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Abstract— We study the stability and region of attraction problem. See [18] for an excellent, up to date, review of
properties of a family of receding horizon schemes for this literature.
nonlinear systems. USing Dini’'s theorem on the uniform A number of approaches employ the use of terminal
convergence of functions, we show that there is always g5t equality [15] or inequality [19], [21], [5], [17],
a finite horizon for which the corresponding receding [20] constraints, often together with a terminal cost
horizon scheme is stabilizingwithout the use of a terminal ' s '
to ensure closed loop stability. In [22], aspects of a

cost or terminal constraints. After showing that optimal . ) .
infinite horizon trajectories possess a uniform convergence Stability guaranteeing global control Lyapunov function

property, we show that exponential stability may also be (CLF) were used, via state and control constraints, to
obtained with a sufficient horizon when an upper bound develop a stabilizing receding horizon scheme with many
on the infinite horizon cost is used as terminal cost. of the nice characteristics of the CLF controller together
Combining these important cases together with a sand- with better cost performance. Unfortunately, a global
wiching argument, we are able to conclude that exponential -gntro| Lyapunov function is rarely available and often
stability is o_btained for unconstrainc_ad reced.ing horizon not possible.
schemes with a general nonnegative terminal cost for ., [13], [14], we considered a receding horizon strat-
sufficiently long horizons. Region of attraction estimates . . .
are also included in each of the results. egy with a CL_F terminal cost. In this approach, closed
loop stability is ensured through the use of a terminal
Keywords: receding horizon control, nonlinear concost consisting of a control Lyapunov function that is an
trol design, model pYEdiCtiVE control, optimal control. incremental upper bound on the Optima| cost to go.
Furthermore, it was shown in [13], [14] that region
INTRODUCTION of attraction estimates of the unconstrained receding

In receding horizon control, a finite horizon optima, orizon control law are always larger than those of
g I T P he CLF controller and can be grown to include any

control problem is solved, generating an open-loop state- oo . .
control traiectory. The resulting control traiectory is thecompact subset of the infinite horizon region of attrac-
) Y- 9 : Y flon by a suitable choice of the horizon length. Other

applied o thelsystem for a fraction OT thg horizon Iengé%. thors, including [6], [25] have shown (in the context
This process is then repeated, r'esultmg_ in a sampled g;fl%onstrained linear systems) that, for sufficiently long
feedback law. Although receding horizon control haﬁ

orizons, the terminal stability constraints are implicitly

been successfully used in the process control industry,égtisfied In a recent paper [23], it was shown that

application to fast, stability critical nonlinear systems h&llﬁ‘ the case of constrained discrete-time linear systems,

_k;ﬁenﬁrrn?rerdgfllcrlj]lt. :[I'hr:;s 'Sfrmri'r;lﬁ/ d?ettoﬂ;[\/\{[oﬂr]ea?ion?ﬁhere always exists a finite horizon length for which the

€ Tirst problem stems 1ro € tact that the Fceding horizon scheme is stabilizing without the use
horizon optimizations must be solved in a relatively shocrﬁ a terminal cost or constraint. Our goal is to prove the
period of time. Second, it is well known and can b :

Same type of results in the nonlinear case. We also note

easily demonstrated using linear examples that a NaW&¢ similar results have been recently obtained by the

appllcatlon of the receding horl_zon strategy can ha\éf%thors in [8] which use detectability-like conditions to
disastrous effects, often rendering a system unstable

; Uarantee stability even when a CLF terminal cost is not
Various approaches have been proposed to tackle tg\'/%ilable y
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show that exponential stability may also be obtained witn finite intervals as a function of its input size, e.g.,
a sufficient horizon when an upper bound on the infinitbere is a continuous functigh such that|xz*(¢; zo)|| <
horizon cost is used as terminal cost. Combining thes€||zol|, [|u(-)[|z,[0,q), then (together with the conditions
important cases together with a sandwiching argumeahove) there will be a minimizing control (cf. [16]).
we are able to conclude that exponential stability Many such conditions may be used to good effect, see [4]
obtained for unconstrained receding horizon schemies a nearly exhaustive set of possibilities. In general,
with a general nonnegative terminal cost for sufficientithe existence of minima can be guaranteed through
long horizons. Region of attraction estimates are altte use of techniques from the direct methods of the

included in each of the results. calculus of variations—see [3] (and [7]) for an accessible
introduction.
|. PROBLEM SETTING It is easy to see that’ (-) is proper on its domain so

