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Abstract

Exact geometrical reconstructions of neuronal architecture are indispensable for the inves-
tigation of neuronal function. Neuronal shape is important for the wiring of networks, and
dendritic architecture strongly affects neuronal integration and firing properties as demon-
strated by modeling approaches. Confocal microscopy allows to scan neurons with sub-
micron resolution. However, it is still a tedious task to reconstruct complex dendritic trees
with fine structures just above voxel resolution. We present a framework assisting the re-
construction. User time investment is strongly reduced by automatic methods which fit a
skeleton and a surface to the data, while the user can interact, and thus, keeps full control
to ensure a high quality reconstruction. The reconstruction process comprises a successive
gain of metric parameters. First a structural description of the neuron is built, including the
topology and the exact dendritic lengths and diameters. We use generalized cylinders with
circular cross-sections. The user provides a rough initialization by marking the branch-
ing points. The axes and radii are fitted to the data by minimizing an energy-functional
which is regularized by a smoothness constraint. The investigation of proximity to other
structures throughout dendritic trees requires a precise surface reconstruction. In order to
achieve accuracy of 0.1 micron and below, we additionally implemented a segmentation
algorithm based on geodesic active contours which allows for arbitrary cross-sections and
uses locally adapted thresholds. In summary, this new reconstruction tool saves time and
increases quality as compared to other methods which have previously been applied to real
neurons.

Key words: Neuron Reconstruction, Laser Scanning Confocal Microscopy, Geodesic,
Active Contour Models, Generalized Cylinders, Morphology
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1 Introduction

Metric analysis of neurons is indispensible to address (i) the complicated relation
between physiology (function) and morphology (form) of neurons by computa-
tional approaches (Borst and Haag, 1996; Häusser et al., 2000; Koch et al., 1982;
Segev and Rall, 1998; De Schutter and Bower, 1994), (ii) the characterization of
cell types and the investigation of neuronal development by statistical analysis of
the morphology (da Fontoura Costa and Velte, 1999; Libersat and Duch, 2002;
Mizrahi et al., 2000; Uylings et al., 1986; van Pelt et al., 1989), and (iii) the relation
of neuron surfaces to other structures in three-dimensional space (Belichenko and
Dahlström, 1995; Gray and Weeks, 2003; Hiesinger et al., 2001; Jankowska et al.,
1995; Lamotte d’Incamps et al., 1998; Wouterlood et al., 2002) (for an overview see
also (da Fontoura Costa et al., 2002)). Depending on the goal a description of the
neuron has to comprise the center lines and radii, the topological structure includ-
ing branching and end points, the order of segments

�

, or an exact reconstruction
of the surface.

Generally, in order to obtain morphometric measurements, reconstructions of neu-
rons should fulfill the following requirements: (i) sufficient accuracy must be ac-
complished, (ii) topological constraints based on the assumption of a tree-like struc-
ture must be fullfilled, (iii) the relevant measurements must be represented explic-
itly allowing direct access, and, last but not least, (iv) the amount of the user’s time
and effort should be reasonably small.

The goal of decreasing the necessary expense of user interaction often acts contrary
to that of ensuring the accuracy and the topological correctness of the result. Conse-
quently, available commercial software tools provide methods either for automatic
segmentation or manual reconstruction. One of the state-of-the-art software tools of
the latter category is Neurolucida (by MicroBrightField, Inc., Williston, VT). Un-
fortunately, the manual tracing of complex dendritic trees is overly tedious. If the
user tries to reduce the input actions the result suffers from inaccuracy and abrupt
changes of thickness or center line direction.

Automating the reconstruction process is difficult due to noise and the partial vol-
ume effect. Noise is generated by different sources in the confocal microscope and
the partial volume effect occurs, when the volume, which is assessed for a mea-
surement, contains labeled and unlabeled tissue. The strength of the latter depends
on the point spread function (PSF). Both phenomena cause overlapping intensity
histograms of the interior and exterior. In particular fine structures have low con-
trast to the background which may be decreased additionally by inhomogeneous
staining of the cell (see fig. 1).

�

The segment’s order is the number of branching points between the segment and the
soma.
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Fig. 1. Finer dendritic structures show less contrast w.r.t. the background than thicker ones.
The figure shows a slice from a confocal image of a neuron. Scalebar: 1 ��� . (a) Image
intensity coded by gray values. The iso-intensity lines for 63 and 176 are shown in white
and black. (b) Contour plot of the image. The iso-intensity lines for 63 and 176 are shown
in solid black lines. If the threshold for segmentation is close to be 176, it is optimal for the
thick branch, but fails to account for the thin branch.

Several software tools featuring automated reconstruction procedures are available.
To the best of our knowledge all of them work with threshold-based segmentation
methods. Here we confine our discussion to the FilamentTracer (formerly called
NeuronTracer) included into the program Imaris (Bitplane, Zürich). It provides
three modes for the reconstruction of neurons: one works fully automatic, one semi-
automatic and the other fully manual. The semi-automatic tracing allows the user
to draw along the branches in a two-dimensional projection and automatically com-
putes the position in the third dimension. We discussed the principle problems of
manual tracing with respect to Neurolucida above. The automatic reconstruction
is based on a hysteresis method using two thresholds. Voxels with intensity values
above the high threshold are marked as interior with high confidence (say class
inHi), those between the high and the low threshold are marked as interior with
low confidence (say class inLo) if there is a connection via other inLo voxels to
an inHi voxel. Voxels falling below the low threshold are marked as exterior. The
two thresholds are chosen by the user. Afterwards the segmented volume is recon-
structed with generalized cylinders. The result can be manually corrected.

The hysteresis method is an improvement over single threshold segmentations, but
still suffers from the same limitations. The appropriate thresholds depend on the
staining intensity of a branch, which in turn, results from its true diameter (see fig.
1). If the user optimizes the thresholds to a specific diameter, structures with other
diameters are miscalculated. In case of neurons with a limited variation of segment
diameters, and therefore staining intensities, the hysteresis method improves the
completeness of image segmentation. However, extensive variation in the staining
intensities of neuronal structures makes the choice of appropriate hysteresis val-
ues which include the complete topology of neuronal arborization difficult or even
impossible. Therefore, this automatic reconstruction procedure is useful for fast
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visualization and extraction of the rough topology, whereas morphometric mea-
surements are imprecise, in particular for neurons with a wide range of diameters.
A second source of inaccuracy in the FilamentTracer is smoothing which can be
applied to the result of the reconstruction. It neglects the image data, hence abrupt
changes of the axis direction or the radii are leveled out regardless of actual data
values.

