set u2i+1 := a vertex of G corresponding to I∗;
set I := I \ (X \ {I∗});

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 115

/* define a superconnected probe interval graph */
set Y := {Iy ∈ J : Iy ⊆ Si};
set X := {Ix ∈ I : L(x) ≤ R(Si)};
define a probe interval graph G2i+1 with probes X and nonprobes Y;
let I∗ be an interval from X with maximum R(·) value;
set u2i+2 := a vertex of G corresponding to I∗;
set I := I \ (X \ {I∗});

define on I an interval graph G2q+2.

Lemma 7. For any i = 2, . . . , 2q + 2, R(ui) ≥ R(ui−1) holds.

Now, for an interval graph G0 (if it is not empty), we can construct a tree
3-spanner T0 = T0(u0) rooted at any vertex u0 of G0. For an interval graph
G2i (i = 1, . . . , q + 1), we can construct a tree 3-spanner T2i = T2i(u2i) rooted
at vertex u2i (see PROCEDURE DECOMP). Since all those trees are shortest
path trees, the neighborhoods of vertex u2i in G2i and T2i coincide.

Let G−
2i+1 be an interval bigraph obtained from a superconnected probe in-

terval graph G2i+1 by ignoring all edges between probes and deleting all probes
Iv such that Iv ⊂ Iu2i+1 .

Lemma 8. For any i = 0, . . . , q, vertex u2i+1 has a maximum neighbor in
G−

2i+1.

Let T−
2i+1 = T−

2i+1(u2i+1) be a tree 3-spanner of an interval bigraph G−
2i+1

constructed starting at vertex u2i+1, i ∈ {0, . . . , q} (see PROCEDURE SPAN-
ATEG). Clearly, the neighborhoods of vertex u2i+1 in G−

2i+1 and T−
2i+1 coincide.

We can extend tree T−
2i+1 to a spanning tree T2i+1 = T2i+1(u2i+1) of G2i+1 by

adding, for each probe Iv of G2i+1 such that Iv ⊂ Iu2i+1 , a pendant vertex v
adjacent to u2i+1.

Lemma 9. T2i+1(u2i+1) is a tree 4-spanner for G2i+1, i ∈ {0, . . . , q}. Moreover,
for any edge {w, u2i+1} of G2i+1, dT2i+1(w, u2i+1) ≤ 2 holds.

Now we are ready to construct a spanning tree T for the original probe
interval graph G = (P, N, E). We say that a vertex v of G dominates a subgraph
Gk of G if every vertex of Gk, different from v, is adjacent to v in G.

PROCEDURE SPAN-PIG. Tree 7-spanner for probe interval graphs
Input: A probe interval graph G = (P, N, E), its interval representation (I, J) and

a decomposition of G into graphs G0, G1, . . . , G2q+2.
Output: A spanning tree T = (P ∪ N, E′) of G.
Method:

set E′ = ∅ and k := 0;
while k ≤ 2q + 2 do

if there is an index j such that k ≤ j and uk dominates Gj then do
find the largest index j with that property;
for each v in Gk ∪ . . . ∪ Gj (v 	= uk) add edge {v, uk} to E′;
set k := j + 1;

else do

116 A. Brandstädt et al.

if k is even then do
find a tree 3-spanner Tk(uk) of an interval graph Gk;
add all edges of Tk(uk) to E′;

if k is odd then do
find a tree 4-spanner Tk(uk) of a superconnected probe interval graph Gk;
add all edges of Tk(uk) to E′;

set k := k + 1.

It is easy to see that the tree T constructed by PROCEDURE SPAN-PIG is
a spanning tree of G and its construction takes only linear time.

Lemma 10. If for graph Gk (k ∈ {0, . . . , 2q + 2}) there exists a vertex ui ∈
{u0, . . . , uk} which dominates Gk, then there is a vertex us ∈ {u0, . . . , uk} such
that dT (x, us) ≤ 1 holds for any x in Gk. Otherwise, if such vertex ui does not
exist, then for any vertices x, y of Gk, dT (x, y) = dTk

(x, y) holds.

Corollary 3. For any vertices x, y of Gk (k ∈ {0, . . . , 2q + 2}), dT (x, y) ≤
max{2, dTk

(x, y)} holds.

Lemma 11. T is a tree 7-spanner for G.

Theorem 5. Any probe interval graph G admits a tree 7-spanner. Moreover,
such a tree 7-spanner can be constructed in O(m log n) time, or in O(m+n log n)
time if the intersection model of G is given in advance.

Now let G = (P, N, E) be an enhanced probe interval graph with probes P
and nonprobes N .

Corollary 4. Any enhanced probe interval graph G = (P, N, E) admits a tree
7-spanner. Moreover, such a tree spanner can be constructed in O(m log n) time.