: : L that the sub-level sets
The nonlinear system under consideration is

&= f(x,u) (1)
, " om " o are compact and path connected and moredVer=
where the vector fielgf : R" xR™ — R" is C* and pos- >0 2°. We user? (rather thanr) here to reflect the
sesses a linearly controllable critical point at the orlgléicf that our incremental cost is quadratically bounded

e.g., f(0,0) = 0 -and (A, B) := (Dx£(0,0), Duf(0,0))  from pelow. We refer to sub-level sets o8f(-) andV ()
is controllable. using

Furthermore, f/ is affine in the controlu and the
control is restricted to a compact convex Betontaining T := path connected component of € T : J;(z) < r?}
the origin in its interior. We assume thgt is such .
that the solution to (1) does not exhibit finite escapceoma'nmgo and
time behavior when driven by bounded inputs. This is@, := path connected component gf € R" : V(z) < r?}
reasonable assumption for most physical systems. o

For the purpose of regulation, we consider the onlirf@ntainingo.
solution of the optimal control problem

= {2 eT™: J% (z) < r?}

Il. RECEDING HORIZON CONTROL WITHCLF
TERMINAL COST

T
minimize / q(z(7),u(r)) dr + V(x(T)) Receding horizon control provides a practical strategy
. _0 (2) for the use of model information through on-line opti-
subject to @(t) = f(z(t),u(t)), z(0) =9 mization. Everys seconds, an optimal control problem
u(t) e U is solved over aI' second horizon, starting from the
_ _ current state. The first seconds of the optimal control
where z is the current (measured) state avi¢-) is a wi(-;2(t)) is then applied to the system, driving the
suitably defined terminal cost function. system fromz(t) at current timet to 27(6, z(t)) at the
The performance of the system will be measured Byayt sample time + 5. We denote this receding horizon
a given incremental cost: R” x R™ — R that isC? gcheme aRH(T, ).
and fully penalizes both state and control according t0 | defining finite horizon approximations to the infinite
£ ER" ueR™ horizon problem, the key design parameters are the
’ terminal cost functionV'(-) and the horizon lengtil’
for somec, > 0 and¢(0,0) = 0. It follows that the (and, perhaps also, the incremeit What choices will
guadratic approximation of at the origin is positive result in success? Obviously, the best choice for the
definite, D,,q(0,0) > c4I > 0. terminal cost isV (z) = J% (z) since then the optimal
We will assume thatf and ¢ are such that the finite and infinite horizon costs are the same. Of course,
minimum value of the cost functiond’ (z), J5.(x), if theoptimal value function were available there would
T > 0, is attained for each (suitable)by anadmissible be no need to solve a trajectory optimization problem.
control inputu(t) € U for all t € [0,T]. That is, given The next best thing would be a terminal cost which
z andT > 0 (includingT = oo whenx € I'™°), there accounts for the discarded tail by ensuring that the origin
is a (C! in t) optimal trajectory (zX(¢; z), uk(t;x)), can be reached from the terminal stat§T;z) in an
t € [0,7], such thatJr(z,u;(;2)) = Jj(x). For efficient manner (as measured ky. One way to do
instance, iff is such that its trajectories can be boundetiis is to use an appropriate control Lyapunov function

q(w,u) > cqll]* + [lul®),



(CLF) which is also an upper bound on the cost-to-goeasonable to ask whether there ifirate horizon such

The following theorem shows that the use of a particul#iat the receding horizon scheme would be stabilizing

type of a local Control Lyapunov Function (CLF) awith a zeroterminal cost, i.e.}V (z) = 0.

terminal cost is in fact effective, providing rather strong We know that, when the horizon is infinite, the mini-

and specific guarantees. mum cost functionJZ () qualifies as a Lyapunov func-
Theorem 1:[14], [18] Suppose that the terminaltion for proving the stability of corresponding optimal

cost V(-) is a control Lyapunov function such thafeedback system. Also, we know that, & — oo,

min, . (V + ¢)(z,u) < 0 for eachz € Q,, for some Ji(-) — J(-) in many ways (e.g., pointwise im).

r, > 0. Then, foreveryT > 0 and¢é € (0,7], Animportant question is whether there is a (sufficiently

the receding horizon schen@H (T, ) is exponentially large, yet finite) horizon length' for which the minimum

stabilizing. For eachl” > 0, there is an#(T) > r, costJ;(-) qualifies as a Lyapunov function for proving

such thatFTT(T) is contained in the region of attractionthe stability of a corresponding receding horizon scheme,

of RH(T, §). Moreover, given any compact subsebf e.g., RH(T,J).