Thus the demand for the reconstruction of fine structures near the spatial resolu-
tion limits of the microscope is not answered by existing automated methods. In
order to increase the efficiency of the reconstruction process without losing any
quality, we developed a system which highly reduces the time investment by au-
tomatic computational methods. It assists the manual reconstruction process by (i)
fitting automatically the center lines, radii, and the surface of a neural branch be-
tween points given by the user, and (ii) providing an intuitive and convenient user
interface which allows immediate access to the result. The combination of the two
features yields the highest possible accuracy in practice. On the one hand, the auto-
mated fitting relieves the user from most of the necessary user input, thus acceler-
ating the process and eliminating subjective estimations and imprecision due to the
user’s haste or exhaustion. The reconstruction process is made mostly independent
from the user’s knowledge. On the other hand the user has full control as an option
allowing correction at regions, where computation appears to fail.

This article is organized as follows. In the next section we review related ap-
proaches for the detection of tubular structures in three-dimensional images. In the
third section we introduce the model for neural structures and describe the methods
which fit the model to the data. After showing example results from real neurons in
the fourth section, conclusions are drawn in the fifth one.

2 Image Analysis Background

The task of reconstructing a neuron from raw three-dimensional image data can be
split into two subtasks: First a suitable representation (a model) of the reconstructed
neuron has to be defined and then an efficient algorithm has to be designed which
transforms the image into a description based on this representation, i.e. which fits
the model to the data. According to the requirements discussed in sec. 1 the neuron
should be described in a geometric way, that is by a graph connecting the individual
segments which are specified by their center lines and their radii. The transforma-
tion from voxels to this structural description is mostly done by identifying putative
center points and linking them to a graph structure.
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2.1 Extraction of center points

Two approaches exist for the extraction of center points of tubular objects: (i) seg-
mentation followed by skeletonization and (ii) filtering. The first one is based on
a segmentation process which separates the image volume covered by the neuron
from surrounding tissue. The segmented “neuron” volume is then skeletonized e.g.
by a three-dimensional thinning algorithm (Gerig et al., 1993). This approach, how-
ever, is sensitive to noise, since thinning algorithms are very sensitive to jagged sur-
faces resulting in erroneous branches (Kimmel et al., 1995). Furthermore, simple
thresholding fails due to the varying intensity profiles of differently sized neurites.

Lorigo et al. (2001) developed a method following the segmentation approach us-
ing a geodesic active contour model (Caselles et al., 1997) which is an extension
of the classical active contour models (Kass et al., 1988) with level set methods.
The model of Caselles et al. (1997) allow for the estimation of hypersurfaces of
codimension one

�

. Lorigo et al. modified the geodesic active contours to esti-
mate hypersurfaces of codimension two, e.g. one-dimensional curves in a three-
dimensional image space. The implicit representation of the curves is sufficient for
visualization, but in order to obtain meaningful measurements center points must be
extracted and linked to continuous center lines. This is not part of their method, but
should give more reliable results than simple segmentation because of the included
smoothness and shape constraints.

The second approach to the extraction of center points applies appropriate filters in
order to enhance line elements. Sato et al. (1998) introduced a three-dimensional
multi-scale line enhancement filter for medical images. It is based on a combina-
tion of the eigenvalues of the Hessian matrix whose elements are the second-order
partial derivatives of the image intensities. Curvilinear structures are discriminated
from other structures such as point-like or planar ones. The corresponding eigen-
vectors provide the direction of the axis. Multiple scales allow for different radii,
where the discretization of the scales determines the possible radii. Their exact ex-
traction is problematic, since in general the number of scales needs to be small in
order to reduce the computational cost.

Another method following the second approach was developed by Pizer et al.
(1998) and is based on the concept of cores in which detect medial points of the
object by correlating opposite boundary points. Due to the spatial extent of the ap-
plied filter, the detection of center points is accurate and robust in the presence of
interfering noise, but the method is computationally more expensive than the calcu-
lation of the Hessian. Generally the filter is applied to the image at several scales,
too.

�

The codimension is the difference between the dimension of the data space and that of
the manifold.
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2.2 Linking the Center Points

The linking is done either by simply connecting nearby center points or by tracing
the center line starting from a seed point. The latter procedure has the advantage
that the calculation of filter responses, either the eigenvalues of the Hessian (cf.
Sato et al. (1998)) or the medialness core (cf. Pizer et al. (1998)), can be accom-
plished successively. Under the assumption of smoothness, the calculation can thus
be restricted to a region and scale of interest. However, the localized focus has the
drawback that contextual information is not available which would be necessary in
order to find the correct tracing direction at ambiguous and noisy image locations
and to detect branching points.

Krissian et al. (2000) follow the first approach. They use both the abovementioned
filtering methods for selecting candidates for central points at multiple scales. Sub-
sequently, ridges

�

are extracted in order to find the central points at the scale with
maximal response. The vessels are then reconstructed by successive steps of bi-
narization, thinning, smoothing, and linking center points located at neighboring
voxels. The topology of the reconstruction is not robust with respect to noise, since
unrecognized center points may interrupt the center lines. This is sufficient for vi-
sualizing the data where mistakes in the topology are tolerable.

The other approach which traces the center line is adopted by several methods. Ayl-
ward and Bullit (2002) use the eigenanalysis of the Hessian for finding the center
points and updating the tracing direction. The optimal scale is estimated dynami-
cally by the evaluation of an adaptive core. Finding a seed point for each branch is
necessary, since branching points are not detected during segment tracing. Flasque
et al. (2001) introduced a tracing method, which works on a segmented image and
is able to detect branching points and to follow the branches. The segmentation
method does not take into account the prior knowledge about the tubular shape of
the vascular branches. Neither of the two methods gives the user the possibility to
steer or correct the reconstruction process.

The approaches discussed so far were developed specifically for the segmentation
of blood vessels in three-dimensional images from magnetic resonance angiogra-
phy (MRA) or computer tomography (CT). The following methods, however, fo-
cus on the reconstruction of neurons from confocal image stacks. Streekstra and
van Pelt (2002) use Gaussian derivative kernels and the eigenvalues of the Hessian.
The tracing procedure is not specified, instead they focus on the incorporation of
the point spread function of the confocal microscope in order to obtain an unbiased
estimate of the radius. Al-Kohafi et al. (2002), however, developed an elaborate
method for the tracing of neurons. The basic idea of the approach is the same as
in Aylward and Bullit (2002), but the filter kernel used for extracting the center

�

Ridges are local maxima (here of intensity and scale) with respect to a restricted number
of dimensions (Haralick, 1983; Eberly et al., 1994)
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points and radii is based on simple edge detectors and lacks the theoretical founda-
tion of the abovementioned cores. Hence, the detectable diameter of the branches
is limited from below. The method, like the other tracing methods, involve heuristic
criteria for stopping the process at the end of a branch and bridging discontinuities
due to noise and low contrast.