6 Concluding Remarks

In the paper, we have shown that the tree t-spanner problem is NP-complete
even for chordal bipartite graphs for t ≥ 5. The complexity of the tree 3-spanner
problem is still open. We have also shown that every (enhanced) probe interval
graph has a tree 7-spanner. However, it is also open whether the graph classes
are tree t-spanner admissible for smaller t.

Acknowledgements. The authors are greatful to an anonymous referee for
simplifying the reduction in Section 3.

Tree Spanners for Bipartite Graphs and Probe Interval Graphs 117

References

1. B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weighted
spanners. manuscript, 1992.

2. H.-J. Bandelt and A. Dress. Reconstructing the Shape of a Tree from Observed
Dissimilarity Data. Advances in Applied Mathematics, 7:309–343, 1986.

3. A. Brandstädt, V. Chepoi, and F. Dragan. Distance Approximating Trees for
Chordal and Dually Chordal Graphs. J. of Algorithms, 30(1):166–184, 1999.

4. A. Brandstädt, V.D. Chepoi, and F.F. Dragan. The Algorithmic Use of Hypertree
Structure and Maximum Neighbourhood Orderings. Disc. Appl. Math., 82:43–77,
1998.

5. A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin. Dually Chordal Graphs.
SIAM J. Disc. Math., 11(3):437–455, 1998.

6. A. Brandstädt, F.F. Dragan, H.-O. Le, and V.B. Le. Tree Spanners on Chordal
Graphs: Complexity, Algorithms, Open Problems. In ISAAC 2002, pages 163–174.
LNCS Vol. 2518, Springer-Verlag, 2002.

7. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
8. L. Cai and D.G. Corneil. Tree Spanners: an Overview. Congressus Numerantium,

88:65–76, 1992.
9. L. Cai and D.G. Corneil. Tree Spanners. SIAM J. Disc. Math., 8(3):359–387, 1995.

10. F.F. Dragan and V.I. Voloshin. Incidence Graphs of Biacyclic Hypergraphs. Disc.
Appl. Math., 68:259–266, 1996.

11. M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, 1979.

12. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

13. M.C. Golumbic and C.F. Goss. Perfect Elimination and Chordal Bipartite Graphs.
J. of Graph Theory, 2:155–163, 1978.

14. F. Harary, J.A. Kabell, and F.R. McMorris. Bipartite intersection graphs. Com-
ment. Math. Univ. Carolin., 23:739–745, 1982.

15. J.L. Johnson and J.P. Spinrad. A Polynomial Time Recognition Algorithm for
Probe Interval Graphs. In Proc. 12th SODA, pages 477–486. ACM, 2001.

16. D. König. Theorie der endlichen und unendlichen Graphen (in German). Akade-
mische Verlagsgesellschaft, 1936.

17. H.-O. Le and V.B Le. Optimal Tree 3-Spanners in Directed Path Graphs. Networks,
34:81–87, 1999.

18. M.S. Madanlal, G. Venkatesan, and C. P. Rangan. Tree 3-Spanners on Interval,
Permutation and Regular Bipartite Graphs. IPL, 59:97–102, 1996.

19. R.M. McConnell and J.P. Spinrad. Construction of Probe Interval Models. In
Proc. 13th SODA, pages 866–875. ACM, 2002.

20. T.A. McKee and F.R. McMorris. Topics in Intersection Graph Theory. SIAM,
1999.

21. F.R. McMorris, C. Wang, and P. Zhang. On Probe Interval Graphs. Disc. Appl.
Math., 88:315–324, 1998.

22. H. Müller. Recognizing Interval Digraphs and Interval Bigraphs in Polynomial
Time. Disc. Appl. Math., 78:189–205, 1997. Erratum is available at
http://www.comp.leeds.ac.uk/hm/pub/node1.html.

23. D. Peleg. Distributed Computing: A Locally-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. SIAM, 2000.

118 A. Brandstädt et al.

24. D. Peleg and A.A. Schäffer. Graph Spanners. J. of Graph Theory, 13(1):99–116,
1989.

25. E. Prisner. Distance approximating spanning trees. In Proc. of STACS’97, pages
499–510. LNCS Vol. 1200, Springer-Verlag, 1997.

26. J. Soares. Graph Spanners: a Survey. Congress Numerantium, 89:225–238, 1992.
27. G. Venkatesan, U. Rotics, M.S. Madanlal, J.A. Makowsy, and C.P. Rangan. Re-

strictions of Minimum Spanner Problems. Inf. and Comp., 136:143–164, 1997.
28. P. Zhang. Probe Interval Graphs and Its Applications to Physical Mapping of

DNA. manuscript, 1994.
29. P. Zhang. United States Patent. Method of Mapping DNA Fragments. [Online]

Available
http://www.cc.columbia.edu/cu/cie/techlists/patents
/5667970.htm, July 3 2000.