', there is a’* such thatA C F?T forall T > T*. This question was answered fairly recently in the
Theorem 1 shows that faany horizon lengthT” > 0 context of constrained discrete-time linear systems [23].

and any sampling times € (0,77, the receding horizon We will show that a similar result holds in the case of

scheme is exponentially stabilizing over the g8t. unconstrained nonlinear systems and zero terminal cost.

For a givenT, the region of attraction estimate is Recall that an extended real valued functipf) is

enlarged by increasing beyondr, to 7(T) according upper semicontinuous if !((—oc,¢)) := {z € R" :

to the requirement thal’ (z%(T;x)) < r2 on that set. f(x) < c} is open for each € R. We will make use of

An important feature of the above result is that, fahe following well known result [24].

operations with the st/ ., there is no need to impose Theorem 2:(Dini) Let {f,} be a sequence of upper

stability ensuring constraints which would likely mak&emicontinuous, real-valued functions on a countably

the online optimizations more difficult and time consuntompact spaceX, and suppose that for each € X,

ing to solve. Furthermore, recent results in [9] indicat®e sequencé f,,(z)} decreases monotonically to zero.

that RHC schemes which use a CLF terminal cost aféen the convergence is uniform.

more robust than those with terminal constraints. ThereWe begin with a rather simple result that will be used

are various techniques, requiring offline computation, fé¢re and in the sequel. The proof is a simple exercise but

the successful construction of such CLFs—see [11] fi§r included for completeness. The' in the subscript is

a detailed example using a quasi-LPV method. used to indicateT;O(x) =J5 (x) with zeroterminal cost.
Experience has shown that receding horizon strategms special notation is needed as this function will also

with terminal costs not satisfying the above condition af used in the discussion of receding horizon schemes

often effective provided that an optimization horizon ovith nonzero terminal cost.

suitable length is used. It is therefore desirable to develop-emma 3:For eachd > 0, J;(-) is continuous and

stability arguments that are valid for a more general claBgsitive definite onR™ and locally quadratic positive

of terminal costs. As we will see in the next section, thegéfinite. That is,J5,(z) > 0 for all z € R™ \ {0} and

is always a finite horizon length for which exponentiaf;(z) > allz||* in a neighborhood of for somea > 0.

stability of the receding horizon scheme with a zemyloreover, for anyr > 0, there is ana > 0 such that

terminal cost and fixed is guaranteed. Moreover, weJ;,(z) > al|z||? for all x € T,

will show that the same result holds when the terminal ~ Proof: Continuity of J5,(-) onR™ is easily shown

cost is a locally quadratic upper bound on the infinitesing arguments of the sort used in proposition 3.1 of [2]

horizon cost-to-goJ* (-). As these two cases are, ir(Note that the minimization is performed owvedmissible

some sense, limiting cases of a general terminal cost, @@ntrol inputs with the input constraints &t compact

will show that similar stability results hold in the generagnd convex).

case. All of the results follow rather naturally once the It is easy to show, e.g., by geometric methods [26],

uniform convergence (over compact sets) of the finit7], [10], thatJ;(-) is C* near( with

horizon costs to the infinite horizon cost is shown. 1

Jiola) = 52" Psa + of|ja]?)

IIl. RECEDING HORIZON CONTROL WITH ZERO - N .
where P = P(—0) satisfies the Riccati equation
TERMINAL COST