In summary none of the described methods answer the purpose of an accurate re-
construction of the neuron, since, under the inevitable presence of noise, the correct
topology is not ensured. The connectivity particularly of the thin processes is often
not inferrible from the filter responses. This weakness is critical, if the result cannot
be corrected due to the lack of user interaction (Olabarriaga and Smeulders, 2001)
which applies to all of the methods. Furthermore, Burl et al. (1998) showed that the
“hard” detection strategy which is used by all the methods yields deficient results.
A hard detection strategy keeps only the positions of the points where the filter re-
sponse exceeds a threshold, whereas the value of the response is discarded. After
finding the best candidates for center points, either their location is kept fixed re-
sulting in a center line which is not optimized with respect to its shape, or the center
line is smoothed neglecting the data accuracy. Simultaneously optimizing the filter
responses and the shape of the object, however, is shown to be a better strategy.
Sometimes a smoothness prior is incorporated in the tracing methods (Aylward and
Bullit, 2002; Flasque et al., 2001; Al-Kohafi et al., 2002), but these methods suffer
from the local focus of the tracing procedure neglecting context information, and
thus, still fail to reconstruct regions with low contrast and consequently the follow-
ing part of the dendritic tree. The only method available so far which employs a
real “soft” detection strategy is that by Lorigo et al. (2001). However, it provides
an implicit representation of the neuron without connectivity information, and thus
does not allow for immediate user interaction.

2.3 Semi-automatic Extraction of Center Lines

In order to avoid the problems of reconstructing the correct connectivity, we pursue
a model-based approach. A model of the neurite is initialized to lie near the neurite
in the image and subsequently fitted to the data. The initialization can either be done
manually by the user or alternatively by an automated method, although the latter
suffers from the abovementioned difficulties. Such a top-down approach incorpo-
rates prior knowledge on tree structure, and thus, overcomes common constraints
in localizing center points.

Semi-automatic methods require the input of the two end points of a center line
by the user. Then the axis and width of the neurite between them is reconstructed.
Frangi et al. (1999) use this scheme for the reconstruction of human carotid arteries
from MRA. The model-based method incorporates knowledge of the physics of the
aqcuisition technique to accurately segment the vessel geometry. The user provides
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the two end points, then the center line is reconstructed by evaluating the Hessian
matrix at multiple scales, and finally the vessel wall is reconstructed. Since the
method is tailored for a specialized application to MRA it lacks a data structure to
represent complex vascular or dendritic trees.

We therefore developed a framework for the reconstruction of neurons from con-
focal image stacks which automatically determines the center line and radii of a
neuron’s segment using start and end point for initialization, employing a “soft”
detection strategy, and thus yielding results which combine voxel-based image data
with shape priors. It can be used as stand-alone reconstruction tool or can be com-
bined with fully automatic reconstruction methods. When automated methods fail,
it can be used to reconstruct unrecognized parts of the neuronal tree with reasonable
time investment. Fully automatic reconstruction of recognized parts of the neuronal
tree also can be revised by our semi-automatic method, resulting in a reconstruction
adapted to original image data at highest accuracy. To the best of our knowledge it
provides the only existing semi-automatic reconstruction tool which can be applied
to the most complex dendritic trees and a wide variety of confocal image qualities.

3 Methods

The skeleton of the neuron is reconstructed as follows. The branching and the end
points and, if necessary, some points in between are set manually by the user. This
initialization roughly approximate the shape of the neuron and provides its topol-
ogy. It is then fitted to the data with the automatic methods described in section 3.1.
Initialization and fitting of segments can be iterated. Due to a low signal-to-noise
ratio or an improper initialization and parameter setting, the fitting may produce
incorrect or deficient results. Therefore, the skeleton can be corrected manually by
moving, adding, or deleting nodes at any stage if necessary.

In order to obtain a more detailed segmentation for exact morphometric measure-
ments a surface of the neuron can be fitted afterwards. This representation of the
neuron is not restricted to the circular cross-section, but lacks the explicit, structural
description in terms of center lines, radii, and segments. Hence it gives a better esti-
mate of the volume and surface area, but cannot be used directly for computational
models. However, it can be used indirectly by assigning each part of the surface to
the corresponding part of the skeleton. This way it is possible to correct the radii
of the latter with respect to either the surface area or the volume improving the
accuracy of compartment models for computational analysis. The processing flow
of the proposed method is described in figure 2.
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Fig. 2. The processing flow. The user initializes the skeleton by tracing the neuron roughly
(for details see sec. 4.1). After fitting the skeleton to the data (see sec. 3.1) the user can
correct the result if necessary. The fitted skeleton serves as initialization for the detailed
surface reconstruction which is then fitted to the data (see sec. 3.2). The fitting of the surface
is regularized by the skeleton.

3.1 Skeleton and Generalized Cylinders

We assume a tubular shape for the neurites: elongated and with circular cross-
section. The circular cross-section is an oversimplification, but it reduces the com-
putational costs of the reconstruction process

�

. A neuron is described by a set of
tubular segments which are connected to a tree. Branches are not interrupted by
gaps. This is critical, because the staining of a cell is typically not uniform and
gaps may occur. Furthermore the shape is regularized by a smoothness constraint
for the tangents of the center lines and the radii.

Our reconstruction is based on the model of generalized cylinders (Binford, 1987),
which are generated by sweeping a two-dimensional cross-section along an axis in
three-dimensional space. Shape and size of the cross-section as well as the direc-
tion of the axis changes with location. We restrict the cross-section to be circular
and always perpendicular to the tangent of the axis. Since generally neurons are
branching structures several generalized cylinders attached to each other at branch-
ing points (see fig. 3) are necessary to describe the tree. In this work we call such a

�

It may, however, introduce errors in the estimation of the neuron’s thickness which can
be corrected using the surface reconstruction (see above).
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Fig. 3. A skeleton formed by three generalized cylinders attached to each other. The tubu-
lar structure is defined by a circular cross-section which is swept along an axis. It is
parametrized by the medial axis and a radius at every point.

structure a skeleton
�

.

We use the active contour model (also referred to as snake) by Kass et al. (1988)
for fitting the skeleton to the data. The model was originally developed to fit just
the shape of a curve, that is the axes of the generalized cylinders. We must extend
the model in order to also fit the radius to the image data. Here we suggest to
estimate the center line and the radius simultaneously, because fitting of the center
line requires a good estimation of the radius and vice versa.

The topology of the skeleton, i.e. the way the branches are connected, is set by
the user and remains fixed during the automatic fitting process. The quality of the
fitted skeleton is evaluated using an energy functional. The energy is small, if the
skeleton meets the assumptions that (i) bright voxels indicate the presence of the
neuron and (ii) the curvature of the axis and the change of the radii along the axis
are smooth to a certain extend. Thus the minimization of the energy fits the skeleton
to the local image evidences while preserving a certain degree of smoothness.

3.1.1 Medialness

Since the neural structures are modeled as generalized cylinders with circular cross-
sections, the medial points – being centers of these circles – as well as the radii at
each of these points must be found. The circles lie in the plane which is orthogonal
to the medial axis. In order to obtain a robust measure of the medialness of an axis
point, we define two medialness functions: one for the offset medialness and one
for the central medialness (Pizer et al., 1998). Both functions evaluate the medial-
ness with respect to the tangent of the axis. The merits and drawbacks of the two
measures are discussed in section 4.3.

The offset medialness is based on the change of image intensities of points along
�

Note that our description of the neuron does not satisfy the widely used definition of
skeletons by Blum (1967).
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Fig. 4. The boundariness defined in eq. (1). The figure shows two different circular
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��� � corresponds to the boundariness
measures 
�� ��� �� ��� ��� . Depending on the center of the cross-section the same location gives
different values for 
 .

the circumference of the generalized cylinder. The boundary between object and
background at position �� is characterized by a rapid change of intensities along a
direction �� . The Laplace-operator – a common edge detector – locates the bound-
aries at the local maxima of the gradients, i.e. at the zero-crossing of the second
derivative in gradient direction. In this sense we define

��� ���� �������� ����! #"%$ � ��&� (1)

as the change of the image intensities $ measured along the direction �� (see fig.
4). The offset medialness of a position �� with respect to a radius ' and the plane
spanned by �( ��� � is then defined by

)+*,� ��-� ' � �( � � �( � �,�/.'
0 �21
3 �4� ��65 '7�� �98 ��� �� �98 �:�<; 8 � (2)

where �� �=8 �>�@?BADC �98 � �( � 5EC:FHG �=8 � �( � . �( ��� � are two orthogonal vectors of unit length.
The offset medialness is high, if strong centripetal gradients lie in a given plane at a
given distance to the center. This measure is not affected by gradients lying inside
or outside the circle.

The central medialness evaluates not just the boundary of a potential generalized
cylinder but also the image intensities lying inside and outside this circle. We define
a two-dimensional kernel I � ���:J&� ' � ,

I � ���KJ�� ' �<�L� ' � �=M�NON 5 M�PQP � (3)
� �SR �UTV�QWYX[Z \&� (4)

where
MVNON

and
MVP]P

are the second partial derivatives of the Gaussian function,T^� � � � 5_J � �:` ' �

and ' is the radius of the circle. The medialness of a position
�� with respect to a radius ' and the plane spanned by �( ��� � is defined by the linear
convolution
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)��,� ���� ' � �( � � �( � � � I�� $ (5)
� 0 0 I � ���KJ�� ' �]$ � �� 5L� �( � 5LJ �( � �<;<� ; J�� (6)

Due to the Mexican hat type kernel I , strong medialness is given if the interior and
exterior of the potential boundary of the generalized cylinder is covered by bright
and dark voxels, respectively. Note, that only relative intensity values matter, since
maximization of the medialness with respect to the center �� is independent of its
absolute value. This feature is essential, because the scanning of differently sized
processes yields different intensities (see sec. 1).

In order to compute the medialness of an image location we approximate the inte-
grals in the medialness functions by sums over � equally spaced points. We obtain:

) *,� ���� ' � �( � � �( � �,� .�
��	 
 �

��� �� 5 ' ��
	
� ��
	
� (7)

and

)���� ��-� ' � �( � � �( � �,� .� �

��	 
 X �
��� 
 X � I � �

	
�:J � � ' �]$ � �� 5L� 	 �( � 5 J � �( � ��� (8)

where ��
	
� ��� R��

	
��� (see eq. (2)), �

	
��� '

	
� �KJ � ��� '

	
� and where I � ���KJ&� ' �

was set to � for � � � 5 J ��� � ' . The number � of points is chosen such that
the distance between adjacent points is approximately one voxel and that � ��
. Intensity values between the grid points of the image lattice are calculated by

trilinear interpolation.

Combining both measures of medialness increases the robustness of the fitting pro-
cedure, because they exploit somewhat complementary features of the object. The
central medialness evaluates the intensity profile, while the offset medialness makes
use of edge information.

3.1.2 Snakes

The skeleton is composed of a number of segments, each being modeled as a gen-
eralized cylinder. The generalized cylinders are parameterized by a set of points� � ����� . � � �Q("! (called snaxels). Each snaxel is characterized by its location
��
	$#�%

�

in the image, by its radius '
	$#�%

, and by its neighborhood & 	(' �
. The

shape of the generalized cylinder is obtained by linear interpolation between adja-
cent snaxels. Most of the snaxels have two neighbors, except those at the branch-
ing points which have three or more neighbors ) , and those at the endings of the
branches which have one. We first consider the case that all snaxels have one or two

) Bi-, tri-, and multifurcating points exist, and can be reconstructed by our method.
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neighbors and that the neighborhood of snaxel � is given by & 	
� ����� . � ��5 . ! or& 	

� ��� � . ! . The treatment of the branching points will be explained afterwards.

The snake algorithm fits the skeleton to the data by minimizing an energy func-
tional. It is defined for the whole skeleton as the sum of an external and an internal
energy over all snaxels,

������
�	��
 � �� 	 
 �

����
�	��
 � ���,� ��	 
 �

����� 
���� � ��� 5 � . � � � ���� � � ���Q�� (9)

( denotes the number of snaxels and
� # � � � .�� is an adjustable weight for control-

ling the relative importance of the terms.

The external energy is data driven. Its minimization attracts the snaxels (the medial
axis of the generalized cylinder) to the medial points of the neural structure and
adjusts the corresponding radii. It is defined as the weighted sum of the central and
the offset medialness,� 
���� � ���,� � ����)���� �2��5 � . � � � ) *,� ���Q��� (10)

where
)�� � *,� ���,� ) � � *,� �� 	 � ' 	 � �( 	 � � �(

	
� � is the medialness of the snaxel � # � . � � �:( !

at location ��
	

with radius '
	

according to equations (7) and (8). �(
	

��� � span the plane
which is orthogonal to the tangent of the generalized cylinder at this location. The
parameter

� # � � � .�� is the weighting factor.

The internal energy is defined as the sum of the first derivatives (i.e. the length of the
tangent vectors) of the skeleton. Minimizing this energy gives the snake an elastic
behaviour which reduces its curvature and thus smoothes the curve. The radii are
aligned as well. For snaxels with one or two neighbors the internal energy is given
by

���� � � �2�,�
������� ����� 
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where & 	
is the neighborhood of snaxel � with snaxels at location ��

	&)
� and with

radii '
	&)

� .
! # � � � .�� is a weighting parameter. Since the internal energy is minimal

for minimal distances between the snaxels, the skeleton tends to collapse to one
point. This is prevented by constraining the movements of the snaxels to the plane
perpendicular to the skeleton.

If a snaxel has more than two neighbors, namely at the branching points, the ener-
gies are evaluated with respect to each pair of neighboring snaxels and averaged.
In order to give more influence to the neighbors belonging to thicker branches, the
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energy values are weighted by the radii of the respective neighbors,

�!� ���,� �
��� � �����	��


' � 5 ' �� ����
�	��
 � �2�� ��� � ��� � (12)

where
� � R�� � ����
 ' � is a normalization factor and

� ���
�	��
 �  �� ��� � � � denotes the en-

ergy with respect to the two given neighbors.