: —1gT\T —1gT
One would expect that as the horizon length grows, thg(t) +(A—BR7ST)TP(t) + P(t)(A - BRST)
effect of the terminal cost should diminish. Therefore it is — Pt)BR™'BTP(t)+ (Q - SR7!ST) =0



with P(0) = 0 where Df(0,0) = [ A B | is con- be assured. To that end, define, foE I'2°,

trollable and D,q(0,0) = [% ;} > %7 > 0. J:o(x)—J%,g(@’ £ 40
Clearly, Ps is positive semi-definite sincgz” Psz is Yr(z) == . Ja0(2)
the optimal value of the corresponding linear quadratic llgl_s)élp Yr(z) r=0

optimal control problem. Tha#;s is actually positive
definite is easily shown by contradiction. Following [1]
if there is anxg # 0 such thatr0TP5xo = 0 then, since
the corresponding optimal control must be zero«ds (Jg,o("”) A
fully penalized), it must also be true thet’zy = 0 (as ¥7(0) = maxg=; W where Pr_s, Ps, and
z is also fully penalized—an observability condition)P- are the positive definite matrices defined as above.
Thus, P; > 0 for eaché > 0 and J;,(-) is locally ~ We see thafyr(-)}r0 is @ monotonically decreasing
quadratically positive definite. (One may also note tHamily of upper semicontinuous functions defined over
well known fact thats, > §; > 0 implies P;, > P5, > the compact sef7°. Hence, by Dini’s theorem, there is
0.) aT* < oo such thatyr(z) < 5 for all z € T and all
Similarly, suppose that there is a nonzegpsuch that 7' > 7. The result follows since, for; > 0 such that
Jio(zo) = 0. Once again, since: is fully penalized, I'},”° C I, we have
this would imply that the zero input nonlinear system 1
trajectory beginning at, would be identically zero, a Jrs(27(8;2)) = Jr_s(2) < =5 J50(2)
clear contradiction.
The final claim follows easily from the continuity of

J‘;O(')' be sufficiently long, the trivial terminal cost(xz) = 0

We have the .followmg result (C.f' [12]) is fine. In a syense? if no offline calculations Ear)e used to
The_orem 4:Let Tm >0 r?e given fmd suppcr)]seh tha'E:ietermine a suitable CLF, more online computations may

X)&?ﬂ;ﬁf%efm re>c£ dEn(garﬁc:fiziTrl sihosrmséjii (Tt St’ be required to ensure closed loop stability of the receding

: = o s horizon scheme. One might imagine that a suitably long

's exponentially S?P;I|Z|ngogMoreover_, the_?.é}fl ’W'th horizon might also be adequate to ensure the stability

r1 < such thal, ™ C I'®, is contained in the region of a receding horizon scheme when the dynamics and/or

of attractlc?n OfRH(T’,5)'_ - cost change in real-time such as when a fault occurs or
Proof: By the principle of optimality, a new objective is required.

and note that)r(-) is upper semicontinuous dr°. This
follows easily sinceyr(-) is continuous at all: # 0
> 0 for x # 0) and is finite atz = 0 with

for z € 179, ]
We see that when the optimization horizon is chosen to

5
Jr(z) = /0 q(zp(r; 2), up(ry2)) dr + Jp_s(27(0; 7)) IV. USING AN UPPER BOUND ON THE INFINITE
HORIZON COSFTO-GO AS A TERMINAL COST
so that In the previous section (with’(x) = 0), we exploited
* (5. * _ox % the fact that.J;(z) increases monotonically witld" to
Jr_s(xh(6;x)) — Jr_s(x) = Jp(x) — Jr_s(x T i
7-s(r(9:2)) T(S o() 7o) = Jis () show that J7._,(-), with T large, could be used as
_ / q(z(T; ), W (T x)) dT a Lyapunov function. A similar monotonicity property
0 . i} (actually reversed) is obtained when a CLF terminal
< —Jso(@) +Jr(x) = Jr_5(x) . cost providing an incremental upper bound on the in-

finite horizon cost-to-go is used [13], [14]. In both of

these cases monotonicity plays an important role in the

arguments that ensure stability of the receding horizon

T (@5 (8:2)) = Th_s(2) < —Jfo(@)+ T (2)—Th_s(2) _scheme. Such a monotonicity result does not hold in the
’ general case. Fortunately, uniform convergencédjdf)

If we can show, for example, that there i§'a such that to JZ (-) onI'3°, a key consequence of monotonicity, is

SinceV (z) = 0, it is clear thatT} < T, implies that
Ji, (x) < J7, () for all x so that

T > T* yields in fact sufficient for the task at hand. In this section,
we take a different approach to show such uniform
1 .
Ji(z) — Jr_s(x) < 5Jgo(gg) convergence whef () is merely an upper bound on
| T3 ():

for z € I'°, stability (and, in fact, exponential stability) We begin by deriving a general upper bound of the
over any sublevel set of}._s(-) contained inI'>° will  difference between finite and infinite horizon costs.