The energy functional given by equation 9 is minimized using an iterative gradi-
ent descent method which minimizes

�����
�	��
 with respect to both the locations and

the radii (see appendix A). Local minima are avoided by a sufficiently accurate
initialization which has to be provided by the user who sets the tree nodes.

3.2 Surface Reconstruction: Correction for Non-Circular Cross-Sections

If a precise reconstruction of the neuron surface is required, the approximation
by generalized cylinders is no longer sufficient. Here we suggest to improve the
surface description by using a flexible model based on geodesic active contours by
Caselles et al. (1997) which, however, is regularized by the generalized cylinder
approximation.

The surface is implicitly defined by a level set of a function � � % ���
%

: all points
in image space which are mapped to a certain value (e.g. � � ��&� � � ) belong to the
surface. The fitting process then adjusts the mapping � according to the data and an
appropriate smoothness constraint.

3.2.1 Geodesic Active Contours

The geodesic active contours method detects boundaries in three-dimensional space
by computing surfaces of minimal area (also called geodesics). The area of a two-
dimensional surface � � %

� �
%

�

in the three-dimensional Euclidean space is
given by

� � � 0 0 ; �� � (13)

where the surface is parametrized by ��
#�%

�

and ; �� is the Euclidean area element.
Surfaces minimizing eq. (13) are called minimal surfaces.

The fastest way to minimize the area of a surface is the mean curvature flow or
Euclidean shortening flow which is the Euler-Lagrange of

�
(Chopp, 1993). The

curve evolution equation is given by

��� � ��<����� � �� � �( � �� ��� (14)
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where the subscript � denotes the derivative with respect to � . � is the mean cur-
vature and �( is the inward unit normal of the surface. This way the surface moves
outward where it is concave and its mean curvature is negative, and it moves inward
where it is convex and its mean curvature is positive.

Now let the area be “weighted” at location �� � � � �� � according to the image evi-
dences $ � ��&� , �� � � 0 0�� � � � �� �:�<; �� � (15)

The function
�

usually depends on the edges in the image:
� � ��&����� � ' "%$ � ���� ' � � (16)

where � is a decreasing function, such that � � ' � � � as ' � � . Here the function

� � �&�,� .
. 5U� (17)

is used. Thus the larger the magnitude of the gradient at the location of a surface
element, the less it contributes to the measured area. The surface which minimizes
eq. (15) is also called a minimal surface. In order to increase the robustness of the
surface reconstruction in particular that of the thin structures an intensity-based
term is added:

� � ��&� � � � � ' "6$ � ��&� ' � 5 � . � � � ' $ � ��&� � � ' � (18)�
is a weighting parameter and � is a local threshold which provides intensity in-

formation independent from the gradients. The threshold is calculated by averaging
the intensities along the circle with center and radius of the snaxel which is closest
to �� and lying in the plane which is perpendicular to the axis of the generalized
cylinder at that snaxel. The threshold changes with location, because the central as
well as the offset medialness used to fit the snaxels depend just on differences of
intensity values.

The Euler-Lagrange of
��

is then given by (Caselles et al., 1997):

��� � � � � � " �  �( � �([� (19)

where the arguments �� and �� have been omitted for clarity. Still the Euclidean
mean curvature will be reduced by the first term on the right hand side of eq. (19)
but the speed is controlled by the magnitude of the image gradient. Thus the short-
ening flow is reduced in the presence of edges. The second term pushes the surface
towards the edges except for those lying exactly orthogonal to the surface. � " �
points in the direction of image gradients with larger magnitude and �( is the in-
ward normal of the surface (see fig. 5).
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Fig. 5. The effect of the term � � ����� �� � �� in eq. (19) is illustrated in this figure for a
two-dimensional image. The extension to three dimensions is straightforward. The current
estimate of the boundary � is shown as a black line and the edge map � ��� � is shown as
gray values. White denotes high values of the gradient and small values of

�
according

to eq. (18). Black arrows show the normal
�� of the boundary and the direction of highest

increase of the edge map: � ��� . We illustrate the result of � � ����� �� � �� using white arrows
at two different locations of � marked by solid circles. Both points are to be moved along
the normal direction towards the edges.

In order to formulate the weighted curvature flow in level set notation the evolving
surface � is defined as the zero level set of the function � � ��&�

#�%
which is the set of

all points for which � � � . The weighted shorting flow for the level set minimizing��
is then

��� � ' " � ' ; F
	�� � " �' " � '� (20)

� � ' " � ' ; F�	�� " �' " � '  5 " �  #" � � (21)

Closed contours, however, tend to collapse under the influence of the shortening
flow. Caselles et al. (1997) therefore proposed an additional constant velocity acting
like a “balloon force” in the classical active contour model Cohen (1991) in order
to avoid this behaviour. Thus the evolution equation (20) is supplemented by an
“bias term”

� ' " � ' :
��� � ' " � ' ; F
	 � � " �' " � '  5�� � ' " � ' (22)

� � � 5 � � � ' " � ' 5 " �  " � � (23)

where � is a constant which determines the strength of the balloon force. The term� � ' " � ' prevents the contour from collapsing due to the shortening flow.
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The surface of tubular structures is characterized by a high curvature in the direction
lying perpendicular to the axis of the tube. This curvature should not contribute to
the shortening flow. Hence we incorporate the model of tubular shape by chosing
the factor � to be non-constant and depending on the curvature of the boundary of
the generalized cylinders:

� ��� ; F
	 � "��' "�� '  � (24)

where �
� ��&� is the signed distance to the nearest point lying on the boundary of

the generalized cylinders, with positive values outside and negative values inside
the cylinders. � is called the signed distance map (note that ' "�� � ��&� ' � . holds in
general).

The factor � acts as a shape regularizer. It compensates the contributions to the
shortening flow which minimize the radius of the cross-section of the neurites lead-
ing to a collapse of the surface to a one-dimensional curve. Thus equation (21)
becomes

��� � � ' " � ' � ;<F
	 � " �' " � '� �U; F�	 � "��' "�� '
  5E" �  " � (25)

� � ' " � ' ; F�	 � " �' " � ' � "��' "�� '  5E" �  " � � (26)

In order to control the influence of both terms in eq. (26) separately, a weighting
parameter

�
is introduced:

��� � � . � � � � ' " � ' ; F
	 � " �' " � ' � "��' "�� '  5 � " �  #" � � (27)

The mapping � is initialized with the signed distance map induced by the skeleton
(see fig. 6 for an example).

4 Results

We applied the neuron reconstruction technique described in this paper to stacks of
confocal images of cultured astrocytes, sensory neurons, inter-, and motoneurons.
Figure 7(a) shows a maximum intensity projection, and figures 7(b) and (c) the
reconstruction of a dendritic tree of a motoneuron (MN5) of a Manduca sexta �

� The manduca (Tobacco hornworm moth) belongs to the family of the sphings moths
which are well known to the layman from the movie “The Silence of the Lambs” (USA,
1991).
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Fig. 6. Application of eq. (27) to the surface reconstruction of a small part of the data set
described in sec. 4. (a) � is initialized by the signed distance map

�
of the generalized cylin-

ders which were fitted by the snake algorithm. The figures show the generalized cylinders
(solid lines and circles) and the initial zero level set of

�
as transparent surface. (b) The

surface given by the zero level set of � after fitting � to the data using eq. (27). Shown are
the generalized cylinders and the final (opaque) surface.

The image in fig. 7(a) consists of seven tiles, viz. maximum intensity projections
of seven aligned confocal image stacks. The voxel size is � � .�� � � .�� � � ����� �

. The
skeleton was reconstructed by loading successively image stacks covering different
subvolumes into the software. This way, large dendritic trees can be reconstructed
at highest resolution without a shortage of working memory. The memory usage
for the fitting procedure applied on the whole skeleton is very small compared to
the memory demands of the image stacks, and therefore, causes no problems. For
the surface reconstruction, however, memory usage amounts to the tenfold of the
original dataset due to floating point precision and implicit representation of the
surface. To circumvent memory limitations the calculations can be run on separate
tiles successively.

The number of snaxels amounts to 16578 with an average spacing of about 0.5
��� which allows smooth changes of axis direction and radius. The total length of
the reconstructed skeleton is 8323.9 ��� , its radii range between 0.1 and 3.5 ��� .
It has 1022 branching points, 1078 end points, and 2999 segments. We had to set
approximately 1500 of 16578 points, i.e. 9%, manually. The tracing procedure is
described in detail below. The numbers alone suggest a rather moderate saving of
effort, but most of the reduction results from the automated fitting which delivers
the user from specifying the radii and corrects inaccurate input. Hence the recon-
struction process is accelerated by reducing both the necessary quantity and quality
of the input while producing results of highest accuracy. Time investment for defin-
ing the branching points of the skeleton strongly depends on the user’s experience
and demand on completeness. However, to define the 1500 points necessary for the
reconstruction of the cell shown in fig. 7 took a very experienced user, who sought
the highest level of completeness including reconstruction of fine filopodia, one
working day. In comparision, the same user needed three hours for a reconstruction
restricted to dendrites thicker than 0.3 ��� . The time needed for the calculation of
surface reconstructions depends on the size of the original image stacks. In case of
the surface reconstruction shown in figure 7(c), the computing time was 80 minutes
on a standard high-end personal computer, whereas the underlying image data has
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Fig. 7. The dendritic tree of the motoneuron 5 of a manduca sexta. The images were cap-
tured on a Leica SP2 laser scanning confocal microscope using a 40 � oil immersion lens
(NA 1.25). The excitation maximum of the laser was at 543 nm and the detection range
was 565-600 nm. The voxel size is 0.1 � 0.1 � 0.3 ���

�

. Scalebar: 50 ��� . (a) Data shown in
a maximum intensity projection. (b) Reconstruction of the skeleton fitted using the active
contour model which minimizes eq. (9) (parameters: ���

�
� 0.5). The generalized cylin-

ders are indicated by their center lines. The radii are not shown. (c) Surface fitted using the
geodesic active contour model of eq. (27) (parameters: ��� 0.86,

�
� 0.17).

a size of 780 MB. However, during calculation of surface reconstructions no user
interaction is required.

A part of a dendritic tree was reconstructed to evaluate the user invariance (see sec.
4.2). This exemplifies the time investment for the processing of simpler structures.
It has 123 segments and 520 snaxels. Averaged over three users, the reconstruction
time was 20 minutes.
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Fig. 8. The tracing procedure shown for a detail. The image slice in subfigures (b-f) helps
the user to locate the neurites in three-dimensional space and to specify input coordinates
by clicking on it. (a) A maximum intensity projection of the data. (b) The user sets the first
point (marked by an arrow) which is automatically selected (selected points are highlighted
with a wireframe cube), by clicking at the image slice. (c) The user adds a point. The new
point is automatically connected with the point which was selected before by inserting
additional points. The new points are fitted to the data. (d) The user adds a point. All new
points are fitted to the data. (e) The user selects a point (marked by an arrow) by clicking
on it to continue the tracing procedure there. Since it is not an end point, it will become a
branching point. (f) The user adds a point. All new points are fitted to the data.

4.1 Tracing Procedure

The tracing procedure is illustrated in figure 8. The user traces the dendritic tree it-
eratively selecting existing snaxels as the starting points of the piece of the skeleton
to be added. If the selected snaxel is an end point of a reconstructed segment, the
segment will be extended (see fig. 8(d)), otherwise the snaxel becomes a branching
point and a new segment will be attached to it (see fig. 8(f)). To provide the end
point of the new piece of the skeleton, the user clicks at the appropriate location in
the image. Three-dimensional input coordinates are specified by clicking on a ren-
dered isosurface of the neuron or an image slice which can be dragged through the
volume. A new snaxel will be created at the given location and will be connected to
the selected one by automatically inserting intermediate snaxels on a straight line
with a predefined stepwidth. The computing time for the automatic connection pro-
cedure (snaxelization) shown in fig. 8 is negligible. Afterwards the newly created
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piece of skeleton can be fitted to the data using the snake algorithm described in
section 3.1.2 by minimizing equation (9). This way the user can check the resulting
fit immediately after the creation of the new piece. Alternatively, the user can set
several snaxels, before the fitting procedure is applied to reconstruct the skeleton
pieces in between.

The number of iterations which are necessary for the convergence of the snake al-
gorithm depends on the noise and the bending of the neural branch, which is to
be fitted. A high noise level requires small update steps in order to avoid oscilla-
tory behaviour resulting in a large number of iterations. Strong bending of a neurite
between the start and the end point chosen by the user causes the (linear) initial-
ization of the snake to deviate more strongly from the actual shape of the neurite.
This increases the number of iterations as well. Convergence does not introduce a
noticeable delay for segments with 20 sampling points and an diameter covering 50
voxels. Increasing the voxel number to 400 introduces a delay of about 10 seconds.
The computing time increases with voxel number (linearly for offset medialness
and quadratically for central medialness), but can be accelerated by subsampling
the image before. Generally the optimal solution is found by the algorithm as long
as parts of the initialized center line lie inside the neural structure. Snake-fitting
time is by far shorter than the time needed for user interaction.