Lemma 5:J5(z) — Ji(z) < V(xzi(T;z)) for all that the T parameterized family of set valued maps
T>0andz € I'™. x — x5 (T;z) (abusing notation) converges uni-
Proof: The result follows easily by noting that formly on compact subsets of*° with respect to
T the strictly increasing function/Z (-). We will thus
/ q(zi (5 2),ul (T; 7)) dr + V(x5 (T; z))obtain the desireduniform convergencef, for exam-
0 ple, the T' parameterized family of functions —
SUPoptimal 22, (-;z) V(xzo(Tv .%'))
m Proposition 7: Let » > 0 ande > 0 be given. There
In the case that the terminal cost is an upper boutfd@ 1™ < co such that, for any’ > 7™,
on the infinite horizon cost-to-go, we can also get a * (k. *
lower bound on the difference bgtween finite and ir?finite Too(@a(T3 ) < € I (@)
horizon costs. for all z € T'2°, wherez?_(-; z) is any optimal trajectory.
We call a continuous functiol/(-) strictly increasing Proof: Let z € T be arbitrary and let:* (-;z)
if it is proper and its sublevel sets are strictly increasinge any optimal trajectory starting frome. Since the
with respect to set inclusion, that i/ ~*((—oco,w1]) C functiont — J* (z* (t;z)) is monotonically decreasing
W=t((—o0,wz)) € W((—o0,ws]) for all wy < ws. (by the principle of optimality), once*_(-; =) enters the
Examples of strictly increasing functions includg,(-) setI'™, 2); it remains there for all time. We will show
and differentiable proper functionis(-), V(0) = 0, with — that the first arrival time ofr’,(-; =) to the set'™s.
VV(z) # 0 for all z € R™\ {0}. Much like classK can be uniformly bounded over all ¢ T'>° (and all
functions, strictly increasing functions provide a measuggptimal trajectories from such). Indeed, lett; be the

Jr ()

IA

< o) + V(@ (T x)) -

of the dista'nce of a point f_ro_m the global minimum first arrival time ofz’,(+;z) to the setl’™. (x)r SO that
of the function, often the origin. |t (t2)||2 > £ J% (x) for all ¢ € [0,t1] whereb, is

Lemma 6:Let » > 0 be given and suppose that thgqn thatJ* (z) < by||z||? for z € T (possible by
nonnegativeC? function V() is strictly increasing and compactness). It follows that

such thatV(z) > J% (z) for x € I'y°. Then, for any .

T >0, Jp(z) > J3 (x) for all z € T, Jo(@) = Joha(@di (T @), us (T3 2)) dT
Proof: Suppose, for the sake of contradiction, that ‘4 . 9 ccy 7
this is not true. Then there is am € '™ such that > Jo ellei ()| dr > gt IS (2)

x * =:72. We h o .
o) < Jso(wo) =t 7. We have which implies that; < 2-. The result follows by letting

€cq
b

T *
g(@i(ria), up(rio)) dr + V(@p(Tse) < Ji(wo) 17 = "
/0 g g g ’ With these results in hand, we can show that upper bound

g type terminal costs also provide stabilization when the
< (T x), uh(T; dr + Jx(xp(T; . . . .
7/0 (e (73 ), up (7 @) dr (27 (T32)) horizon is sufficiently long.
so that V(z5(T;z0)) < Ji(a%(T;z0)) (with Theorem 85Let2r > 0 be giv_en a_nd suppose that
J% (@%(T;20)) possibly infinite) which implies that the nonnegatlvge’J function V'(-) is strictly increasing,
25(T;z) ¢ T°. On the other handV (x4 (T z0)) < locally quadratically bounded, and such tHatz) >
r2 < r2, which clearly is a contradiction sinct(-) Ja(z) forz € I'*. For eachy > 0, there is al™ < oo
Stricﬂy increasing |mp||es thaV(I‘) > 7"2 on R" \ I‘?O such that, for anﬁ—' > T, the recedlng horizon scheme
m RH(T,9) is exponentially stabilizing. Moreover, the set
The above lemmas enable us to show that the differerce *» 71 > r with I),~% € I}, is contained in the
between the finite and infinite horizon costs can Hg&gion of attraction ofRH(T', 4).