4.2 User Invariance

In order to evaluate the reduction of the user variance which is achieved by our
method, three users independently reconstructed the same dendritic tree both man-
ually and with our new method. The upper row in figure 9 shows the resulting
three manual reconstructions. The user builds the skeleton by defining linear pieces
and has to estimate their radii, mimicking the Neurolucida reconstruction proce-
dure. Note that the accuracy of a reconstruction does not depend on the number
of snaxels used to represent a linear piece, since the snaxels in between are just
linearly interpolated. The quality of these reconstructions is comparable with that
of Neurolucida reconstructions. The semi-automated reconstructions shown in the
lower row of figure 9 were produced as described above. The figures in the right-
most column show the center lines of all three skeletons together for the manual
(upper row) as compared to the semi-automatic reconstruction (lower row). Obvi-
ously the semi-automated reconstructions exhibit a much stronger congruence than
the manual ones. Differences between the former occur mainly with respect to the
topology, i.e. the lengths and number of segments (see arrows in fig. 9). These dif-
ferences are not caused by the fitting but depend on the user’s data interpretation.
Therefore, the fitting ensures a high user invariance with regard to center line and
branching point locations and segment radii. In contrast, in manual reconstructions
higher user variance occurs with regard to these quantities.
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Fig. 9. Three different users reconstructed a detail of a dendritic tree. It is from the MN5 of a
Manduca sexta and shown at the top left as a maximum intensity projection. Scalebar: 5 ��� .
The top row shows manual and the bottom row shows semi-automated reconstructions.
The snaxels are represented by balls of the same radius as the skeleton at this location.
The rightmost column shows the three skeletons together without snaxels to compare the
congruence between the results. The arrows indicate a segment which was reconstructed
differently by the three users.

For better visualization of user dependent variance the mean radii of the segments
are plotted in ascending order for the three manual (fig. 10(a)) and the three semi-
automated reconstructions (fig. 10(b)). Since the number of segments varies, the
spacing between the data points is chosen such that the curves are normalized with
respect to the x-axis. The estimates of the users differ to a high degree, while those
based on medialness measures introduced in section 3.1.1 are very similar.

4.3 Skeleton

The maximization of the two medialness measures
)L*

and
)��

(see eqs. (7, 8))
yields slightly different results for each. In particular the estimates of the radii
based on the central medialness

) �
are larger than the values obtained for the

offset medialness
) *

.
)+*

is dominated by the high values of the gradient in x-
and y-direction, while

) �
is more influenced by the blurred intensity values in

z-direction (see fig. 11), while
)U*

neglects the data in z-direction due to the lack
of distinctive maxima of the gradient magnitudes in that direction. It depends on
the confocal images which of the two measures is the more appropriate one. If the
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Fig. 10. The mean radii of the segments plotted in ascending order. Since the reconstruc-
tions have different numbers of segments, the x-axis was normalized. (a) The radii of three
manual segmentations by different users. (b) The radii of three semi-automated reconstruc-
tions by the same users.

Fig. 11. Comparison of radius estimates obtained using the two medialness measures �
*

and �
�

(eqs. (7)) and (8) for a thick (a,b) and a thin (c,d) neurite. The figures Show the
cross-sections of the data and of the generalized cylinders which were fitted to the data. The
cross-sections of the generalized cylinders are shown by the thick black contours. The data
are visualized using gray values for image intensities (a,c) and as iso-intensity contours
(b,d), for the same cross-sections. Note the different ranges of gray values in (a) and (c).
Scalebar: (a,b) 1 ��� , (c,d) 0.5 ��� . The central medialness �

�
is strongly influenced by

the blurred gray values in z-direction (vertical in the figures), leading to an estimation of
the radius which is larger than that of the offset medialness. The offset medialness �

*
,

however, considers the local maxima of the image gradients. The gradients are proportional
to the density of the isolines in (b) and (d). Because no distinctive maxima are given in
z-direction, �

*
estimates the radius just with respect to the x- and y-directions (horizontal

in the figures).

image is not deconvolved, the offset medialness is preferable. Because the blurring
in axial direction is an artefact of the point spread function (PSF) of the confocal
microscope, it is reasonable to rely on the estimation of the radius in the x-y-plane
and then to adapt this value in z-direction. Here it is done by the restriction to a
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Fig. 12. Comparison of the results according to the two data evidence criteria in eq. (18)
for a thin neurite. The figures show the cross-sections of the data and of the surfaces which
were optimized according to the image gradients (parameters: � ���������  � ��� ) and the in-
tensities using a locally adapted threshold (parameters: � �����	�  � ��� ). The cross-sections
of the surfaces are shown by the thick black contours. The data are visualized using inten-
sity gray values (a) and iso-intensity contours (b), for the same cross-section. Scalebar:
0.5 ��� . The gradients are proportional to the density of the isolines in (b). Because no dis-
tinctive maxima of the gradient magnitudes are given in z-direction (vertical in the figures),
the surface resulting from the gradient-based fitting is determined by those in the x- and
y-directions (horizontal in the figures). If the latter are not distinctive enough either, the
surface tends to collapse (like the right top one). The intensity-based fitting results in a
surface, whose cross-sectional shape is strongly influenced by the blurred gray values in
z-direction, but does not rely on local maxima of the gradient magnitudes.

circular cross-section of the generalized cylinders.

)��
, however, is more robust for very thin structures covering just one or two vox-

els in x-y-direction, since at the finest scale the image gradients are very sensitive to
the inherently low signal-to-noise ratio of the data. After deconvolution the differ-
ence between the two measures reduces to a large extend (Hiesinger et al., 2001).
Without deconvolution the user may want to choose a proper value for

�
(see eq.

(10)) weighting the two medialness measures such that the method yields the most
satisfying results. A reasonable choice is to use

)L*
in general except for very thin

structures, where
) �

yields more robust results and should be used in addition.

4.4 Surface Reconstruction

The fitting procedure for the surface uses two criteria for the evaluation of the
data (see eq. (18)), the intensity gradient and a locally adapted threshold which is
provided by the skeleton. In order to compare the influence of the different terms
we show a cross-section of a detail fo the full data set with two neurites (see fig.
12).
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The cross-sections which lie perpendicular to the axes of both branches show that
the intensity gradients (observable by the density of the isolines in fig. 12(b)) do
not always provide enough information about the contours of the neural structures.
It is inevitable here to reconstruct the surface using a finite threshold value in order
to avoid a local collapse of the surface. If, however, the gradients are sufficiently
significant, the reconstruction of the tubular surface is dominated by the intensity
profile in the x- and y-direction. Due to the lack of distinct maxima in z-direction
the first term in eq. (27) gives rise to an approximatly circular cross-section. This
behaviour can be considered as an invariance with respect to anisotropic blur oc-
curring in confocal images.

The varying contrast which is due to differently sized structures and inhomoge-
neous staining requires a local adaptation of the threshold (see fig. 13). The in-
tensity values at the locations of the reconstucted surface are higher for the thick
structures than for the thinner ones. In figure 13(a) two surface reconstructions are
shown according to the global thresholds � � ����� and � � � . � � . The threshold � � ,
which is optimal for the thick branch, fails to reconstruct the thin branches, while
the threshold � � , which includes the thin branches, is too low for the thick branch.

The intensity-based term in eq. (18) depends on the local threshold values deter-
mined by the respective snaxel of the skeleton, that is the snaxel, whose boundary
is closest to the respective location. These values can be observed at the surface
shown in fig. 13(d) which was optimized with respect to that term. A strong cor-
relation between the thickness of the branches and the local thresholds is evident.
Note, that neither of the medialness measures used for fitting the snaxels (eqs. (2)
and (5)) is based on the absolute intensities.

The local intensity values at the surface which was fitted with respect to the local
thresholds approximate those which are found at the surface which was fitted to
the gradients (see fig. 13(c)). This suggests that both criteria for incorporating the
data evidence lead to similar results and thus are reasonable choices (see also fig.
13(b)). Nevertheless none of the two is able to avoid the occurrence of little gaps in
the reconstruction of thin branches (indicated by the arrows in figs. 13(c) and (d)).
Since the locations of those gaps differ, it can be expected that the combination
of both reduces their number. Indeed, the surface of the same detail (see fig. 14)
fitted using both criteria (

� � � ����� ) no longer shows these gaps. The difference
between the generalized cylinders and the exact surface is shown by the colors.
This mismatch may be important, when the proximity of the neural branches to
other structures is evaluated which requires an exact surface reconstruction.
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Fig. 13. Comparison of the results according to the two data evidence criteria in eq. (18) for
a detail including neurites of different thickness. All images are views in axial direction,
(a), (c), and (d) are shown in front of a maximum intensity projection. Scalebar: 1 ��� . (a)
Two global threshold segmentations (thresholds: � � �����  � � � � � � ) shown as transparent
surfaces. It is obvious, that branches of different thickness require different thresholds for
segmentation. (b) A data slice showing a cut of the volume. The cross-section of the surface,
which was optimized w.r.t. the intensity gradients (

�
� � ) is drawn blue, while the one,

which was optimized w.t.r. the local thresholds (
�
� � ) is drawn red. Differences between

the two occur mainly at the thin branches. (c) The surface reconstruction using the intensity
gradients (parameters: � ���������  � ��� ). The intensity values of the image at the locations
of the surface are color coded. (d) The surface reconstruction using the local thresholds
(parameters: � � ��� ���  � � � ). The distribution of intensity values at the surface is nearly
the same in (c) and (d), indicating that both criteria are reasonable and reliable, although
the reconstruction fails at some places of the thin branches (marked by the arrows).

4.5 2nd Channel Mapping

A detailed surface reconstruction may be used to evaluate the proximity to other
structures like other neurons or cell surface molecules. We illustrate the projection
of second channel data onto the surface reconstruction in figure 15 using a recon-
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Fig. 14. The fitted surface (using eq. (27)) is compared to the surface of the fitted gener-
alized cylinders (minimum of eq. (9)) which is shown by the transparent surface and the
white circles. The local distance between the two is color coded (in ��� ). The left figure is
a view in axial direction while the right one is a view from the side. Scalebar: 1 ��� .

Fig. 15. Mapping of nearby structures onto a surface reconstruction (Data by courtesy of
Daniel Münch, FU Berlin). Scalebar: 20 ��� . (a) The surface and the maximum intensity
projection of the second channel recording. (b) The volume with the second channel stain-
ing is clipped at a distance of 0.5 ��� of the surface. The remainder is shown as volume
rendering. The blue spots (marked by arrows) indicate where the intensity exceeds 32. (c)
The remaining structures are mapped onto the surface.

struction of an intracellularly filled interneuron and immunocytochemistry of the
NO synthetase. To distinguish between both labels in the double staining they were
bound to different fluorescent markers and acquired with different laser lines and
emission filters. At the moderate laser intensities used for acquisition no cross-talk
between both channels was observed. As an example for examining the spatial re-
lation of two signals in 3-dimensional space we followed the question how NO
synthethase immunolabel was distributed within an 0.5 ��� vicinity around the den-
dritic tree of the interneuron.
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In figure 15(a) an x-y-slice of the 2nd channel data is shown which is here dis-
tributed over the whole volume. This is for instance the case with labelled cell
surface molecules, because the labelling cannot be restricted to those molecules be-
longing to the neuron of interest. In order to project only the relevant data onto the
surface the volume can be clipped at a user defined distance from the surface, say� ��� ��� (see fig. 15(b)). The intensities inside the remaining region is projected onto
the surface in figure 15(c)). If another (pre- or postsynaptic) neuron was stained in
the same specimen, it is also possible to mark the locations of the surface where
either direct, zero-distance contact or approximation below a user defined threshold
between the two appears. In order to obtain reliable results in all these cases it is
crucial to have an extremely accurate surface reconstruction which is provided by
our method.

5 Conclusions

In this paper, we present a semi-automatic method for high quality three-dimensional
reconstructions of most complex neurons from confocal image stacks which can be
used for diverse purposes. The skeleton gives the structural description of the neu-
ron with high accuracy and almost arbitrary high sample density of center lines and
radii while reducing considerably the user’s effort, that is the necessary quantity
and quality of input actions. The automatic surface reconstruction achieves highest
precision of even the finest neurites with low contrast.

In contrast to other available reconstruction tools our method is characterized by
the conjunction of (i) an accelerated process which provides exact results due to
automated fitting, (ii) invariance with respect to the reconstructing user and his
carefulness, also due to automated fitting, (iii) corrigible results due to extensive
possibilities of user interaction, and (iv) independence from computer platforms
due to its implementation as a module for Amira (Indeed - Visual Concepts GmbH,
Berlin, Germany) which is available for the standard operating systems on the PC

�

.

Thus we provide an efficient, exact and controllable reconstruction procedure which
allows the analysis of a variety of neuronal properties: (i) the physiological prop-
erties of neurons can be modeled exactly, since the radii of the segments vary con-
tiniously along the axes; (ii) the detailed surface reconstruction allows to evaluate
the proximity to other structures reliably; and (iii) the structural description of the
neuron allows the statistical analysis of its morphology and structure. Furthermore
it is possible to create a metric parameter database for neurons which can be filled
by several users, since the user invariance of the tool makes the results comparable.

�

A binary version of the module will be available free of charge for download
at http:://www.neurobiologie.fu-berlin.de/duch.html. A brief docu-
mentation describing the installation and usage of the module will be provided, too.
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A Calculation of the Gradients for the Snake Energies

The partial derivatives of the external energy with respect to the center point ��
	

and
to the radius '

	
of snaxel � are
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�

is the Hessian matrix with
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The partial derivatives of the internal energy with respect to the snaxels having two
neighbors are
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Like mentioned in section 3.1.2 the internal energy is neglected for the snaxels
with one neighbor. For those having more than two neighbors the internal energy is
calculated using a weighted sum of the contributions of all pairs of neigbors.
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