bounded according to Proof: As in the proof of theorem 4, we will
i} . . show thatJ;_;(-) can be used as a Lyapunov function
0 < Jp(z) — I (@) < V(i (T ) providedT is chosen sufficiently large. Once again, the

over the setl™®. If the mappingz — V(z% (T;z)) undamental relation is

was contlnuogs an_d monotone (in fact, it's _reaIIy a_seﬁ»«_é(x*T((;;x))_J%_d(x) < —J(;o(fﬂ)vLJ?(x)—J:?_a(%) .

valued mapping since there may be multiple optlmaF

trajectories), we could apply Dini’s theorem to complet®ur task is then to show that, ovér®, the difference

out task. Ji(x) — Jj_s(x) (with nonzero terminal cost) can be
It is clear that each infinite horizon trajectory musmade uniformly small relative to the (zero terminal cost)

converge to the origin. The following result showgositive definite function/; ().



Since JZ,(+), J5,(-), andV (-) can each be quadrati-the uniform convergence of;.,(-) and J7.,(-) (hence
cally bounded from above and below on the compact sét(-)) to JZ (), it is clear that, givenr > r; > ro, there
I'?°, there exisk, e2 > 0 such that; J* (z) < %J;{O(x) is aT] < oo such that
and V(z) < exJi(x) for all x € I'y°. Now, using - - - 0 -
proposition 7, choos&) < oo so thatJ% (x5 (T;x)) < ooy chyclnclLy
€1/ea Ji (x) for all T > Ty and allz € T'°. Then,

: T,1 T 7,0
noting that forall T > Ty. Sincel;;” c I', c I';,;” for all T > 0,

it is clear that the region of attraction of the general
V(% (Ts2)) < 2% (05 (Ts ) < e0T% (x) < = J5o(a ’_termlnal cost receding horizon schem_e can 'be mad_e to
4 include any compact subset of the infinite horizon region

and using the upper bound provided by lemma 5, we sefattraction.
that

[Jr(2) = Jr_s(@)] < [Jp(e) = I (@) + [Jr_s(x) = IS (2)] CONCLUSION

< %J(;O(x) The purpose of this paper was to demonstrate the
_ stability of unconstrained nonlinear receding horizon
forall 7> 7" :=T1 + 96 aan ?le e I7®. Exponential conol with a general terminal cost and without sta-
stability of RH(T, 0) ove_rlf{ follows. ] bility constraints. First, it was demonstrated that when
In what follows, by combining the results of this theorer{he terminal cost is zero, Dini’s theorem on uniform
together with theorem 4, we will show th&7{(T’,9) conyergence of upper semicontinuous functions can be
with a general terminal cost is stable provided thgseq to show that there exists a finite horizon length
horizon is sufficiently long. that guarantees stability of the receding horizon scheme
for all points in an appropriate sub-level set of a finite
V. RECEDING HORIZON CONTROL WITH A GENERAL  horizon cost. This result was then extended to the case
TERMINAL COST of a terminal cost that is an upper bound on the infinite
We are now ready to present our main result. horizon cost to go. Finally, we showed that by combining
Theorem 9:Let » > 0 be given and suppose that théhese two results, the stability of the receding horizon
nonnegativeC? terminal cost functionV/(-) is locally scheme can be guaranteed when a general positive defi-
quadratically bounded. For each > 0, there is a nite terminal cost is used.
T* < oo such that, for any” > T*, the receding horizon
schemeRH (T, §) is exponentially stabilizing. Moreover,
the set’”, =% with I =%  I'%°, is contained in the region
of attraction of RH(T, §). [1] B. D. O. Anderson and J. B. MooreéDptimal Control: Linear

. . . Quadratic Methods Prentice-Hall, 1990.
Proof: Forr > 0, let Vl() be a locally quadratic, [2] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and

strictly increasingC* function that majorized/(-) over Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
R™ andJZ, (-) overI'>® and denote by'; , () the optimal Birkhauser, Boston, 1997.

COSt Wlth‘/l() as termlnal Cost It |S then easy to ShOW[s] G ButtaZZO, G Mal’iano, al‘ld S Hildebranmne-dimensional
Variational Problems Oxford University Press, New York,
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